b59d234e437dd026d9672c931d90aab4070b5880
[linux-2.6-microblaze.git] / tools / perf / util / cs-etm.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright(C) 2015-2018 Linaro Limited.
4  *
5  * Author: Tor Jeremiassen <tor@ti.com>
6  * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
7  */
8
9 #include <linux/bitops.h>
10 #include <linux/coresight-pmu.h>
11 #include <linux/err.h>
12 #include <linux/kernel.h>
13 #include <linux/log2.h>
14 #include <linux/types.h>
15 #include <linux/zalloc.h>
16
17 #include <opencsd/ocsd_if_types.h>
18 #include <stdlib.h>
19
20 #include "auxtrace.h"
21 #include "color.h"
22 #include "cs-etm.h"
23 #include "cs-etm-decoder/cs-etm-decoder.h"
24 #include "debug.h"
25 #include "dso.h"
26 #include "evlist.h"
27 #include "intlist.h"
28 #include "machine.h"
29 #include "map.h"
30 #include "perf.h"
31 #include "session.h"
32 #include "map_symbol.h"
33 #include "branch.h"
34 #include "symbol.h"
35 #include "tool.h"
36 #include "thread.h"
37 #include "thread-stack.h"
38 #include <tools/libc_compat.h>
39 #include "util/synthetic-events.h"
40
41 struct cs_etm_auxtrace {
42         struct auxtrace auxtrace;
43         struct auxtrace_queues queues;
44         struct auxtrace_heap heap;
45         struct itrace_synth_opts synth_opts;
46         struct perf_session *session;
47         struct machine *machine;
48         struct thread *unknown_thread;
49
50         u8 timeless_decoding;
51         u8 snapshot_mode;
52         u8 data_queued;
53         u8 sample_branches;
54         u8 sample_instructions;
55
56         int num_cpu;
57         u64 latest_kernel_timestamp;
58         u32 auxtrace_type;
59         u64 branches_sample_type;
60         u64 branches_id;
61         u64 instructions_sample_type;
62         u64 instructions_sample_period;
63         u64 instructions_id;
64         u64 **metadata;
65         unsigned int pmu_type;
66 };
67
68 struct cs_etm_traceid_queue {
69         u8 trace_chan_id;
70         pid_t pid, tid;
71         u64 period_instructions;
72         size_t last_branch_pos;
73         union perf_event *event_buf;
74         struct thread *thread;
75         struct branch_stack *last_branch;
76         struct branch_stack *last_branch_rb;
77         struct cs_etm_packet *prev_packet;
78         struct cs_etm_packet *packet;
79         struct cs_etm_packet_queue packet_queue;
80 };
81
82 struct cs_etm_queue {
83         struct cs_etm_auxtrace *etm;
84         struct cs_etm_decoder *decoder;
85         struct auxtrace_buffer *buffer;
86         unsigned int queue_nr;
87         u8 pending_timestamp_chan_id;
88         u64 offset;
89         const unsigned char *buf;
90         size_t buf_len, buf_used;
91         /* Conversion between traceID and index in traceid_queues array */
92         struct intlist *traceid_queues_list;
93         struct cs_etm_traceid_queue **traceid_queues;
94 };
95
96 /* RB tree for quick conversion between traceID and metadata pointers */
97 static struct intlist *traceid_list;
98
99 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm);
100 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
101                                            pid_t tid);
102 static int cs_etm__get_data_block(struct cs_etm_queue *etmq);
103 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq);
104
105 /* PTMs ETMIDR [11:8] set to b0011 */
106 #define ETMIDR_PTM_VERSION 0x00000300
107
108 /*
109  * A struct auxtrace_heap_item only has a queue_nr and a timestamp to
110  * work with.  One option is to modify to auxtrace_heap_XYZ() API or simply
111  * encode the etm queue number as the upper 16 bit and the channel as
112  * the lower 16 bit.
113  */
114 #define TO_CS_QUEUE_NR(queue_nr, trace_chan_id) \
115                       (queue_nr << 16 | trace_chan_id)
116 #define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16)
117 #define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff)
118
119 static u32 cs_etm__get_v7_protocol_version(u32 etmidr)
120 {
121         etmidr &= ETMIDR_PTM_VERSION;
122
123         if (etmidr == ETMIDR_PTM_VERSION)
124                 return CS_ETM_PROTO_PTM;
125
126         return CS_ETM_PROTO_ETMV3;
127 }
128
129 static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic)
130 {
131         struct int_node *inode;
132         u64 *metadata;
133
134         inode = intlist__find(traceid_list, trace_chan_id);
135         if (!inode)
136                 return -EINVAL;
137
138         metadata = inode->priv;
139         *magic = metadata[CS_ETM_MAGIC];
140         return 0;
141 }
142
143 int cs_etm__get_cpu(u8 trace_chan_id, int *cpu)
144 {
145         struct int_node *inode;
146         u64 *metadata;
147
148         inode = intlist__find(traceid_list, trace_chan_id);
149         if (!inode)
150                 return -EINVAL;
151
152         metadata = inode->priv;
153         *cpu = (int)metadata[CS_ETM_CPU];
154         return 0;
155 }
156
157 /*
158  * The returned PID format is presented by two bits:
159  *
160  *   Bit ETM_OPT_CTXTID: CONTEXTIDR or CONTEXTIDR_EL1 is traced;
161  *   Bit ETM_OPT_CTXTID2: CONTEXTIDR_EL2 is traced.
162  *
163  * It's possible that the two bits ETM_OPT_CTXTID and ETM_OPT_CTXTID2
164  * are enabled at the same time when the session runs on an EL2 kernel.
165  * This means the CONTEXTIDR_EL1 and CONTEXTIDR_EL2 both will be
166  * recorded in the trace data, the tool will selectively use
167  * CONTEXTIDR_EL2 as PID.
168  */
169 int cs_etm__get_pid_fmt(u8 trace_chan_id, u64 *pid_fmt)
170 {
171         struct int_node *inode;
172         u64 *metadata, val;
173
174         inode = intlist__find(traceid_list, trace_chan_id);
175         if (!inode)
176                 return -EINVAL;
177
178         metadata = inode->priv;
179
180         if (metadata[CS_ETM_MAGIC] == __perf_cs_etmv3_magic) {
181                 val = metadata[CS_ETM_ETMCR];
182                 /* CONTEXTIDR is traced */
183                 if (val & BIT(ETM_OPT_CTXTID))
184                         *pid_fmt = BIT(ETM_OPT_CTXTID);
185         } else {
186                 val = metadata[CS_ETMV4_TRCCONFIGR];
187                 /* CONTEXTIDR_EL2 is traced */
188                 if (val & (BIT(ETM4_CFG_BIT_VMID) | BIT(ETM4_CFG_BIT_VMID_OPT)))
189                         *pid_fmt = BIT(ETM_OPT_CTXTID2);
190                 /* CONTEXTIDR_EL1 is traced */
191                 else if (val & BIT(ETM4_CFG_BIT_CTXTID))
192                         *pid_fmt = BIT(ETM_OPT_CTXTID);
193         }
194
195         return 0;
196 }
197
198 void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq,
199                                               u8 trace_chan_id)
200 {
201         /*
202          * When a timestamp packet is encountered the backend code
203          * is stopped so that the front end has time to process packets
204          * that were accumulated in the traceID queue.  Since there can
205          * be more than one channel per cs_etm_queue, we need to specify
206          * what traceID queue needs servicing.
207          */
208         etmq->pending_timestamp_chan_id = trace_chan_id;
209 }
210
211 static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq,
212                                       u8 *trace_chan_id)
213 {
214         struct cs_etm_packet_queue *packet_queue;
215
216         if (!etmq->pending_timestamp_chan_id)
217                 return 0;
218
219         if (trace_chan_id)
220                 *trace_chan_id = etmq->pending_timestamp_chan_id;
221
222         packet_queue = cs_etm__etmq_get_packet_queue(etmq,
223                                                      etmq->pending_timestamp_chan_id);
224         if (!packet_queue)
225                 return 0;
226
227         /* Acknowledge pending status */
228         etmq->pending_timestamp_chan_id = 0;
229
230         /* See function cs_etm_decoder__do_{hard|soft}_timestamp() */
231         return packet_queue->cs_timestamp;
232 }
233
234 static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue)
235 {
236         int i;
237
238         queue->head = 0;
239         queue->tail = 0;
240         queue->packet_count = 0;
241         for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) {
242                 queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN;
243                 queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR;
244                 queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR;
245                 queue->packet_buffer[i].instr_count = 0;
246                 queue->packet_buffer[i].last_instr_taken_branch = false;
247                 queue->packet_buffer[i].last_instr_size = 0;
248                 queue->packet_buffer[i].last_instr_type = 0;
249                 queue->packet_buffer[i].last_instr_subtype = 0;
250                 queue->packet_buffer[i].last_instr_cond = 0;
251                 queue->packet_buffer[i].flags = 0;
252                 queue->packet_buffer[i].exception_number = UINT32_MAX;
253                 queue->packet_buffer[i].trace_chan_id = UINT8_MAX;
254                 queue->packet_buffer[i].cpu = INT_MIN;
255         }
256 }
257
258 static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq)
259 {
260         int idx;
261         struct int_node *inode;
262         struct cs_etm_traceid_queue *tidq;
263         struct intlist *traceid_queues_list = etmq->traceid_queues_list;
264
265         intlist__for_each_entry(inode, traceid_queues_list) {
266                 idx = (int)(intptr_t)inode->priv;
267                 tidq = etmq->traceid_queues[idx];
268                 cs_etm__clear_packet_queue(&tidq->packet_queue);
269         }
270 }
271
272 static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq,
273                                       struct cs_etm_traceid_queue *tidq,
274                                       u8 trace_chan_id)
275 {
276         int rc = -ENOMEM;
277         struct auxtrace_queue *queue;
278         struct cs_etm_auxtrace *etm = etmq->etm;
279
280         cs_etm__clear_packet_queue(&tidq->packet_queue);
281
282         queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
283         tidq->tid = queue->tid;
284         tidq->pid = -1;
285         tidq->trace_chan_id = trace_chan_id;
286
287         tidq->packet = zalloc(sizeof(struct cs_etm_packet));
288         if (!tidq->packet)
289                 goto out;
290
291         tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet));
292         if (!tidq->prev_packet)
293                 goto out_free;
294
295         if (etm->synth_opts.last_branch) {
296                 size_t sz = sizeof(struct branch_stack);
297
298                 sz += etm->synth_opts.last_branch_sz *
299                       sizeof(struct branch_entry);
300                 tidq->last_branch = zalloc(sz);
301                 if (!tidq->last_branch)
302                         goto out_free;
303                 tidq->last_branch_rb = zalloc(sz);
304                 if (!tidq->last_branch_rb)
305                         goto out_free;
306         }
307
308         tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
309         if (!tidq->event_buf)
310                 goto out_free;
311
312         return 0;
313
314 out_free:
315         zfree(&tidq->last_branch_rb);
316         zfree(&tidq->last_branch);
317         zfree(&tidq->prev_packet);
318         zfree(&tidq->packet);
319 out:
320         return rc;
321 }
322
323 static struct cs_etm_traceid_queue
324 *cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
325 {
326         int idx;
327         struct int_node *inode;
328         struct intlist *traceid_queues_list;
329         struct cs_etm_traceid_queue *tidq, **traceid_queues;
330         struct cs_etm_auxtrace *etm = etmq->etm;
331
332         if (etm->timeless_decoding)
333                 trace_chan_id = CS_ETM_PER_THREAD_TRACEID;
334
335         traceid_queues_list = etmq->traceid_queues_list;
336
337         /*
338          * Check if the traceid_queue exist for this traceID by looking
339          * in the queue list.
340          */
341         inode = intlist__find(traceid_queues_list, trace_chan_id);
342         if (inode) {
343                 idx = (int)(intptr_t)inode->priv;
344                 return etmq->traceid_queues[idx];
345         }
346
347         /* We couldn't find a traceid_queue for this traceID, allocate one */
348         tidq = malloc(sizeof(*tidq));
349         if (!tidq)
350                 return NULL;
351
352         memset(tidq, 0, sizeof(*tidq));
353
354         /* Get a valid index for the new traceid_queue */
355         idx = intlist__nr_entries(traceid_queues_list);
356         /* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */
357         inode = intlist__findnew(traceid_queues_list, trace_chan_id);
358         if (!inode)
359                 goto out_free;
360
361         /* Associate this traceID with this index */
362         inode->priv = (void *)(intptr_t)idx;
363
364         if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id))
365                 goto out_free;
366
367         /* Grow the traceid_queues array by one unit */
368         traceid_queues = etmq->traceid_queues;
369         traceid_queues = reallocarray(traceid_queues,
370                                       idx + 1,
371                                       sizeof(*traceid_queues));
372
373         /*
374          * On failure reallocarray() returns NULL and the original block of
375          * memory is left untouched.
376          */
377         if (!traceid_queues)
378                 goto out_free;
379
380         traceid_queues[idx] = tidq;
381         etmq->traceid_queues = traceid_queues;
382
383         return etmq->traceid_queues[idx];
384
385 out_free:
386         /*
387          * Function intlist__remove() removes the inode from the list
388          * and delete the memory associated to it.
389          */
390         intlist__remove(traceid_queues_list, inode);
391         free(tidq);
392
393         return NULL;
394 }
395
396 struct cs_etm_packet_queue
397 *cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
398 {
399         struct cs_etm_traceid_queue *tidq;
400
401         tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
402         if (tidq)
403                 return &tidq->packet_queue;
404
405         return NULL;
406 }
407
408 static void cs_etm__packet_swap(struct cs_etm_auxtrace *etm,
409                                 struct cs_etm_traceid_queue *tidq)
410 {
411         struct cs_etm_packet *tmp;
412
413         if (etm->sample_branches || etm->synth_opts.last_branch ||
414             etm->sample_instructions) {
415                 /*
416                  * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
417                  * the next incoming packet.
418                  */
419                 tmp = tidq->packet;
420                 tidq->packet = tidq->prev_packet;
421                 tidq->prev_packet = tmp;
422         }
423 }
424
425 static void cs_etm__packet_dump(const char *pkt_string)
426 {
427         const char *color = PERF_COLOR_BLUE;
428         int len = strlen(pkt_string);
429
430         if (len && (pkt_string[len-1] == '\n'))
431                 color_fprintf(stdout, color, "  %s", pkt_string);
432         else
433                 color_fprintf(stdout, color, "  %s\n", pkt_string);
434
435         fflush(stdout);
436 }
437
438 static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params,
439                                           struct cs_etm_auxtrace *etm, int idx,
440                                           u32 etmidr)
441 {
442         u64 **metadata = etm->metadata;
443
444         t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr);
445         t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR];
446         t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR];
447 }
448
449 static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params,
450                                           struct cs_etm_auxtrace *etm, int idx)
451 {
452         u64 **metadata = etm->metadata;
453
454         t_params[idx].protocol = CS_ETM_PROTO_ETMV4i;
455         t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0];
456         t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1];
457         t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2];
458         t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8];
459         t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR];
460         t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR];
461 }
462
463 static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params,
464                                      struct cs_etm_auxtrace *etm,
465                                      int decoders)
466 {
467         int i;
468         u32 etmidr;
469         u64 architecture;
470
471         for (i = 0; i < decoders; i++) {
472                 architecture = etm->metadata[i][CS_ETM_MAGIC];
473
474                 switch (architecture) {
475                 case __perf_cs_etmv3_magic:
476                         etmidr = etm->metadata[i][CS_ETM_ETMIDR];
477                         cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr);
478                         break;
479                 case __perf_cs_etmv4_magic:
480                         cs_etm__set_trace_param_etmv4(t_params, etm, i);
481                         break;
482                 default:
483                         return -EINVAL;
484                 }
485         }
486
487         return 0;
488 }
489
490 static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params,
491                                        struct cs_etm_queue *etmq,
492                                        enum cs_etm_decoder_operation mode,
493                                        bool formatted)
494 {
495         int ret = -EINVAL;
496
497         if (!(mode < CS_ETM_OPERATION_MAX))
498                 goto out;
499
500         d_params->packet_printer = cs_etm__packet_dump;
501         d_params->operation = mode;
502         d_params->data = etmq;
503         d_params->formatted = formatted;
504         d_params->fsyncs = false;
505         d_params->hsyncs = false;
506         d_params->frame_aligned = true;
507
508         ret = 0;
509 out:
510         return ret;
511 }
512
513 static void cs_etm__dump_event(struct cs_etm_queue *etmq,
514                                struct auxtrace_buffer *buffer)
515 {
516         int ret;
517         const char *color = PERF_COLOR_BLUE;
518         size_t buffer_used = 0;
519
520         fprintf(stdout, "\n");
521         color_fprintf(stdout, color,
522                      ". ... CoreSight ETM Trace data: size %zu bytes\n",
523                      buffer->size);
524
525         do {
526                 size_t consumed;
527
528                 ret = cs_etm_decoder__process_data_block(
529                                 etmq->decoder, buffer->offset,
530                                 &((u8 *)buffer->data)[buffer_used],
531                                 buffer->size - buffer_used, &consumed);
532                 if (ret)
533                         break;
534
535                 buffer_used += consumed;
536         } while (buffer_used < buffer->size);
537
538         cs_etm_decoder__reset(etmq->decoder);
539 }
540
541 static int cs_etm__flush_events(struct perf_session *session,
542                                 struct perf_tool *tool)
543 {
544         struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
545                                                    struct cs_etm_auxtrace,
546                                                    auxtrace);
547         if (dump_trace)
548                 return 0;
549
550         if (!tool->ordered_events)
551                 return -EINVAL;
552
553         if (etm->timeless_decoding)
554                 return cs_etm__process_timeless_queues(etm, -1);
555
556         return cs_etm__process_queues(etm);
557 }
558
559 static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq)
560 {
561         int idx;
562         uintptr_t priv;
563         struct int_node *inode, *tmp;
564         struct cs_etm_traceid_queue *tidq;
565         struct intlist *traceid_queues_list = etmq->traceid_queues_list;
566
567         intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) {
568                 priv = (uintptr_t)inode->priv;
569                 idx = priv;
570
571                 /* Free this traceid_queue from the array */
572                 tidq = etmq->traceid_queues[idx];
573                 thread__zput(tidq->thread);
574                 zfree(&tidq->event_buf);
575                 zfree(&tidq->last_branch);
576                 zfree(&tidq->last_branch_rb);
577                 zfree(&tidq->prev_packet);
578                 zfree(&tidq->packet);
579                 zfree(&tidq);
580
581                 /*
582                  * Function intlist__remove() removes the inode from the list
583                  * and delete the memory associated to it.
584                  */
585                 intlist__remove(traceid_queues_list, inode);
586         }
587
588         /* Then the RB tree itself */
589         intlist__delete(traceid_queues_list);
590         etmq->traceid_queues_list = NULL;
591
592         /* finally free the traceid_queues array */
593         zfree(&etmq->traceid_queues);
594 }
595
596 static void cs_etm__free_queue(void *priv)
597 {
598         struct cs_etm_queue *etmq = priv;
599
600         if (!etmq)
601                 return;
602
603         cs_etm_decoder__free(etmq->decoder);
604         cs_etm__free_traceid_queues(etmq);
605         free(etmq);
606 }
607
608 static void cs_etm__free_events(struct perf_session *session)
609 {
610         unsigned int i;
611         struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
612                                                    struct cs_etm_auxtrace,
613                                                    auxtrace);
614         struct auxtrace_queues *queues = &aux->queues;
615
616         for (i = 0; i < queues->nr_queues; i++) {
617                 cs_etm__free_queue(queues->queue_array[i].priv);
618                 queues->queue_array[i].priv = NULL;
619         }
620
621         auxtrace_queues__free(queues);
622 }
623
624 static void cs_etm__free(struct perf_session *session)
625 {
626         int i;
627         struct int_node *inode, *tmp;
628         struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
629                                                    struct cs_etm_auxtrace,
630                                                    auxtrace);
631         cs_etm__free_events(session);
632         session->auxtrace = NULL;
633
634         /* First remove all traceID/metadata nodes for the RB tree */
635         intlist__for_each_entry_safe(inode, tmp, traceid_list)
636                 intlist__remove(traceid_list, inode);
637         /* Then the RB tree itself */
638         intlist__delete(traceid_list);
639
640         for (i = 0; i < aux->num_cpu; i++)
641                 zfree(&aux->metadata[i]);
642
643         thread__zput(aux->unknown_thread);
644         zfree(&aux->metadata);
645         zfree(&aux);
646 }
647
648 static bool cs_etm__evsel_is_auxtrace(struct perf_session *session,
649                                       struct evsel *evsel)
650 {
651         struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
652                                                    struct cs_etm_auxtrace,
653                                                    auxtrace);
654
655         return evsel->core.attr.type == aux->pmu_type;
656 }
657
658 static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address)
659 {
660         struct machine *machine;
661
662         machine = etmq->etm->machine;
663
664         if (address >= machine__kernel_start(machine)) {
665                 if (machine__is_host(machine))
666                         return PERF_RECORD_MISC_KERNEL;
667                 else
668                         return PERF_RECORD_MISC_GUEST_KERNEL;
669         } else {
670                 if (machine__is_host(machine))
671                         return PERF_RECORD_MISC_USER;
672                 else if (perf_guest)
673                         return PERF_RECORD_MISC_GUEST_USER;
674                 else
675                         return PERF_RECORD_MISC_HYPERVISOR;
676         }
677 }
678
679 static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id,
680                               u64 address, size_t size, u8 *buffer)
681 {
682         u8  cpumode;
683         u64 offset;
684         int len;
685         struct thread *thread;
686         struct machine *machine;
687         struct addr_location al;
688         struct cs_etm_traceid_queue *tidq;
689
690         if (!etmq)
691                 return 0;
692
693         machine = etmq->etm->machine;
694         cpumode = cs_etm__cpu_mode(etmq, address);
695         tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
696         if (!tidq)
697                 return 0;
698
699         thread = tidq->thread;
700         if (!thread) {
701                 if (cpumode != PERF_RECORD_MISC_KERNEL)
702                         return 0;
703                 thread = etmq->etm->unknown_thread;
704         }
705
706         if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso)
707                 return 0;
708
709         if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
710             dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE))
711                 return 0;
712
713         offset = al.map->map_ip(al.map, address);
714
715         map__load(al.map);
716
717         len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size);
718
719         if (len <= 0) {
720                 ui__warning_once("CS ETM Trace: Missing DSO. Use 'perf archive' or debuginfod to export data from the traced system.\n"
721                                  "              Enable CONFIG_PROC_KCORE or use option '-k /path/to/vmlinux' for kernel symbols.\n");
722                 if (!al.map->dso->auxtrace_warned) {
723                         pr_err("CS ETM Trace: Debug data not found for address %#"PRIx64" in %s\n",
724                                     address,
725                                     al.map->dso->long_name ? al.map->dso->long_name : "Unknown");
726                         al.map->dso->auxtrace_warned = true;
727                 }
728                 return 0;
729         }
730
731         return len;
732 }
733
734 static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm,
735                                                 bool formatted)
736 {
737         struct cs_etm_decoder_params d_params;
738         struct cs_etm_trace_params  *t_params = NULL;
739         struct cs_etm_queue *etmq;
740         /*
741          * Each queue can only contain data from one CPU when unformatted, so only one decoder is
742          * needed.
743          */
744         int decoders = formatted ? etm->num_cpu : 1;
745
746         etmq = zalloc(sizeof(*etmq));
747         if (!etmq)
748                 return NULL;
749
750         etmq->traceid_queues_list = intlist__new(NULL);
751         if (!etmq->traceid_queues_list)
752                 goto out_free;
753
754         /* Use metadata to fill in trace parameters for trace decoder */
755         t_params = zalloc(sizeof(*t_params) * decoders);
756
757         if (!t_params)
758                 goto out_free;
759
760         if (cs_etm__init_trace_params(t_params, etm, decoders))
761                 goto out_free;
762
763         /* Set decoder parameters to decode trace packets */
764         if (cs_etm__init_decoder_params(&d_params, etmq,
765                                         dump_trace ? CS_ETM_OPERATION_PRINT :
766                                                      CS_ETM_OPERATION_DECODE,
767                                         formatted))
768                 goto out_free;
769
770         etmq->decoder = cs_etm_decoder__new(decoders, &d_params,
771                                             t_params);
772
773         if (!etmq->decoder)
774                 goto out_free;
775
776         /*
777          * Register a function to handle all memory accesses required by
778          * the trace decoder library.
779          */
780         if (cs_etm_decoder__add_mem_access_cb(etmq->decoder,
781                                               0x0L, ((u64) -1L),
782                                               cs_etm__mem_access))
783                 goto out_free_decoder;
784
785         zfree(&t_params);
786         return etmq;
787
788 out_free_decoder:
789         cs_etm_decoder__free(etmq->decoder);
790 out_free:
791         intlist__delete(etmq->traceid_queues_list);
792         free(etmq);
793
794         return NULL;
795 }
796
797 static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm,
798                                struct auxtrace_queue *queue,
799                                unsigned int queue_nr,
800                                bool formatted)
801 {
802         struct cs_etm_queue *etmq = queue->priv;
803
804         if (list_empty(&queue->head) || etmq)
805                 return 0;
806
807         etmq = cs_etm__alloc_queue(etm, formatted);
808
809         if (!etmq)
810                 return -ENOMEM;
811
812         queue->priv = etmq;
813         etmq->etm = etm;
814         etmq->queue_nr = queue_nr;
815         etmq->offset = 0;
816
817         return 0;
818 }
819
820 static int cs_etm__queue_first_cs_timestamp(struct cs_etm_auxtrace *etm,
821                                             struct cs_etm_queue *etmq,
822                                             unsigned int queue_nr)
823 {
824         int ret = 0;
825         unsigned int cs_queue_nr;
826         u8 trace_chan_id;
827         u64 cs_timestamp;
828
829         /*
830          * We are under a CPU-wide trace scenario.  As such we need to know
831          * when the code that generated the traces started to execute so that
832          * it can be correlated with execution on other CPUs.  So we get a
833          * handle on the beginning of traces and decode until we find a
834          * timestamp.  The timestamp is then added to the auxtrace min heap
835          * in order to know what nibble (of all the etmqs) to decode first.
836          */
837         while (1) {
838                 /*
839                  * Fetch an aux_buffer from this etmq.  Bail if no more
840                  * blocks or an error has been encountered.
841                  */
842                 ret = cs_etm__get_data_block(etmq);
843                 if (ret <= 0)
844                         goto out;
845
846                 /*
847                  * Run decoder on the trace block.  The decoder will stop when
848                  * encountering a CS timestamp, a full packet queue or the end of
849                  * trace for that block.
850                  */
851                 ret = cs_etm__decode_data_block(etmq);
852                 if (ret)
853                         goto out;
854
855                 /*
856                  * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all
857                  * the timestamp calculation for us.
858                  */
859                 cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
860
861                 /* We found a timestamp, no need to continue. */
862                 if (cs_timestamp)
863                         break;
864
865                 /*
866                  * We didn't find a timestamp so empty all the traceid packet
867                  * queues before looking for another timestamp packet, either
868                  * in the current data block or a new one.  Packets that were
869                  * just decoded are useless since no timestamp has been
870                  * associated with them.  As such simply discard them.
871                  */
872                 cs_etm__clear_all_packet_queues(etmq);
873         }
874
875         /*
876          * We have a timestamp.  Add it to the min heap to reflect when
877          * instructions conveyed by the range packets of this traceID queue
878          * started to execute.  Once the same has been done for all the traceID
879          * queues of each etmq, redenring and decoding can start in
880          * chronological order.
881          *
882          * Note that packets decoded above are still in the traceID's packet
883          * queue and will be processed in cs_etm__process_queues().
884          */
885         cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
886         ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp);
887 out:
888         return ret;
889 }
890
891 static inline
892 void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq,
893                                  struct cs_etm_traceid_queue *tidq)
894 {
895         struct branch_stack *bs_src = tidq->last_branch_rb;
896         struct branch_stack *bs_dst = tidq->last_branch;
897         size_t nr = 0;
898
899         /*
900          * Set the number of records before early exit: ->nr is used to
901          * determine how many branches to copy from ->entries.
902          */
903         bs_dst->nr = bs_src->nr;
904
905         /*
906          * Early exit when there is nothing to copy.
907          */
908         if (!bs_src->nr)
909                 return;
910
911         /*
912          * As bs_src->entries is a circular buffer, we need to copy from it in
913          * two steps.  First, copy the branches from the most recently inserted
914          * branch ->last_branch_pos until the end of bs_src->entries buffer.
915          */
916         nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos;
917         memcpy(&bs_dst->entries[0],
918                &bs_src->entries[tidq->last_branch_pos],
919                sizeof(struct branch_entry) * nr);
920
921         /*
922          * If we wrapped around at least once, the branches from the beginning
923          * of the bs_src->entries buffer and until the ->last_branch_pos element
924          * are older valid branches: copy them over.  The total number of
925          * branches copied over will be equal to the number of branches asked by
926          * the user in last_branch_sz.
927          */
928         if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) {
929                 memcpy(&bs_dst->entries[nr],
930                        &bs_src->entries[0],
931                        sizeof(struct branch_entry) * tidq->last_branch_pos);
932         }
933 }
934
935 static inline
936 void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq)
937 {
938         tidq->last_branch_pos = 0;
939         tidq->last_branch_rb->nr = 0;
940 }
941
942 static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq,
943                                          u8 trace_chan_id, u64 addr)
944 {
945         u8 instrBytes[2];
946
947         cs_etm__mem_access(etmq, trace_chan_id, addr,
948                            ARRAY_SIZE(instrBytes), instrBytes);
949         /*
950          * T32 instruction size is indicated by bits[15:11] of the first
951          * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111
952          * denote a 32-bit instruction.
953          */
954         return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2;
955 }
956
957 static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet)
958 {
959         /* Returns 0 for the CS_ETM_DISCONTINUITY packet */
960         if (packet->sample_type == CS_ETM_DISCONTINUITY)
961                 return 0;
962
963         return packet->start_addr;
964 }
965
966 static inline
967 u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet)
968 {
969         /* Returns 0 for the CS_ETM_DISCONTINUITY packet */
970         if (packet->sample_type == CS_ETM_DISCONTINUITY)
971                 return 0;
972
973         return packet->end_addr - packet->last_instr_size;
974 }
975
976 static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq,
977                                      u64 trace_chan_id,
978                                      const struct cs_etm_packet *packet,
979                                      u64 offset)
980 {
981         if (packet->isa == CS_ETM_ISA_T32) {
982                 u64 addr = packet->start_addr;
983
984                 while (offset) {
985                         addr += cs_etm__t32_instr_size(etmq,
986                                                        trace_chan_id, addr);
987                         offset--;
988                 }
989                 return addr;
990         }
991
992         /* Assume a 4 byte instruction size (A32/A64) */
993         return packet->start_addr + offset * 4;
994 }
995
996 static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq,
997                                           struct cs_etm_traceid_queue *tidq)
998 {
999         struct branch_stack *bs = tidq->last_branch_rb;
1000         struct branch_entry *be;
1001
1002         /*
1003          * The branches are recorded in a circular buffer in reverse
1004          * chronological order: we start recording from the last element of the
1005          * buffer down.  After writing the first element of the stack, move the
1006          * insert position back to the end of the buffer.
1007          */
1008         if (!tidq->last_branch_pos)
1009                 tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz;
1010
1011         tidq->last_branch_pos -= 1;
1012
1013         be       = &bs->entries[tidq->last_branch_pos];
1014         be->from = cs_etm__last_executed_instr(tidq->prev_packet);
1015         be->to   = cs_etm__first_executed_instr(tidq->packet);
1016         /* No support for mispredict */
1017         be->flags.mispred = 0;
1018         be->flags.predicted = 1;
1019
1020         /*
1021          * Increment bs->nr until reaching the number of last branches asked by
1022          * the user on the command line.
1023          */
1024         if (bs->nr < etmq->etm->synth_opts.last_branch_sz)
1025                 bs->nr += 1;
1026 }
1027
1028 static int cs_etm__inject_event(union perf_event *event,
1029                                struct perf_sample *sample, u64 type)
1030 {
1031         event->header.size = perf_event__sample_event_size(sample, type, 0);
1032         return perf_event__synthesize_sample(event, type, 0, sample);
1033 }
1034
1035
1036 static int
1037 cs_etm__get_trace(struct cs_etm_queue *etmq)
1038 {
1039         struct auxtrace_buffer *aux_buffer = etmq->buffer;
1040         struct auxtrace_buffer *old_buffer = aux_buffer;
1041         struct auxtrace_queue *queue;
1042
1043         queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
1044
1045         aux_buffer = auxtrace_buffer__next(queue, aux_buffer);
1046
1047         /* If no more data, drop the previous auxtrace_buffer and return */
1048         if (!aux_buffer) {
1049                 if (old_buffer)
1050                         auxtrace_buffer__drop_data(old_buffer);
1051                 etmq->buf_len = 0;
1052                 return 0;
1053         }
1054
1055         etmq->buffer = aux_buffer;
1056
1057         /* If the aux_buffer doesn't have data associated, try to load it */
1058         if (!aux_buffer->data) {
1059                 /* get the file desc associated with the perf data file */
1060                 int fd = perf_data__fd(etmq->etm->session->data);
1061
1062                 aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd);
1063                 if (!aux_buffer->data)
1064                         return -ENOMEM;
1065         }
1066
1067         /* If valid, drop the previous buffer */
1068         if (old_buffer)
1069                 auxtrace_buffer__drop_data(old_buffer);
1070
1071         etmq->buf_used = 0;
1072         etmq->buf_len = aux_buffer->size;
1073         etmq->buf = aux_buffer->data;
1074
1075         return etmq->buf_len;
1076 }
1077
1078 static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm,
1079                                     struct cs_etm_traceid_queue *tidq)
1080 {
1081         if ((!tidq->thread) && (tidq->tid != -1))
1082                 tidq->thread = machine__find_thread(etm->machine, -1,
1083                                                     tidq->tid);
1084
1085         if (tidq->thread)
1086                 tidq->pid = tidq->thread->pid_;
1087 }
1088
1089 int cs_etm__etmq_set_tid(struct cs_etm_queue *etmq,
1090                          pid_t tid, u8 trace_chan_id)
1091 {
1092         int cpu, err = -EINVAL;
1093         struct cs_etm_auxtrace *etm = etmq->etm;
1094         struct cs_etm_traceid_queue *tidq;
1095
1096         tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
1097         if (!tidq)
1098                 return err;
1099
1100         if (cs_etm__get_cpu(trace_chan_id, &cpu) < 0)
1101                 return err;
1102
1103         err = machine__set_current_tid(etm->machine, cpu, tid, tid);
1104         if (err)
1105                 return err;
1106
1107         tidq->tid = tid;
1108         thread__zput(tidq->thread);
1109
1110         cs_etm__set_pid_tid_cpu(etm, tidq);
1111         return 0;
1112 }
1113
1114 bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq)
1115 {
1116         return !!etmq->etm->timeless_decoding;
1117 }
1118
1119 static void cs_etm__copy_insn(struct cs_etm_queue *etmq,
1120                               u64 trace_chan_id,
1121                               const struct cs_etm_packet *packet,
1122                               struct perf_sample *sample)
1123 {
1124         /*
1125          * It's pointless to read instructions for the CS_ETM_DISCONTINUITY
1126          * packet, so directly bail out with 'insn_len' = 0.
1127          */
1128         if (packet->sample_type == CS_ETM_DISCONTINUITY) {
1129                 sample->insn_len = 0;
1130                 return;
1131         }
1132
1133         /*
1134          * T32 instruction size might be 32-bit or 16-bit, decide by calling
1135          * cs_etm__t32_instr_size().
1136          */
1137         if (packet->isa == CS_ETM_ISA_T32)
1138                 sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id,
1139                                                           sample->ip);
1140         /* Otherwise, A64 and A32 instruction size are always 32-bit. */
1141         else
1142                 sample->insn_len = 4;
1143
1144         cs_etm__mem_access(etmq, trace_chan_id, sample->ip,
1145                            sample->insn_len, (void *)sample->insn);
1146 }
1147
1148 static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq,
1149                                             struct cs_etm_traceid_queue *tidq,
1150                                             u64 addr, u64 period)
1151 {
1152         int ret = 0;
1153         struct cs_etm_auxtrace *etm = etmq->etm;
1154         union perf_event *event = tidq->event_buf;
1155         struct perf_sample sample = {.ip = 0,};
1156
1157         event->sample.header.type = PERF_RECORD_SAMPLE;
1158         event->sample.header.misc = cs_etm__cpu_mode(etmq, addr);
1159         event->sample.header.size = sizeof(struct perf_event_header);
1160
1161         if (!etm->timeless_decoding)
1162                 sample.time = etm->latest_kernel_timestamp;
1163         sample.ip = addr;
1164         sample.pid = tidq->pid;
1165         sample.tid = tidq->tid;
1166         sample.id = etmq->etm->instructions_id;
1167         sample.stream_id = etmq->etm->instructions_id;
1168         sample.period = period;
1169         sample.cpu = tidq->packet->cpu;
1170         sample.flags = tidq->prev_packet->flags;
1171         sample.cpumode = event->sample.header.misc;
1172
1173         cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample);
1174
1175         if (etm->synth_opts.last_branch)
1176                 sample.branch_stack = tidq->last_branch;
1177
1178         if (etm->synth_opts.inject) {
1179                 ret = cs_etm__inject_event(event, &sample,
1180                                            etm->instructions_sample_type);
1181                 if (ret)
1182                         return ret;
1183         }
1184
1185         ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1186
1187         if (ret)
1188                 pr_err(
1189                         "CS ETM Trace: failed to deliver instruction event, error %d\n",
1190                         ret);
1191
1192         return ret;
1193 }
1194
1195 /*
1196  * The cs etm packet encodes an instruction range between a branch target
1197  * and the next taken branch. Generate sample accordingly.
1198  */
1199 static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq,
1200                                        struct cs_etm_traceid_queue *tidq)
1201 {
1202         int ret = 0;
1203         struct cs_etm_auxtrace *etm = etmq->etm;
1204         struct perf_sample sample = {.ip = 0,};
1205         union perf_event *event = tidq->event_buf;
1206         struct dummy_branch_stack {
1207                 u64                     nr;
1208                 u64                     hw_idx;
1209                 struct branch_entry     entries;
1210         } dummy_bs;
1211         u64 ip;
1212
1213         ip = cs_etm__last_executed_instr(tidq->prev_packet);
1214
1215         event->sample.header.type = PERF_RECORD_SAMPLE;
1216         event->sample.header.misc = cs_etm__cpu_mode(etmq, ip);
1217         event->sample.header.size = sizeof(struct perf_event_header);
1218
1219         if (!etm->timeless_decoding)
1220                 sample.time = etm->latest_kernel_timestamp;
1221         sample.ip = ip;
1222         sample.pid = tidq->pid;
1223         sample.tid = tidq->tid;
1224         sample.addr = cs_etm__first_executed_instr(tidq->packet);
1225         sample.id = etmq->etm->branches_id;
1226         sample.stream_id = etmq->etm->branches_id;
1227         sample.period = 1;
1228         sample.cpu = tidq->packet->cpu;
1229         sample.flags = tidq->prev_packet->flags;
1230         sample.cpumode = event->sample.header.misc;
1231
1232         cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet,
1233                           &sample);
1234
1235         /*
1236          * perf report cannot handle events without a branch stack
1237          */
1238         if (etm->synth_opts.last_branch) {
1239                 dummy_bs = (struct dummy_branch_stack){
1240                         .nr = 1,
1241                         .hw_idx = -1ULL,
1242                         .entries = {
1243                                 .from = sample.ip,
1244                                 .to = sample.addr,
1245                         },
1246                 };
1247                 sample.branch_stack = (struct branch_stack *)&dummy_bs;
1248         }
1249
1250         if (etm->synth_opts.inject) {
1251                 ret = cs_etm__inject_event(event, &sample,
1252                                            etm->branches_sample_type);
1253                 if (ret)
1254                         return ret;
1255         }
1256
1257         ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1258
1259         if (ret)
1260                 pr_err(
1261                 "CS ETM Trace: failed to deliver instruction event, error %d\n",
1262                 ret);
1263
1264         return ret;
1265 }
1266
1267 struct cs_etm_synth {
1268         struct perf_tool dummy_tool;
1269         struct perf_session *session;
1270 };
1271
1272 static int cs_etm__event_synth(struct perf_tool *tool,
1273                                union perf_event *event,
1274                                struct perf_sample *sample __maybe_unused,
1275                                struct machine *machine __maybe_unused)
1276 {
1277         struct cs_etm_synth *cs_etm_synth =
1278                       container_of(tool, struct cs_etm_synth, dummy_tool);
1279
1280         return perf_session__deliver_synth_event(cs_etm_synth->session,
1281                                                  event, NULL);
1282 }
1283
1284 static int cs_etm__synth_event(struct perf_session *session,
1285                                struct perf_event_attr *attr, u64 id)
1286 {
1287         struct cs_etm_synth cs_etm_synth;
1288
1289         memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth));
1290         cs_etm_synth.session = session;
1291
1292         return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1,
1293                                            &id, cs_etm__event_synth);
1294 }
1295
1296 static int cs_etm__synth_events(struct cs_etm_auxtrace *etm,
1297                                 struct perf_session *session)
1298 {
1299         struct evlist *evlist = session->evlist;
1300         struct evsel *evsel;
1301         struct perf_event_attr attr;
1302         bool found = false;
1303         u64 id;
1304         int err;
1305
1306         evlist__for_each_entry(evlist, evsel) {
1307                 if (evsel->core.attr.type == etm->pmu_type) {
1308                         found = true;
1309                         break;
1310                 }
1311         }
1312
1313         if (!found) {
1314                 pr_debug("No selected events with CoreSight Trace data\n");
1315                 return 0;
1316         }
1317
1318         memset(&attr, 0, sizeof(struct perf_event_attr));
1319         attr.size = sizeof(struct perf_event_attr);
1320         attr.type = PERF_TYPE_HARDWARE;
1321         attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
1322         attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
1323                             PERF_SAMPLE_PERIOD;
1324         if (etm->timeless_decoding)
1325                 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
1326         else
1327                 attr.sample_type |= PERF_SAMPLE_TIME;
1328
1329         attr.exclude_user = evsel->core.attr.exclude_user;
1330         attr.exclude_kernel = evsel->core.attr.exclude_kernel;
1331         attr.exclude_hv = evsel->core.attr.exclude_hv;
1332         attr.exclude_host = evsel->core.attr.exclude_host;
1333         attr.exclude_guest = evsel->core.attr.exclude_guest;
1334         attr.sample_id_all = evsel->core.attr.sample_id_all;
1335         attr.read_format = evsel->core.attr.read_format;
1336
1337         /* create new id val to be a fixed offset from evsel id */
1338         id = evsel->core.id[0] + 1000000000;
1339
1340         if (!id)
1341                 id = 1;
1342
1343         if (etm->synth_opts.branches) {
1344                 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
1345                 attr.sample_period = 1;
1346                 attr.sample_type |= PERF_SAMPLE_ADDR;
1347                 err = cs_etm__synth_event(session, &attr, id);
1348                 if (err)
1349                         return err;
1350                 etm->sample_branches = true;
1351                 etm->branches_sample_type = attr.sample_type;
1352                 etm->branches_id = id;
1353                 id += 1;
1354                 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
1355         }
1356
1357         if (etm->synth_opts.last_branch) {
1358                 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
1359                 /*
1360                  * We don't use the hardware index, but the sample generation
1361                  * code uses the new format branch_stack with this field,
1362                  * so the event attributes must indicate that it's present.
1363                  */
1364                 attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
1365         }
1366
1367         if (etm->synth_opts.instructions) {
1368                 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
1369                 attr.sample_period = etm->synth_opts.period;
1370                 etm->instructions_sample_period = attr.sample_period;
1371                 err = cs_etm__synth_event(session, &attr, id);
1372                 if (err)
1373                         return err;
1374                 etm->sample_instructions = true;
1375                 etm->instructions_sample_type = attr.sample_type;
1376                 etm->instructions_id = id;
1377                 id += 1;
1378         }
1379
1380         return 0;
1381 }
1382
1383 static int cs_etm__sample(struct cs_etm_queue *etmq,
1384                           struct cs_etm_traceid_queue *tidq)
1385 {
1386         struct cs_etm_auxtrace *etm = etmq->etm;
1387         int ret;
1388         u8 trace_chan_id = tidq->trace_chan_id;
1389         u64 instrs_prev;
1390
1391         /* Get instructions remainder from previous packet */
1392         instrs_prev = tidq->period_instructions;
1393
1394         tidq->period_instructions += tidq->packet->instr_count;
1395
1396         /*
1397          * Record a branch when the last instruction in
1398          * PREV_PACKET is a branch.
1399          */
1400         if (etm->synth_opts.last_branch &&
1401             tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1402             tidq->prev_packet->last_instr_taken_branch)
1403                 cs_etm__update_last_branch_rb(etmq, tidq);
1404
1405         if (etm->sample_instructions &&
1406             tidq->period_instructions >= etm->instructions_sample_period) {
1407                 /*
1408                  * Emit instruction sample periodically
1409                  * TODO: allow period to be defined in cycles and clock time
1410                  */
1411
1412                 /*
1413                  * Below diagram demonstrates the instruction samples
1414                  * generation flows:
1415                  *
1416                  *    Instrs     Instrs       Instrs       Instrs
1417                  *   Sample(n)  Sample(n+1)  Sample(n+2)  Sample(n+3)
1418                  *    |            |            |            |
1419                  *    V            V            V            V
1420                  *   --------------------------------------------------
1421                  *            ^                                  ^
1422                  *            |                                  |
1423                  *         Period                             Period
1424                  *    instructions(Pi)                   instructions(Pi')
1425                  *
1426                  *            |                                  |
1427                  *            \---------------- -----------------/
1428                  *                             V
1429                  *                 tidq->packet->instr_count
1430                  *
1431                  * Instrs Sample(n...) are the synthesised samples occurring
1432                  * every etm->instructions_sample_period instructions - as
1433                  * defined on the perf command line.  Sample(n) is being the
1434                  * last sample before the current etm packet, n+1 to n+3
1435                  * samples are generated from the current etm packet.
1436                  *
1437                  * tidq->packet->instr_count represents the number of
1438                  * instructions in the current etm packet.
1439                  *
1440                  * Period instructions (Pi) contains the the number of
1441                  * instructions executed after the sample point(n) from the
1442                  * previous etm packet.  This will always be less than
1443                  * etm->instructions_sample_period.
1444                  *
1445                  * When generate new samples, it combines with two parts
1446                  * instructions, one is the tail of the old packet and another
1447                  * is the head of the new coming packet, to generate
1448                  * sample(n+1); sample(n+2) and sample(n+3) consume the
1449                  * instructions with sample period.  After sample(n+3), the rest
1450                  * instructions will be used by later packet and it is assigned
1451                  * to tidq->period_instructions for next round calculation.
1452                  */
1453
1454                 /*
1455                  * Get the initial offset into the current packet instructions;
1456                  * entry conditions ensure that instrs_prev is less than
1457                  * etm->instructions_sample_period.
1458                  */
1459                 u64 offset = etm->instructions_sample_period - instrs_prev;
1460                 u64 addr;
1461
1462                 /* Prepare last branches for instruction sample */
1463                 if (etm->synth_opts.last_branch)
1464                         cs_etm__copy_last_branch_rb(etmq, tidq);
1465
1466                 while (tidq->period_instructions >=
1467                                 etm->instructions_sample_period) {
1468                         /*
1469                          * Calculate the address of the sampled instruction (-1
1470                          * as sample is reported as though instruction has just
1471                          * been executed, but PC has not advanced to next
1472                          * instruction)
1473                          */
1474                         addr = cs_etm__instr_addr(etmq, trace_chan_id,
1475                                                   tidq->packet, offset - 1);
1476                         ret = cs_etm__synth_instruction_sample(
1477                                 etmq, tidq, addr,
1478                                 etm->instructions_sample_period);
1479                         if (ret)
1480                                 return ret;
1481
1482                         offset += etm->instructions_sample_period;
1483                         tidq->period_instructions -=
1484                                 etm->instructions_sample_period;
1485                 }
1486         }
1487
1488         if (etm->sample_branches) {
1489                 bool generate_sample = false;
1490
1491                 /* Generate sample for tracing on packet */
1492                 if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1493                         generate_sample = true;
1494
1495                 /* Generate sample for branch taken packet */
1496                 if (tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1497                     tidq->prev_packet->last_instr_taken_branch)
1498                         generate_sample = true;
1499
1500                 if (generate_sample) {
1501                         ret = cs_etm__synth_branch_sample(etmq, tidq);
1502                         if (ret)
1503                                 return ret;
1504                 }
1505         }
1506
1507         cs_etm__packet_swap(etm, tidq);
1508
1509         return 0;
1510 }
1511
1512 static int cs_etm__exception(struct cs_etm_traceid_queue *tidq)
1513 {
1514         /*
1515          * When the exception packet is inserted, whether the last instruction
1516          * in previous range packet is taken branch or not, we need to force
1517          * to set 'prev_packet->last_instr_taken_branch' to true.  This ensures
1518          * to generate branch sample for the instruction range before the
1519          * exception is trapped to kernel or before the exception returning.
1520          *
1521          * The exception packet includes the dummy address values, so don't
1522          * swap PACKET with PREV_PACKET.  This keeps PREV_PACKET to be useful
1523          * for generating instruction and branch samples.
1524          */
1525         if (tidq->prev_packet->sample_type == CS_ETM_RANGE)
1526                 tidq->prev_packet->last_instr_taken_branch = true;
1527
1528         return 0;
1529 }
1530
1531 static int cs_etm__flush(struct cs_etm_queue *etmq,
1532                          struct cs_etm_traceid_queue *tidq)
1533 {
1534         int err = 0;
1535         struct cs_etm_auxtrace *etm = etmq->etm;
1536
1537         /* Handle start tracing packet */
1538         if (tidq->prev_packet->sample_type == CS_ETM_EMPTY)
1539                 goto swap_packet;
1540
1541         if (etmq->etm->synth_opts.last_branch &&
1542             tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1543                 u64 addr;
1544
1545                 /* Prepare last branches for instruction sample */
1546                 cs_etm__copy_last_branch_rb(etmq, tidq);
1547
1548                 /*
1549                  * Generate a last branch event for the branches left in the
1550                  * circular buffer at the end of the trace.
1551                  *
1552                  * Use the address of the end of the last reported execution
1553                  * range
1554                  */
1555                 addr = cs_etm__last_executed_instr(tidq->prev_packet);
1556
1557                 err = cs_etm__synth_instruction_sample(
1558                         etmq, tidq, addr,
1559                         tidq->period_instructions);
1560                 if (err)
1561                         return err;
1562
1563                 tidq->period_instructions = 0;
1564
1565         }
1566
1567         if (etm->sample_branches &&
1568             tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1569                 err = cs_etm__synth_branch_sample(etmq, tidq);
1570                 if (err)
1571                         return err;
1572         }
1573
1574 swap_packet:
1575         cs_etm__packet_swap(etm, tidq);
1576
1577         /* Reset last branches after flush the trace */
1578         if (etm->synth_opts.last_branch)
1579                 cs_etm__reset_last_branch_rb(tidq);
1580
1581         return err;
1582 }
1583
1584 static int cs_etm__end_block(struct cs_etm_queue *etmq,
1585                              struct cs_etm_traceid_queue *tidq)
1586 {
1587         int err;
1588
1589         /*
1590          * It has no new packet coming and 'etmq->packet' contains the stale
1591          * packet which was set at the previous time with packets swapping;
1592          * so skip to generate branch sample to avoid stale packet.
1593          *
1594          * For this case only flush branch stack and generate a last branch
1595          * event for the branches left in the circular buffer at the end of
1596          * the trace.
1597          */
1598         if (etmq->etm->synth_opts.last_branch &&
1599             tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1600                 u64 addr;
1601
1602                 /* Prepare last branches for instruction sample */
1603                 cs_etm__copy_last_branch_rb(etmq, tidq);
1604
1605                 /*
1606                  * Use the address of the end of the last reported execution
1607                  * range.
1608                  */
1609                 addr = cs_etm__last_executed_instr(tidq->prev_packet);
1610
1611                 err = cs_etm__synth_instruction_sample(
1612                         etmq, tidq, addr,
1613                         tidq->period_instructions);
1614                 if (err)
1615                         return err;
1616
1617                 tidq->period_instructions = 0;
1618         }
1619
1620         return 0;
1621 }
1622 /*
1623  * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue
1624  *                         if need be.
1625  * Returns:     < 0     if error
1626  *              = 0     if no more auxtrace_buffer to read
1627  *              > 0     if the current buffer isn't empty yet
1628  */
1629 static int cs_etm__get_data_block(struct cs_etm_queue *etmq)
1630 {
1631         int ret;
1632
1633         if (!etmq->buf_len) {
1634                 ret = cs_etm__get_trace(etmq);
1635                 if (ret <= 0)
1636                         return ret;
1637                 /*
1638                  * We cannot assume consecutive blocks in the data file
1639                  * are contiguous, reset the decoder to force re-sync.
1640                  */
1641                 ret = cs_etm_decoder__reset(etmq->decoder);
1642                 if (ret)
1643                         return ret;
1644         }
1645
1646         return etmq->buf_len;
1647 }
1648
1649 static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id,
1650                                  struct cs_etm_packet *packet,
1651                                  u64 end_addr)
1652 {
1653         /* Initialise to keep compiler happy */
1654         u16 instr16 = 0;
1655         u32 instr32 = 0;
1656         u64 addr;
1657
1658         switch (packet->isa) {
1659         case CS_ETM_ISA_T32:
1660                 /*
1661                  * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247:
1662                  *
1663                  *  b'15         b'8
1664                  * +-----------------+--------+
1665                  * | 1 1 0 1 1 1 1 1 |  imm8  |
1666                  * +-----------------+--------+
1667                  *
1668                  * According to the specification, it only defines SVC for T32
1669                  * with 16 bits instruction and has no definition for 32bits;
1670                  * so below only read 2 bytes as instruction size for T32.
1671                  */
1672                 addr = end_addr - 2;
1673                 cs_etm__mem_access(etmq, trace_chan_id, addr,
1674                                    sizeof(instr16), (u8 *)&instr16);
1675                 if ((instr16 & 0xFF00) == 0xDF00)
1676                         return true;
1677
1678                 break;
1679         case CS_ETM_ISA_A32:
1680                 /*
1681                  * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247:
1682                  *
1683                  *  b'31 b'28 b'27 b'24
1684                  * +---------+---------+-------------------------+
1685                  * |  !1111  | 1 1 1 1 |        imm24            |
1686                  * +---------+---------+-------------------------+
1687                  */
1688                 addr = end_addr - 4;
1689                 cs_etm__mem_access(etmq, trace_chan_id, addr,
1690                                    sizeof(instr32), (u8 *)&instr32);
1691                 if ((instr32 & 0x0F000000) == 0x0F000000 &&
1692                     (instr32 & 0xF0000000) != 0xF0000000)
1693                         return true;
1694
1695                 break;
1696         case CS_ETM_ISA_A64:
1697                 /*
1698                  * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294:
1699                  *
1700                  *  b'31               b'21           b'4     b'0
1701                  * +-----------------------+---------+-----------+
1702                  * | 1 1 0 1 0 1 0 0 0 0 0 |  imm16  | 0 0 0 0 1 |
1703                  * +-----------------------+---------+-----------+
1704                  */
1705                 addr = end_addr - 4;
1706                 cs_etm__mem_access(etmq, trace_chan_id, addr,
1707                                    sizeof(instr32), (u8 *)&instr32);
1708                 if ((instr32 & 0xFFE0001F) == 0xd4000001)
1709                         return true;
1710
1711                 break;
1712         case CS_ETM_ISA_UNKNOWN:
1713         default:
1714                 break;
1715         }
1716
1717         return false;
1718 }
1719
1720 static bool cs_etm__is_syscall(struct cs_etm_queue *etmq,
1721                                struct cs_etm_traceid_queue *tidq, u64 magic)
1722 {
1723         u8 trace_chan_id = tidq->trace_chan_id;
1724         struct cs_etm_packet *packet = tidq->packet;
1725         struct cs_etm_packet *prev_packet = tidq->prev_packet;
1726
1727         if (magic == __perf_cs_etmv3_magic)
1728                 if (packet->exception_number == CS_ETMV3_EXC_SVC)
1729                         return true;
1730
1731         /*
1732          * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and
1733          * HVC cases; need to check if it's SVC instruction based on
1734          * packet address.
1735          */
1736         if (magic == __perf_cs_etmv4_magic) {
1737                 if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1738                     cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1739                                          prev_packet->end_addr))
1740                         return true;
1741         }
1742
1743         return false;
1744 }
1745
1746 static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq,
1747                                        u64 magic)
1748 {
1749         struct cs_etm_packet *packet = tidq->packet;
1750
1751         if (magic == __perf_cs_etmv3_magic)
1752                 if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT ||
1753                     packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT ||
1754                     packet->exception_number == CS_ETMV3_EXC_PE_RESET ||
1755                     packet->exception_number == CS_ETMV3_EXC_IRQ ||
1756                     packet->exception_number == CS_ETMV3_EXC_FIQ)
1757                         return true;
1758
1759         if (magic == __perf_cs_etmv4_magic)
1760                 if (packet->exception_number == CS_ETMV4_EXC_RESET ||
1761                     packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT ||
1762                     packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR ||
1763                     packet->exception_number == CS_ETMV4_EXC_INST_DEBUG ||
1764                     packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG ||
1765                     packet->exception_number == CS_ETMV4_EXC_IRQ ||
1766                     packet->exception_number == CS_ETMV4_EXC_FIQ)
1767                         return true;
1768
1769         return false;
1770 }
1771
1772 static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq,
1773                                       struct cs_etm_traceid_queue *tidq,
1774                                       u64 magic)
1775 {
1776         u8 trace_chan_id = tidq->trace_chan_id;
1777         struct cs_etm_packet *packet = tidq->packet;
1778         struct cs_etm_packet *prev_packet = tidq->prev_packet;
1779
1780         if (magic == __perf_cs_etmv3_magic)
1781                 if (packet->exception_number == CS_ETMV3_EXC_SMC ||
1782                     packet->exception_number == CS_ETMV3_EXC_HYP ||
1783                     packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE ||
1784                     packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR ||
1785                     packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT ||
1786                     packet->exception_number == CS_ETMV3_EXC_DATA_FAULT ||
1787                     packet->exception_number == CS_ETMV3_EXC_GENERIC)
1788                         return true;
1789
1790         if (magic == __perf_cs_etmv4_magic) {
1791                 if (packet->exception_number == CS_ETMV4_EXC_TRAP ||
1792                     packet->exception_number == CS_ETMV4_EXC_ALIGNMENT ||
1793                     packet->exception_number == CS_ETMV4_EXC_INST_FAULT ||
1794                     packet->exception_number == CS_ETMV4_EXC_DATA_FAULT)
1795                         return true;
1796
1797                 /*
1798                  * For CS_ETMV4_EXC_CALL, except SVC other instructions
1799                  * (SMC, HVC) are taken as sync exceptions.
1800                  */
1801                 if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1802                     !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1803                                           prev_packet->end_addr))
1804                         return true;
1805
1806                 /*
1807                  * ETMv4 has 5 bits for exception number; if the numbers
1808                  * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ]
1809                  * they are implementation defined exceptions.
1810                  *
1811                  * For this case, simply take it as sync exception.
1812                  */
1813                 if (packet->exception_number > CS_ETMV4_EXC_FIQ &&
1814                     packet->exception_number <= CS_ETMV4_EXC_END)
1815                         return true;
1816         }
1817
1818         return false;
1819 }
1820
1821 static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq,
1822                                     struct cs_etm_traceid_queue *tidq)
1823 {
1824         struct cs_etm_packet *packet = tidq->packet;
1825         struct cs_etm_packet *prev_packet = tidq->prev_packet;
1826         u8 trace_chan_id = tidq->trace_chan_id;
1827         u64 magic;
1828         int ret;
1829
1830         switch (packet->sample_type) {
1831         case CS_ETM_RANGE:
1832                 /*
1833                  * Immediate branch instruction without neither link nor
1834                  * return flag, it's normal branch instruction within
1835                  * the function.
1836                  */
1837                 if (packet->last_instr_type == OCSD_INSTR_BR &&
1838                     packet->last_instr_subtype == OCSD_S_INSTR_NONE) {
1839                         packet->flags = PERF_IP_FLAG_BRANCH;
1840
1841                         if (packet->last_instr_cond)
1842                                 packet->flags |= PERF_IP_FLAG_CONDITIONAL;
1843                 }
1844
1845                 /*
1846                  * Immediate branch instruction with link (e.g. BL), this is
1847                  * branch instruction for function call.
1848                  */
1849                 if (packet->last_instr_type == OCSD_INSTR_BR &&
1850                     packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1851                         packet->flags = PERF_IP_FLAG_BRANCH |
1852                                         PERF_IP_FLAG_CALL;
1853
1854                 /*
1855                  * Indirect branch instruction with link (e.g. BLR), this is
1856                  * branch instruction for function call.
1857                  */
1858                 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1859                     packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1860                         packet->flags = PERF_IP_FLAG_BRANCH |
1861                                         PERF_IP_FLAG_CALL;
1862
1863                 /*
1864                  * Indirect branch instruction with subtype of
1865                  * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for
1866                  * function return for A32/T32.
1867                  */
1868                 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1869                     packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET)
1870                         packet->flags = PERF_IP_FLAG_BRANCH |
1871                                         PERF_IP_FLAG_RETURN;
1872
1873                 /*
1874                  * Indirect branch instruction without link (e.g. BR), usually
1875                  * this is used for function return, especially for functions
1876                  * within dynamic link lib.
1877                  */
1878                 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1879                     packet->last_instr_subtype == OCSD_S_INSTR_NONE)
1880                         packet->flags = PERF_IP_FLAG_BRANCH |
1881                                         PERF_IP_FLAG_RETURN;
1882
1883                 /* Return instruction for function return. */
1884                 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1885                     packet->last_instr_subtype == OCSD_S_INSTR_V8_RET)
1886                         packet->flags = PERF_IP_FLAG_BRANCH |
1887                                         PERF_IP_FLAG_RETURN;
1888
1889                 /*
1890                  * Decoder might insert a discontinuity in the middle of
1891                  * instruction packets, fixup prev_packet with flag
1892                  * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace.
1893                  */
1894                 if (prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1895                         prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1896                                               PERF_IP_FLAG_TRACE_BEGIN;
1897
1898                 /*
1899                  * If the previous packet is an exception return packet
1900                  * and the return address just follows SVC instruction,
1901                  * it needs to calibrate the previous packet sample flags
1902                  * as PERF_IP_FLAG_SYSCALLRET.
1903                  */
1904                 if (prev_packet->flags == (PERF_IP_FLAG_BRANCH |
1905                                            PERF_IP_FLAG_RETURN |
1906                                            PERF_IP_FLAG_INTERRUPT) &&
1907                     cs_etm__is_svc_instr(etmq, trace_chan_id,
1908                                          packet, packet->start_addr))
1909                         prev_packet->flags = PERF_IP_FLAG_BRANCH |
1910                                              PERF_IP_FLAG_RETURN |
1911                                              PERF_IP_FLAG_SYSCALLRET;
1912                 break;
1913         case CS_ETM_DISCONTINUITY:
1914                 /*
1915                  * The trace is discontinuous, if the previous packet is
1916                  * instruction packet, set flag PERF_IP_FLAG_TRACE_END
1917                  * for previous packet.
1918                  */
1919                 if (prev_packet->sample_type == CS_ETM_RANGE)
1920                         prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1921                                               PERF_IP_FLAG_TRACE_END;
1922                 break;
1923         case CS_ETM_EXCEPTION:
1924                 ret = cs_etm__get_magic(packet->trace_chan_id, &magic);
1925                 if (ret)
1926                         return ret;
1927
1928                 /* The exception is for system call. */
1929                 if (cs_etm__is_syscall(etmq, tidq, magic))
1930                         packet->flags = PERF_IP_FLAG_BRANCH |
1931                                         PERF_IP_FLAG_CALL |
1932                                         PERF_IP_FLAG_SYSCALLRET;
1933                 /*
1934                  * The exceptions are triggered by external signals from bus,
1935                  * interrupt controller, debug module, PE reset or halt.
1936                  */
1937                 else if (cs_etm__is_async_exception(tidq, magic))
1938                         packet->flags = PERF_IP_FLAG_BRANCH |
1939                                         PERF_IP_FLAG_CALL |
1940                                         PERF_IP_FLAG_ASYNC |
1941                                         PERF_IP_FLAG_INTERRUPT;
1942                 /*
1943                  * Otherwise, exception is caused by trap, instruction &
1944                  * data fault, or alignment errors.
1945                  */
1946                 else if (cs_etm__is_sync_exception(etmq, tidq, magic))
1947                         packet->flags = PERF_IP_FLAG_BRANCH |
1948                                         PERF_IP_FLAG_CALL |
1949                                         PERF_IP_FLAG_INTERRUPT;
1950
1951                 /*
1952                  * When the exception packet is inserted, since exception
1953                  * packet is not used standalone for generating samples
1954                  * and it's affiliation to the previous instruction range
1955                  * packet; so set previous range packet flags to tell perf
1956                  * it is an exception taken branch.
1957                  */
1958                 if (prev_packet->sample_type == CS_ETM_RANGE)
1959                         prev_packet->flags = packet->flags;
1960                 break;
1961         case CS_ETM_EXCEPTION_RET:
1962                 /*
1963                  * When the exception return packet is inserted, since
1964                  * exception return packet is not used standalone for
1965                  * generating samples and it's affiliation to the previous
1966                  * instruction range packet; so set previous range packet
1967                  * flags to tell perf it is an exception return branch.
1968                  *
1969                  * The exception return can be for either system call or
1970                  * other exception types; unfortunately the packet doesn't
1971                  * contain exception type related info so we cannot decide
1972                  * the exception type purely based on exception return packet.
1973                  * If we record the exception number from exception packet and
1974                  * reuse it for exception return packet, this is not reliable
1975                  * due the trace can be discontinuity or the interrupt can
1976                  * be nested, thus the recorded exception number cannot be
1977                  * used for exception return packet for these two cases.
1978                  *
1979                  * For exception return packet, we only need to distinguish the
1980                  * packet is for system call or for other types.  Thus the
1981                  * decision can be deferred when receive the next packet which
1982                  * contains the return address, based on the return address we
1983                  * can read out the previous instruction and check if it's a
1984                  * system call instruction and then calibrate the sample flag
1985                  * as needed.
1986                  */
1987                 if (prev_packet->sample_type == CS_ETM_RANGE)
1988                         prev_packet->flags = PERF_IP_FLAG_BRANCH |
1989                                              PERF_IP_FLAG_RETURN |
1990                                              PERF_IP_FLAG_INTERRUPT;
1991                 break;
1992         case CS_ETM_EMPTY:
1993         default:
1994                 break;
1995         }
1996
1997         return 0;
1998 }
1999
2000 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq)
2001 {
2002         int ret = 0;
2003         size_t processed = 0;
2004
2005         /*
2006          * Packets are decoded and added to the decoder's packet queue
2007          * until the decoder packet processing callback has requested that
2008          * processing stops or there is nothing left in the buffer.  Normal
2009          * operations that stop processing are a timestamp packet or a full
2010          * decoder buffer queue.
2011          */
2012         ret = cs_etm_decoder__process_data_block(etmq->decoder,
2013                                                  etmq->offset,
2014                                                  &etmq->buf[etmq->buf_used],
2015                                                  etmq->buf_len,
2016                                                  &processed);
2017         if (ret)
2018                 goto out;
2019
2020         etmq->offset += processed;
2021         etmq->buf_used += processed;
2022         etmq->buf_len -= processed;
2023
2024 out:
2025         return ret;
2026 }
2027
2028 static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq,
2029                                          struct cs_etm_traceid_queue *tidq)
2030 {
2031         int ret;
2032         struct cs_etm_packet_queue *packet_queue;
2033
2034         packet_queue = &tidq->packet_queue;
2035
2036         /* Process each packet in this chunk */
2037         while (1) {
2038                 ret = cs_etm_decoder__get_packet(packet_queue,
2039                                                  tidq->packet);
2040                 if (ret <= 0)
2041                         /*
2042                          * Stop processing this chunk on
2043                          * end of data or error
2044                          */
2045                         break;
2046
2047                 /*
2048                  * Since packet addresses are swapped in packet
2049                  * handling within below switch() statements,
2050                  * thus setting sample flags must be called
2051                  * prior to switch() statement to use address
2052                  * information before packets swapping.
2053                  */
2054                 ret = cs_etm__set_sample_flags(etmq, tidq);
2055                 if (ret < 0)
2056                         break;
2057
2058                 switch (tidq->packet->sample_type) {
2059                 case CS_ETM_RANGE:
2060                         /*
2061                          * If the packet contains an instruction
2062                          * range, generate instruction sequence
2063                          * events.
2064                          */
2065                         cs_etm__sample(etmq, tidq);
2066                         break;
2067                 case CS_ETM_EXCEPTION:
2068                 case CS_ETM_EXCEPTION_RET:
2069                         /*
2070                          * If the exception packet is coming,
2071                          * make sure the previous instruction
2072                          * range packet to be handled properly.
2073                          */
2074                         cs_etm__exception(tidq);
2075                         break;
2076                 case CS_ETM_DISCONTINUITY:
2077                         /*
2078                          * Discontinuity in trace, flush
2079                          * previous branch stack
2080                          */
2081                         cs_etm__flush(etmq, tidq);
2082                         break;
2083                 case CS_ETM_EMPTY:
2084                         /*
2085                          * Should not receive empty packet,
2086                          * report error.
2087                          */
2088                         pr_err("CS ETM Trace: empty packet\n");
2089                         return -EINVAL;
2090                 default:
2091                         break;
2092                 }
2093         }
2094
2095         return ret;
2096 }
2097
2098 static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq)
2099 {
2100         int idx;
2101         struct int_node *inode;
2102         struct cs_etm_traceid_queue *tidq;
2103         struct intlist *traceid_queues_list = etmq->traceid_queues_list;
2104
2105         intlist__for_each_entry(inode, traceid_queues_list) {
2106                 idx = (int)(intptr_t)inode->priv;
2107                 tidq = etmq->traceid_queues[idx];
2108
2109                 /* Ignore return value */
2110                 cs_etm__process_traceid_queue(etmq, tidq);
2111
2112                 /*
2113                  * Generate an instruction sample with the remaining
2114                  * branchstack entries.
2115                  */
2116                 cs_etm__flush(etmq, tidq);
2117         }
2118 }
2119
2120 static int cs_etm__run_decoder(struct cs_etm_queue *etmq)
2121 {
2122         int err = 0;
2123         struct cs_etm_traceid_queue *tidq;
2124
2125         tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID);
2126         if (!tidq)
2127                 return -EINVAL;
2128
2129         /* Go through each buffer in the queue and decode them one by one */
2130         while (1) {
2131                 err = cs_etm__get_data_block(etmq);
2132                 if (err <= 0)
2133                         return err;
2134
2135                 /* Run trace decoder until buffer consumed or end of trace */
2136                 do {
2137                         err = cs_etm__decode_data_block(etmq);
2138                         if (err)
2139                                 return err;
2140
2141                         /*
2142                          * Process each packet in this chunk, nothing to do if
2143                          * an error occurs other than hoping the next one will
2144                          * be better.
2145                          */
2146                         err = cs_etm__process_traceid_queue(etmq, tidq);
2147
2148                 } while (etmq->buf_len);
2149
2150                 if (err == 0)
2151                         /* Flush any remaining branch stack entries */
2152                         err = cs_etm__end_block(etmq, tidq);
2153         }
2154
2155         return err;
2156 }
2157
2158 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
2159                                            pid_t tid)
2160 {
2161         unsigned int i;
2162         struct auxtrace_queues *queues = &etm->queues;
2163
2164         for (i = 0; i < queues->nr_queues; i++) {
2165                 struct auxtrace_queue *queue = &etm->queues.queue_array[i];
2166                 struct cs_etm_queue *etmq = queue->priv;
2167                 struct cs_etm_traceid_queue *tidq;
2168
2169                 if (!etmq)
2170                         continue;
2171
2172                 tidq = cs_etm__etmq_get_traceid_queue(etmq,
2173                                                 CS_ETM_PER_THREAD_TRACEID);
2174
2175                 if (!tidq)
2176                         continue;
2177
2178                 if ((tid == -1) || (tidq->tid == tid)) {
2179                         cs_etm__set_pid_tid_cpu(etm, tidq);
2180                         cs_etm__run_decoder(etmq);
2181                 }
2182         }
2183
2184         return 0;
2185 }
2186
2187 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm)
2188 {
2189         int ret = 0;
2190         unsigned int cs_queue_nr, queue_nr, i;
2191         u8 trace_chan_id;
2192         u64 cs_timestamp;
2193         struct auxtrace_queue *queue;
2194         struct cs_etm_queue *etmq;
2195         struct cs_etm_traceid_queue *tidq;
2196
2197         /*
2198          * Pre-populate the heap with one entry from each queue so that we can
2199          * start processing in time order across all queues.
2200          */
2201         for (i = 0; i < etm->queues.nr_queues; i++) {
2202                 etmq = etm->queues.queue_array[i].priv;
2203                 if (!etmq)
2204                         continue;
2205
2206                 ret = cs_etm__queue_first_cs_timestamp(etm, etmq, i);
2207                 if (ret)
2208                         return ret;
2209         }
2210
2211         while (1) {
2212                 if (!etm->heap.heap_cnt)
2213                         goto out;
2214
2215                 /* Take the entry at the top of the min heap */
2216                 cs_queue_nr = etm->heap.heap_array[0].queue_nr;
2217                 queue_nr = TO_QUEUE_NR(cs_queue_nr);
2218                 trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr);
2219                 queue = &etm->queues.queue_array[queue_nr];
2220                 etmq = queue->priv;
2221
2222                 /*
2223                  * Remove the top entry from the heap since we are about
2224                  * to process it.
2225                  */
2226                 auxtrace_heap__pop(&etm->heap);
2227
2228                 tidq  = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
2229                 if (!tidq) {
2230                         /*
2231                          * No traceID queue has been allocated for this traceID,
2232                          * which means something somewhere went very wrong.  No
2233                          * other choice than simply exit.
2234                          */
2235                         ret = -EINVAL;
2236                         goto out;
2237                 }
2238
2239                 /*
2240                  * Packets associated with this timestamp are already in
2241                  * the etmq's traceID queue, so process them.
2242                  */
2243                 ret = cs_etm__process_traceid_queue(etmq, tidq);
2244                 if (ret < 0)
2245                         goto out;
2246
2247                 /*
2248                  * Packets for this timestamp have been processed, time to
2249                  * move on to the next timestamp, fetching a new auxtrace_buffer
2250                  * if need be.
2251                  */
2252 refetch:
2253                 ret = cs_etm__get_data_block(etmq);
2254                 if (ret < 0)
2255                         goto out;
2256
2257                 /*
2258                  * No more auxtrace_buffers to process in this etmq, simply
2259                  * move on to another entry in the auxtrace_heap.
2260                  */
2261                 if (!ret)
2262                         continue;
2263
2264                 ret = cs_etm__decode_data_block(etmq);
2265                 if (ret)
2266                         goto out;
2267
2268                 cs_timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
2269
2270                 if (!cs_timestamp) {
2271                         /*
2272                          * Function cs_etm__decode_data_block() returns when
2273                          * there is no more traces to decode in the current
2274                          * auxtrace_buffer OR when a timestamp has been
2275                          * encountered on any of the traceID queues.  Since we
2276                          * did not get a timestamp, there is no more traces to
2277                          * process in this auxtrace_buffer.  As such empty and
2278                          * flush all traceID queues.
2279                          */
2280                         cs_etm__clear_all_traceid_queues(etmq);
2281
2282                         /* Fetch another auxtrace_buffer for this etmq */
2283                         goto refetch;
2284                 }
2285
2286                 /*
2287                  * Add to the min heap the timestamp for packets that have
2288                  * just been decoded.  They will be processed and synthesized
2289                  * during the next call to cs_etm__process_traceid_queue() for
2290                  * this queue/traceID.
2291                  */
2292                 cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
2293                 ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, cs_timestamp);
2294         }
2295
2296 out:
2297         return ret;
2298 }
2299
2300 static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm,
2301                                         union perf_event *event)
2302 {
2303         struct thread *th;
2304
2305         if (etm->timeless_decoding)
2306                 return 0;
2307
2308         /*
2309          * Add the tid/pid to the log so that we can get a match when
2310          * we get a contextID from the decoder.
2311          */
2312         th = machine__findnew_thread(etm->machine,
2313                                      event->itrace_start.pid,
2314                                      event->itrace_start.tid);
2315         if (!th)
2316                 return -ENOMEM;
2317
2318         thread__put(th);
2319
2320         return 0;
2321 }
2322
2323 static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm,
2324                                            union perf_event *event)
2325 {
2326         struct thread *th;
2327         bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2328
2329         /*
2330          * Context switch in per-thread mode are irrelevant since perf
2331          * will start/stop tracing as the process is scheduled.
2332          */
2333         if (etm->timeless_decoding)
2334                 return 0;
2335
2336         /*
2337          * SWITCH_IN events carry the next process to be switched out while
2338          * SWITCH_OUT events carry the process to be switched in.  As such
2339          * we don't care about IN events.
2340          */
2341         if (!out)
2342                 return 0;
2343
2344         /*
2345          * Add the tid/pid to the log so that we can get a match when
2346          * we get a contextID from the decoder.
2347          */
2348         th = machine__findnew_thread(etm->machine,
2349                                      event->context_switch.next_prev_pid,
2350                                      event->context_switch.next_prev_tid);
2351         if (!th)
2352                 return -ENOMEM;
2353
2354         thread__put(th);
2355
2356         return 0;
2357 }
2358
2359 static int cs_etm__process_event(struct perf_session *session,
2360                                  union perf_event *event,
2361                                  struct perf_sample *sample,
2362                                  struct perf_tool *tool)
2363 {
2364         u64 sample_kernel_timestamp;
2365         struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2366                                                    struct cs_etm_auxtrace,
2367                                                    auxtrace);
2368
2369         if (dump_trace)
2370                 return 0;
2371
2372         if (!tool->ordered_events) {
2373                 pr_err("CoreSight ETM Trace requires ordered events\n");
2374                 return -EINVAL;
2375         }
2376
2377         if (sample->time && (sample->time != (u64) -1))
2378                 sample_kernel_timestamp = sample->time;
2379         else
2380                 sample_kernel_timestamp = 0;
2381
2382         /*
2383          * Don't wait for cs_etm__flush_events() in per-thread/timeless mode to start the decode. We
2384          * need the tid of the PERF_RECORD_EXIT event to assign to the synthesised samples because
2385          * ETM_OPT_CTXTID is not enabled.
2386          */
2387         if (etm->timeless_decoding &&
2388             event->header.type == PERF_RECORD_EXIT)
2389                 return cs_etm__process_timeless_queues(etm,
2390                                                        event->fork.tid);
2391
2392         if (event->header.type == PERF_RECORD_ITRACE_START)
2393                 return cs_etm__process_itrace_start(etm, event);
2394         else if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2395                 return cs_etm__process_switch_cpu_wide(etm, event);
2396
2397         if (!etm->timeless_decoding && event->header.type == PERF_RECORD_AUX) {
2398                 /*
2399                  * Record the latest kernel timestamp available in the header
2400                  * for samples so that synthesised samples occur from this point
2401                  * onwards.
2402                  */
2403                 etm->latest_kernel_timestamp = sample_kernel_timestamp;
2404         }
2405
2406         return 0;
2407 }
2408
2409 static void dump_queued_data(struct cs_etm_auxtrace *etm,
2410                              struct perf_record_auxtrace *event)
2411 {
2412         struct auxtrace_buffer *buf;
2413         unsigned int i;
2414         /*
2415          * Find all buffers with same reference in the queues and dump them.
2416          * This is because the queues can contain multiple entries of the same
2417          * buffer that were split on aux records.
2418          */
2419         for (i = 0; i < etm->queues.nr_queues; ++i)
2420                 list_for_each_entry(buf, &etm->queues.queue_array[i].head, list)
2421                         if (buf->reference == event->reference)
2422                                 cs_etm__dump_event(etm->queues.queue_array[i].priv, buf);
2423 }
2424
2425 static int cs_etm__process_auxtrace_event(struct perf_session *session,
2426                                           union perf_event *event,
2427                                           struct perf_tool *tool __maybe_unused)
2428 {
2429         struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2430                                                    struct cs_etm_auxtrace,
2431                                                    auxtrace);
2432         if (!etm->data_queued) {
2433                 struct auxtrace_buffer *buffer;
2434                 off_t  data_offset;
2435                 int fd = perf_data__fd(session->data);
2436                 bool is_pipe = perf_data__is_pipe(session->data);
2437                 int err;
2438                 int idx = event->auxtrace.idx;
2439
2440                 if (is_pipe)
2441                         data_offset = 0;
2442                 else {
2443                         data_offset = lseek(fd, 0, SEEK_CUR);
2444                         if (data_offset == -1)
2445                                 return -errno;
2446                 }
2447
2448                 err = auxtrace_queues__add_event(&etm->queues, session,
2449                                                  event, data_offset, &buffer);
2450                 if (err)
2451                         return err;
2452
2453                 /*
2454                  * Knowing if the trace is formatted or not requires a lookup of
2455                  * the aux record so only works in non-piped mode where data is
2456                  * queued in cs_etm__queue_aux_records(). Always assume
2457                  * formatted in piped mode (true).
2458                  */
2459                 err = cs_etm__setup_queue(etm, &etm->queues.queue_array[idx],
2460                                           idx, true);
2461                 if (err)
2462                         return err;
2463
2464                 if (dump_trace)
2465                         if (auxtrace_buffer__get_data(buffer, fd)) {
2466                                 cs_etm__dump_event(etm->queues.queue_array[idx].priv, buffer);
2467                                 auxtrace_buffer__put_data(buffer);
2468                         }
2469         } else if (dump_trace)
2470                 dump_queued_data(etm, &event->auxtrace);
2471
2472         return 0;
2473 }
2474
2475 static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm)
2476 {
2477         struct evsel *evsel;
2478         struct evlist *evlist = etm->session->evlist;
2479         bool timeless_decoding = true;
2480
2481         /* Override timeless mode with user input from --itrace=Z */
2482         if (etm->synth_opts.timeless_decoding)
2483                 return true;
2484
2485         /*
2486          * Circle through the list of event and complain if we find one
2487          * with the time bit set.
2488          */
2489         evlist__for_each_entry(evlist, evsel) {
2490                 if ((evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
2491                         timeless_decoding = false;
2492         }
2493
2494         return timeless_decoding;
2495 }
2496
2497 static const char * const cs_etm_global_header_fmts[] = {
2498         [CS_HEADER_VERSION]     = "     Header version                 %llx\n",
2499         [CS_PMU_TYPE_CPUS]      = "     PMU type/num cpus              %llx\n",
2500         [CS_ETM_SNAPSHOT]       = "     Snapshot                       %llx\n",
2501 };
2502
2503 static const char * const cs_etm_priv_fmts[] = {
2504         [CS_ETM_MAGIC]          = "     Magic number                   %llx\n",
2505         [CS_ETM_CPU]            = "     CPU                            %lld\n",
2506         [CS_ETM_NR_TRC_PARAMS]  = "     NR_TRC_PARAMS                  %llx\n",
2507         [CS_ETM_ETMCR]          = "     ETMCR                          %llx\n",
2508         [CS_ETM_ETMTRACEIDR]    = "     ETMTRACEIDR                    %llx\n",
2509         [CS_ETM_ETMCCER]        = "     ETMCCER                        %llx\n",
2510         [CS_ETM_ETMIDR]         = "     ETMIDR                         %llx\n",
2511 };
2512
2513 static const char * const cs_etmv4_priv_fmts[] = {
2514         [CS_ETM_MAGIC]          = "     Magic number                   %llx\n",
2515         [CS_ETM_CPU]            = "     CPU                            %lld\n",
2516         [CS_ETM_NR_TRC_PARAMS]  = "     NR_TRC_PARAMS                  %llx\n",
2517         [CS_ETMV4_TRCCONFIGR]   = "     TRCCONFIGR                     %llx\n",
2518         [CS_ETMV4_TRCTRACEIDR]  = "     TRCTRACEIDR                    %llx\n",
2519         [CS_ETMV4_TRCIDR0]      = "     TRCIDR0                        %llx\n",
2520         [CS_ETMV4_TRCIDR1]      = "     TRCIDR1                        %llx\n",
2521         [CS_ETMV4_TRCIDR2]      = "     TRCIDR2                        %llx\n",
2522         [CS_ETMV4_TRCIDR8]      = "     TRCIDR8                        %llx\n",
2523         [CS_ETMV4_TRCAUTHSTATUS] = "    TRCAUTHSTATUS                  %llx\n",
2524 };
2525
2526 static const char * const param_unk_fmt =
2527         "       Unknown parameter [%d]         %llx\n";
2528 static const char * const magic_unk_fmt =
2529         "       Magic number Unknown           %llx\n";
2530
2531 static int cs_etm__print_cpu_metadata_v0(__u64 *val, int *offset)
2532 {
2533         int i = *offset, j, nr_params = 0, fmt_offset;
2534         __u64 magic;
2535
2536         /* check magic value */
2537         magic = val[i + CS_ETM_MAGIC];
2538         if ((magic != __perf_cs_etmv3_magic) &&
2539             (magic != __perf_cs_etmv4_magic)) {
2540                 /* failure - note bad magic value */
2541                 fprintf(stdout, magic_unk_fmt, magic);
2542                 return -EINVAL;
2543         }
2544
2545         /* print common header block */
2546         fprintf(stdout, cs_etm_priv_fmts[CS_ETM_MAGIC], val[i++]);
2547         fprintf(stdout, cs_etm_priv_fmts[CS_ETM_CPU], val[i++]);
2548
2549         if (magic == __perf_cs_etmv3_magic) {
2550                 nr_params = CS_ETM_NR_TRC_PARAMS_V0;
2551                 fmt_offset = CS_ETM_ETMCR;
2552                 /* after common block, offset format index past NR_PARAMS */
2553                 for (j = fmt_offset; j < nr_params + fmt_offset; j++, i++)
2554                         fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
2555         } else if (magic == __perf_cs_etmv4_magic) {
2556                 nr_params = CS_ETMV4_NR_TRC_PARAMS_V0;
2557                 fmt_offset = CS_ETMV4_TRCCONFIGR;
2558                 /* after common block, offset format index past NR_PARAMS */
2559                 for (j = fmt_offset; j < nr_params + fmt_offset; j++, i++)
2560                         fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
2561         }
2562         *offset = i;
2563         return 0;
2564 }
2565
2566 static int cs_etm__print_cpu_metadata_v1(__u64 *val, int *offset)
2567 {
2568         int i = *offset, j, total_params = 0;
2569         __u64 magic;
2570
2571         magic = val[i + CS_ETM_MAGIC];
2572         /* total params to print is NR_PARAMS + common block size for v1 */
2573         total_params = val[i + CS_ETM_NR_TRC_PARAMS] + CS_ETM_COMMON_BLK_MAX_V1;
2574
2575         if (magic == __perf_cs_etmv3_magic) {
2576                 for (j = 0; j < total_params; j++, i++) {
2577                         /* if newer record - could be excess params */
2578                         if (j >= CS_ETM_PRIV_MAX)
2579                                 fprintf(stdout, param_unk_fmt, j, val[i]);
2580                         else
2581                                 fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
2582                 }
2583         } else if (magic == __perf_cs_etmv4_magic) {
2584                 for (j = 0; j < total_params; j++, i++) {
2585                         /* if newer record - could be excess params */
2586                         if (j >= CS_ETMV4_PRIV_MAX)
2587                                 fprintf(stdout, param_unk_fmt, j, val[i]);
2588                         else
2589                                 fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
2590                 }
2591         } else {
2592                 /* failure - note bad magic value and error out */
2593                 fprintf(stdout, magic_unk_fmt, magic);
2594                 return -EINVAL;
2595         }
2596         *offset = i;
2597         return 0;
2598 }
2599
2600 static void cs_etm__print_auxtrace_info(__u64 *val, int num)
2601 {
2602         int i, cpu = 0, version, err;
2603
2604         /* bail out early on bad header version */
2605         version = val[0];
2606         if (version > CS_HEADER_CURRENT_VERSION) {
2607                 /* failure.. return */
2608                 fprintf(stdout, "       Unknown Header Version = %x, ", version);
2609                 fprintf(stdout, "Version supported <= %x\n", CS_HEADER_CURRENT_VERSION);
2610                 return;
2611         }
2612
2613         for (i = 0; i < CS_HEADER_VERSION_MAX; i++)
2614                 fprintf(stdout, cs_etm_global_header_fmts[i], val[i]);
2615
2616         for (i = CS_HEADER_VERSION_MAX; cpu < num; cpu++) {
2617                 if (version == 0)
2618                         err = cs_etm__print_cpu_metadata_v0(val, &i);
2619                 else if (version == 1)
2620                         err = cs_etm__print_cpu_metadata_v1(val, &i);
2621                 if (err)
2622                         return;
2623         }
2624 }
2625
2626 /*
2627  * Read a single cpu parameter block from the auxtrace_info priv block.
2628  *
2629  * For version 1 there is a per cpu nr_params entry. If we are handling
2630  * version 1 file, then there may be less, the same, or more params
2631  * indicated by this value than the compile time number we understand.
2632  *
2633  * For a version 0 info block, there are a fixed number, and we need to
2634  * fill out the nr_param value in the metadata we create.
2635  */
2636 static u64 *cs_etm__create_meta_blk(u64 *buff_in, int *buff_in_offset,
2637                                     int out_blk_size, int nr_params_v0)
2638 {
2639         u64 *metadata = NULL;
2640         int hdr_version;
2641         int nr_in_params, nr_out_params, nr_cmn_params;
2642         int i, k;
2643
2644         metadata = zalloc(sizeof(*metadata) * out_blk_size);
2645         if (!metadata)
2646                 return NULL;
2647
2648         /* read block current index & version */
2649         i = *buff_in_offset;
2650         hdr_version = buff_in[CS_HEADER_VERSION];
2651
2652         if (!hdr_version) {
2653         /* read version 0 info block into a version 1 metadata block  */
2654                 nr_in_params = nr_params_v0;
2655                 metadata[CS_ETM_MAGIC] = buff_in[i + CS_ETM_MAGIC];
2656                 metadata[CS_ETM_CPU] = buff_in[i + CS_ETM_CPU];
2657                 metadata[CS_ETM_NR_TRC_PARAMS] = nr_in_params;
2658                 /* remaining block params at offset +1 from source */
2659                 for (k = CS_ETM_COMMON_BLK_MAX_V1 - 1; k < nr_in_params; k++)
2660                         metadata[k + 1] = buff_in[i + k];
2661                 /* version 0 has 2 common params */
2662                 nr_cmn_params = 2;
2663         } else {
2664         /* read version 1 info block - input and output nr_params may differ */
2665                 /* version 1 has 3 common params */
2666                 nr_cmn_params = 3;
2667                 nr_in_params = buff_in[i + CS_ETM_NR_TRC_PARAMS];
2668
2669                 /* if input has more params than output - skip excess */
2670                 nr_out_params = nr_in_params + nr_cmn_params;
2671                 if (nr_out_params > out_blk_size)
2672                         nr_out_params = out_blk_size;
2673
2674                 for (k = CS_ETM_MAGIC; k < nr_out_params; k++)
2675                         metadata[k] = buff_in[i + k];
2676
2677                 /* record the actual nr params we copied */
2678                 metadata[CS_ETM_NR_TRC_PARAMS] = nr_out_params - nr_cmn_params;
2679         }
2680
2681         /* adjust in offset by number of in params used */
2682         i += nr_in_params + nr_cmn_params;
2683         *buff_in_offset = i;
2684         return metadata;
2685 }
2686
2687 /**
2688  * Puts a fragment of an auxtrace buffer into the auxtrace queues based
2689  * on the bounds of aux_event, if it matches with the buffer that's at
2690  * file_offset.
2691  *
2692  * Normally, whole auxtrace buffers would be added to the queue. But we
2693  * want to reset the decoder for every PERF_RECORD_AUX event, and the decoder
2694  * is reset across each buffer, so splitting the buffers up in advance has
2695  * the same effect.
2696  */
2697 static int cs_etm__queue_aux_fragment(struct perf_session *session, off_t file_offset, size_t sz,
2698                                       struct perf_record_aux *aux_event, struct perf_sample *sample)
2699 {
2700         int err;
2701         char buf[PERF_SAMPLE_MAX_SIZE];
2702         union perf_event *auxtrace_event_union;
2703         struct perf_record_auxtrace *auxtrace_event;
2704         union perf_event auxtrace_fragment;
2705         __u64 aux_offset, aux_size;
2706         __u32 idx;
2707         bool formatted;
2708
2709         struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2710                                                    struct cs_etm_auxtrace,
2711                                                    auxtrace);
2712
2713         /*
2714          * There should be a PERF_RECORD_AUXTRACE event at the file_offset that we got
2715          * from looping through the auxtrace index.
2716          */
2717         err = perf_session__peek_event(session, file_offset, buf,
2718                                        PERF_SAMPLE_MAX_SIZE, &auxtrace_event_union, NULL);
2719         if (err)
2720                 return err;
2721         auxtrace_event = &auxtrace_event_union->auxtrace;
2722         if (auxtrace_event->header.type != PERF_RECORD_AUXTRACE)
2723                 return -EINVAL;
2724
2725         if (auxtrace_event->header.size < sizeof(struct perf_record_auxtrace) ||
2726                 auxtrace_event->header.size != sz) {
2727                 return -EINVAL;
2728         }
2729
2730         /*
2731          * In per-thread mode, CPU is set to -1, but TID will be set instead. See
2732          * auxtrace_mmap_params__set_idx(). Return 'not found' if neither CPU nor TID match.
2733          */
2734         if ((auxtrace_event->cpu == (__u32) -1 && auxtrace_event->tid != sample->tid) ||
2735                         auxtrace_event->cpu != sample->cpu)
2736                 return 1;
2737
2738         if (aux_event->flags & PERF_AUX_FLAG_OVERWRITE) {
2739                 /*
2740                  * Clamp size in snapshot mode. The buffer size is clamped in
2741                  * __auxtrace_mmap__read() for snapshots, so the aux record size doesn't reflect
2742                  * the buffer size.
2743                  */
2744                 aux_size = min(aux_event->aux_size, auxtrace_event->size);
2745
2746                 /*
2747                  * In this mode, the head also points to the end of the buffer so aux_offset
2748                  * needs to have the size subtracted so it points to the beginning as in normal mode
2749                  */
2750                 aux_offset = aux_event->aux_offset - aux_size;
2751         } else {
2752                 aux_size = aux_event->aux_size;
2753                 aux_offset = aux_event->aux_offset;
2754         }
2755
2756         if (aux_offset >= auxtrace_event->offset &&
2757             aux_offset + aux_size <= auxtrace_event->offset + auxtrace_event->size) {
2758                 /*
2759                  * If this AUX event was inside this buffer somewhere, create a new auxtrace event
2760                  * based on the sizes of the aux event, and queue that fragment.
2761                  */
2762                 auxtrace_fragment.auxtrace = *auxtrace_event;
2763                 auxtrace_fragment.auxtrace.size = aux_size;
2764                 auxtrace_fragment.auxtrace.offset = aux_offset;
2765                 file_offset += aux_offset - auxtrace_event->offset + auxtrace_event->header.size;
2766
2767                 pr_debug3("CS ETM: Queue buffer size: %#"PRI_lx64" offset: %#"PRI_lx64
2768                           " tid: %d cpu: %d\n", aux_size, aux_offset, sample->tid, sample->cpu);
2769                 err = auxtrace_queues__add_event(&etm->queues, session, &auxtrace_fragment,
2770                                                  file_offset, NULL);
2771                 if (err)
2772                         return err;
2773
2774                 idx = auxtrace_event->idx;
2775                 formatted = !(aux_event->flags & PERF_AUX_FLAG_CORESIGHT_FORMAT_RAW);
2776                 return cs_etm__setup_queue(etm, &etm->queues.queue_array[idx],
2777                                            idx, formatted);
2778         }
2779
2780         /* Wasn't inside this buffer, but there were no parse errors. 1 == 'not found' */
2781         return 1;
2782 }
2783
2784 static int cs_etm__queue_aux_records_cb(struct perf_session *session, union perf_event *event,
2785                                         u64 offset __maybe_unused, void *data __maybe_unused)
2786 {
2787         struct perf_sample sample;
2788         int ret;
2789         struct auxtrace_index_entry *ent;
2790         struct auxtrace_index *auxtrace_index;
2791         struct evsel *evsel;
2792         size_t i;
2793
2794         /* Don't care about any other events, we're only queuing buffers for AUX events */
2795         if (event->header.type != PERF_RECORD_AUX)
2796                 return 0;
2797
2798         if (event->header.size < sizeof(struct perf_record_aux))
2799                 return -EINVAL;
2800
2801         /* Truncated Aux records can have 0 size and shouldn't result in anything being queued. */
2802         if (!event->aux.aux_size)
2803                 return 0;
2804
2805         /*
2806          * Parse the sample, we need the sample_id_all data that comes after the event so that the
2807          * CPU or PID can be matched to an AUXTRACE buffer's CPU or PID.
2808          */
2809         evsel = evlist__event2evsel(session->evlist, event);
2810         if (!evsel)
2811                 return -EINVAL;
2812         ret = evsel__parse_sample(evsel, event, &sample);
2813         if (ret)
2814                 return ret;
2815
2816         /*
2817          * Loop through the auxtrace index to find the buffer that matches up with this aux event.
2818          */
2819         list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
2820                 for (i = 0; i < auxtrace_index->nr; i++) {
2821                         ent = &auxtrace_index->entries[i];
2822                         ret = cs_etm__queue_aux_fragment(session, ent->file_offset,
2823                                                          ent->sz, &event->aux, &sample);
2824                         /*
2825                          * Stop search on error or successful values. Continue search on
2826                          * 1 ('not found')
2827                          */
2828                         if (ret != 1)
2829                                 return ret;
2830                 }
2831         }
2832
2833         /*
2834          * Couldn't find the buffer corresponding to this aux record, something went wrong. Warn but
2835          * don't exit with an error because it will still be possible to decode other aux records.
2836          */
2837         pr_err("CS ETM: Couldn't find auxtrace buffer for aux_offset: %#"PRI_lx64
2838                " tid: %d cpu: %d\n", event->aux.aux_offset, sample.tid, sample.cpu);
2839         return 0;
2840 }
2841
2842 static int cs_etm__queue_aux_records(struct perf_session *session)
2843 {
2844         struct auxtrace_index *index = list_first_entry_or_null(&session->auxtrace_index,
2845                                                                 struct auxtrace_index, list);
2846         if (index && index->nr > 0)
2847                 return perf_session__peek_events(session, session->header.data_offset,
2848                                                  session->header.data_size,
2849                                                  cs_etm__queue_aux_records_cb, NULL);
2850
2851         /*
2852          * We would get here if there are no entries in the index (either no auxtrace
2853          * buffers or no index at all). Fail silently as there is the possibility of
2854          * queueing them in cs_etm__process_auxtrace_event() if etm->data_queued is still
2855          * false.
2856          *
2857          * In that scenario, buffers will not be split by AUX records.
2858          */
2859         return 0;
2860 }
2861
2862 int cs_etm__process_auxtrace_info(union perf_event *event,
2863                                   struct perf_session *session)
2864 {
2865         struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
2866         struct cs_etm_auxtrace *etm = NULL;
2867         struct int_node *inode;
2868         unsigned int pmu_type;
2869         int event_header_size = sizeof(struct perf_event_header);
2870         int info_header_size;
2871         int total_size = auxtrace_info->header.size;
2872         int priv_size = 0;
2873         int num_cpu, trcidr_idx;
2874         int err = 0;
2875         int i, j;
2876         u64 *ptr, *hdr = NULL;
2877         u64 **metadata = NULL;
2878         u64 hdr_version;
2879
2880         /*
2881          * sizeof(auxtrace_info_event::type) +
2882          * sizeof(auxtrace_info_event::reserved) == 8
2883          */
2884         info_header_size = 8;
2885
2886         if (total_size < (event_header_size + info_header_size))
2887                 return -EINVAL;
2888
2889         priv_size = total_size - event_header_size - info_header_size;
2890
2891         /* First the global part */
2892         ptr = (u64 *) auxtrace_info->priv;
2893
2894         /* Look for version of the header */
2895         hdr_version = ptr[0];
2896         if (hdr_version > CS_HEADER_CURRENT_VERSION) {
2897                 /* print routine will print an error on bad version */
2898                 if (dump_trace)
2899                         cs_etm__print_auxtrace_info(auxtrace_info->priv, 0);
2900                 return -EINVAL;
2901         }
2902
2903         hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_MAX);
2904         if (!hdr)
2905                 return -ENOMEM;
2906
2907         /* Extract header information - see cs-etm.h for format */
2908         for (i = 0; i < CS_HEADER_VERSION_MAX; i++)
2909                 hdr[i] = ptr[i];
2910         num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff;
2911         pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) &
2912                                     0xffffffff);
2913
2914         /*
2915          * Create an RB tree for traceID-metadata tuple.  Since the conversion
2916          * has to be made for each packet that gets decoded, optimizing access
2917          * in anything other than a sequential array is worth doing.
2918          */
2919         traceid_list = intlist__new(NULL);
2920         if (!traceid_list) {
2921                 err = -ENOMEM;
2922                 goto err_free_hdr;
2923         }
2924
2925         metadata = zalloc(sizeof(*metadata) * num_cpu);
2926         if (!metadata) {
2927                 err = -ENOMEM;
2928                 goto err_free_traceid_list;
2929         }
2930
2931         /*
2932          * The metadata is stored in the auxtrace_info section and encodes
2933          * the configuration of the ARM embedded trace macrocell which is
2934          * required by the trace decoder to properly decode the trace due
2935          * to its highly compressed nature.
2936          */
2937         for (j = 0; j < num_cpu; j++) {
2938                 if (ptr[i] == __perf_cs_etmv3_magic) {
2939                         metadata[j] =
2940                                 cs_etm__create_meta_blk(ptr, &i,
2941                                                         CS_ETM_PRIV_MAX,
2942                                                         CS_ETM_NR_TRC_PARAMS_V0);
2943
2944                         /* The traceID is our handle */
2945                         trcidr_idx = CS_ETM_ETMTRACEIDR;
2946
2947                 } else if (ptr[i] == __perf_cs_etmv4_magic) {
2948                         metadata[j] =
2949                                 cs_etm__create_meta_blk(ptr, &i,
2950                                                         CS_ETMV4_PRIV_MAX,
2951                                                         CS_ETMV4_NR_TRC_PARAMS_V0);
2952
2953                         /* The traceID is our handle */
2954                         trcidr_idx = CS_ETMV4_TRCTRACEIDR;
2955                 }
2956
2957                 if (!metadata[j]) {
2958                         err = -ENOMEM;
2959                         goto err_free_metadata;
2960                 }
2961
2962                 /* Get an RB node for this CPU */
2963                 inode = intlist__findnew(traceid_list, metadata[j][trcidr_idx]);
2964
2965                 /* Something went wrong, no need to continue */
2966                 if (!inode) {
2967                         err = -ENOMEM;
2968                         goto err_free_metadata;
2969                 }
2970
2971                 /*
2972                  * The node for that CPU should not be taken.
2973                  * Back out if that's the case.
2974                  */
2975                 if (inode->priv) {
2976                         err = -EINVAL;
2977                         goto err_free_metadata;
2978                 }
2979                 /* All good, associate the traceID with the metadata pointer */
2980                 inode->priv = metadata[j];
2981         }
2982
2983         /*
2984          * Each of CS_HEADER_VERSION_MAX, CS_ETM_PRIV_MAX and
2985          * CS_ETMV4_PRIV_MAX mark how many double words are in the
2986          * global metadata, and each cpu's metadata respectively.
2987          * The following tests if the correct number of double words was
2988          * present in the auxtrace info section.
2989          */
2990         if (i * 8 != priv_size) {
2991                 err = -EINVAL;
2992                 goto err_free_metadata;
2993         }
2994
2995         etm = zalloc(sizeof(*etm));
2996
2997         if (!etm) {
2998                 err = -ENOMEM;
2999                 goto err_free_metadata;
3000         }
3001
3002         err = auxtrace_queues__init(&etm->queues);
3003         if (err)
3004                 goto err_free_etm;
3005
3006         if (session->itrace_synth_opts->set) {
3007                 etm->synth_opts = *session->itrace_synth_opts;
3008         } else {
3009                 itrace_synth_opts__set_default(&etm->synth_opts,
3010                                 session->itrace_synth_opts->default_no_sample);
3011                 etm->synth_opts.callchain = false;
3012         }
3013
3014         etm->session = session;
3015         etm->machine = &session->machines.host;
3016
3017         etm->num_cpu = num_cpu;
3018         etm->pmu_type = pmu_type;
3019         etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0);
3020         etm->metadata = metadata;
3021         etm->auxtrace_type = auxtrace_info->type;
3022         etm->timeless_decoding = cs_etm__is_timeless_decoding(etm);
3023
3024         etm->auxtrace.process_event = cs_etm__process_event;
3025         etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event;
3026         etm->auxtrace.flush_events = cs_etm__flush_events;
3027         etm->auxtrace.free_events = cs_etm__free_events;
3028         etm->auxtrace.free = cs_etm__free;
3029         etm->auxtrace.evsel_is_auxtrace = cs_etm__evsel_is_auxtrace;
3030         session->auxtrace = &etm->auxtrace;
3031
3032         etm->unknown_thread = thread__new(999999999, 999999999);
3033         if (!etm->unknown_thread) {
3034                 err = -ENOMEM;
3035                 goto err_free_queues;
3036         }
3037
3038         /*
3039          * Initialize list node so that at thread__zput() we can avoid
3040          * segmentation fault at list_del_init().
3041          */
3042         INIT_LIST_HEAD(&etm->unknown_thread->node);
3043
3044         err = thread__set_comm(etm->unknown_thread, "unknown", 0);
3045         if (err)
3046                 goto err_delete_thread;
3047
3048         if (thread__init_maps(etm->unknown_thread, etm->machine)) {
3049                 err = -ENOMEM;
3050                 goto err_delete_thread;
3051         }
3052
3053         if (dump_trace) {
3054                 cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
3055         }
3056
3057         err = cs_etm__synth_events(etm, session);
3058         if (err)
3059                 goto err_delete_thread;
3060
3061         err = cs_etm__queue_aux_records(session);
3062         if (err)
3063                 goto err_delete_thread;
3064
3065         etm->data_queued = etm->queues.populated;
3066         /*
3067          * Print warning in pipe mode, see cs_etm__process_auxtrace_event() and
3068          * cs_etm__queue_aux_fragment() for details relating to limitations.
3069          */
3070         if (!etm->data_queued)
3071                 pr_warning("CS ETM warning: Coresight decode and TRBE support requires random file access.\n"
3072                            "Continuing with best effort decoding in piped mode.\n\n");
3073
3074         return 0;
3075
3076 err_delete_thread:
3077         thread__zput(etm->unknown_thread);
3078 err_free_queues:
3079         auxtrace_queues__free(&etm->queues);
3080         session->auxtrace = NULL;
3081 err_free_etm:
3082         zfree(&etm);
3083 err_free_metadata:
3084         /* No need to check @metadata[j], free(NULL) is supported */
3085         for (j = 0; j < num_cpu; j++)
3086                 zfree(&metadata[j]);
3087         zfree(&metadata);
3088 err_free_traceid_list:
3089         intlist__delete(traceid_list);
3090 err_free_hdr:
3091         zfree(&hdr);
3092         /*
3093          * At this point, as a minimum we have valid header. Dump the rest of
3094          * the info section - the print routines will error out on structural
3095          * issues.
3096          */
3097         if (dump_trace)
3098                 cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
3099         return err;
3100 }