Merge tag 'rtc-4.20-2' of git://git.kernel.org/pub/scm/linux/kernel/git/abelloni...
[linux-2.6-microblaze.git] / tools / perf / util / auxtrace.c
1 /*
2  * auxtrace.c: AUX area trace support
3  * Copyright (c) 2013-2015, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  */
15
16 #include <inttypes.h>
17 #include <sys/types.h>
18 #include <sys/mman.h>
19 #include <stdbool.h>
20 #include <string.h>
21 #include <limits.h>
22 #include <errno.h>
23
24 #include <linux/kernel.h>
25 #include <linux/perf_event.h>
26 #include <linux/types.h>
27 #include <linux/bitops.h>
28 #include <linux/log2.h>
29 #include <linux/string.h>
30
31 #include <sys/param.h>
32 #include <stdlib.h>
33 #include <stdio.h>
34 #include <linux/list.h>
35
36 #include "../perf.h"
37 #include "util.h"
38 #include "evlist.h"
39 #include "dso.h"
40 #include "map.h"
41 #include "pmu.h"
42 #include "evsel.h"
43 #include "cpumap.h"
44 #include "thread_map.h"
45 #include "asm/bug.h"
46 #include "auxtrace.h"
47
48 #include <linux/hash.h>
49
50 #include "event.h"
51 #include "session.h"
52 #include "debug.h"
53 #include <subcmd/parse-options.h>
54
55 #include "cs-etm.h"
56 #include "intel-pt.h"
57 #include "intel-bts.h"
58 #include "arm-spe.h"
59 #include "s390-cpumsf.h"
60
61 #include "sane_ctype.h"
62 #include "symbol/kallsyms.h"
63
64 static bool auxtrace__dont_decode(struct perf_session *session)
65 {
66         return !session->itrace_synth_opts ||
67                session->itrace_synth_opts->dont_decode;
68 }
69
70 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
71                         struct auxtrace_mmap_params *mp,
72                         void *userpg, int fd)
73 {
74         struct perf_event_mmap_page *pc = userpg;
75
76         WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
77
78         mm->userpg = userpg;
79         mm->mask = mp->mask;
80         mm->len = mp->len;
81         mm->prev = 0;
82         mm->idx = mp->idx;
83         mm->tid = mp->tid;
84         mm->cpu = mp->cpu;
85
86         if (!mp->len) {
87                 mm->base = NULL;
88                 return 0;
89         }
90
91 #if BITS_PER_LONG != 64 && !defined(HAVE_SYNC_COMPARE_AND_SWAP_SUPPORT)
92         pr_err("Cannot use AUX area tracing mmaps\n");
93         return -1;
94 #endif
95
96         pc->aux_offset = mp->offset;
97         pc->aux_size = mp->len;
98
99         mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
100         if (mm->base == MAP_FAILED) {
101                 pr_debug2("failed to mmap AUX area\n");
102                 mm->base = NULL;
103                 return -1;
104         }
105
106         return 0;
107 }
108
109 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
110 {
111         if (mm->base) {
112                 munmap(mm->base, mm->len);
113                 mm->base = NULL;
114         }
115 }
116
117 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
118                                 off_t auxtrace_offset,
119                                 unsigned int auxtrace_pages,
120                                 bool auxtrace_overwrite)
121 {
122         if (auxtrace_pages) {
123                 mp->offset = auxtrace_offset;
124                 mp->len = auxtrace_pages * (size_t)page_size;
125                 mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
126                 mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
127                 pr_debug2("AUX area mmap length %zu\n", mp->len);
128         } else {
129                 mp->len = 0;
130         }
131 }
132
133 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
134                                    struct perf_evlist *evlist, int idx,
135                                    bool per_cpu)
136 {
137         mp->idx = idx;
138
139         if (per_cpu) {
140                 mp->cpu = evlist->cpus->map[idx];
141                 if (evlist->threads)
142                         mp->tid = thread_map__pid(evlist->threads, 0);
143                 else
144                         mp->tid = -1;
145         } else {
146                 mp->cpu = -1;
147                 mp->tid = thread_map__pid(evlist->threads, idx);
148         }
149 }
150
151 #define AUXTRACE_INIT_NR_QUEUES 32
152
153 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
154 {
155         struct auxtrace_queue *queue_array;
156         unsigned int max_nr_queues, i;
157
158         max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
159         if (nr_queues > max_nr_queues)
160                 return NULL;
161
162         queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
163         if (!queue_array)
164                 return NULL;
165
166         for (i = 0; i < nr_queues; i++) {
167                 INIT_LIST_HEAD(&queue_array[i].head);
168                 queue_array[i].priv = NULL;
169         }
170
171         return queue_array;
172 }
173
174 int auxtrace_queues__init(struct auxtrace_queues *queues)
175 {
176         queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
177         queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
178         if (!queues->queue_array)
179                 return -ENOMEM;
180         return 0;
181 }
182
183 static int auxtrace_queues__grow(struct auxtrace_queues *queues,
184                                  unsigned int new_nr_queues)
185 {
186         unsigned int nr_queues = queues->nr_queues;
187         struct auxtrace_queue *queue_array;
188         unsigned int i;
189
190         if (!nr_queues)
191                 nr_queues = AUXTRACE_INIT_NR_QUEUES;
192
193         while (nr_queues && nr_queues < new_nr_queues)
194                 nr_queues <<= 1;
195
196         if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
197                 return -EINVAL;
198
199         queue_array = auxtrace_alloc_queue_array(nr_queues);
200         if (!queue_array)
201                 return -ENOMEM;
202
203         for (i = 0; i < queues->nr_queues; i++) {
204                 list_splice_tail(&queues->queue_array[i].head,
205                                  &queue_array[i].head);
206                 queue_array[i].tid = queues->queue_array[i].tid;
207                 queue_array[i].cpu = queues->queue_array[i].cpu;
208                 queue_array[i].set = queues->queue_array[i].set;
209                 queue_array[i].priv = queues->queue_array[i].priv;
210         }
211
212         queues->nr_queues = nr_queues;
213         queues->queue_array = queue_array;
214
215         return 0;
216 }
217
218 static void *auxtrace_copy_data(u64 size, struct perf_session *session)
219 {
220         int fd = perf_data__fd(session->data);
221         void *p;
222         ssize_t ret;
223
224         if (size > SSIZE_MAX)
225                 return NULL;
226
227         p = malloc(size);
228         if (!p)
229                 return NULL;
230
231         ret = readn(fd, p, size);
232         if (ret != (ssize_t)size) {
233                 free(p);
234                 return NULL;
235         }
236
237         return p;
238 }
239
240 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues,
241                                          unsigned int idx,
242                                          struct auxtrace_buffer *buffer)
243 {
244         struct auxtrace_queue *queue;
245         int err;
246
247         if (idx >= queues->nr_queues) {
248                 err = auxtrace_queues__grow(queues, idx + 1);
249                 if (err)
250                         return err;
251         }
252
253         queue = &queues->queue_array[idx];
254
255         if (!queue->set) {
256                 queue->set = true;
257                 queue->tid = buffer->tid;
258                 queue->cpu = buffer->cpu;
259         } else if (buffer->cpu != queue->cpu || buffer->tid != queue->tid) {
260                 pr_err("auxtrace queue conflict: cpu %d, tid %d vs cpu %d, tid %d\n",
261                        queue->cpu, queue->tid, buffer->cpu, buffer->tid);
262                 return -EINVAL;
263         }
264
265         buffer->buffer_nr = queues->next_buffer_nr++;
266
267         list_add_tail(&buffer->list, &queue->head);
268
269         queues->new_data = true;
270         queues->populated = true;
271
272         return 0;
273 }
274
275 /* Limit buffers to 32MiB on 32-bit */
276 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
277
278 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
279                                          unsigned int idx,
280                                          struct auxtrace_buffer *buffer)
281 {
282         u64 sz = buffer->size;
283         bool consecutive = false;
284         struct auxtrace_buffer *b;
285         int err;
286
287         while (sz > BUFFER_LIMIT_FOR_32_BIT) {
288                 b = memdup(buffer, sizeof(struct auxtrace_buffer));
289                 if (!b)
290                         return -ENOMEM;
291                 b->size = BUFFER_LIMIT_FOR_32_BIT;
292                 b->consecutive = consecutive;
293                 err = auxtrace_queues__queue_buffer(queues, idx, b);
294                 if (err) {
295                         auxtrace_buffer__free(b);
296                         return err;
297                 }
298                 buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
299                 sz -= BUFFER_LIMIT_FOR_32_BIT;
300                 consecutive = true;
301         }
302
303         buffer->size = sz;
304         buffer->consecutive = consecutive;
305
306         return 0;
307 }
308
309 static bool filter_cpu(struct perf_session *session, int cpu)
310 {
311         unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
312
313         return cpu_bitmap && cpu != -1 && !test_bit(cpu, cpu_bitmap);
314 }
315
316 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
317                                        struct perf_session *session,
318                                        unsigned int idx,
319                                        struct auxtrace_buffer *buffer,
320                                        struct auxtrace_buffer **buffer_ptr)
321 {
322         int err = -ENOMEM;
323
324         if (filter_cpu(session, buffer->cpu))
325                 return 0;
326
327         buffer = memdup(buffer, sizeof(*buffer));
328         if (!buffer)
329                 return -ENOMEM;
330
331         if (session->one_mmap) {
332                 buffer->data = buffer->data_offset - session->one_mmap_offset +
333                                session->one_mmap_addr;
334         } else if (perf_data__is_pipe(session->data)) {
335                 buffer->data = auxtrace_copy_data(buffer->size, session);
336                 if (!buffer->data)
337                         goto out_free;
338                 buffer->data_needs_freeing = true;
339         } else if (BITS_PER_LONG == 32 &&
340                    buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
341                 err = auxtrace_queues__split_buffer(queues, idx, buffer);
342                 if (err)
343                         goto out_free;
344         }
345
346         err = auxtrace_queues__queue_buffer(queues, idx, buffer);
347         if (err)
348                 goto out_free;
349
350         /* FIXME: Doesn't work for split buffer */
351         if (buffer_ptr)
352                 *buffer_ptr = buffer;
353
354         return 0;
355
356 out_free:
357         auxtrace_buffer__free(buffer);
358         return err;
359 }
360
361 int auxtrace_queues__add_event(struct auxtrace_queues *queues,
362                                struct perf_session *session,
363                                union perf_event *event, off_t data_offset,
364                                struct auxtrace_buffer **buffer_ptr)
365 {
366         struct auxtrace_buffer buffer = {
367                 .pid = -1,
368                 .tid = event->auxtrace.tid,
369                 .cpu = event->auxtrace.cpu,
370                 .data_offset = data_offset,
371                 .offset = event->auxtrace.offset,
372                 .reference = event->auxtrace.reference,
373                 .size = event->auxtrace.size,
374         };
375         unsigned int idx = event->auxtrace.idx;
376
377         return auxtrace_queues__add_buffer(queues, session, idx, &buffer,
378                                            buffer_ptr);
379 }
380
381 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
382                                               struct perf_session *session,
383                                               off_t file_offset, size_t sz)
384 {
385         union perf_event *event;
386         int err;
387         char buf[PERF_SAMPLE_MAX_SIZE];
388
389         err = perf_session__peek_event(session, file_offset, buf,
390                                        PERF_SAMPLE_MAX_SIZE, &event, NULL);
391         if (err)
392                 return err;
393
394         if (event->header.type == PERF_RECORD_AUXTRACE) {
395                 if (event->header.size < sizeof(struct auxtrace_event) ||
396                     event->header.size != sz) {
397                         err = -EINVAL;
398                         goto out;
399                 }
400                 file_offset += event->header.size;
401                 err = auxtrace_queues__add_event(queues, session, event,
402                                                  file_offset, NULL);
403         }
404 out:
405         return err;
406 }
407
408 void auxtrace_queues__free(struct auxtrace_queues *queues)
409 {
410         unsigned int i;
411
412         for (i = 0; i < queues->nr_queues; i++) {
413                 while (!list_empty(&queues->queue_array[i].head)) {
414                         struct auxtrace_buffer *buffer;
415
416                         buffer = list_entry(queues->queue_array[i].head.next,
417                                             struct auxtrace_buffer, list);
418                         list_del(&buffer->list);
419                         auxtrace_buffer__free(buffer);
420                 }
421         }
422
423         zfree(&queues->queue_array);
424         queues->nr_queues = 0;
425 }
426
427 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
428                              unsigned int pos, unsigned int queue_nr,
429                              u64 ordinal)
430 {
431         unsigned int parent;
432
433         while (pos) {
434                 parent = (pos - 1) >> 1;
435                 if (heap_array[parent].ordinal <= ordinal)
436                         break;
437                 heap_array[pos] = heap_array[parent];
438                 pos = parent;
439         }
440         heap_array[pos].queue_nr = queue_nr;
441         heap_array[pos].ordinal = ordinal;
442 }
443
444 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
445                        u64 ordinal)
446 {
447         struct auxtrace_heap_item *heap_array;
448
449         if (queue_nr >= heap->heap_sz) {
450                 unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
451
452                 while (heap_sz <= queue_nr)
453                         heap_sz <<= 1;
454                 heap_array = realloc(heap->heap_array,
455                                      heap_sz * sizeof(struct auxtrace_heap_item));
456                 if (!heap_array)
457                         return -ENOMEM;
458                 heap->heap_array = heap_array;
459                 heap->heap_sz = heap_sz;
460         }
461
462         auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
463
464         return 0;
465 }
466
467 void auxtrace_heap__free(struct auxtrace_heap *heap)
468 {
469         zfree(&heap->heap_array);
470         heap->heap_cnt = 0;
471         heap->heap_sz = 0;
472 }
473
474 void auxtrace_heap__pop(struct auxtrace_heap *heap)
475 {
476         unsigned int pos, last, heap_cnt = heap->heap_cnt;
477         struct auxtrace_heap_item *heap_array;
478
479         if (!heap_cnt)
480                 return;
481
482         heap->heap_cnt -= 1;
483
484         heap_array = heap->heap_array;
485
486         pos = 0;
487         while (1) {
488                 unsigned int left, right;
489
490                 left = (pos << 1) + 1;
491                 if (left >= heap_cnt)
492                         break;
493                 right = left + 1;
494                 if (right >= heap_cnt) {
495                         heap_array[pos] = heap_array[left];
496                         return;
497                 }
498                 if (heap_array[left].ordinal < heap_array[right].ordinal) {
499                         heap_array[pos] = heap_array[left];
500                         pos = left;
501                 } else {
502                         heap_array[pos] = heap_array[right];
503                         pos = right;
504                 }
505         }
506
507         last = heap_cnt - 1;
508         auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
509                          heap_array[last].ordinal);
510 }
511
512 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
513                                        struct perf_evlist *evlist)
514 {
515         if (itr)
516                 return itr->info_priv_size(itr, evlist);
517         return 0;
518 }
519
520 static int auxtrace_not_supported(void)
521 {
522         pr_err("AUX area tracing is not supported on this architecture\n");
523         return -EINVAL;
524 }
525
526 int auxtrace_record__info_fill(struct auxtrace_record *itr,
527                                struct perf_session *session,
528                                struct auxtrace_info_event *auxtrace_info,
529                                size_t priv_size)
530 {
531         if (itr)
532                 return itr->info_fill(itr, session, auxtrace_info, priv_size);
533         return auxtrace_not_supported();
534 }
535
536 void auxtrace_record__free(struct auxtrace_record *itr)
537 {
538         if (itr)
539                 itr->free(itr);
540 }
541
542 int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
543 {
544         if (itr && itr->snapshot_start)
545                 return itr->snapshot_start(itr);
546         return 0;
547 }
548
549 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr)
550 {
551         if (itr && itr->snapshot_finish)
552                 return itr->snapshot_finish(itr);
553         return 0;
554 }
555
556 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
557                                    struct auxtrace_mmap *mm,
558                                    unsigned char *data, u64 *head, u64 *old)
559 {
560         if (itr && itr->find_snapshot)
561                 return itr->find_snapshot(itr, idx, mm, data, head, old);
562         return 0;
563 }
564
565 int auxtrace_record__options(struct auxtrace_record *itr,
566                              struct perf_evlist *evlist,
567                              struct record_opts *opts)
568 {
569         if (itr)
570                 return itr->recording_options(itr, evlist, opts);
571         return 0;
572 }
573
574 u64 auxtrace_record__reference(struct auxtrace_record *itr)
575 {
576         if (itr)
577                 return itr->reference(itr);
578         return 0;
579 }
580
581 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
582                                     struct record_opts *opts, const char *str)
583 {
584         if (!str)
585                 return 0;
586
587         if (itr)
588                 return itr->parse_snapshot_options(itr, opts, str);
589
590         pr_err("No AUX area tracing to snapshot\n");
591         return -EINVAL;
592 }
593
594 struct auxtrace_record *__weak
595 auxtrace_record__init(struct perf_evlist *evlist __maybe_unused, int *err)
596 {
597         *err = 0;
598         return NULL;
599 }
600
601 static int auxtrace_index__alloc(struct list_head *head)
602 {
603         struct auxtrace_index *auxtrace_index;
604
605         auxtrace_index = malloc(sizeof(struct auxtrace_index));
606         if (!auxtrace_index)
607                 return -ENOMEM;
608
609         auxtrace_index->nr = 0;
610         INIT_LIST_HEAD(&auxtrace_index->list);
611
612         list_add_tail(&auxtrace_index->list, head);
613
614         return 0;
615 }
616
617 void auxtrace_index__free(struct list_head *head)
618 {
619         struct auxtrace_index *auxtrace_index, *n;
620
621         list_for_each_entry_safe(auxtrace_index, n, head, list) {
622                 list_del(&auxtrace_index->list);
623                 free(auxtrace_index);
624         }
625 }
626
627 static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
628 {
629         struct auxtrace_index *auxtrace_index;
630         int err;
631
632         if (list_empty(head)) {
633                 err = auxtrace_index__alloc(head);
634                 if (err)
635                         return NULL;
636         }
637
638         auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
639
640         if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
641                 err = auxtrace_index__alloc(head);
642                 if (err)
643                         return NULL;
644                 auxtrace_index = list_entry(head->prev, struct auxtrace_index,
645                                             list);
646         }
647
648         return auxtrace_index;
649 }
650
651 int auxtrace_index__auxtrace_event(struct list_head *head,
652                                    union perf_event *event, off_t file_offset)
653 {
654         struct auxtrace_index *auxtrace_index;
655         size_t nr;
656
657         auxtrace_index = auxtrace_index__last(head);
658         if (!auxtrace_index)
659                 return -ENOMEM;
660
661         nr = auxtrace_index->nr;
662         auxtrace_index->entries[nr].file_offset = file_offset;
663         auxtrace_index->entries[nr].sz = event->header.size;
664         auxtrace_index->nr += 1;
665
666         return 0;
667 }
668
669 static int auxtrace_index__do_write(int fd,
670                                     struct auxtrace_index *auxtrace_index)
671 {
672         struct auxtrace_index_entry ent;
673         size_t i;
674
675         for (i = 0; i < auxtrace_index->nr; i++) {
676                 ent.file_offset = auxtrace_index->entries[i].file_offset;
677                 ent.sz = auxtrace_index->entries[i].sz;
678                 if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
679                         return -errno;
680         }
681         return 0;
682 }
683
684 int auxtrace_index__write(int fd, struct list_head *head)
685 {
686         struct auxtrace_index *auxtrace_index;
687         u64 total = 0;
688         int err;
689
690         list_for_each_entry(auxtrace_index, head, list)
691                 total += auxtrace_index->nr;
692
693         if (writen(fd, &total, sizeof(total)) != sizeof(total))
694                 return -errno;
695
696         list_for_each_entry(auxtrace_index, head, list) {
697                 err = auxtrace_index__do_write(fd, auxtrace_index);
698                 if (err)
699                         return err;
700         }
701
702         return 0;
703 }
704
705 static int auxtrace_index__process_entry(int fd, struct list_head *head,
706                                          bool needs_swap)
707 {
708         struct auxtrace_index *auxtrace_index;
709         struct auxtrace_index_entry ent;
710         size_t nr;
711
712         if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
713                 return -1;
714
715         auxtrace_index = auxtrace_index__last(head);
716         if (!auxtrace_index)
717                 return -1;
718
719         nr = auxtrace_index->nr;
720         if (needs_swap) {
721                 auxtrace_index->entries[nr].file_offset =
722                                                 bswap_64(ent.file_offset);
723                 auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
724         } else {
725                 auxtrace_index->entries[nr].file_offset = ent.file_offset;
726                 auxtrace_index->entries[nr].sz = ent.sz;
727         }
728
729         auxtrace_index->nr = nr + 1;
730
731         return 0;
732 }
733
734 int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
735                             bool needs_swap)
736 {
737         struct list_head *head = &session->auxtrace_index;
738         u64 nr;
739
740         if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
741                 return -1;
742
743         if (needs_swap)
744                 nr = bswap_64(nr);
745
746         if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
747                 return -1;
748
749         while (nr--) {
750                 int err;
751
752                 err = auxtrace_index__process_entry(fd, head, needs_swap);
753                 if (err)
754                         return -1;
755         }
756
757         return 0;
758 }
759
760 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
761                                                 struct perf_session *session,
762                                                 struct auxtrace_index_entry *ent)
763 {
764         return auxtrace_queues__add_indexed_event(queues, session,
765                                                   ent->file_offset, ent->sz);
766 }
767
768 int auxtrace_queues__process_index(struct auxtrace_queues *queues,
769                                    struct perf_session *session)
770 {
771         struct auxtrace_index *auxtrace_index;
772         struct auxtrace_index_entry *ent;
773         size_t i;
774         int err;
775
776         if (auxtrace__dont_decode(session))
777                 return 0;
778
779         list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
780                 for (i = 0; i < auxtrace_index->nr; i++) {
781                         ent = &auxtrace_index->entries[i];
782                         err = auxtrace_queues__process_index_entry(queues,
783                                                                    session,
784                                                                    ent);
785                         if (err)
786                                 return err;
787                 }
788         }
789         return 0;
790 }
791
792 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
793                                               struct auxtrace_buffer *buffer)
794 {
795         if (buffer) {
796                 if (list_is_last(&buffer->list, &queue->head))
797                         return NULL;
798                 return list_entry(buffer->list.next, struct auxtrace_buffer,
799                                   list);
800         } else {
801                 if (list_empty(&queue->head))
802                         return NULL;
803                 return list_entry(queue->head.next, struct auxtrace_buffer,
804                                   list);
805         }
806 }
807
808 void *auxtrace_buffer__get_data(struct auxtrace_buffer *buffer, int fd)
809 {
810         size_t adj = buffer->data_offset & (page_size - 1);
811         size_t size = buffer->size + adj;
812         off_t file_offset = buffer->data_offset - adj;
813         void *addr;
814
815         if (buffer->data)
816                 return buffer->data;
817
818         addr = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, file_offset);
819         if (addr == MAP_FAILED)
820                 return NULL;
821
822         buffer->mmap_addr = addr;
823         buffer->mmap_size = size;
824
825         buffer->data = addr + adj;
826
827         return buffer->data;
828 }
829
830 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
831 {
832         if (!buffer->data || !buffer->mmap_addr)
833                 return;
834         munmap(buffer->mmap_addr, buffer->mmap_size);
835         buffer->mmap_addr = NULL;
836         buffer->mmap_size = 0;
837         buffer->data = NULL;
838         buffer->use_data = NULL;
839 }
840
841 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
842 {
843         auxtrace_buffer__put_data(buffer);
844         if (buffer->data_needs_freeing) {
845                 buffer->data_needs_freeing = false;
846                 zfree(&buffer->data);
847                 buffer->use_data = NULL;
848                 buffer->size = 0;
849         }
850 }
851
852 void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
853 {
854         auxtrace_buffer__drop_data(buffer);
855         free(buffer);
856 }
857
858 void auxtrace_synth_error(struct auxtrace_error_event *auxtrace_error, int type,
859                           int code, int cpu, pid_t pid, pid_t tid, u64 ip,
860                           const char *msg)
861 {
862         size_t size;
863
864         memset(auxtrace_error, 0, sizeof(struct auxtrace_error_event));
865
866         auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
867         auxtrace_error->type = type;
868         auxtrace_error->code = code;
869         auxtrace_error->cpu = cpu;
870         auxtrace_error->pid = pid;
871         auxtrace_error->tid = tid;
872         auxtrace_error->ip = ip;
873         strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
874
875         size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
876                strlen(auxtrace_error->msg) + 1;
877         auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
878 }
879
880 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
881                                          struct perf_tool *tool,
882                                          struct perf_session *session,
883                                          perf_event__handler_t process)
884 {
885         union perf_event *ev;
886         size_t priv_size;
887         int err;
888
889         pr_debug2("Synthesizing auxtrace information\n");
890         priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
891         ev = zalloc(sizeof(struct auxtrace_info_event) + priv_size);
892         if (!ev)
893                 return -ENOMEM;
894
895         ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
896         ev->auxtrace_info.header.size = sizeof(struct auxtrace_info_event) +
897                                         priv_size;
898         err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
899                                          priv_size);
900         if (err)
901                 goto out_free;
902
903         err = process(tool, ev, NULL, NULL);
904 out_free:
905         free(ev);
906         return err;
907 }
908
909 int perf_event__process_auxtrace_info(struct perf_session *session,
910                                       union perf_event *event)
911 {
912         enum auxtrace_type type = event->auxtrace_info.type;
913
914         if (dump_trace)
915                 fprintf(stdout, " type: %u\n", type);
916
917         switch (type) {
918         case PERF_AUXTRACE_INTEL_PT:
919                 return intel_pt_process_auxtrace_info(event, session);
920         case PERF_AUXTRACE_INTEL_BTS:
921                 return intel_bts_process_auxtrace_info(event, session);
922         case PERF_AUXTRACE_ARM_SPE:
923                 return arm_spe_process_auxtrace_info(event, session);
924         case PERF_AUXTRACE_CS_ETM:
925                 return cs_etm__process_auxtrace_info(event, session);
926         case PERF_AUXTRACE_S390_CPUMSF:
927                 return s390_cpumsf_process_auxtrace_info(event, session);
928         case PERF_AUXTRACE_UNKNOWN:
929         default:
930                 return -EINVAL;
931         }
932 }
933
934 s64 perf_event__process_auxtrace(struct perf_session *session,
935                                  union perf_event *event)
936 {
937         s64 err;
938
939         if (dump_trace)
940                 fprintf(stdout, " size: %#"PRIx64"  offset: %#"PRIx64"  ref: %#"PRIx64"  idx: %u  tid: %d  cpu: %d\n",
941                         event->auxtrace.size, event->auxtrace.offset,
942                         event->auxtrace.reference, event->auxtrace.idx,
943                         event->auxtrace.tid, event->auxtrace.cpu);
944
945         if (auxtrace__dont_decode(session))
946                 return event->auxtrace.size;
947
948         if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
949                 return -EINVAL;
950
951         err = session->auxtrace->process_auxtrace_event(session, event, session->tool);
952         if (err < 0)
953                 return err;
954
955         return event->auxtrace.size;
956 }
957
958 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE         PERF_ITRACE_PERIOD_NANOSECS
959 #define PERF_ITRACE_DEFAULT_PERIOD              100000
960 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ        16
961 #define PERF_ITRACE_MAX_CALLCHAIN_SZ            1024
962 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ      64
963 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ          1024
964
965 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts,
966                                     bool no_sample)
967 {
968         synth_opts->branches = true;
969         synth_opts->transactions = true;
970         synth_opts->ptwrites = true;
971         synth_opts->pwr_events = true;
972         synth_opts->errors = true;
973         if (no_sample) {
974                 synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS;
975                 synth_opts->period = 1;
976                 synth_opts->calls = true;
977         } else {
978                 synth_opts->instructions = true;
979                 synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
980                 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
981         }
982         synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
983         synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
984         synth_opts->initial_skip = 0;
985 }
986
987 /*
988  * Please check tools/perf/Documentation/perf-script.txt for information
989  * about the options parsed here, which is introduced after this cset,
990  * when support in 'perf script' for these options is introduced.
991  */
992 int itrace_parse_synth_opts(const struct option *opt, const char *str,
993                             int unset)
994 {
995         struct itrace_synth_opts *synth_opts = opt->value;
996         const char *p;
997         char *endptr;
998         bool period_type_set = false;
999         bool period_set = false;
1000
1001         synth_opts->set = true;
1002
1003         if (unset) {
1004                 synth_opts->dont_decode = true;
1005                 return 0;
1006         }
1007
1008         if (!str) {
1009                 itrace_synth_opts__set_default(synth_opts, false);
1010                 return 0;
1011         }
1012
1013         for (p = str; *p;) {
1014                 switch (*p++) {
1015                 case 'i':
1016                         synth_opts->instructions = true;
1017                         while (*p == ' ' || *p == ',')
1018                                 p += 1;
1019                         if (isdigit(*p)) {
1020                                 synth_opts->period = strtoull(p, &endptr, 10);
1021                                 period_set = true;
1022                                 p = endptr;
1023                                 while (*p == ' ' || *p == ',')
1024                                         p += 1;
1025                                 switch (*p++) {
1026                                 case 'i':
1027                                         synth_opts->period_type =
1028                                                 PERF_ITRACE_PERIOD_INSTRUCTIONS;
1029                                         period_type_set = true;
1030                                         break;
1031                                 case 't':
1032                                         synth_opts->period_type =
1033                                                 PERF_ITRACE_PERIOD_TICKS;
1034                                         period_type_set = true;
1035                                         break;
1036                                 case 'm':
1037                                         synth_opts->period *= 1000;
1038                                         /* Fall through */
1039                                 case 'u':
1040                                         synth_opts->period *= 1000;
1041                                         /* Fall through */
1042                                 case 'n':
1043                                         if (*p++ != 's')
1044                                                 goto out_err;
1045                                         synth_opts->period_type =
1046                                                 PERF_ITRACE_PERIOD_NANOSECS;
1047                                         period_type_set = true;
1048                                         break;
1049                                 case '\0':
1050                                         goto out;
1051                                 default:
1052                                         goto out_err;
1053                                 }
1054                         }
1055                         break;
1056                 case 'b':
1057                         synth_opts->branches = true;
1058                         break;
1059                 case 'x':
1060                         synth_opts->transactions = true;
1061                         break;
1062                 case 'w':
1063                         synth_opts->ptwrites = true;
1064                         break;
1065                 case 'p':
1066                         synth_opts->pwr_events = true;
1067                         break;
1068                 case 'e':
1069                         synth_opts->errors = true;
1070                         break;
1071                 case 'd':
1072                         synth_opts->log = true;
1073                         break;
1074                 case 'c':
1075                         synth_opts->branches = true;
1076                         synth_opts->calls = true;
1077                         break;
1078                 case 'r':
1079                         synth_opts->branches = true;
1080                         synth_opts->returns = true;
1081                         break;
1082                 case 'g':
1083                         synth_opts->callchain = true;
1084                         synth_opts->callchain_sz =
1085                                         PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1086                         while (*p == ' ' || *p == ',')
1087                                 p += 1;
1088                         if (isdigit(*p)) {
1089                                 unsigned int val;
1090
1091                                 val = strtoul(p, &endptr, 10);
1092                                 p = endptr;
1093                                 if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1094                                         goto out_err;
1095                                 synth_opts->callchain_sz = val;
1096                         }
1097                         break;
1098                 case 'l':
1099                         synth_opts->last_branch = true;
1100                         synth_opts->last_branch_sz =
1101                                         PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1102                         while (*p == ' ' || *p == ',')
1103                                 p += 1;
1104                         if (isdigit(*p)) {
1105                                 unsigned int val;
1106
1107                                 val = strtoul(p, &endptr, 10);
1108                                 p = endptr;
1109                                 if (!val ||
1110                                     val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1111                                         goto out_err;
1112                                 synth_opts->last_branch_sz = val;
1113                         }
1114                         break;
1115                 case 's':
1116                         synth_opts->initial_skip = strtoul(p, &endptr, 10);
1117                         if (p == endptr)
1118                                 goto out_err;
1119                         p = endptr;
1120                         break;
1121                 case ' ':
1122                 case ',':
1123                         break;
1124                 default:
1125                         goto out_err;
1126                 }
1127         }
1128 out:
1129         if (synth_opts->instructions) {
1130                 if (!period_type_set)
1131                         synth_opts->period_type =
1132                                         PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1133                 if (!period_set)
1134                         synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1135         }
1136
1137         return 0;
1138
1139 out_err:
1140         pr_err("Bad Instruction Tracing options '%s'\n", str);
1141         return -EINVAL;
1142 }
1143
1144 static const char * const auxtrace_error_type_name[] = {
1145         [PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1146 };
1147
1148 static const char *auxtrace_error_name(int type)
1149 {
1150         const char *error_type_name = NULL;
1151
1152         if (type < PERF_AUXTRACE_ERROR_MAX)
1153                 error_type_name = auxtrace_error_type_name[type];
1154         if (!error_type_name)
1155                 error_type_name = "unknown AUX";
1156         return error_type_name;
1157 }
1158
1159 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1160 {
1161         struct auxtrace_error_event *e = &event->auxtrace_error;
1162         int ret;
1163
1164         ret = fprintf(fp, " %s error type %u",
1165                       auxtrace_error_name(e->type), e->type);
1166         ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRIx64" code %u: %s\n",
1167                        e->cpu, e->pid, e->tid, e->ip, e->code, e->msg);
1168         return ret;
1169 }
1170
1171 void perf_session__auxtrace_error_inc(struct perf_session *session,
1172                                       union perf_event *event)
1173 {
1174         struct auxtrace_error_event *e = &event->auxtrace_error;
1175
1176         if (e->type < PERF_AUXTRACE_ERROR_MAX)
1177                 session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1178 }
1179
1180 void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1181 {
1182         int i;
1183
1184         for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1185                 if (!stats->nr_auxtrace_errors[i])
1186                         continue;
1187                 ui__warning("%u %s errors\n",
1188                             stats->nr_auxtrace_errors[i],
1189                             auxtrace_error_name(i));
1190         }
1191 }
1192
1193 int perf_event__process_auxtrace_error(struct perf_session *session,
1194                                        union perf_event *event)
1195 {
1196         if (auxtrace__dont_decode(session))
1197                 return 0;
1198
1199         perf_event__fprintf_auxtrace_error(event, stdout);
1200         return 0;
1201 }
1202
1203 static int __auxtrace_mmap__read(struct perf_mmap *map,
1204                                  struct auxtrace_record *itr,
1205                                  struct perf_tool *tool, process_auxtrace_t fn,
1206                                  bool snapshot, size_t snapshot_size)
1207 {
1208         struct auxtrace_mmap *mm = &map->auxtrace_mmap;
1209         u64 head, old = mm->prev, offset, ref;
1210         unsigned char *data = mm->base;
1211         size_t size, head_off, old_off, len1, len2, padding;
1212         union perf_event ev;
1213         void *data1, *data2;
1214
1215         if (snapshot) {
1216                 head = auxtrace_mmap__read_snapshot_head(mm);
1217                 if (auxtrace_record__find_snapshot(itr, mm->idx, mm, data,
1218                                                    &head, &old))
1219                         return -1;
1220         } else {
1221                 head = auxtrace_mmap__read_head(mm);
1222         }
1223
1224         if (old == head)
1225                 return 0;
1226
1227         pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1228                   mm->idx, old, head, head - old);
1229
1230         if (mm->mask) {
1231                 head_off = head & mm->mask;
1232                 old_off = old & mm->mask;
1233         } else {
1234                 head_off = head % mm->len;
1235                 old_off = old % mm->len;
1236         }
1237
1238         if (head_off > old_off)
1239                 size = head_off - old_off;
1240         else
1241                 size = mm->len - (old_off - head_off);
1242
1243         if (snapshot && size > snapshot_size)
1244                 size = snapshot_size;
1245
1246         ref = auxtrace_record__reference(itr);
1247
1248         if (head > old || size <= head || mm->mask) {
1249                 offset = head - size;
1250         } else {
1251                 /*
1252                  * When the buffer size is not a power of 2, 'head' wraps at the
1253                  * highest multiple of the buffer size, so we have to subtract
1254                  * the remainder here.
1255                  */
1256                 u64 rem = (0ULL - mm->len) % mm->len;
1257
1258                 offset = head - size - rem;
1259         }
1260
1261         if (size > head_off) {
1262                 len1 = size - head_off;
1263                 data1 = &data[mm->len - len1];
1264                 len2 = head_off;
1265                 data2 = &data[0];
1266         } else {
1267                 len1 = size;
1268                 data1 = &data[head_off - len1];
1269                 len2 = 0;
1270                 data2 = NULL;
1271         }
1272
1273         if (itr->alignment) {
1274                 unsigned int unwanted = len1 % itr->alignment;
1275
1276                 len1 -= unwanted;
1277                 size -= unwanted;
1278         }
1279
1280         /* padding must be written by fn() e.g. record__process_auxtrace() */
1281         padding = size & 7;
1282         if (padding)
1283                 padding = 8 - padding;
1284
1285         memset(&ev, 0, sizeof(ev));
1286         ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1287         ev.auxtrace.header.size = sizeof(ev.auxtrace);
1288         ev.auxtrace.size = size + padding;
1289         ev.auxtrace.offset = offset;
1290         ev.auxtrace.reference = ref;
1291         ev.auxtrace.idx = mm->idx;
1292         ev.auxtrace.tid = mm->tid;
1293         ev.auxtrace.cpu = mm->cpu;
1294
1295         if (fn(tool, map, &ev, data1, len1, data2, len2))
1296                 return -1;
1297
1298         mm->prev = head;
1299
1300         if (!snapshot) {
1301                 auxtrace_mmap__write_tail(mm, head);
1302                 if (itr->read_finish) {
1303                         int err;
1304
1305                         err = itr->read_finish(itr, mm->idx);
1306                         if (err < 0)
1307                                 return err;
1308                 }
1309         }
1310
1311         return 1;
1312 }
1313
1314 int auxtrace_mmap__read(struct perf_mmap *map, struct auxtrace_record *itr,
1315                         struct perf_tool *tool, process_auxtrace_t fn)
1316 {
1317         return __auxtrace_mmap__read(map, itr, tool, fn, false, 0);
1318 }
1319
1320 int auxtrace_mmap__read_snapshot(struct perf_mmap *map,
1321                                  struct auxtrace_record *itr,
1322                                  struct perf_tool *tool, process_auxtrace_t fn,
1323                                  size_t snapshot_size)
1324 {
1325         return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size);
1326 }
1327
1328 /**
1329  * struct auxtrace_cache - hash table to implement a cache
1330  * @hashtable: the hashtable
1331  * @sz: hashtable size (number of hlists)
1332  * @entry_size: size of an entry
1333  * @limit: limit the number of entries to this maximum, when reached the cache
1334  *         is dropped and caching begins again with an empty cache
1335  * @cnt: current number of entries
1336  * @bits: hashtable size (@sz = 2^@bits)
1337  */
1338 struct auxtrace_cache {
1339         struct hlist_head *hashtable;
1340         size_t sz;
1341         size_t entry_size;
1342         size_t limit;
1343         size_t cnt;
1344         unsigned int bits;
1345 };
1346
1347 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1348                                            unsigned int limit_percent)
1349 {
1350         struct auxtrace_cache *c;
1351         struct hlist_head *ht;
1352         size_t sz, i;
1353
1354         c = zalloc(sizeof(struct auxtrace_cache));
1355         if (!c)
1356                 return NULL;
1357
1358         sz = 1UL << bits;
1359
1360         ht = calloc(sz, sizeof(struct hlist_head));
1361         if (!ht)
1362                 goto out_free;
1363
1364         for (i = 0; i < sz; i++)
1365                 INIT_HLIST_HEAD(&ht[i]);
1366
1367         c->hashtable = ht;
1368         c->sz = sz;
1369         c->entry_size = entry_size;
1370         c->limit = (c->sz * limit_percent) / 100;
1371         c->bits = bits;
1372
1373         return c;
1374
1375 out_free:
1376         free(c);
1377         return NULL;
1378 }
1379
1380 static void auxtrace_cache__drop(struct auxtrace_cache *c)
1381 {
1382         struct auxtrace_cache_entry *entry;
1383         struct hlist_node *tmp;
1384         size_t i;
1385
1386         if (!c)
1387                 return;
1388
1389         for (i = 0; i < c->sz; i++) {
1390                 hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
1391                         hlist_del(&entry->hash);
1392                         auxtrace_cache__free_entry(c, entry);
1393                 }
1394         }
1395
1396         c->cnt = 0;
1397 }
1398
1399 void auxtrace_cache__free(struct auxtrace_cache *c)
1400 {
1401         if (!c)
1402                 return;
1403
1404         auxtrace_cache__drop(c);
1405         free(c->hashtable);
1406         free(c);
1407 }
1408
1409 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
1410 {
1411         return malloc(c->entry_size);
1412 }
1413
1414 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
1415                                 void *entry)
1416 {
1417         free(entry);
1418 }
1419
1420 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
1421                         struct auxtrace_cache_entry *entry)
1422 {
1423         if (c->limit && ++c->cnt > c->limit)
1424                 auxtrace_cache__drop(c);
1425
1426         entry->key = key;
1427         hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
1428
1429         return 0;
1430 }
1431
1432 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
1433 {
1434         struct auxtrace_cache_entry *entry;
1435         struct hlist_head *hlist;
1436
1437         if (!c)
1438                 return NULL;
1439
1440         hlist = &c->hashtable[hash_32(key, c->bits)];
1441         hlist_for_each_entry(entry, hlist, hash) {
1442                 if (entry->key == key)
1443                         return entry;
1444         }
1445
1446         return NULL;
1447 }
1448
1449 static void addr_filter__free_str(struct addr_filter *filt)
1450 {
1451         free(filt->str);
1452         filt->action   = NULL;
1453         filt->sym_from = NULL;
1454         filt->sym_to   = NULL;
1455         filt->filename = NULL;
1456         filt->str      = NULL;
1457 }
1458
1459 static struct addr_filter *addr_filter__new(void)
1460 {
1461         struct addr_filter *filt = zalloc(sizeof(*filt));
1462
1463         if (filt)
1464                 INIT_LIST_HEAD(&filt->list);
1465
1466         return filt;
1467 }
1468
1469 static void addr_filter__free(struct addr_filter *filt)
1470 {
1471         if (filt)
1472                 addr_filter__free_str(filt);
1473         free(filt);
1474 }
1475
1476 static void addr_filters__add(struct addr_filters *filts,
1477                               struct addr_filter *filt)
1478 {
1479         list_add_tail(&filt->list, &filts->head);
1480         filts->cnt += 1;
1481 }
1482
1483 static void addr_filters__del(struct addr_filters *filts,
1484                               struct addr_filter *filt)
1485 {
1486         list_del_init(&filt->list);
1487         filts->cnt -= 1;
1488 }
1489
1490 void addr_filters__init(struct addr_filters *filts)
1491 {
1492         INIT_LIST_HEAD(&filts->head);
1493         filts->cnt = 0;
1494 }
1495
1496 void addr_filters__exit(struct addr_filters *filts)
1497 {
1498         struct addr_filter *filt, *n;
1499
1500         list_for_each_entry_safe(filt, n, &filts->head, list) {
1501                 addr_filters__del(filts, filt);
1502                 addr_filter__free(filt);
1503         }
1504 }
1505
1506 static int parse_num_or_str(char **inp, u64 *num, const char **str,
1507                             const char *str_delim)
1508 {
1509         *inp += strspn(*inp, " ");
1510
1511         if (isdigit(**inp)) {
1512                 char *endptr;
1513
1514                 if (!num)
1515                         return -EINVAL;
1516                 errno = 0;
1517                 *num = strtoull(*inp, &endptr, 0);
1518                 if (errno)
1519                         return -errno;
1520                 if (endptr == *inp)
1521                         return -EINVAL;
1522                 *inp = endptr;
1523         } else {
1524                 size_t n;
1525
1526                 if (!str)
1527                         return -EINVAL;
1528                 *inp += strspn(*inp, " ");
1529                 *str = *inp;
1530                 n = strcspn(*inp, str_delim);
1531                 if (!n)
1532                         return -EINVAL;
1533                 *inp += n;
1534                 if (**inp) {
1535                         **inp = '\0';
1536                         *inp += 1;
1537                 }
1538         }
1539         return 0;
1540 }
1541
1542 static int parse_action(struct addr_filter *filt)
1543 {
1544         if (!strcmp(filt->action, "filter")) {
1545                 filt->start = true;
1546                 filt->range = true;
1547         } else if (!strcmp(filt->action, "start")) {
1548                 filt->start = true;
1549         } else if (!strcmp(filt->action, "stop")) {
1550                 filt->start = false;
1551         } else if (!strcmp(filt->action, "tracestop")) {
1552                 filt->start = false;
1553                 filt->range = true;
1554                 filt->action += 5; /* Change 'tracestop' to 'stop' */
1555         } else {
1556                 return -EINVAL;
1557         }
1558         return 0;
1559 }
1560
1561 static int parse_sym_idx(char **inp, int *idx)
1562 {
1563         *idx = -1;
1564
1565         *inp += strspn(*inp, " ");
1566
1567         if (**inp != '#')
1568                 return 0;
1569
1570         *inp += 1;
1571
1572         if (**inp == 'g' || **inp == 'G') {
1573                 *inp += 1;
1574                 *idx = 0;
1575         } else {
1576                 unsigned long num;
1577                 char *endptr;
1578
1579                 errno = 0;
1580                 num = strtoul(*inp, &endptr, 0);
1581                 if (errno)
1582                         return -errno;
1583                 if (endptr == *inp || num > INT_MAX)
1584                         return -EINVAL;
1585                 *inp = endptr;
1586                 *idx = num;
1587         }
1588
1589         return 0;
1590 }
1591
1592 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
1593 {
1594         int err = parse_num_or_str(inp, num, str, " ");
1595
1596         if (!err && *str)
1597                 err = parse_sym_idx(inp, idx);
1598
1599         return err;
1600 }
1601
1602 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
1603 {
1604         char *fstr;
1605         int err;
1606
1607         filt->str = fstr = strdup(*filter_inp);
1608         if (!fstr)
1609                 return -ENOMEM;
1610
1611         err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
1612         if (err)
1613                 goto out_err;
1614
1615         err = parse_action(filt);
1616         if (err)
1617                 goto out_err;
1618
1619         err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
1620                               &filt->sym_from_idx);
1621         if (err)
1622                 goto out_err;
1623
1624         fstr += strspn(fstr, " ");
1625
1626         if (*fstr == '/') {
1627                 fstr += 1;
1628                 err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
1629                                       &filt->sym_to_idx);
1630                 if (err)
1631                         goto out_err;
1632                 filt->range = true;
1633         }
1634
1635         fstr += strspn(fstr, " ");
1636
1637         if (*fstr == '@') {
1638                 fstr += 1;
1639                 err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
1640                 if (err)
1641                         goto out_err;
1642         }
1643
1644         fstr += strspn(fstr, " ,");
1645
1646         *filter_inp += fstr - filt->str;
1647
1648         return 0;
1649
1650 out_err:
1651         addr_filter__free_str(filt);
1652
1653         return err;
1654 }
1655
1656 int addr_filters__parse_bare_filter(struct addr_filters *filts,
1657                                     const char *filter)
1658 {
1659         struct addr_filter *filt;
1660         const char *fstr = filter;
1661         int err;
1662
1663         while (*fstr) {
1664                 filt = addr_filter__new();
1665                 err = parse_one_filter(filt, &fstr);
1666                 if (err) {
1667                         addr_filter__free(filt);
1668                         addr_filters__exit(filts);
1669                         return err;
1670                 }
1671                 addr_filters__add(filts, filt);
1672         }
1673
1674         return 0;
1675 }
1676
1677 struct sym_args {
1678         const char      *name;
1679         u64             start;
1680         u64             size;
1681         int             idx;
1682         int             cnt;
1683         bool            started;
1684         bool            global;
1685         bool            selected;
1686         bool            duplicate;
1687         bool            near;
1688 };
1689
1690 static bool kern_sym_match(struct sym_args *args, const char *name, char type)
1691 {
1692         /* A function with the same name, and global or the n'th found or any */
1693         return kallsyms__is_function(type) &&
1694                !strcmp(name, args->name) &&
1695                ((args->global && isupper(type)) ||
1696                 (args->selected && ++(args->cnt) == args->idx) ||
1697                 (!args->global && !args->selected));
1698 }
1699
1700 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
1701 {
1702         struct sym_args *args = arg;
1703
1704         if (args->started) {
1705                 if (!args->size)
1706                         args->size = start - args->start;
1707                 if (args->selected) {
1708                         if (args->size)
1709                                 return 1;
1710                 } else if (kern_sym_match(args, name, type)) {
1711                         args->duplicate = true;
1712                         return 1;
1713                 }
1714         } else if (kern_sym_match(args, name, type)) {
1715                 args->started = true;
1716                 args->start = start;
1717         }
1718
1719         return 0;
1720 }
1721
1722 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
1723 {
1724         struct sym_args *args = arg;
1725
1726         if (kern_sym_match(args, name, type)) {
1727                 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
1728                        ++args->cnt, start, type, name);
1729                 args->near = true;
1730         } else if (args->near) {
1731                 args->near = false;
1732                 pr_err("\t\twhich is near\t\t%s\n", name);
1733         }
1734
1735         return 0;
1736 }
1737
1738 static int sym_not_found_error(const char *sym_name, int idx)
1739 {
1740         if (idx > 0) {
1741                 pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
1742                        idx, sym_name);
1743         } else if (!idx) {
1744                 pr_err("Global symbol '%s' not found.\n", sym_name);
1745         } else {
1746                 pr_err("Symbol '%s' not found.\n", sym_name);
1747         }
1748         pr_err("Note that symbols must be functions.\n");
1749
1750         return -EINVAL;
1751 }
1752
1753 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
1754 {
1755         struct sym_args args = {
1756                 .name = sym_name,
1757                 .idx = idx,
1758                 .global = !idx,
1759                 .selected = idx > 0,
1760         };
1761         int err;
1762
1763         *start = 0;
1764         *size = 0;
1765
1766         err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
1767         if (err < 0) {
1768                 pr_err("Failed to parse /proc/kallsyms\n");
1769                 return err;
1770         }
1771
1772         if (args.duplicate) {
1773                 pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
1774                 args.cnt = 0;
1775                 kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
1776                 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
1777                        sym_name);
1778                 pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
1779                 return -EINVAL;
1780         }
1781
1782         if (!args.started) {
1783                 pr_err("Kernel symbol lookup: ");
1784                 return sym_not_found_error(sym_name, idx);
1785         }
1786
1787         *start = args.start;
1788         *size = args.size;
1789
1790         return 0;
1791 }
1792
1793 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
1794                                char type, u64 start)
1795 {
1796         struct sym_args *args = arg;
1797
1798         if (!kallsyms__is_function(type))
1799                 return 0;
1800
1801         if (!args->started) {
1802                 args->started = true;
1803                 args->start = start;
1804         }
1805         /* Don't know exactly where the kernel ends, so we add a page */
1806         args->size = round_up(start, page_size) + page_size - args->start;
1807
1808         return 0;
1809 }
1810
1811 static int addr_filter__entire_kernel(struct addr_filter *filt)
1812 {
1813         struct sym_args args = { .started = false };
1814         int err;
1815
1816         err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
1817         if (err < 0 || !args.started) {
1818                 pr_err("Failed to parse /proc/kallsyms\n");
1819                 return err;
1820         }
1821
1822         filt->addr = args.start;
1823         filt->size = args.size;
1824
1825         return 0;
1826 }
1827
1828 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
1829 {
1830         if (start + size >= filt->addr)
1831                 return 0;
1832
1833         if (filt->sym_from) {
1834                 pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
1835                        filt->sym_to, start, filt->sym_from, filt->addr);
1836         } else {
1837                 pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
1838                        filt->sym_to, start, filt->addr);
1839         }
1840
1841         return -EINVAL;
1842 }
1843
1844 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
1845 {
1846         bool no_size = false;
1847         u64 start, size;
1848         int err;
1849
1850         if (symbol_conf.kptr_restrict) {
1851                 pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
1852                 return -EINVAL;
1853         }
1854
1855         if (filt->sym_from && !strcmp(filt->sym_from, "*"))
1856                 return addr_filter__entire_kernel(filt);
1857
1858         if (filt->sym_from) {
1859                 err = find_kern_sym(filt->sym_from, &start, &size,
1860                                     filt->sym_from_idx);
1861                 if (err)
1862                         return err;
1863                 filt->addr = start;
1864                 if (filt->range && !filt->size && !filt->sym_to) {
1865                         filt->size = size;
1866                         no_size = !size;
1867                 }
1868         }
1869
1870         if (filt->sym_to) {
1871                 err = find_kern_sym(filt->sym_to, &start, &size,
1872                                     filt->sym_to_idx);
1873                 if (err)
1874                         return err;
1875
1876                 err = check_end_after_start(filt, start, size);
1877                 if (err)
1878                         return err;
1879                 filt->size = start + size - filt->addr;
1880                 no_size = !size;
1881         }
1882
1883         /* The very last symbol in kallsyms does not imply a particular size */
1884         if (no_size) {
1885                 pr_err("Cannot determine size of symbol '%s'\n",
1886                        filt->sym_to ? filt->sym_to : filt->sym_from);
1887                 return -EINVAL;
1888         }
1889
1890         return 0;
1891 }
1892
1893 static struct dso *load_dso(const char *name)
1894 {
1895         struct map *map;
1896         struct dso *dso;
1897
1898         map = dso__new_map(name);
1899         if (!map)
1900                 return NULL;
1901
1902         map__load(map);
1903
1904         dso = dso__get(map->dso);
1905
1906         map__put(map);
1907
1908         return dso;
1909 }
1910
1911 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
1912                           int idx)
1913 {
1914         /* Same name, and global or the n'th found or any */
1915         return !arch__compare_symbol_names(name, sym->name) &&
1916                ((!idx && sym->binding == STB_GLOBAL) ||
1917                 (idx > 0 && ++*cnt == idx) ||
1918                 idx < 0);
1919 }
1920
1921 static void print_duplicate_syms(struct dso *dso, const char *sym_name)
1922 {
1923         struct symbol *sym;
1924         bool near = false;
1925         int cnt = 0;
1926
1927         pr_err("Multiple symbols with name '%s'\n", sym_name);
1928
1929         sym = dso__first_symbol(dso);
1930         while (sym) {
1931                 if (dso_sym_match(sym, sym_name, &cnt, -1)) {
1932                         pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
1933                                ++cnt, sym->start,
1934                                sym->binding == STB_GLOBAL ? 'g' :
1935                                sym->binding == STB_LOCAL  ? 'l' : 'w',
1936                                sym->name);
1937                         near = true;
1938                 } else if (near) {
1939                         near = false;
1940                         pr_err("\t\twhich is near\t\t%s\n", sym->name);
1941                 }
1942                 sym = dso__next_symbol(sym);
1943         }
1944
1945         pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
1946                sym_name);
1947         pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
1948 }
1949
1950 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
1951                         u64 *size, int idx)
1952 {
1953         struct symbol *sym;
1954         int cnt = 0;
1955
1956         *start = 0;
1957         *size = 0;
1958
1959         sym = dso__first_symbol(dso);
1960         while (sym) {
1961                 if (*start) {
1962                         if (!*size)
1963                                 *size = sym->start - *start;
1964                         if (idx > 0) {
1965                                 if (*size)
1966                                         return 1;
1967                         } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
1968                                 print_duplicate_syms(dso, sym_name);
1969                                 return -EINVAL;
1970                         }
1971                 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
1972                         *start = sym->start;
1973                         *size = sym->end - sym->start;
1974                 }
1975                 sym = dso__next_symbol(sym);
1976         }
1977
1978         if (!*start)
1979                 return sym_not_found_error(sym_name, idx);
1980
1981         return 0;
1982 }
1983
1984 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
1985 {
1986         struct symbol *first_sym = dso__first_symbol(dso);
1987         struct symbol *last_sym = dso__last_symbol(dso);
1988
1989         if (!first_sym || !last_sym) {
1990                 pr_err("Failed to determine filter for %s\nNo symbols found.\n",
1991                        filt->filename);
1992                 return -EINVAL;
1993         }
1994
1995         filt->addr = first_sym->start;
1996         filt->size = last_sym->end - first_sym->start;
1997
1998         return 0;
1999 }
2000
2001 static int addr_filter__resolve_syms(struct addr_filter *filt)
2002 {
2003         u64 start, size;
2004         struct dso *dso;
2005         int err = 0;
2006
2007         if (!filt->sym_from && !filt->sym_to)
2008                 return 0;
2009
2010         if (!filt->filename)
2011                 return addr_filter__resolve_kernel_syms(filt);
2012
2013         dso = load_dso(filt->filename);
2014         if (!dso) {
2015                 pr_err("Failed to load symbols from: %s\n", filt->filename);
2016                 return -EINVAL;
2017         }
2018
2019         if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2020                 err = addr_filter__entire_dso(filt, dso);
2021                 goto put_dso;
2022         }
2023
2024         if (filt->sym_from) {
2025                 err = find_dso_sym(dso, filt->sym_from, &start, &size,
2026                                    filt->sym_from_idx);
2027                 if (err)
2028                         goto put_dso;
2029                 filt->addr = start;
2030                 if (filt->range && !filt->size && !filt->sym_to)
2031                         filt->size = size;
2032         }
2033
2034         if (filt->sym_to) {
2035                 err = find_dso_sym(dso, filt->sym_to, &start, &size,
2036                                    filt->sym_to_idx);
2037                 if (err)
2038                         goto put_dso;
2039
2040                 err = check_end_after_start(filt, start, size);
2041                 if (err)
2042                         return err;
2043
2044                 filt->size = start + size - filt->addr;
2045         }
2046
2047 put_dso:
2048         dso__put(dso);
2049
2050         return err;
2051 }
2052
2053 static char *addr_filter__to_str(struct addr_filter *filt)
2054 {
2055         char filename_buf[PATH_MAX];
2056         const char *at = "";
2057         const char *fn = "";
2058         char *filter;
2059         int err;
2060
2061         if (filt->filename) {
2062                 at = "@";
2063                 fn = realpath(filt->filename, filename_buf);
2064                 if (!fn)
2065                         return NULL;
2066         }
2067
2068         if (filt->range) {
2069                 err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2070                                filt->action, filt->addr, filt->size, at, fn);
2071         } else {
2072                 err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2073                                filt->action, filt->addr, at, fn);
2074         }
2075
2076         return err < 0 ? NULL : filter;
2077 }
2078
2079 static int parse_addr_filter(struct perf_evsel *evsel, const char *filter,
2080                              int max_nr)
2081 {
2082         struct addr_filters filts;
2083         struct addr_filter *filt;
2084         int err;
2085
2086         addr_filters__init(&filts);
2087
2088         err = addr_filters__parse_bare_filter(&filts, filter);
2089         if (err)
2090                 goto out_exit;
2091
2092         if (filts.cnt > max_nr) {
2093                 pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2094                        filts.cnt, max_nr);
2095                 err = -EINVAL;
2096                 goto out_exit;
2097         }
2098
2099         list_for_each_entry(filt, &filts.head, list) {
2100                 char *new_filter;
2101
2102                 err = addr_filter__resolve_syms(filt);
2103                 if (err)
2104                         goto out_exit;
2105
2106                 new_filter = addr_filter__to_str(filt);
2107                 if (!new_filter) {
2108                         err = -ENOMEM;
2109                         goto out_exit;
2110                 }
2111
2112                 if (perf_evsel__append_addr_filter(evsel, new_filter)) {
2113                         err = -ENOMEM;
2114                         goto out_exit;
2115                 }
2116         }
2117
2118 out_exit:
2119         addr_filters__exit(&filts);
2120
2121         if (err) {
2122                 pr_err("Failed to parse address filter: '%s'\n", filter);
2123                 pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2124                 pr_err("Where multiple filters are separated by space or comma.\n");
2125         }
2126
2127         return err;
2128 }
2129
2130 static struct perf_pmu *perf_evsel__find_pmu(struct perf_evsel *evsel)
2131 {
2132         struct perf_pmu *pmu = NULL;
2133
2134         while ((pmu = perf_pmu__scan(pmu)) != NULL) {
2135                 if (pmu->type == evsel->attr.type)
2136                         break;
2137         }
2138
2139         return pmu;
2140 }
2141
2142 static int perf_evsel__nr_addr_filter(struct perf_evsel *evsel)
2143 {
2144         struct perf_pmu *pmu = perf_evsel__find_pmu(evsel);
2145         int nr_addr_filters = 0;
2146
2147         if (!pmu)
2148                 return 0;
2149
2150         perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2151
2152         return nr_addr_filters;
2153 }
2154
2155 int auxtrace_parse_filters(struct perf_evlist *evlist)
2156 {
2157         struct perf_evsel *evsel;
2158         char *filter;
2159         int err, max_nr;
2160
2161         evlist__for_each_entry(evlist, evsel) {
2162                 filter = evsel->filter;
2163                 max_nr = perf_evsel__nr_addr_filter(evsel);
2164                 if (!filter || !max_nr)
2165                         continue;
2166                 evsel->filter = NULL;
2167                 err = parse_addr_filter(evsel, filter, max_nr);
2168                 free(filter);
2169                 if (err)
2170                         return err;
2171                 pr_debug("Address filter: %s\n", evsel->filter);
2172         }
2173
2174         return 0;
2175 }