perf auxtrace: For reporting purposes, un-group AUX area event
[linux-2.6-microblaze.git] / tools / perf / util / auxtrace.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * auxtrace.c: AUX area trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6
7 #include <inttypes.h>
8 #include <sys/types.h>
9 #include <sys/mman.h>
10 #include <stdbool.h>
11 #include <string.h>
12 #include <limits.h>
13 #include <errno.h>
14
15 #include <linux/kernel.h>
16 #include <linux/perf_event.h>
17 #include <linux/types.h>
18 #include <linux/bitops.h>
19 #include <linux/log2.h>
20 #include <linux/string.h>
21 #include <linux/time64.h>
22
23 #include <sys/param.h>
24 #include <stdlib.h>
25 #include <stdio.h>
26 #include <linux/list.h>
27 #include <linux/zalloc.h>
28
29 #include "evlist.h"
30 #include "dso.h"
31 #include "map.h"
32 #include "pmu.h"
33 #include "evsel.h"
34 #include "evsel_config.h"
35 #include "symbol.h"
36 #include "util/synthetic-events.h"
37 #include "thread_map.h"
38 #include "asm/bug.h"
39 #include "auxtrace.h"
40
41 #include <linux/hash.h>
42
43 #include "event.h"
44 #include "record.h"
45 #include "session.h"
46 #include "debug.h"
47 #include <subcmd/parse-options.h>
48
49 #include "cs-etm.h"
50 #include "intel-pt.h"
51 #include "intel-bts.h"
52 #include "arm-spe.h"
53 #include "s390-cpumsf.h"
54 #include "util/mmap.h"
55
56 #include <linux/ctype.h>
57 #include <linux/kernel.h>
58 #include "symbol/kallsyms.h"
59 #include <internal/lib.h>
60
61 static struct perf_pmu *perf_evsel__find_pmu(struct evsel *evsel)
62 {
63         struct perf_pmu *pmu = NULL;
64
65         while ((pmu = perf_pmu__scan(pmu)) != NULL) {
66                 if (pmu->type == evsel->core.attr.type)
67                         break;
68         }
69
70         return pmu;
71 }
72
73 static bool perf_evsel__is_aux_event(struct evsel *evsel)
74 {
75         struct perf_pmu *pmu = perf_evsel__find_pmu(evsel);
76
77         return pmu && pmu->auxtrace;
78 }
79
80 /*
81  * Make a group from 'leader' to 'last', requiring that the events were not
82  * already grouped to a different leader.
83  */
84 static int perf_evlist__regroup(struct evlist *evlist,
85                                 struct evsel *leader,
86                                 struct evsel *last)
87 {
88         struct evsel *evsel;
89         bool grp;
90
91         if (!perf_evsel__is_group_leader(leader))
92                 return -EINVAL;
93
94         grp = false;
95         evlist__for_each_entry(evlist, evsel) {
96                 if (grp) {
97                         if (!(evsel->leader == leader ||
98                              (evsel->leader == evsel &&
99                               evsel->core.nr_members <= 1)))
100                                 return -EINVAL;
101                 } else if (evsel == leader) {
102                         grp = true;
103                 }
104                 if (evsel == last)
105                         break;
106         }
107
108         grp = false;
109         evlist__for_each_entry(evlist, evsel) {
110                 if (grp) {
111                         if (evsel->leader != leader) {
112                                 evsel->leader = leader;
113                                 if (leader->core.nr_members < 1)
114                                         leader->core.nr_members = 1;
115                                 leader->core.nr_members += 1;
116                         }
117                 } else if (evsel == leader) {
118                         grp = true;
119                 }
120                 if (evsel == last)
121                         break;
122         }
123
124         return 0;
125 }
126
127 static bool auxtrace__dont_decode(struct perf_session *session)
128 {
129         return !session->itrace_synth_opts ||
130                session->itrace_synth_opts->dont_decode;
131 }
132
133 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
134                         struct auxtrace_mmap_params *mp,
135                         void *userpg, int fd)
136 {
137         struct perf_event_mmap_page *pc = userpg;
138
139         WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
140
141         mm->userpg = userpg;
142         mm->mask = mp->mask;
143         mm->len = mp->len;
144         mm->prev = 0;
145         mm->idx = mp->idx;
146         mm->tid = mp->tid;
147         mm->cpu = mp->cpu;
148
149         if (!mp->len) {
150                 mm->base = NULL;
151                 return 0;
152         }
153
154 #if BITS_PER_LONG != 64 && !defined(HAVE_SYNC_COMPARE_AND_SWAP_SUPPORT)
155         pr_err("Cannot use AUX area tracing mmaps\n");
156         return -1;
157 #endif
158
159         pc->aux_offset = mp->offset;
160         pc->aux_size = mp->len;
161
162         mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
163         if (mm->base == MAP_FAILED) {
164                 pr_debug2("failed to mmap AUX area\n");
165                 mm->base = NULL;
166                 return -1;
167         }
168
169         return 0;
170 }
171
172 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
173 {
174         if (mm->base) {
175                 munmap(mm->base, mm->len);
176                 mm->base = NULL;
177         }
178 }
179
180 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
181                                 off_t auxtrace_offset,
182                                 unsigned int auxtrace_pages,
183                                 bool auxtrace_overwrite)
184 {
185         if (auxtrace_pages) {
186                 mp->offset = auxtrace_offset;
187                 mp->len = auxtrace_pages * (size_t)page_size;
188                 mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
189                 mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
190                 pr_debug2("AUX area mmap length %zu\n", mp->len);
191         } else {
192                 mp->len = 0;
193         }
194 }
195
196 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
197                                    struct evlist *evlist, int idx,
198                                    bool per_cpu)
199 {
200         mp->idx = idx;
201
202         if (per_cpu) {
203                 mp->cpu = evlist->core.cpus->map[idx];
204                 if (evlist->core.threads)
205                         mp->tid = perf_thread_map__pid(evlist->core.threads, 0);
206                 else
207                         mp->tid = -1;
208         } else {
209                 mp->cpu = -1;
210                 mp->tid = perf_thread_map__pid(evlist->core.threads, idx);
211         }
212 }
213
214 #define AUXTRACE_INIT_NR_QUEUES 32
215
216 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
217 {
218         struct auxtrace_queue *queue_array;
219         unsigned int max_nr_queues, i;
220
221         max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
222         if (nr_queues > max_nr_queues)
223                 return NULL;
224
225         queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
226         if (!queue_array)
227                 return NULL;
228
229         for (i = 0; i < nr_queues; i++) {
230                 INIT_LIST_HEAD(&queue_array[i].head);
231                 queue_array[i].priv = NULL;
232         }
233
234         return queue_array;
235 }
236
237 int auxtrace_queues__init(struct auxtrace_queues *queues)
238 {
239         queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
240         queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
241         if (!queues->queue_array)
242                 return -ENOMEM;
243         return 0;
244 }
245
246 static int auxtrace_queues__grow(struct auxtrace_queues *queues,
247                                  unsigned int new_nr_queues)
248 {
249         unsigned int nr_queues = queues->nr_queues;
250         struct auxtrace_queue *queue_array;
251         unsigned int i;
252
253         if (!nr_queues)
254                 nr_queues = AUXTRACE_INIT_NR_QUEUES;
255
256         while (nr_queues && nr_queues < new_nr_queues)
257                 nr_queues <<= 1;
258
259         if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
260                 return -EINVAL;
261
262         queue_array = auxtrace_alloc_queue_array(nr_queues);
263         if (!queue_array)
264                 return -ENOMEM;
265
266         for (i = 0; i < queues->nr_queues; i++) {
267                 list_splice_tail(&queues->queue_array[i].head,
268                                  &queue_array[i].head);
269                 queue_array[i].tid = queues->queue_array[i].tid;
270                 queue_array[i].cpu = queues->queue_array[i].cpu;
271                 queue_array[i].set = queues->queue_array[i].set;
272                 queue_array[i].priv = queues->queue_array[i].priv;
273         }
274
275         queues->nr_queues = nr_queues;
276         queues->queue_array = queue_array;
277
278         return 0;
279 }
280
281 static void *auxtrace_copy_data(u64 size, struct perf_session *session)
282 {
283         int fd = perf_data__fd(session->data);
284         void *p;
285         ssize_t ret;
286
287         if (size > SSIZE_MAX)
288                 return NULL;
289
290         p = malloc(size);
291         if (!p)
292                 return NULL;
293
294         ret = readn(fd, p, size);
295         if (ret != (ssize_t)size) {
296                 free(p);
297                 return NULL;
298         }
299
300         return p;
301 }
302
303 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues,
304                                          unsigned int idx,
305                                          struct auxtrace_buffer *buffer)
306 {
307         struct auxtrace_queue *queue;
308         int err;
309
310         if (idx >= queues->nr_queues) {
311                 err = auxtrace_queues__grow(queues, idx + 1);
312                 if (err)
313                         return err;
314         }
315
316         queue = &queues->queue_array[idx];
317
318         if (!queue->set) {
319                 queue->set = true;
320                 queue->tid = buffer->tid;
321                 queue->cpu = buffer->cpu;
322         } else if (buffer->cpu != queue->cpu || buffer->tid != queue->tid) {
323                 pr_err("auxtrace queue conflict: cpu %d, tid %d vs cpu %d, tid %d\n",
324                        queue->cpu, queue->tid, buffer->cpu, buffer->tid);
325                 return -EINVAL;
326         }
327
328         buffer->buffer_nr = queues->next_buffer_nr++;
329
330         list_add_tail(&buffer->list, &queue->head);
331
332         queues->new_data = true;
333         queues->populated = true;
334
335         return 0;
336 }
337
338 /* Limit buffers to 32MiB on 32-bit */
339 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
340
341 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
342                                          unsigned int idx,
343                                          struct auxtrace_buffer *buffer)
344 {
345         u64 sz = buffer->size;
346         bool consecutive = false;
347         struct auxtrace_buffer *b;
348         int err;
349
350         while (sz > BUFFER_LIMIT_FOR_32_BIT) {
351                 b = memdup(buffer, sizeof(struct auxtrace_buffer));
352                 if (!b)
353                         return -ENOMEM;
354                 b->size = BUFFER_LIMIT_FOR_32_BIT;
355                 b->consecutive = consecutive;
356                 err = auxtrace_queues__queue_buffer(queues, idx, b);
357                 if (err) {
358                         auxtrace_buffer__free(b);
359                         return err;
360                 }
361                 buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
362                 sz -= BUFFER_LIMIT_FOR_32_BIT;
363                 consecutive = true;
364         }
365
366         buffer->size = sz;
367         buffer->consecutive = consecutive;
368
369         return 0;
370 }
371
372 static bool filter_cpu(struct perf_session *session, int cpu)
373 {
374         unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
375
376         return cpu_bitmap && cpu != -1 && !test_bit(cpu, cpu_bitmap);
377 }
378
379 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
380                                        struct perf_session *session,
381                                        unsigned int idx,
382                                        struct auxtrace_buffer *buffer,
383                                        struct auxtrace_buffer **buffer_ptr)
384 {
385         int err = -ENOMEM;
386
387         if (filter_cpu(session, buffer->cpu))
388                 return 0;
389
390         buffer = memdup(buffer, sizeof(*buffer));
391         if (!buffer)
392                 return -ENOMEM;
393
394         if (session->one_mmap) {
395                 buffer->data = buffer->data_offset - session->one_mmap_offset +
396                                session->one_mmap_addr;
397         } else if (perf_data__is_pipe(session->data)) {
398                 buffer->data = auxtrace_copy_data(buffer->size, session);
399                 if (!buffer->data)
400                         goto out_free;
401                 buffer->data_needs_freeing = true;
402         } else if (BITS_PER_LONG == 32 &&
403                    buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
404                 err = auxtrace_queues__split_buffer(queues, idx, buffer);
405                 if (err)
406                         goto out_free;
407         }
408
409         err = auxtrace_queues__queue_buffer(queues, idx, buffer);
410         if (err)
411                 goto out_free;
412
413         /* FIXME: Doesn't work for split buffer */
414         if (buffer_ptr)
415                 *buffer_ptr = buffer;
416
417         return 0;
418
419 out_free:
420         auxtrace_buffer__free(buffer);
421         return err;
422 }
423
424 int auxtrace_queues__add_event(struct auxtrace_queues *queues,
425                                struct perf_session *session,
426                                union perf_event *event, off_t data_offset,
427                                struct auxtrace_buffer **buffer_ptr)
428 {
429         struct auxtrace_buffer buffer = {
430                 .pid = -1,
431                 .tid = event->auxtrace.tid,
432                 .cpu = event->auxtrace.cpu,
433                 .data_offset = data_offset,
434                 .offset = event->auxtrace.offset,
435                 .reference = event->auxtrace.reference,
436                 .size = event->auxtrace.size,
437         };
438         unsigned int idx = event->auxtrace.idx;
439
440         return auxtrace_queues__add_buffer(queues, session, idx, &buffer,
441                                            buffer_ptr);
442 }
443
444 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
445                                               struct perf_session *session,
446                                               off_t file_offset, size_t sz)
447 {
448         union perf_event *event;
449         int err;
450         char buf[PERF_SAMPLE_MAX_SIZE];
451
452         err = perf_session__peek_event(session, file_offset, buf,
453                                        PERF_SAMPLE_MAX_SIZE, &event, NULL);
454         if (err)
455                 return err;
456
457         if (event->header.type == PERF_RECORD_AUXTRACE) {
458                 if (event->header.size < sizeof(struct perf_record_auxtrace) ||
459                     event->header.size != sz) {
460                         err = -EINVAL;
461                         goto out;
462                 }
463                 file_offset += event->header.size;
464                 err = auxtrace_queues__add_event(queues, session, event,
465                                                  file_offset, NULL);
466         }
467 out:
468         return err;
469 }
470
471 void auxtrace_queues__free(struct auxtrace_queues *queues)
472 {
473         unsigned int i;
474
475         for (i = 0; i < queues->nr_queues; i++) {
476                 while (!list_empty(&queues->queue_array[i].head)) {
477                         struct auxtrace_buffer *buffer;
478
479                         buffer = list_entry(queues->queue_array[i].head.next,
480                                             struct auxtrace_buffer, list);
481                         list_del_init(&buffer->list);
482                         auxtrace_buffer__free(buffer);
483                 }
484         }
485
486         zfree(&queues->queue_array);
487         queues->nr_queues = 0;
488 }
489
490 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
491                              unsigned int pos, unsigned int queue_nr,
492                              u64 ordinal)
493 {
494         unsigned int parent;
495
496         while (pos) {
497                 parent = (pos - 1) >> 1;
498                 if (heap_array[parent].ordinal <= ordinal)
499                         break;
500                 heap_array[pos] = heap_array[parent];
501                 pos = parent;
502         }
503         heap_array[pos].queue_nr = queue_nr;
504         heap_array[pos].ordinal = ordinal;
505 }
506
507 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
508                        u64 ordinal)
509 {
510         struct auxtrace_heap_item *heap_array;
511
512         if (queue_nr >= heap->heap_sz) {
513                 unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
514
515                 while (heap_sz <= queue_nr)
516                         heap_sz <<= 1;
517                 heap_array = realloc(heap->heap_array,
518                                      heap_sz * sizeof(struct auxtrace_heap_item));
519                 if (!heap_array)
520                         return -ENOMEM;
521                 heap->heap_array = heap_array;
522                 heap->heap_sz = heap_sz;
523         }
524
525         auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
526
527         return 0;
528 }
529
530 void auxtrace_heap__free(struct auxtrace_heap *heap)
531 {
532         zfree(&heap->heap_array);
533         heap->heap_cnt = 0;
534         heap->heap_sz = 0;
535 }
536
537 void auxtrace_heap__pop(struct auxtrace_heap *heap)
538 {
539         unsigned int pos, last, heap_cnt = heap->heap_cnt;
540         struct auxtrace_heap_item *heap_array;
541
542         if (!heap_cnt)
543                 return;
544
545         heap->heap_cnt -= 1;
546
547         heap_array = heap->heap_array;
548
549         pos = 0;
550         while (1) {
551                 unsigned int left, right;
552
553                 left = (pos << 1) + 1;
554                 if (left >= heap_cnt)
555                         break;
556                 right = left + 1;
557                 if (right >= heap_cnt) {
558                         heap_array[pos] = heap_array[left];
559                         return;
560                 }
561                 if (heap_array[left].ordinal < heap_array[right].ordinal) {
562                         heap_array[pos] = heap_array[left];
563                         pos = left;
564                 } else {
565                         heap_array[pos] = heap_array[right];
566                         pos = right;
567                 }
568         }
569
570         last = heap_cnt - 1;
571         auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
572                          heap_array[last].ordinal);
573 }
574
575 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
576                                        struct evlist *evlist)
577 {
578         if (itr)
579                 return itr->info_priv_size(itr, evlist);
580         return 0;
581 }
582
583 static int auxtrace_not_supported(void)
584 {
585         pr_err("AUX area tracing is not supported on this architecture\n");
586         return -EINVAL;
587 }
588
589 int auxtrace_record__info_fill(struct auxtrace_record *itr,
590                                struct perf_session *session,
591                                struct perf_record_auxtrace_info *auxtrace_info,
592                                size_t priv_size)
593 {
594         if (itr)
595                 return itr->info_fill(itr, session, auxtrace_info, priv_size);
596         return auxtrace_not_supported();
597 }
598
599 void auxtrace_record__free(struct auxtrace_record *itr)
600 {
601         if (itr)
602                 itr->free(itr);
603 }
604
605 int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
606 {
607         if (itr && itr->snapshot_start)
608                 return itr->snapshot_start(itr);
609         return 0;
610 }
611
612 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit)
613 {
614         if (!on_exit && itr && itr->snapshot_finish)
615                 return itr->snapshot_finish(itr);
616         return 0;
617 }
618
619 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
620                                    struct auxtrace_mmap *mm,
621                                    unsigned char *data, u64 *head, u64 *old)
622 {
623         if (itr && itr->find_snapshot)
624                 return itr->find_snapshot(itr, idx, mm, data, head, old);
625         return 0;
626 }
627
628 int auxtrace_record__options(struct auxtrace_record *itr,
629                              struct evlist *evlist,
630                              struct record_opts *opts)
631 {
632         if (itr) {
633                 itr->evlist = evlist;
634                 return itr->recording_options(itr, evlist, opts);
635         }
636         return 0;
637 }
638
639 u64 auxtrace_record__reference(struct auxtrace_record *itr)
640 {
641         if (itr)
642                 return itr->reference(itr);
643         return 0;
644 }
645
646 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
647                                     struct record_opts *opts, const char *str)
648 {
649         if (!str)
650                 return 0;
651
652         /* PMU-agnostic options */
653         switch (*str) {
654         case 'e':
655                 opts->auxtrace_snapshot_on_exit = true;
656                 str++;
657                 break;
658         default:
659                 break;
660         }
661
662         if (itr)
663                 return itr->parse_snapshot_options(itr, opts, str);
664
665         pr_err("No AUX area tracing to snapshot\n");
666         return -EINVAL;
667 }
668
669 int auxtrace_record__read_finish(struct auxtrace_record *itr, int idx)
670 {
671         struct evsel *evsel;
672
673         if (!itr->evlist || !itr->pmu)
674                 return -EINVAL;
675
676         evlist__for_each_entry(itr->evlist, evsel) {
677                 if (evsel->core.attr.type == itr->pmu->type) {
678                         if (evsel->disabled)
679                                 return 0;
680                         return perf_evlist__enable_event_idx(itr->evlist, evsel,
681                                                              idx);
682                 }
683         }
684         return -EINVAL;
685 }
686
687 /*
688  * Event record size is 16-bit which results in a maximum size of about 64KiB.
689  * Allow about 4KiB for the rest of the sample record, to give a maximum
690  * AUX area sample size of 60KiB.
691  */
692 #define MAX_AUX_SAMPLE_SIZE (60 * 1024)
693
694 /* Arbitrary default size if no other default provided */
695 #define DEFAULT_AUX_SAMPLE_SIZE (4 * 1024)
696
697 static int auxtrace_validate_aux_sample_size(struct evlist *evlist,
698                                              struct record_opts *opts)
699 {
700         struct evsel *evsel;
701         bool has_aux_leader = false;
702         u32 sz;
703
704         evlist__for_each_entry(evlist, evsel) {
705                 sz = evsel->core.attr.aux_sample_size;
706                 if (perf_evsel__is_group_leader(evsel)) {
707                         has_aux_leader = perf_evsel__is_aux_event(evsel);
708                         if (sz) {
709                                 if (has_aux_leader)
710                                         pr_err("Cannot add AUX area sampling to an AUX area event\n");
711                                 else
712                                         pr_err("Cannot add AUX area sampling to a group leader\n");
713                                 return -EINVAL;
714                         }
715                 }
716                 if (sz > MAX_AUX_SAMPLE_SIZE) {
717                         pr_err("AUX area sample size %u too big, max. %d\n",
718                                sz, MAX_AUX_SAMPLE_SIZE);
719                         return -EINVAL;
720                 }
721                 if (sz) {
722                         if (!has_aux_leader) {
723                                 pr_err("Cannot add AUX area sampling because group leader is not an AUX area event\n");
724                                 return -EINVAL;
725                         }
726                         perf_evsel__set_sample_bit(evsel, AUX);
727                         opts->auxtrace_sample_mode = true;
728                 } else {
729                         perf_evsel__reset_sample_bit(evsel, AUX);
730                 }
731         }
732
733         if (!opts->auxtrace_sample_mode) {
734                 pr_err("AUX area sampling requires an AUX area event group leader plus other events to which to add samples\n");
735                 return -EINVAL;
736         }
737
738         if (!perf_can_aux_sample()) {
739                 pr_err("AUX area sampling is not supported by kernel\n");
740                 return -EINVAL;
741         }
742
743         return 0;
744 }
745
746 int auxtrace_parse_sample_options(struct auxtrace_record *itr,
747                                   struct evlist *evlist,
748                                   struct record_opts *opts, const char *str)
749 {
750         struct perf_evsel_config_term *term;
751         struct evsel *aux_evsel;
752         bool has_aux_sample_size = false;
753         bool has_aux_leader = false;
754         struct evsel *evsel;
755         char *endptr;
756         unsigned long sz;
757
758         if (!str)
759                 goto no_opt;
760
761         if (!itr) {
762                 pr_err("No AUX area event to sample\n");
763                 return -EINVAL;
764         }
765
766         sz = strtoul(str, &endptr, 0);
767         if (*endptr || sz > UINT_MAX) {
768                 pr_err("Bad AUX area sampling option: '%s'\n", str);
769                 return -EINVAL;
770         }
771
772         if (!sz)
773                 sz = itr->default_aux_sample_size;
774
775         if (!sz)
776                 sz = DEFAULT_AUX_SAMPLE_SIZE;
777
778         /* Set aux_sample_size based on --aux-sample option */
779         evlist__for_each_entry(evlist, evsel) {
780                 if (perf_evsel__is_group_leader(evsel)) {
781                         has_aux_leader = perf_evsel__is_aux_event(evsel);
782                 } else if (has_aux_leader) {
783                         evsel->core.attr.aux_sample_size = sz;
784                 }
785         }
786 no_opt:
787         aux_evsel = NULL;
788         /* Override with aux_sample_size from config term */
789         evlist__for_each_entry(evlist, evsel) {
790                 if (perf_evsel__is_aux_event(evsel))
791                         aux_evsel = evsel;
792                 term = perf_evsel__get_config_term(evsel, AUX_SAMPLE_SIZE);
793                 if (term) {
794                         has_aux_sample_size = true;
795                         evsel->core.attr.aux_sample_size = term->val.aux_sample_size;
796                         /* If possible, group with the AUX event */
797                         if (aux_evsel && evsel->core.attr.aux_sample_size)
798                                 perf_evlist__regroup(evlist, aux_evsel, evsel);
799                 }
800         }
801
802         if (!str && !has_aux_sample_size)
803                 return 0;
804
805         if (!itr) {
806                 pr_err("No AUX area event to sample\n");
807                 return -EINVAL;
808         }
809
810         return auxtrace_validate_aux_sample_size(evlist, opts);
811 }
812
813 struct auxtrace_record *__weak
814 auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err)
815 {
816         *err = 0;
817         return NULL;
818 }
819
820 static int auxtrace_index__alloc(struct list_head *head)
821 {
822         struct auxtrace_index *auxtrace_index;
823
824         auxtrace_index = malloc(sizeof(struct auxtrace_index));
825         if (!auxtrace_index)
826                 return -ENOMEM;
827
828         auxtrace_index->nr = 0;
829         INIT_LIST_HEAD(&auxtrace_index->list);
830
831         list_add_tail(&auxtrace_index->list, head);
832
833         return 0;
834 }
835
836 void auxtrace_index__free(struct list_head *head)
837 {
838         struct auxtrace_index *auxtrace_index, *n;
839
840         list_for_each_entry_safe(auxtrace_index, n, head, list) {
841                 list_del_init(&auxtrace_index->list);
842                 free(auxtrace_index);
843         }
844 }
845
846 static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
847 {
848         struct auxtrace_index *auxtrace_index;
849         int err;
850
851         if (list_empty(head)) {
852                 err = auxtrace_index__alloc(head);
853                 if (err)
854                         return NULL;
855         }
856
857         auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
858
859         if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
860                 err = auxtrace_index__alloc(head);
861                 if (err)
862                         return NULL;
863                 auxtrace_index = list_entry(head->prev, struct auxtrace_index,
864                                             list);
865         }
866
867         return auxtrace_index;
868 }
869
870 int auxtrace_index__auxtrace_event(struct list_head *head,
871                                    union perf_event *event, off_t file_offset)
872 {
873         struct auxtrace_index *auxtrace_index;
874         size_t nr;
875
876         auxtrace_index = auxtrace_index__last(head);
877         if (!auxtrace_index)
878                 return -ENOMEM;
879
880         nr = auxtrace_index->nr;
881         auxtrace_index->entries[nr].file_offset = file_offset;
882         auxtrace_index->entries[nr].sz = event->header.size;
883         auxtrace_index->nr += 1;
884
885         return 0;
886 }
887
888 static int auxtrace_index__do_write(int fd,
889                                     struct auxtrace_index *auxtrace_index)
890 {
891         struct auxtrace_index_entry ent;
892         size_t i;
893
894         for (i = 0; i < auxtrace_index->nr; i++) {
895                 ent.file_offset = auxtrace_index->entries[i].file_offset;
896                 ent.sz = auxtrace_index->entries[i].sz;
897                 if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
898                         return -errno;
899         }
900         return 0;
901 }
902
903 int auxtrace_index__write(int fd, struct list_head *head)
904 {
905         struct auxtrace_index *auxtrace_index;
906         u64 total = 0;
907         int err;
908
909         list_for_each_entry(auxtrace_index, head, list)
910                 total += auxtrace_index->nr;
911
912         if (writen(fd, &total, sizeof(total)) != sizeof(total))
913                 return -errno;
914
915         list_for_each_entry(auxtrace_index, head, list) {
916                 err = auxtrace_index__do_write(fd, auxtrace_index);
917                 if (err)
918                         return err;
919         }
920
921         return 0;
922 }
923
924 static int auxtrace_index__process_entry(int fd, struct list_head *head,
925                                          bool needs_swap)
926 {
927         struct auxtrace_index *auxtrace_index;
928         struct auxtrace_index_entry ent;
929         size_t nr;
930
931         if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
932                 return -1;
933
934         auxtrace_index = auxtrace_index__last(head);
935         if (!auxtrace_index)
936                 return -1;
937
938         nr = auxtrace_index->nr;
939         if (needs_swap) {
940                 auxtrace_index->entries[nr].file_offset =
941                                                 bswap_64(ent.file_offset);
942                 auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
943         } else {
944                 auxtrace_index->entries[nr].file_offset = ent.file_offset;
945                 auxtrace_index->entries[nr].sz = ent.sz;
946         }
947
948         auxtrace_index->nr = nr + 1;
949
950         return 0;
951 }
952
953 int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
954                             bool needs_swap)
955 {
956         struct list_head *head = &session->auxtrace_index;
957         u64 nr;
958
959         if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
960                 return -1;
961
962         if (needs_swap)
963                 nr = bswap_64(nr);
964
965         if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
966                 return -1;
967
968         while (nr--) {
969                 int err;
970
971                 err = auxtrace_index__process_entry(fd, head, needs_swap);
972                 if (err)
973                         return -1;
974         }
975
976         return 0;
977 }
978
979 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
980                                                 struct perf_session *session,
981                                                 struct auxtrace_index_entry *ent)
982 {
983         return auxtrace_queues__add_indexed_event(queues, session,
984                                                   ent->file_offset, ent->sz);
985 }
986
987 int auxtrace_queues__process_index(struct auxtrace_queues *queues,
988                                    struct perf_session *session)
989 {
990         struct auxtrace_index *auxtrace_index;
991         struct auxtrace_index_entry *ent;
992         size_t i;
993         int err;
994
995         if (auxtrace__dont_decode(session))
996                 return 0;
997
998         list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
999                 for (i = 0; i < auxtrace_index->nr; i++) {
1000                         ent = &auxtrace_index->entries[i];
1001                         err = auxtrace_queues__process_index_entry(queues,
1002                                                                    session,
1003                                                                    ent);
1004                         if (err)
1005                                 return err;
1006                 }
1007         }
1008         return 0;
1009 }
1010
1011 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
1012                                               struct auxtrace_buffer *buffer)
1013 {
1014         if (buffer) {
1015                 if (list_is_last(&buffer->list, &queue->head))
1016                         return NULL;
1017                 return list_entry(buffer->list.next, struct auxtrace_buffer,
1018                                   list);
1019         } else {
1020                 if (list_empty(&queue->head))
1021                         return NULL;
1022                 return list_entry(queue->head.next, struct auxtrace_buffer,
1023                                   list);
1024         }
1025 }
1026
1027 struct auxtrace_queue *auxtrace_queues__sample_queue(struct auxtrace_queues *queues,
1028                                                      struct perf_sample *sample,
1029                                                      struct perf_session *session)
1030 {
1031         struct perf_sample_id *sid;
1032         unsigned int idx;
1033         u64 id;
1034
1035         id = sample->id;
1036         if (!id)
1037                 return NULL;
1038
1039         sid = perf_evlist__id2sid(session->evlist, id);
1040         if (!sid)
1041                 return NULL;
1042
1043         idx = sid->idx;
1044
1045         if (idx >= queues->nr_queues)
1046                 return NULL;
1047
1048         return &queues->queue_array[idx];
1049 }
1050
1051 int auxtrace_queues__add_sample(struct auxtrace_queues *queues,
1052                                 struct perf_session *session,
1053                                 struct perf_sample *sample, u64 data_offset,
1054                                 u64 reference)
1055 {
1056         struct auxtrace_buffer buffer = {
1057                 .pid = -1,
1058                 .data_offset = data_offset,
1059                 .reference = reference,
1060                 .size = sample->aux_sample.size,
1061         };
1062         struct perf_sample_id *sid;
1063         u64 id = sample->id;
1064         unsigned int idx;
1065
1066         if (!id)
1067                 return -EINVAL;
1068
1069         sid = perf_evlist__id2sid(session->evlist, id);
1070         if (!sid)
1071                 return -ENOENT;
1072
1073         idx = sid->idx;
1074         buffer.tid = sid->tid;
1075         buffer.cpu = sid->cpu;
1076
1077         return auxtrace_queues__add_buffer(queues, session, idx, &buffer, NULL);
1078 }
1079
1080 struct queue_data {
1081         bool samples;
1082         bool events;
1083 };
1084
1085 static int auxtrace_queue_data_cb(struct perf_session *session,
1086                                   union perf_event *event, u64 offset,
1087                                   void *data)
1088 {
1089         struct queue_data *qd = data;
1090         struct perf_sample sample;
1091         int err;
1092
1093         if (qd->events && event->header.type == PERF_RECORD_AUXTRACE) {
1094                 if (event->header.size < sizeof(struct perf_record_auxtrace))
1095                         return -EINVAL;
1096                 offset += event->header.size;
1097                 return session->auxtrace->queue_data(session, NULL, event,
1098                                                      offset);
1099         }
1100
1101         if (!qd->samples || event->header.type != PERF_RECORD_SAMPLE)
1102                 return 0;
1103
1104         err = perf_evlist__parse_sample(session->evlist, event, &sample);
1105         if (err)
1106                 return err;
1107
1108         if (!sample.aux_sample.size)
1109                 return 0;
1110
1111         offset += sample.aux_sample.data - (void *)event;
1112
1113         return session->auxtrace->queue_data(session, &sample, NULL, offset);
1114 }
1115
1116 int auxtrace_queue_data(struct perf_session *session, bool samples, bool events)
1117 {
1118         struct queue_data qd = {
1119                 .samples = samples,
1120                 .events = events,
1121         };
1122
1123         if (auxtrace__dont_decode(session))
1124                 return 0;
1125
1126         if (!session->auxtrace || !session->auxtrace->queue_data)
1127                 return -EINVAL;
1128
1129         return perf_session__peek_events(session, session->header.data_offset,
1130                                          session->header.data_size,
1131                                          auxtrace_queue_data_cb, &qd);
1132 }
1133
1134 void *auxtrace_buffer__get_data(struct auxtrace_buffer *buffer, int fd)
1135 {
1136         size_t adj = buffer->data_offset & (page_size - 1);
1137         size_t size = buffer->size + adj;
1138         off_t file_offset = buffer->data_offset - adj;
1139         void *addr;
1140
1141         if (buffer->data)
1142                 return buffer->data;
1143
1144         addr = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, file_offset);
1145         if (addr == MAP_FAILED)
1146                 return NULL;
1147
1148         buffer->mmap_addr = addr;
1149         buffer->mmap_size = size;
1150
1151         buffer->data = addr + adj;
1152
1153         return buffer->data;
1154 }
1155
1156 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
1157 {
1158         if (!buffer->data || !buffer->mmap_addr)
1159                 return;
1160         munmap(buffer->mmap_addr, buffer->mmap_size);
1161         buffer->mmap_addr = NULL;
1162         buffer->mmap_size = 0;
1163         buffer->data = NULL;
1164         buffer->use_data = NULL;
1165 }
1166
1167 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
1168 {
1169         auxtrace_buffer__put_data(buffer);
1170         if (buffer->data_needs_freeing) {
1171                 buffer->data_needs_freeing = false;
1172                 zfree(&buffer->data);
1173                 buffer->use_data = NULL;
1174                 buffer->size = 0;
1175         }
1176 }
1177
1178 void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
1179 {
1180         auxtrace_buffer__drop_data(buffer);
1181         free(buffer);
1182 }
1183
1184 void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1185                           int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1186                           const char *msg, u64 timestamp)
1187 {
1188         size_t size;
1189
1190         memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error));
1191
1192         auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
1193         auxtrace_error->type = type;
1194         auxtrace_error->code = code;
1195         auxtrace_error->cpu = cpu;
1196         auxtrace_error->pid = pid;
1197         auxtrace_error->tid = tid;
1198         auxtrace_error->fmt = 1;
1199         auxtrace_error->ip = ip;
1200         auxtrace_error->time = timestamp;
1201         strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
1202
1203         size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
1204                strlen(auxtrace_error->msg) + 1;
1205         auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
1206 }
1207
1208 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
1209                                          struct perf_tool *tool,
1210                                          struct perf_session *session,
1211                                          perf_event__handler_t process)
1212 {
1213         union perf_event *ev;
1214         size_t priv_size;
1215         int err;
1216
1217         pr_debug2("Synthesizing auxtrace information\n");
1218         priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
1219         ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size);
1220         if (!ev)
1221                 return -ENOMEM;
1222
1223         ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
1224         ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) +
1225                                         priv_size;
1226         err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
1227                                          priv_size);
1228         if (err)
1229                 goto out_free;
1230
1231         err = process(tool, ev, NULL, NULL);
1232 out_free:
1233         free(ev);
1234         return err;
1235 }
1236
1237 static void unleader_evsel(struct evlist *evlist, struct evsel *leader)
1238 {
1239         struct evsel *new_leader = NULL;
1240         struct evsel *evsel;
1241
1242         /* Find new leader for the group */
1243         evlist__for_each_entry(evlist, evsel) {
1244                 if (evsel->leader != leader || evsel == leader)
1245                         continue;
1246                 if (!new_leader)
1247                         new_leader = evsel;
1248                 evsel->leader = new_leader;
1249         }
1250
1251         /* Update group information */
1252         if (new_leader) {
1253                 zfree(&new_leader->group_name);
1254                 new_leader->group_name = leader->group_name;
1255                 leader->group_name = NULL;
1256
1257                 new_leader->core.nr_members = leader->core.nr_members - 1;
1258                 leader->core.nr_members = 1;
1259         }
1260 }
1261
1262 static void unleader_auxtrace(struct perf_session *session)
1263 {
1264         struct evsel *evsel;
1265
1266         evlist__for_each_entry(session->evlist, evsel) {
1267                 if (auxtrace__evsel_is_auxtrace(session, evsel) &&
1268                     perf_evsel__is_group_leader(evsel)) {
1269                         unleader_evsel(session->evlist, evsel);
1270                 }
1271         }
1272 }
1273
1274 int perf_event__process_auxtrace_info(struct perf_session *session,
1275                                       union perf_event *event)
1276 {
1277         enum auxtrace_type type = event->auxtrace_info.type;
1278         int err;
1279
1280         if (dump_trace)
1281                 fprintf(stdout, " type: %u\n", type);
1282
1283         switch (type) {
1284         case PERF_AUXTRACE_INTEL_PT:
1285                 err = intel_pt_process_auxtrace_info(event, session);
1286                 break;
1287         case PERF_AUXTRACE_INTEL_BTS:
1288                 err = intel_bts_process_auxtrace_info(event, session);
1289                 break;
1290         case PERF_AUXTRACE_ARM_SPE:
1291                 err = arm_spe_process_auxtrace_info(event, session);
1292                 break;
1293         case PERF_AUXTRACE_CS_ETM:
1294                 err = cs_etm__process_auxtrace_info(event, session);
1295                 break;
1296         case PERF_AUXTRACE_S390_CPUMSF:
1297                 err = s390_cpumsf_process_auxtrace_info(event, session);
1298                 break;
1299         case PERF_AUXTRACE_UNKNOWN:
1300         default:
1301                 return -EINVAL;
1302         }
1303
1304         if (err)
1305                 return err;
1306
1307         unleader_auxtrace(session);
1308
1309         return 0;
1310 }
1311
1312 s64 perf_event__process_auxtrace(struct perf_session *session,
1313                                  union perf_event *event)
1314 {
1315         s64 err;
1316
1317         if (dump_trace)
1318                 fprintf(stdout, " size: %#"PRI_lx64"  offset: %#"PRI_lx64"  ref: %#"PRI_lx64"  idx: %u  tid: %d  cpu: %d\n",
1319                         event->auxtrace.size, event->auxtrace.offset,
1320                         event->auxtrace.reference, event->auxtrace.idx,
1321                         event->auxtrace.tid, event->auxtrace.cpu);
1322
1323         if (auxtrace__dont_decode(session))
1324                 return event->auxtrace.size;
1325
1326         if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
1327                 return -EINVAL;
1328
1329         err = session->auxtrace->process_auxtrace_event(session, event, session->tool);
1330         if (err < 0)
1331                 return err;
1332
1333         return event->auxtrace.size;
1334 }
1335
1336 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE         PERF_ITRACE_PERIOD_NANOSECS
1337 #define PERF_ITRACE_DEFAULT_PERIOD              100000
1338 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ        16
1339 #define PERF_ITRACE_MAX_CALLCHAIN_SZ            1024
1340 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ      64
1341 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ          1024
1342
1343 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts,
1344                                     bool no_sample)
1345 {
1346         synth_opts->branches = true;
1347         synth_opts->transactions = true;
1348         synth_opts->ptwrites = true;
1349         synth_opts->pwr_events = true;
1350         synth_opts->other_events = true;
1351         synth_opts->errors = true;
1352         if (no_sample) {
1353                 synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS;
1354                 synth_opts->period = 1;
1355                 synth_opts->calls = true;
1356         } else {
1357                 synth_opts->instructions = true;
1358                 synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1359                 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1360         }
1361         synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1362         synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1363         synth_opts->initial_skip = 0;
1364 }
1365
1366 /*
1367  * Please check tools/perf/Documentation/perf-script.txt for information
1368  * about the options parsed here, which is introduced after this cset,
1369  * when support in 'perf script' for these options is introduced.
1370  */
1371 int itrace_parse_synth_opts(const struct option *opt, const char *str,
1372                             int unset)
1373 {
1374         struct itrace_synth_opts *synth_opts = opt->value;
1375         const char *p;
1376         char *endptr;
1377         bool period_type_set = false;
1378         bool period_set = false;
1379
1380         synth_opts->set = true;
1381
1382         if (unset) {
1383                 synth_opts->dont_decode = true;
1384                 return 0;
1385         }
1386
1387         if (!str) {
1388                 itrace_synth_opts__set_default(synth_opts,
1389                                                synth_opts->default_no_sample);
1390                 return 0;
1391         }
1392
1393         for (p = str; *p;) {
1394                 switch (*p++) {
1395                 case 'i':
1396                         synth_opts->instructions = true;
1397                         while (*p == ' ' || *p == ',')
1398                                 p += 1;
1399                         if (isdigit(*p)) {
1400                                 synth_opts->period = strtoull(p, &endptr, 10);
1401                                 period_set = true;
1402                                 p = endptr;
1403                                 while (*p == ' ' || *p == ',')
1404                                         p += 1;
1405                                 switch (*p++) {
1406                                 case 'i':
1407                                         synth_opts->period_type =
1408                                                 PERF_ITRACE_PERIOD_INSTRUCTIONS;
1409                                         period_type_set = true;
1410                                         break;
1411                                 case 't':
1412                                         synth_opts->period_type =
1413                                                 PERF_ITRACE_PERIOD_TICKS;
1414                                         period_type_set = true;
1415                                         break;
1416                                 case 'm':
1417                                         synth_opts->period *= 1000;
1418                                         /* Fall through */
1419                                 case 'u':
1420                                         synth_opts->period *= 1000;
1421                                         /* Fall through */
1422                                 case 'n':
1423                                         if (*p++ != 's')
1424                                                 goto out_err;
1425                                         synth_opts->period_type =
1426                                                 PERF_ITRACE_PERIOD_NANOSECS;
1427                                         period_type_set = true;
1428                                         break;
1429                                 case '\0':
1430                                         goto out;
1431                                 default:
1432                                         goto out_err;
1433                                 }
1434                         }
1435                         break;
1436                 case 'b':
1437                         synth_opts->branches = true;
1438                         break;
1439                 case 'x':
1440                         synth_opts->transactions = true;
1441                         break;
1442                 case 'w':
1443                         synth_opts->ptwrites = true;
1444                         break;
1445                 case 'p':
1446                         synth_opts->pwr_events = true;
1447                         break;
1448                 case 'o':
1449                         synth_opts->other_events = true;
1450                         break;
1451                 case 'e':
1452                         synth_opts->errors = true;
1453                         break;
1454                 case 'd':
1455                         synth_opts->log = true;
1456                         break;
1457                 case 'c':
1458                         synth_opts->branches = true;
1459                         synth_opts->calls = true;
1460                         break;
1461                 case 'r':
1462                         synth_opts->branches = true;
1463                         synth_opts->returns = true;
1464                         break;
1465                 case 'g':
1466                         synth_opts->callchain = true;
1467                         synth_opts->callchain_sz =
1468                                         PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1469                         while (*p == ' ' || *p == ',')
1470                                 p += 1;
1471                         if (isdigit(*p)) {
1472                                 unsigned int val;
1473
1474                                 val = strtoul(p, &endptr, 10);
1475                                 p = endptr;
1476                                 if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1477                                         goto out_err;
1478                                 synth_opts->callchain_sz = val;
1479                         }
1480                         break;
1481                 case 'l':
1482                         synth_opts->last_branch = true;
1483                         synth_opts->last_branch_sz =
1484                                         PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1485                         while (*p == ' ' || *p == ',')
1486                                 p += 1;
1487                         if (isdigit(*p)) {
1488                                 unsigned int val;
1489
1490                                 val = strtoul(p, &endptr, 10);
1491                                 p = endptr;
1492                                 if (!val ||
1493                                     val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1494                                         goto out_err;
1495                                 synth_opts->last_branch_sz = val;
1496                         }
1497                         break;
1498                 case 's':
1499                         synth_opts->initial_skip = strtoul(p, &endptr, 10);
1500                         if (p == endptr)
1501                                 goto out_err;
1502                         p = endptr;
1503                         break;
1504                 case ' ':
1505                 case ',':
1506                         break;
1507                 default:
1508                         goto out_err;
1509                 }
1510         }
1511 out:
1512         if (synth_opts->instructions) {
1513                 if (!period_type_set)
1514                         synth_opts->period_type =
1515                                         PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1516                 if (!period_set)
1517                         synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1518         }
1519
1520         return 0;
1521
1522 out_err:
1523         pr_err("Bad Instruction Tracing options '%s'\n", str);
1524         return -EINVAL;
1525 }
1526
1527 static const char * const auxtrace_error_type_name[] = {
1528         [PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1529 };
1530
1531 static const char *auxtrace_error_name(int type)
1532 {
1533         const char *error_type_name = NULL;
1534
1535         if (type < PERF_AUXTRACE_ERROR_MAX)
1536                 error_type_name = auxtrace_error_type_name[type];
1537         if (!error_type_name)
1538                 error_type_name = "unknown AUX";
1539         return error_type_name;
1540 }
1541
1542 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1543 {
1544         struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1545         unsigned long long nsecs = e->time;
1546         const char *msg = e->msg;
1547         int ret;
1548
1549         ret = fprintf(fp, " %s error type %u",
1550                       auxtrace_error_name(e->type), e->type);
1551
1552         if (e->fmt && nsecs) {
1553                 unsigned long secs = nsecs / NSEC_PER_SEC;
1554
1555                 nsecs -= secs * NSEC_PER_SEC;
1556                 ret += fprintf(fp, " time %lu.%09llu", secs, nsecs);
1557         } else {
1558                 ret += fprintf(fp, " time 0");
1559         }
1560
1561         if (!e->fmt)
1562                 msg = (const char *)&e->time;
1563
1564         ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n",
1565                        e->cpu, e->pid, e->tid, e->ip, e->code, msg);
1566         return ret;
1567 }
1568
1569 void perf_session__auxtrace_error_inc(struct perf_session *session,
1570                                       union perf_event *event)
1571 {
1572         struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1573
1574         if (e->type < PERF_AUXTRACE_ERROR_MAX)
1575                 session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1576 }
1577
1578 void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1579 {
1580         int i;
1581
1582         for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1583                 if (!stats->nr_auxtrace_errors[i])
1584                         continue;
1585                 ui__warning("%u %s errors\n",
1586                             stats->nr_auxtrace_errors[i],
1587                             auxtrace_error_name(i));
1588         }
1589 }
1590
1591 int perf_event__process_auxtrace_error(struct perf_session *session,
1592                                        union perf_event *event)
1593 {
1594         if (auxtrace__dont_decode(session))
1595                 return 0;
1596
1597         perf_event__fprintf_auxtrace_error(event, stdout);
1598         return 0;
1599 }
1600
1601 static int __auxtrace_mmap__read(struct mmap *map,
1602                                  struct auxtrace_record *itr,
1603                                  struct perf_tool *tool, process_auxtrace_t fn,
1604                                  bool snapshot, size_t snapshot_size)
1605 {
1606         struct auxtrace_mmap *mm = &map->auxtrace_mmap;
1607         u64 head, old = mm->prev, offset, ref;
1608         unsigned char *data = mm->base;
1609         size_t size, head_off, old_off, len1, len2, padding;
1610         union perf_event ev;
1611         void *data1, *data2;
1612
1613         if (snapshot) {
1614                 head = auxtrace_mmap__read_snapshot_head(mm);
1615                 if (auxtrace_record__find_snapshot(itr, mm->idx, mm, data,
1616                                                    &head, &old))
1617                         return -1;
1618         } else {
1619                 head = auxtrace_mmap__read_head(mm);
1620         }
1621
1622         if (old == head)
1623                 return 0;
1624
1625         pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1626                   mm->idx, old, head, head - old);
1627
1628         if (mm->mask) {
1629                 head_off = head & mm->mask;
1630                 old_off = old & mm->mask;
1631         } else {
1632                 head_off = head % mm->len;
1633                 old_off = old % mm->len;
1634         }
1635
1636         if (head_off > old_off)
1637                 size = head_off - old_off;
1638         else
1639                 size = mm->len - (old_off - head_off);
1640
1641         if (snapshot && size > snapshot_size)
1642                 size = snapshot_size;
1643
1644         ref = auxtrace_record__reference(itr);
1645
1646         if (head > old || size <= head || mm->mask) {
1647                 offset = head - size;
1648         } else {
1649                 /*
1650                  * When the buffer size is not a power of 2, 'head' wraps at the
1651                  * highest multiple of the buffer size, so we have to subtract
1652                  * the remainder here.
1653                  */
1654                 u64 rem = (0ULL - mm->len) % mm->len;
1655
1656                 offset = head - size - rem;
1657         }
1658
1659         if (size > head_off) {
1660                 len1 = size - head_off;
1661                 data1 = &data[mm->len - len1];
1662                 len2 = head_off;
1663                 data2 = &data[0];
1664         } else {
1665                 len1 = size;
1666                 data1 = &data[head_off - len1];
1667                 len2 = 0;
1668                 data2 = NULL;
1669         }
1670
1671         if (itr->alignment) {
1672                 unsigned int unwanted = len1 % itr->alignment;
1673
1674                 len1 -= unwanted;
1675                 size -= unwanted;
1676         }
1677
1678         /* padding must be written by fn() e.g. record__process_auxtrace() */
1679         padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1);
1680         if (padding)
1681                 padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding;
1682
1683         memset(&ev, 0, sizeof(ev));
1684         ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1685         ev.auxtrace.header.size = sizeof(ev.auxtrace);
1686         ev.auxtrace.size = size + padding;
1687         ev.auxtrace.offset = offset;
1688         ev.auxtrace.reference = ref;
1689         ev.auxtrace.idx = mm->idx;
1690         ev.auxtrace.tid = mm->tid;
1691         ev.auxtrace.cpu = mm->cpu;
1692
1693         if (fn(tool, map, &ev, data1, len1, data2, len2))
1694                 return -1;
1695
1696         mm->prev = head;
1697
1698         if (!snapshot) {
1699                 auxtrace_mmap__write_tail(mm, head);
1700                 if (itr->read_finish) {
1701                         int err;
1702
1703                         err = itr->read_finish(itr, mm->idx);
1704                         if (err < 0)
1705                                 return err;
1706                 }
1707         }
1708
1709         return 1;
1710 }
1711
1712 int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr,
1713                         struct perf_tool *tool, process_auxtrace_t fn)
1714 {
1715         return __auxtrace_mmap__read(map, itr, tool, fn, false, 0);
1716 }
1717
1718 int auxtrace_mmap__read_snapshot(struct mmap *map,
1719                                  struct auxtrace_record *itr,
1720                                  struct perf_tool *tool, process_auxtrace_t fn,
1721                                  size_t snapshot_size)
1722 {
1723         return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size);
1724 }
1725
1726 /**
1727  * struct auxtrace_cache - hash table to implement a cache
1728  * @hashtable: the hashtable
1729  * @sz: hashtable size (number of hlists)
1730  * @entry_size: size of an entry
1731  * @limit: limit the number of entries to this maximum, when reached the cache
1732  *         is dropped and caching begins again with an empty cache
1733  * @cnt: current number of entries
1734  * @bits: hashtable size (@sz = 2^@bits)
1735  */
1736 struct auxtrace_cache {
1737         struct hlist_head *hashtable;
1738         size_t sz;
1739         size_t entry_size;
1740         size_t limit;
1741         size_t cnt;
1742         unsigned int bits;
1743 };
1744
1745 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1746                                            unsigned int limit_percent)
1747 {
1748         struct auxtrace_cache *c;
1749         struct hlist_head *ht;
1750         size_t sz, i;
1751
1752         c = zalloc(sizeof(struct auxtrace_cache));
1753         if (!c)
1754                 return NULL;
1755
1756         sz = 1UL << bits;
1757
1758         ht = calloc(sz, sizeof(struct hlist_head));
1759         if (!ht)
1760                 goto out_free;
1761
1762         for (i = 0; i < sz; i++)
1763                 INIT_HLIST_HEAD(&ht[i]);
1764
1765         c->hashtable = ht;
1766         c->sz = sz;
1767         c->entry_size = entry_size;
1768         c->limit = (c->sz * limit_percent) / 100;
1769         c->bits = bits;
1770
1771         return c;
1772
1773 out_free:
1774         free(c);
1775         return NULL;
1776 }
1777
1778 static void auxtrace_cache__drop(struct auxtrace_cache *c)
1779 {
1780         struct auxtrace_cache_entry *entry;
1781         struct hlist_node *tmp;
1782         size_t i;
1783
1784         if (!c)
1785                 return;
1786
1787         for (i = 0; i < c->sz; i++) {
1788                 hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
1789                         hlist_del(&entry->hash);
1790                         auxtrace_cache__free_entry(c, entry);
1791                 }
1792         }
1793
1794         c->cnt = 0;
1795 }
1796
1797 void auxtrace_cache__free(struct auxtrace_cache *c)
1798 {
1799         if (!c)
1800                 return;
1801
1802         auxtrace_cache__drop(c);
1803         zfree(&c->hashtable);
1804         free(c);
1805 }
1806
1807 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
1808 {
1809         return malloc(c->entry_size);
1810 }
1811
1812 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
1813                                 void *entry)
1814 {
1815         free(entry);
1816 }
1817
1818 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
1819                         struct auxtrace_cache_entry *entry)
1820 {
1821         if (c->limit && ++c->cnt > c->limit)
1822                 auxtrace_cache__drop(c);
1823
1824         entry->key = key;
1825         hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
1826
1827         return 0;
1828 }
1829
1830 static struct auxtrace_cache_entry *auxtrace_cache__rm(struct auxtrace_cache *c,
1831                                                        u32 key)
1832 {
1833         struct auxtrace_cache_entry *entry;
1834         struct hlist_head *hlist;
1835         struct hlist_node *n;
1836
1837         if (!c)
1838                 return NULL;
1839
1840         hlist = &c->hashtable[hash_32(key, c->bits)];
1841         hlist_for_each_entry_safe(entry, n, hlist, hash) {
1842                 if (entry->key == key) {
1843                         hlist_del(&entry->hash);
1844                         return entry;
1845                 }
1846         }
1847
1848         return NULL;
1849 }
1850
1851 void auxtrace_cache__remove(struct auxtrace_cache *c, u32 key)
1852 {
1853         struct auxtrace_cache_entry *entry = auxtrace_cache__rm(c, key);
1854
1855         auxtrace_cache__free_entry(c, entry);
1856 }
1857
1858 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
1859 {
1860         struct auxtrace_cache_entry *entry;
1861         struct hlist_head *hlist;
1862
1863         if (!c)
1864                 return NULL;
1865
1866         hlist = &c->hashtable[hash_32(key, c->bits)];
1867         hlist_for_each_entry(entry, hlist, hash) {
1868                 if (entry->key == key)
1869                         return entry;
1870         }
1871
1872         return NULL;
1873 }
1874
1875 static void addr_filter__free_str(struct addr_filter *filt)
1876 {
1877         zfree(&filt->str);
1878         filt->action   = NULL;
1879         filt->sym_from = NULL;
1880         filt->sym_to   = NULL;
1881         filt->filename = NULL;
1882 }
1883
1884 static struct addr_filter *addr_filter__new(void)
1885 {
1886         struct addr_filter *filt = zalloc(sizeof(*filt));
1887
1888         if (filt)
1889                 INIT_LIST_HEAD(&filt->list);
1890
1891         return filt;
1892 }
1893
1894 static void addr_filter__free(struct addr_filter *filt)
1895 {
1896         if (filt)
1897                 addr_filter__free_str(filt);
1898         free(filt);
1899 }
1900
1901 static void addr_filters__add(struct addr_filters *filts,
1902                               struct addr_filter *filt)
1903 {
1904         list_add_tail(&filt->list, &filts->head);
1905         filts->cnt += 1;
1906 }
1907
1908 static void addr_filters__del(struct addr_filters *filts,
1909                               struct addr_filter *filt)
1910 {
1911         list_del_init(&filt->list);
1912         filts->cnt -= 1;
1913 }
1914
1915 void addr_filters__init(struct addr_filters *filts)
1916 {
1917         INIT_LIST_HEAD(&filts->head);
1918         filts->cnt = 0;
1919 }
1920
1921 void addr_filters__exit(struct addr_filters *filts)
1922 {
1923         struct addr_filter *filt, *n;
1924
1925         list_for_each_entry_safe(filt, n, &filts->head, list) {
1926                 addr_filters__del(filts, filt);
1927                 addr_filter__free(filt);
1928         }
1929 }
1930
1931 static int parse_num_or_str(char **inp, u64 *num, const char **str,
1932                             const char *str_delim)
1933 {
1934         *inp += strspn(*inp, " ");
1935
1936         if (isdigit(**inp)) {
1937                 char *endptr;
1938
1939                 if (!num)
1940                         return -EINVAL;
1941                 errno = 0;
1942                 *num = strtoull(*inp, &endptr, 0);
1943                 if (errno)
1944                         return -errno;
1945                 if (endptr == *inp)
1946                         return -EINVAL;
1947                 *inp = endptr;
1948         } else {
1949                 size_t n;
1950
1951                 if (!str)
1952                         return -EINVAL;
1953                 *inp += strspn(*inp, " ");
1954                 *str = *inp;
1955                 n = strcspn(*inp, str_delim);
1956                 if (!n)
1957                         return -EINVAL;
1958                 *inp += n;
1959                 if (**inp) {
1960                         **inp = '\0';
1961                         *inp += 1;
1962                 }
1963         }
1964         return 0;
1965 }
1966
1967 static int parse_action(struct addr_filter *filt)
1968 {
1969         if (!strcmp(filt->action, "filter")) {
1970                 filt->start = true;
1971                 filt->range = true;
1972         } else if (!strcmp(filt->action, "start")) {
1973                 filt->start = true;
1974         } else if (!strcmp(filt->action, "stop")) {
1975                 filt->start = false;
1976         } else if (!strcmp(filt->action, "tracestop")) {
1977                 filt->start = false;
1978                 filt->range = true;
1979                 filt->action += 5; /* Change 'tracestop' to 'stop' */
1980         } else {
1981                 return -EINVAL;
1982         }
1983         return 0;
1984 }
1985
1986 static int parse_sym_idx(char **inp, int *idx)
1987 {
1988         *idx = -1;
1989
1990         *inp += strspn(*inp, " ");
1991
1992         if (**inp != '#')
1993                 return 0;
1994
1995         *inp += 1;
1996
1997         if (**inp == 'g' || **inp == 'G') {
1998                 *inp += 1;
1999                 *idx = 0;
2000         } else {
2001                 unsigned long num;
2002                 char *endptr;
2003
2004                 errno = 0;
2005                 num = strtoul(*inp, &endptr, 0);
2006                 if (errno)
2007                         return -errno;
2008                 if (endptr == *inp || num > INT_MAX)
2009                         return -EINVAL;
2010                 *inp = endptr;
2011                 *idx = num;
2012         }
2013
2014         return 0;
2015 }
2016
2017 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
2018 {
2019         int err = parse_num_or_str(inp, num, str, " ");
2020
2021         if (!err && *str)
2022                 err = parse_sym_idx(inp, idx);
2023
2024         return err;
2025 }
2026
2027 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
2028 {
2029         char *fstr;
2030         int err;
2031
2032         filt->str = fstr = strdup(*filter_inp);
2033         if (!fstr)
2034                 return -ENOMEM;
2035
2036         err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
2037         if (err)
2038                 goto out_err;
2039
2040         err = parse_action(filt);
2041         if (err)
2042                 goto out_err;
2043
2044         err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
2045                               &filt->sym_from_idx);
2046         if (err)
2047                 goto out_err;
2048
2049         fstr += strspn(fstr, " ");
2050
2051         if (*fstr == '/') {
2052                 fstr += 1;
2053                 err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
2054                                       &filt->sym_to_idx);
2055                 if (err)
2056                         goto out_err;
2057                 filt->range = true;
2058         }
2059
2060         fstr += strspn(fstr, " ");
2061
2062         if (*fstr == '@') {
2063                 fstr += 1;
2064                 err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
2065                 if (err)
2066                         goto out_err;
2067         }
2068
2069         fstr += strspn(fstr, " ,");
2070
2071         *filter_inp += fstr - filt->str;
2072
2073         return 0;
2074
2075 out_err:
2076         addr_filter__free_str(filt);
2077
2078         return err;
2079 }
2080
2081 int addr_filters__parse_bare_filter(struct addr_filters *filts,
2082                                     const char *filter)
2083 {
2084         struct addr_filter *filt;
2085         const char *fstr = filter;
2086         int err;
2087
2088         while (*fstr) {
2089                 filt = addr_filter__new();
2090                 err = parse_one_filter(filt, &fstr);
2091                 if (err) {
2092                         addr_filter__free(filt);
2093                         addr_filters__exit(filts);
2094                         return err;
2095                 }
2096                 addr_filters__add(filts, filt);
2097         }
2098
2099         return 0;
2100 }
2101
2102 struct sym_args {
2103         const char      *name;
2104         u64             start;
2105         u64             size;
2106         int             idx;
2107         int             cnt;
2108         bool            started;
2109         bool            global;
2110         bool            selected;
2111         bool            duplicate;
2112         bool            near;
2113 };
2114
2115 static bool kern_sym_match(struct sym_args *args, const char *name, char type)
2116 {
2117         /* A function with the same name, and global or the n'th found or any */
2118         return kallsyms__is_function(type) &&
2119                !strcmp(name, args->name) &&
2120                ((args->global && isupper(type)) ||
2121                 (args->selected && ++(args->cnt) == args->idx) ||
2122                 (!args->global && !args->selected));
2123 }
2124
2125 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2126 {
2127         struct sym_args *args = arg;
2128
2129         if (args->started) {
2130                 if (!args->size)
2131                         args->size = start - args->start;
2132                 if (args->selected) {
2133                         if (args->size)
2134                                 return 1;
2135                 } else if (kern_sym_match(args, name, type)) {
2136                         args->duplicate = true;
2137                         return 1;
2138                 }
2139         } else if (kern_sym_match(args, name, type)) {
2140                 args->started = true;
2141                 args->start = start;
2142         }
2143
2144         return 0;
2145 }
2146
2147 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2148 {
2149         struct sym_args *args = arg;
2150
2151         if (kern_sym_match(args, name, type)) {
2152                 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2153                        ++args->cnt, start, type, name);
2154                 args->near = true;
2155         } else if (args->near) {
2156                 args->near = false;
2157                 pr_err("\t\twhich is near\t\t%s\n", name);
2158         }
2159
2160         return 0;
2161 }
2162
2163 static int sym_not_found_error(const char *sym_name, int idx)
2164 {
2165         if (idx > 0) {
2166                 pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
2167                        idx, sym_name);
2168         } else if (!idx) {
2169                 pr_err("Global symbol '%s' not found.\n", sym_name);
2170         } else {
2171                 pr_err("Symbol '%s' not found.\n", sym_name);
2172         }
2173         pr_err("Note that symbols must be functions.\n");
2174
2175         return -EINVAL;
2176 }
2177
2178 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
2179 {
2180         struct sym_args args = {
2181                 .name = sym_name,
2182                 .idx = idx,
2183                 .global = !idx,
2184                 .selected = idx > 0,
2185         };
2186         int err;
2187
2188         *start = 0;
2189         *size = 0;
2190
2191         err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
2192         if (err < 0) {
2193                 pr_err("Failed to parse /proc/kallsyms\n");
2194                 return err;
2195         }
2196
2197         if (args.duplicate) {
2198                 pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
2199                 args.cnt = 0;
2200                 kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
2201                 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2202                        sym_name);
2203                 pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2204                 return -EINVAL;
2205         }
2206
2207         if (!args.started) {
2208                 pr_err("Kernel symbol lookup: ");
2209                 return sym_not_found_error(sym_name, idx);
2210         }
2211
2212         *start = args.start;
2213         *size = args.size;
2214
2215         return 0;
2216 }
2217
2218 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
2219                                char type, u64 start)
2220 {
2221         struct sym_args *args = arg;
2222
2223         if (!kallsyms__is_function(type))
2224                 return 0;
2225
2226         if (!args->started) {
2227                 args->started = true;
2228                 args->start = start;
2229         }
2230         /* Don't know exactly where the kernel ends, so we add a page */
2231         args->size = round_up(start, page_size) + page_size - args->start;
2232
2233         return 0;
2234 }
2235
2236 static int addr_filter__entire_kernel(struct addr_filter *filt)
2237 {
2238         struct sym_args args = { .started = false };
2239         int err;
2240
2241         err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
2242         if (err < 0 || !args.started) {
2243                 pr_err("Failed to parse /proc/kallsyms\n");
2244                 return err;
2245         }
2246
2247         filt->addr = args.start;
2248         filt->size = args.size;
2249
2250         return 0;
2251 }
2252
2253 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
2254 {
2255         if (start + size >= filt->addr)
2256                 return 0;
2257
2258         if (filt->sym_from) {
2259                 pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
2260                        filt->sym_to, start, filt->sym_from, filt->addr);
2261         } else {
2262                 pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
2263                        filt->sym_to, start, filt->addr);
2264         }
2265
2266         return -EINVAL;
2267 }
2268
2269 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
2270 {
2271         bool no_size = false;
2272         u64 start, size;
2273         int err;
2274
2275         if (symbol_conf.kptr_restrict) {
2276                 pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
2277                 return -EINVAL;
2278         }
2279
2280         if (filt->sym_from && !strcmp(filt->sym_from, "*"))
2281                 return addr_filter__entire_kernel(filt);
2282
2283         if (filt->sym_from) {
2284                 err = find_kern_sym(filt->sym_from, &start, &size,
2285                                     filt->sym_from_idx);
2286                 if (err)
2287                         return err;
2288                 filt->addr = start;
2289                 if (filt->range && !filt->size && !filt->sym_to) {
2290                         filt->size = size;
2291                         no_size = !size;
2292                 }
2293         }
2294
2295         if (filt->sym_to) {
2296                 err = find_kern_sym(filt->sym_to, &start, &size,
2297                                     filt->sym_to_idx);
2298                 if (err)
2299                         return err;
2300
2301                 err = check_end_after_start(filt, start, size);
2302                 if (err)
2303                         return err;
2304                 filt->size = start + size - filt->addr;
2305                 no_size = !size;
2306         }
2307
2308         /* The very last symbol in kallsyms does not imply a particular size */
2309         if (no_size) {
2310                 pr_err("Cannot determine size of symbol '%s'\n",
2311                        filt->sym_to ? filt->sym_to : filt->sym_from);
2312                 return -EINVAL;
2313         }
2314
2315         return 0;
2316 }
2317
2318 static struct dso *load_dso(const char *name)
2319 {
2320         struct map *map;
2321         struct dso *dso;
2322
2323         map = dso__new_map(name);
2324         if (!map)
2325                 return NULL;
2326
2327         if (map__load(map) < 0)
2328                 pr_err("File '%s' not found or has no symbols.\n", name);
2329
2330         dso = dso__get(map->dso);
2331
2332         map__put(map);
2333
2334         return dso;
2335 }
2336
2337 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
2338                           int idx)
2339 {
2340         /* Same name, and global or the n'th found or any */
2341         return !arch__compare_symbol_names(name, sym->name) &&
2342                ((!idx && sym->binding == STB_GLOBAL) ||
2343                 (idx > 0 && ++*cnt == idx) ||
2344                 idx < 0);
2345 }
2346
2347 static void print_duplicate_syms(struct dso *dso, const char *sym_name)
2348 {
2349         struct symbol *sym;
2350         bool near = false;
2351         int cnt = 0;
2352
2353         pr_err("Multiple symbols with name '%s'\n", sym_name);
2354
2355         sym = dso__first_symbol(dso);
2356         while (sym) {
2357                 if (dso_sym_match(sym, sym_name, &cnt, -1)) {
2358                         pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2359                                ++cnt, sym->start,
2360                                sym->binding == STB_GLOBAL ? 'g' :
2361                                sym->binding == STB_LOCAL  ? 'l' : 'w',
2362                                sym->name);
2363                         near = true;
2364                 } else if (near) {
2365                         near = false;
2366                         pr_err("\t\twhich is near\t\t%s\n", sym->name);
2367                 }
2368                 sym = dso__next_symbol(sym);
2369         }
2370
2371         pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2372                sym_name);
2373         pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2374 }
2375
2376 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
2377                         u64 *size, int idx)
2378 {
2379         struct symbol *sym;
2380         int cnt = 0;
2381
2382         *start = 0;
2383         *size = 0;
2384
2385         sym = dso__first_symbol(dso);
2386         while (sym) {
2387                 if (*start) {
2388                         if (!*size)
2389                                 *size = sym->start - *start;
2390                         if (idx > 0) {
2391                                 if (*size)
2392                                         return 1;
2393                         } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2394                                 print_duplicate_syms(dso, sym_name);
2395                                 return -EINVAL;
2396                         }
2397                 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2398                         *start = sym->start;
2399                         *size = sym->end - sym->start;
2400                 }
2401                 sym = dso__next_symbol(sym);
2402         }
2403
2404         if (!*start)
2405                 return sym_not_found_error(sym_name, idx);
2406
2407         return 0;
2408 }
2409
2410 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
2411 {
2412         if (dso__data_file_size(dso, NULL)) {
2413                 pr_err("Failed to determine filter for %s\nCannot determine file size.\n",
2414                        filt->filename);
2415                 return -EINVAL;
2416         }
2417
2418         filt->addr = 0;
2419         filt->size = dso->data.file_size;
2420
2421         return 0;
2422 }
2423
2424 static int addr_filter__resolve_syms(struct addr_filter *filt)
2425 {
2426         u64 start, size;
2427         struct dso *dso;
2428         int err = 0;
2429
2430         if (!filt->sym_from && !filt->sym_to)
2431                 return 0;
2432
2433         if (!filt->filename)
2434                 return addr_filter__resolve_kernel_syms(filt);
2435
2436         dso = load_dso(filt->filename);
2437         if (!dso) {
2438                 pr_err("Failed to load symbols from: %s\n", filt->filename);
2439                 return -EINVAL;
2440         }
2441
2442         if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2443                 err = addr_filter__entire_dso(filt, dso);
2444                 goto put_dso;
2445         }
2446
2447         if (filt->sym_from) {
2448                 err = find_dso_sym(dso, filt->sym_from, &start, &size,
2449                                    filt->sym_from_idx);
2450                 if (err)
2451                         goto put_dso;
2452                 filt->addr = start;
2453                 if (filt->range && !filt->size && !filt->sym_to)
2454                         filt->size = size;
2455         }
2456
2457         if (filt->sym_to) {
2458                 err = find_dso_sym(dso, filt->sym_to, &start, &size,
2459                                    filt->sym_to_idx);
2460                 if (err)
2461                         goto put_dso;
2462
2463                 err = check_end_after_start(filt, start, size);
2464                 if (err)
2465                         return err;
2466
2467                 filt->size = start + size - filt->addr;
2468         }
2469
2470 put_dso:
2471         dso__put(dso);
2472
2473         return err;
2474 }
2475
2476 static char *addr_filter__to_str(struct addr_filter *filt)
2477 {
2478         char filename_buf[PATH_MAX];
2479         const char *at = "";
2480         const char *fn = "";
2481         char *filter;
2482         int err;
2483
2484         if (filt->filename) {
2485                 at = "@";
2486                 fn = realpath(filt->filename, filename_buf);
2487                 if (!fn)
2488                         return NULL;
2489         }
2490
2491         if (filt->range) {
2492                 err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2493                                filt->action, filt->addr, filt->size, at, fn);
2494         } else {
2495                 err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2496                                filt->action, filt->addr, at, fn);
2497         }
2498
2499         return err < 0 ? NULL : filter;
2500 }
2501
2502 static int parse_addr_filter(struct evsel *evsel, const char *filter,
2503                              int max_nr)
2504 {
2505         struct addr_filters filts;
2506         struct addr_filter *filt;
2507         int err;
2508
2509         addr_filters__init(&filts);
2510
2511         err = addr_filters__parse_bare_filter(&filts, filter);
2512         if (err)
2513                 goto out_exit;
2514
2515         if (filts.cnt > max_nr) {
2516                 pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2517                        filts.cnt, max_nr);
2518                 err = -EINVAL;
2519                 goto out_exit;
2520         }
2521
2522         list_for_each_entry(filt, &filts.head, list) {
2523                 char *new_filter;
2524
2525                 err = addr_filter__resolve_syms(filt);
2526                 if (err)
2527                         goto out_exit;
2528
2529                 new_filter = addr_filter__to_str(filt);
2530                 if (!new_filter) {
2531                         err = -ENOMEM;
2532                         goto out_exit;
2533                 }
2534
2535                 if (perf_evsel__append_addr_filter(evsel, new_filter)) {
2536                         err = -ENOMEM;
2537                         goto out_exit;
2538                 }
2539         }
2540
2541 out_exit:
2542         addr_filters__exit(&filts);
2543
2544         if (err) {
2545                 pr_err("Failed to parse address filter: '%s'\n", filter);
2546                 pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2547                 pr_err("Where multiple filters are separated by space or comma.\n");
2548         }
2549
2550         return err;
2551 }
2552
2553 static int perf_evsel__nr_addr_filter(struct evsel *evsel)
2554 {
2555         struct perf_pmu *pmu = perf_evsel__find_pmu(evsel);
2556         int nr_addr_filters = 0;
2557
2558         if (!pmu)
2559                 return 0;
2560
2561         perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2562
2563         return nr_addr_filters;
2564 }
2565
2566 int auxtrace_parse_filters(struct evlist *evlist)
2567 {
2568         struct evsel *evsel;
2569         char *filter;
2570         int err, max_nr;
2571
2572         evlist__for_each_entry(evlist, evsel) {
2573                 filter = evsel->filter;
2574                 max_nr = perf_evsel__nr_addr_filter(evsel);
2575                 if (!filter || !max_nr)
2576                         continue;
2577                 evsel->filter = NULL;
2578                 err = parse_addr_filter(evsel, filter, max_nr);
2579                 free(filter);
2580                 if (err)
2581                         return err;
2582                 pr_debug("Address filter: %s\n", evsel->filter);
2583         }
2584
2585         return 0;
2586 }
2587
2588 int auxtrace__process_event(struct perf_session *session, union perf_event *event,
2589                             struct perf_sample *sample, struct perf_tool *tool)
2590 {
2591         if (!session->auxtrace)
2592                 return 0;
2593
2594         return session->auxtrace->process_event(session, event, sample, tool);
2595 }
2596
2597 void auxtrace__dump_auxtrace_sample(struct perf_session *session,
2598                                     struct perf_sample *sample)
2599 {
2600         if (!session->auxtrace || !session->auxtrace->dump_auxtrace_sample ||
2601             auxtrace__dont_decode(session))
2602                 return;
2603
2604         session->auxtrace->dump_auxtrace_sample(session, sample);
2605 }
2606
2607 int auxtrace__flush_events(struct perf_session *session, struct perf_tool *tool)
2608 {
2609         if (!session->auxtrace)
2610                 return 0;
2611
2612         return session->auxtrace->flush_events(session, tool);
2613 }
2614
2615 void auxtrace__free_events(struct perf_session *session)
2616 {
2617         if (!session->auxtrace)
2618                 return;
2619
2620         return session->auxtrace->free_events(session);
2621 }
2622
2623 void auxtrace__free(struct perf_session *session)
2624 {
2625         if (!session->auxtrace)
2626                 return;
2627
2628         return session->auxtrace->free(session);
2629 }
2630
2631 bool auxtrace__evsel_is_auxtrace(struct perf_session *session,
2632                                  struct evsel *evsel)
2633 {
2634         if (!session->auxtrace || !session->auxtrace->evsel_is_auxtrace)
2635                 return false;
2636
2637         return session->auxtrace->evsel_is_auxtrace(session, evsel);
2638 }