Merge tag 'v5.8-rc3' into arm/qcom
[linux-2.6-microblaze.git] / tools / perf / util / auxtrace.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * auxtrace.c: AUX area trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6
7 #include <inttypes.h>
8 #include <sys/types.h>
9 #include <sys/mman.h>
10 #include <stdbool.h>
11 #include <string.h>
12 #include <limits.h>
13 #include <errno.h>
14
15 #include <linux/kernel.h>
16 #include <linux/perf_event.h>
17 #include <linux/types.h>
18 #include <linux/bitops.h>
19 #include <linux/log2.h>
20 #include <linux/string.h>
21 #include <linux/time64.h>
22
23 #include <sys/param.h>
24 #include <stdlib.h>
25 #include <stdio.h>
26 #include <linux/list.h>
27 #include <linux/zalloc.h>
28
29 #include "evlist.h"
30 #include "dso.h"
31 #include "map.h"
32 #include "pmu.h"
33 #include "evsel.h"
34 #include "evsel_config.h"
35 #include "symbol.h"
36 #include "util/perf_api_probe.h"
37 #include "util/synthetic-events.h"
38 #include "thread_map.h"
39 #include "asm/bug.h"
40 #include "auxtrace.h"
41
42 #include <linux/hash.h>
43
44 #include "event.h"
45 #include "record.h"
46 #include "session.h"
47 #include "debug.h"
48 #include <subcmd/parse-options.h>
49
50 #include "cs-etm.h"
51 #include "intel-pt.h"
52 #include "intel-bts.h"
53 #include "arm-spe.h"
54 #include "s390-cpumsf.h"
55 #include "util/mmap.h"
56
57 #include <linux/ctype.h>
58 #include "symbol/kallsyms.h"
59 #include <internal/lib.h>
60
61 /*
62  * Make a group from 'leader' to 'last', requiring that the events were not
63  * already grouped to a different leader.
64  */
65 static int perf_evlist__regroup(struct evlist *evlist,
66                                 struct evsel *leader,
67                                 struct evsel *last)
68 {
69         struct evsel *evsel;
70         bool grp;
71
72         if (!evsel__is_group_leader(leader))
73                 return -EINVAL;
74
75         grp = false;
76         evlist__for_each_entry(evlist, evsel) {
77                 if (grp) {
78                         if (!(evsel->leader == leader ||
79                              (evsel->leader == evsel &&
80                               evsel->core.nr_members <= 1)))
81                                 return -EINVAL;
82                 } else if (evsel == leader) {
83                         grp = true;
84                 }
85                 if (evsel == last)
86                         break;
87         }
88
89         grp = false;
90         evlist__for_each_entry(evlist, evsel) {
91                 if (grp) {
92                         if (evsel->leader != leader) {
93                                 evsel->leader = leader;
94                                 if (leader->core.nr_members < 1)
95                                         leader->core.nr_members = 1;
96                                 leader->core.nr_members += 1;
97                         }
98                 } else if (evsel == leader) {
99                         grp = true;
100                 }
101                 if (evsel == last)
102                         break;
103         }
104
105         return 0;
106 }
107
108 static bool auxtrace__dont_decode(struct perf_session *session)
109 {
110         return !session->itrace_synth_opts ||
111                session->itrace_synth_opts->dont_decode;
112 }
113
114 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
115                         struct auxtrace_mmap_params *mp,
116                         void *userpg, int fd)
117 {
118         struct perf_event_mmap_page *pc = userpg;
119
120         WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
121
122         mm->userpg = userpg;
123         mm->mask = mp->mask;
124         mm->len = mp->len;
125         mm->prev = 0;
126         mm->idx = mp->idx;
127         mm->tid = mp->tid;
128         mm->cpu = mp->cpu;
129
130         if (!mp->len) {
131                 mm->base = NULL;
132                 return 0;
133         }
134
135 #if BITS_PER_LONG != 64 && !defined(HAVE_SYNC_COMPARE_AND_SWAP_SUPPORT)
136         pr_err("Cannot use AUX area tracing mmaps\n");
137         return -1;
138 #endif
139
140         pc->aux_offset = mp->offset;
141         pc->aux_size = mp->len;
142
143         mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
144         if (mm->base == MAP_FAILED) {
145                 pr_debug2("failed to mmap AUX area\n");
146                 mm->base = NULL;
147                 return -1;
148         }
149
150         return 0;
151 }
152
153 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
154 {
155         if (mm->base) {
156                 munmap(mm->base, mm->len);
157                 mm->base = NULL;
158         }
159 }
160
161 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
162                                 off_t auxtrace_offset,
163                                 unsigned int auxtrace_pages,
164                                 bool auxtrace_overwrite)
165 {
166         if (auxtrace_pages) {
167                 mp->offset = auxtrace_offset;
168                 mp->len = auxtrace_pages * (size_t)page_size;
169                 mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
170                 mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
171                 pr_debug2("AUX area mmap length %zu\n", mp->len);
172         } else {
173                 mp->len = 0;
174         }
175 }
176
177 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
178                                    struct evlist *evlist, int idx,
179                                    bool per_cpu)
180 {
181         mp->idx = idx;
182
183         if (per_cpu) {
184                 mp->cpu = evlist->core.cpus->map[idx];
185                 if (evlist->core.threads)
186                         mp->tid = perf_thread_map__pid(evlist->core.threads, 0);
187                 else
188                         mp->tid = -1;
189         } else {
190                 mp->cpu = -1;
191                 mp->tid = perf_thread_map__pid(evlist->core.threads, idx);
192         }
193 }
194
195 #define AUXTRACE_INIT_NR_QUEUES 32
196
197 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
198 {
199         struct auxtrace_queue *queue_array;
200         unsigned int max_nr_queues, i;
201
202         max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
203         if (nr_queues > max_nr_queues)
204                 return NULL;
205
206         queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
207         if (!queue_array)
208                 return NULL;
209
210         for (i = 0; i < nr_queues; i++) {
211                 INIT_LIST_HEAD(&queue_array[i].head);
212                 queue_array[i].priv = NULL;
213         }
214
215         return queue_array;
216 }
217
218 int auxtrace_queues__init(struct auxtrace_queues *queues)
219 {
220         queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
221         queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
222         if (!queues->queue_array)
223                 return -ENOMEM;
224         return 0;
225 }
226
227 static int auxtrace_queues__grow(struct auxtrace_queues *queues,
228                                  unsigned int new_nr_queues)
229 {
230         unsigned int nr_queues = queues->nr_queues;
231         struct auxtrace_queue *queue_array;
232         unsigned int i;
233
234         if (!nr_queues)
235                 nr_queues = AUXTRACE_INIT_NR_QUEUES;
236
237         while (nr_queues && nr_queues < new_nr_queues)
238                 nr_queues <<= 1;
239
240         if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
241                 return -EINVAL;
242
243         queue_array = auxtrace_alloc_queue_array(nr_queues);
244         if (!queue_array)
245                 return -ENOMEM;
246
247         for (i = 0; i < queues->nr_queues; i++) {
248                 list_splice_tail(&queues->queue_array[i].head,
249                                  &queue_array[i].head);
250                 queue_array[i].tid = queues->queue_array[i].tid;
251                 queue_array[i].cpu = queues->queue_array[i].cpu;
252                 queue_array[i].set = queues->queue_array[i].set;
253                 queue_array[i].priv = queues->queue_array[i].priv;
254         }
255
256         queues->nr_queues = nr_queues;
257         queues->queue_array = queue_array;
258
259         return 0;
260 }
261
262 static void *auxtrace_copy_data(u64 size, struct perf_session *session)
263 {
264         int fd = perf_data__fd(session->data);
265         void *p;
266         ssize_t ret;
267
268         if (size > SSIZE_MAX)
269                 return NULL;
270
271         p = malloc(size);
272         if (!p)
273                 return NULL;
274
275         ret = readn(fd, p, size);
276         if (ret != (ssize_t)size) {
277                 free(p);
278                 return NULL;
279         }
280
281         return p;
282 }
283
284 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues,
285                                          unsigned int idx,
286                                          struct auxtrace_buffer *buffer)
287 {
288         struct auxtrace_queue *queue;
289         int err;
290
291         if (idx >= queues->nr_queues) {
292                 err = auxtrace_queues__grow(queues, idx + 1);
293                 if (err)
294                         return err;
295         }
296
297         queue = &queues->queue_array[idx];
298
299         if (!queue->set) {
300                 queue->set = true;
301                 queue->tid = buffer->tid;
302                 queue->cpu = buffer->cpu;
303         } else if (buffer->cpu != queue->cpu || buffer->tid != queue->tid) {
304                 pr_err("auxtrace queue conflict: cpu %d, tid %d vs cpu %d, tid %d\n",
305                        queue->cpu, queue->tid, buffer->cpu, buffer->tid);
306                 return -EINVAL;
307         }
308
309         buffer->buffer_nr = queues->next_buffer_nr++;
310
311         list_add_tail(&buffer->list, &queue->head);
312
313         queues->new_data = true;
314         queues->populated = true;
315
316         return 0;
317 }
318
319 /* Limit buffers to 32MiB on 32-bit */
320 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
321
322 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
323                                          unsigned int idx,
324                                          struct auxtrace_buffer *buffer)
325 {
326         u64 sz = buffer->size;
327         bool consecutive = false;
328         struct auxtrace_buffer *b;
329         int err;
330
331         while (sz > BUFFER_LIMIT_FOR_32_BIT) {
332                 b = memdup(buffer, sizeof(struct auxtrace_buffer));
333                 if (!b)
334                         return -ENOMEM;
335                 b->size = BUFFER_LIMIT_FOR_32_BIT;
336                 b->consecutive = consecutive;
337                 err = auxtrace_queues__queue_buffer(queues, idx, b);
338                 if (err) {
339                         auxtrace_buffer__free(b);
340                         return err;
341                 }
342                 buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
343                 sz -= BUFFER_LIMIT_FOR_32_BIT;
344                 consecutive = true;
345         }
346
347         buffer->size = sz;
348         buffer->consecutive = consecutive;
349
350         return 0;
351 }
352
353 static bool filter_cpu(struct perf_session *session, int cpu)
354 {
355         unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
356
357         return cpu_bitmap && cpu != -1 && !test_bit(cpu, cpu_bitmap);
358 }
359
360 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
361                                        struct perf_session *session,
362                                        unsigned int idx,
363                                        struct auxtrace_buffer *buffer,
364                                        struct auxtrace_buffer **buffer_ptr)
365 {
366         int err = -ENOMEM;
367
368         if (filter_cpu(session, buffer->cpu))
369                 return 0;
370
371         buffer = memdup(buffer, sizeof(*buffer));
372         if (!buffer)
373                 return -ENOMEM;
374
375         if (session->one_mmap) {
376                 buffer->data = buffer->data_offset - session->one_mmap_offset +
377                                session->one_mmap_addr;
378         } else if (perf_data__is_pipe(session->data)) {
379                 buffer->data = auxtrace_copy_data(buffer->size, session);
380                 if (!buffer->data)
381                         goto out_free;
382                 buffer->data_needs_freeing = true;
383         } else if (BITS_PER_LONG == 32 &&
384                    buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
385                 err = auxtrace_queues__split_buffer(queues, idx, buffer);
386                 if (err)
387                         goto out_free;
388         }
389
390         err = auxtrace_queues__queue_buffer(queues, idx, buffer);
391         if (err)
392                 goto out_free;
393
394         /* FIXME: Doesn't work for split buffer */
395         if (buffer_ptr)
396                 *buffer_ptr = buffer;
397
398         return 0;
399
400 out_free:
401         auxtrace_buffer__free(buffer);
402         return err;
403 }
404
405 int auxtrace_queues__add_event(struct auxtrace_queues *queues,
406                                struct perf_session *session,
407                                union perf_event *event, off_t data_offset,
408                                struct auxtrace_buffer **buffer_ptr)
409 {
410         struct auxtrace_buffer buffer = {
411                 .pid = -1,
412                 .tid = event->auxtrace.tid,
413                 .cpu = event->auxtrace.cpu,
414                 .data_offset = data_offset,
415                 .offset = event->auxtrace.offset,
416                 .reference = event->auxtrace.reference,
417                 .size = event->auxtrace.size,
418         };
419         unsigned int idx = event->auxtrace.idx;
420
421         return auxtrace_queues__add_buffer(queues, session, idx, &buffer,
422                                            buffer_ptr);
423 }
424
425 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
426                                               struct perf_session *session,
427                                               off_t file_offset, size_t sz)
428 {
429         union perf_event *event;
430         int err;
431         char buf[PERF_SAMPLE_MAX_SIZE];
432
433         err = perf_session__peek_event(session, file_offset, buf,
434                                        PERF_SAMPLE_MAX_SIZE, &event, NULL);
435         if (err)
436                 return err;
437
438         if (event->header.type == PERF_RECORD_AUXTRACE) {
439                 if (event->header.size < sizeof(struct perf_record_auxtrace) ||
440                     event->header.size != sz) {
441                         err = -EINVAL;
442                         goto out;
443                 }
444                 file_offset += event->header.size;
445                 err = auxtrace_queues__add_event(queues, session, event,
446                                                  file_offset, NULL);
447         }
448 out:
449         return err;
450 }
451
452 void auxtrace_queues__free(struct auxtrace_queues *queues)
453 {
454         unsigned int i;
455
456         for (i = 0; i < queues->nr_queues; i++) {
457                 while (!list_empty(&queues->queue_array[i].head)) {
458                         struct auxtrace_buffer *buffer;
459
460                         buffer = list_entry(queues->queue_array[i].head.next,
461                                             struct auxtrace_buffer, list);
462                         list_del_init(&buffer->list);
463                         auxtrace_buffer__free(buffer);
464                 }
465         }
466
467         zfree(&queues->queue_array);
468         queues->nr_queues = 0;
469 }
470
471 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
472                              unsigned int pos, unsigned int queue_nr,
473                              u64 ordinal)
474 {
475         unsigned int parent;
476
477         while (pos) {
478                 parent = (pos - 1) >> 1;
479                 if (heap_array[parent].ordinal <= ordinal)
480                         break;
481                 heap_array[pos] = heap_array[parent];
482                 pos = parent;
483         }
484         heap_array[pos].queue_nr = queue_nr;
485         heap_array[pos].ordinal = ordinal;
486 }
487
488 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
489                        u64 ordinal)
490 {
491         struct auxtrace_heap_item *heap_array;
492
493         if (queue_nr >= heap->heap_sz) {
494                 unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
495
496                 while (heap_sz <= queue_nr)
497                         heap_sz <<= 1;
498                 heap_array = realloc(heap->heap_array,
499                                      heap_sz * sizeof(struct auxtrace_heap_item));
500                 if (!heap_array)
501                         return -ENOMEM;
502                 heap->heap_array = heap_array;
503                 heap->heap_sz = heap_sz;
504         }
505
506         auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
507
508         return 0;
509 }
510
511 void auxtrace_heap__free(struct auxtrace_heap *heap)
512 {
513         zfree(&heap->heap_array);
514         heap->heap_cnt = 0;
515         heap->heap_sz = 0;
516 }
517
518 void auxtrace_heap__pop(struct auxtrace_heap *heap)
519 {
520         unsigned int pos, last, heap_cnt = heap->heap_cnt;
521         struct auxtrace_heap_item *heap_array;
522
523         if (!heap_cnt)
524                 return;
525
526         heap->heap_cnt -= 1;
527
528         heap_array = heap->heap_array;
529
530         pos = 0;
531         while (1) {
532                 unsigned int left, right;
533
534                 left = (pos << 1) + 1;
535                 if (left >= heap_cnt)
536                         break;
537                 right = left + 1;
538                 if (right >= heap_cnt) {
539                         heap_array[pos] = heap_array[left];
540                         return;
541                 }
542                 if (heap_array[left].ordinal < heap_array[right].ordinal) {
543                         heap_array[pos] = heap_array[left];
544                         pos = left;
545                 } else {
546                         heap_array[pos] = heap_array[right];
547                         pos = right;
548                 }
549         }
550
551         last = heap_cnt - 1;
552         auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
553                          heap_array[last].ordinal);
554 }
555
556 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
557                                        struct evlist *evlist)
558 {
559         if (itr)
560                 return itr->info_priv_size(itr, evlist);
561         return 0;
562 }
563
564 static int auxtrace_not_supported(void)
565 {
566         pr_err("AUX area tracing is not supported on this architecture\n");
567         return -EINVAL;
568 }
569
570 int auxtrace_record__info_fill(struct auxtrace_record *itr,
571                                struct perf_session *session,
572                                struct perf_record_auxtrace_info *auxtrace_info,
573                                size_t priv_size)
574 {
575         if (itr)
576                 return itr->info_fill(itr, session, auxtrace_info, priv_size);
577         return auxtrace_not_supported();
578 }
579
580 void auxtrace_record__free(struct auxtrace_record *itr)
581 {
582         if (itr)
583                 itr->free(itr);
584 }
585
586 int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
587 {
588         if (itr && itr->snapshot_start)
589                 return itr->snapshot_start(itr);
590         return 0;
591 }
592
593 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit)
594 {
595         if (!on_exit && itr && itr->snapshot_finish)
596                 return itr->snapshot_finish(itr);
597         return 0;
598 }
599
600 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
601                                    struct auxtrace_mmap *mm,
602                                    unsigned char *data, u64 *head, u64 *old)
603 {
604         if (itr && itr->find_snapshot)
605                 return itr->find_snapshot(itr, idx, mm, data, head, old);
606         return 0;
607 }
608
609 int auxtrace_record__options(struct auxtrace_record *itr,
610                              struct evlist *evlist,
611                              struct record_opts *opts)
612 {
613         if (itr) {
614                 itr->evlist = evlist;
615                 return itr->recording_options(itr, evlist, opts);
616         }
617         return 0;
618 }
619
620 u64 auxtrace_record__reference(struct auxtrace_record *itr)
621 {
622         if (itr)
623                 return itr->reference(itr);
624         return 0;
625 }
626
627 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
628                                     struct record_opts *opts, const char *str)
629 {
630         if (!str)
631                 return 0;
632
633         /* PMU-agnostic options */
634         switch (*str) {
635         case 'e':
636                 opts->auxtrace_snapshot_on_exit = true;
637                 str++;
638                 break;
639         default:
640                 break;
641         }
642
643         if (itr)
644                 return itr->parse_snapshot_options(itr, opts, str);
645
646         pr_err("No AUX area tracing to snapshot\n");
647         return -EINVAL;
648 }
649
650 int auxtrace_record__read_finish(struct auxtrace_record *itr, int idx)
651 {
652         struct evsel *evsel;
653
654         if (!itr->evlist || !itr->pmu)
655                 return -EINVAL;
656
657         evlist__for_each_entry(itr->evlist, evsel) {
658                 if (evsel->core.attr.type == itr->pmu->type) {
659                         if (evsel->disabled)
660                                 return 0;
661                         return perf_evlist__enable_event_idx(itr->evlist, evsel,
662                                                              idx);
663                 }
664         }
665         return -EINVAL;
666 }
667
668 /*
669  * Event record size is 16-bit which results in a maximum size of about 64KiB.
670  * Allow about 4KiB for the rest of the sample record, to give a maximum
671  * AUX area sample size of 60KiB.
672  */
673 #define MAX_AUX_SAMPLE_SIZE (60 * 1024)
674
675 /* Arbitrary default size if no other default provided */
676 #define DEFAULT_AUX_SAMPLE_SIZE (4 * 1024)
677
678 static int auxtrace_validate_aux_sample_size(struct evlist *evlist,
679                                              struct record_opts *opts)
680 {
681         struct evsel *evsel;
682         bool has_aux_leader = false;
683         u32 sz;
684
685         evlist__for_each_entry(evlist, evsel) {
686                 sz = evsel->core.attr.aux_sample_size;
687                 if (evsel__is_group_leader(evsel)) {
688                         has_aux_leader = evsel__is_aux_event(evsel);
689                         if (sz) {
690                                 if (has_aux_leader)
691                                         pr_err("Cannot add AUX area sampling to an AUX area event\n");
692                                 else
693                                         pr_err("Cannot add AUX area sampling to a group leader\n");
694                                 return -EINVAL;
695                         }
696                 }
697                 if (sz > MAX_AUX_SAMPLE_SIZE) {
698                         pr_err("AUX area sample size %u too big, max. %d\n",
699                                sz, MAX_AUX_SAMPLE_SIZE);
700                         return -EINVAL;
701                 }
702                 if (sz) {
703                         if (!has_aux_leader) {
704                                 pr_err("Cannot add AUX area sampling because group leader is not an AUX area event\n");
705                                 return -EINVAL;
706                         }
707                         evsel__set_sample_bit(evsel, AUX);
708                         opts->auxtrace_sample_mode = true;
709                 } else {
710                         evsel__reset_sample_bit(evsel, AUX);
711                 }
712         }
713
714         if (!opts->auxtrace_sample_mode) {
715                 pr_err("AUX area sampling requires an AUX area event group leader plus other events to which to add samples\n");
716                 return -EINVAL;
717         }
718
719         if (!perf_can_aux_sample()) {
720                 pr_err("AUX area sampling is not supported by kernel\n");
721                 return -EINVAL;
722         }
723
724         return 0;
725 }
726
727 int auxtrace_parse_sample_options(struct auxtrace_record *itr,
728                                   struct evlist *evlist,
729                                   struct record_opts *opts, const char *str)
730 {
731         struct evsel_config_term *term;
732         struct evsel *aux_evsel;
733         bool has_aux_sample_size = false;
734         bool has_aux_leader = false;
735         struct evsel *evsel;
736         char *endptr;
737         unsigned long sz;
738
739         if (!str)
740                 goto no_opt;
741
742         if (!itr) {
743                 pr_err("No AUX area event to sample\n");
744                 return -EINVAL;
745         }
746
747         sz = strtoul(str, &endptr, 0);
748         if (*endptr || sz > UINT_MAX) {
749                 pr_err("Bad AUX area sampling option: '%s'\n", str);
750                 return -EINVAL;
751         }
752
753         if (!sz)
754                 sz = itr->default_aux_sample_size;
755
756         if (!sz)
757                 sz = DEFAULT_AUX_SAMPLE_SIZE;
758
759         /* Set aux_sample_size based on --aux-sample option */
760         evlist__for_each_entry(evlist, evsel) {
761                 if (evsel__is_group_leader(evsel)) {
762                         has_aux_leader = evsel__is_aux_event(evsel);
763                 } else if (has_aux_leader) {
764                         evsel->core.attr.aux_sample_size = sz;
765                 }
766         }
767 no_opt:
768         aux_evsel = NULL;
769         /* Override with aux_sample_size from config term */
770         evlist__for_each_entry(evlist, evsel) {
771                 if (evsel__is_aux_event(evsel))
772                         aux_evsel = evsel;
773                 term = evsel__get_config_term(evsel, AUX_SAMPLE_SIZE);
774                 if (term) {
775                         has_aux_sample_size = true;
776                         evsel->core.attr.aux_sample_size = term->val.aux_sample_size;
777                         /* If possible, group with the AUX event */
778                         if (aux_evsel && evsel->core.attr.aux_sample_size)
779                                 perf_evlist__regroup(evlist, aux_evsel, evsel);
780                 }
781         }
782
783         if (!str && !has_aux_sample_size)
784                 return 0;
785
786         if (!itr) {
787                 pr_err("No AUX area event to sample\n");
788                 return -EINVAL;
789         }
790
791         return auxtrace_validate_aux_sample_size(evlist, opts);
792 }
793
794 struct auxtrace_record *__weak
795 auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err)
796 {
797         *err = 0;
798         return NULL;
799 }
800
801 static int auxtrace_index__alloc(struct list_head *head)
802 {
803         struct auxtrace_index *auxtrace_index;
804
805         auxtrace_index = malloc(sizeof(struct auxtrace_index));
806         if (!auxtrace_index)
807                 return -ENOMEM;
808
809         auxtrace_index->nr = 0;
810         INIT_LIST_HEAD(&auxtrace_index->list);
811
812         list_add_tail(&auxtrace_index->list, head);
813
814         return 0;
815 }
816
817 void auxtrace_index__free(struct list_head *head)
818 {
819         struct auxtrace_index *auxtrace_index, *n;
820
821         list_for_each_entry_safe(auxtrace_index, n, head, list) {
822                 list_del_init(&auxtrace_index->list);
823                 free(auxtrace_index);
824         }
825 }
826
827 static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
828 {
829         struct auxtrace_index *auxtrace_index;
830         int err;
831
832         if (list_empty(head)) {
833                 err = auxtrace_index__alloc(head);
834                 if (err)
835                         return NULL;
836         }
837
838         auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
839
840         if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
841                 err = auxtrace_index__alloc(head);
842                 if (err)
843                         return NULL;
844                 auxtrace_index = list_entry(head->prev, struct auxtrace_index,
845                                             list);
846         }
847
848         return auxtrace_index;
849 }
850
851 int auxtrace_index__auxtrace_event(struct list_head *head,
852                                    union perf_event *event, off_t file_offset)
853 {
854         struct auxtrace_index *auxtrace_index;
855         size_t nr;
856
857         auxtrace_index = auxtrace_index__last(head);
858         if (!auxtrace_index)
859                 return -ENOMEM;
860
861         nr = auxtrace_index->nr;
862         auxtrace_index->entries[nr].file_offset = file_offset;
863         auxtrace_index->entries[nr].sz = event->header.size;
864         auxtrace_index->nr += 1;
865
866         return 0;
867 }
868
869 static int auxtrace_index__do_write(int fd,
870                                     struct auxtrace_index *auxtrace_index)
871 {
872         struct auxtrace_index_entry ent;
873         size_t i;
874
875         for (i = 0; i < auxtrace_index->nr; i++) {
876                 ent.file_offset = auxtrace_index->entries[i].file_offset;
877                 ent.sz = auxtrace_index->entries[i].sz;
878                 if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
879                         return -errno;
880         }
881         return 0;
882 }
883
884 int auxtrace_index__write(int fd, struct list_head *head)
885 {
886         struct auxtrace_index *auxtrace_index;
887         u64 total = 0;
888         int err;
889
890         list_for_each_entry(auxtrace_index, head, list)
891                 total += auxtrace_index->nr;
892
893         if (writen(fd, &total, sizeof(total)) != sizeof(total))
894                 return -errno;
895
896         list_for_each_entry(auxtrace_index, head, list) {
897                 err = auxtrace_index__do_write(fd, auxtrace_index);
898                 if (err)
899                         return err;
900         }
901
902         return 0;
903 }
904
905 static int auxtrace_index__process_entry(int fd, struct list_head *head,
906                                          bool needs_swap)
907 {
908         struct auxtrace_index *auxtrace_index;
909         struct auxtrace_index_entry ent;
910         size_t nr;
911
912         if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
913                 return -1;
914
915         auxtrace_index = auxtrace_index__last(head);
916         if (!auxtrace_index)
917                 return -1;
918
919         nr = auxtrace_index->nr;
920         if (needs_swap) {
921                 auxtrace_index->entries[nr].file_offset =
922                                                 bswap_64(ent.file_offset);
923                 auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
924         } else {
925                 auxtrace_index->entries[nr].file_offset = ent.file_offset;
926                 auxtrace_index->entries[nr].sz = ent.sz;
927         }
928
929         auxtrace_index->nr = nr + 1;
930
931         return 0;
932 }
933
934 int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
935                             bool needs_swap)
936 {
937         struct list_head *head = &session->auxtrace_index;
938         u64 nr;
939
940         if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
941                 return -1;
942
943         if (needs_swap)
944                 nr = bswap_64(nr);
945
946         if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
947                 return -1;
948
949         while (nr--) {
950                 int err;
951
952                 err = auxtrace_index__process_entry(fd, head, needs_swap);
953                 if (err)
954                         return -1;
955         }
956
957         return 0;
958 }
959
960 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
961                                                 struct perf_session *session,
962                                                 struct auxtrace_index_entry *ent)
963 {
964         return auxtrace_queues__add_indexed_event(queues, session,
965                                                   ent->file_offset, ent->sz);
966 }
967
968 int auxtrace_queues__process_index(struct auxtrace_queues *queues,
969                                    struct perf_session *session)
970 {
971         struct auxtrace_index *auxtrace_index;
972         struct auxtrace_index_entry *ent;
973         size_t i;
974         int err;
975
976         if (auxtrace__dont_decode(session))
977                 return 0;
978
979         list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
980                 for (i = 0; i < auxtrace_index->nr; i++) {
981                         ent = &auxtrace_index->entries[i];
982                         err = auxtrace_queues__process_index_entry(queues,
983                                                                    session,
984                                                                    ent);
985                         if (err)
986                                 return err;
987                 }
988         }
989         return 0;
990 }
991
992 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
993                                               struct auxtrace_buffer *buffer)
994 {
995         if (buffer) {
996                 if (list_is_last(&buffer->list, &queue->head))
997                         return NULL;
998                 return list_entry(buffer->list.next, struct auxtrace_buffer,
999                                   list);
1000         } else {
1001                 if (list_empty(&queue->head))
1002                         return NULL;
1003                 return list_entry(queue->head.next, struct auxtrace_buffer,
1004                                   list);
1005         }
1006 }
1007
1008 struct auxtrace_queue *auxtrace_queues__sample_queue(struct auxtrace_queues *queues,
1009                                                      struct perf_sample *sample,
1010                                                      struct perf_session *session)
1011 {
1012         struct perf_sample_id *sid;
1013         unsigned int idx;
1014         u64 id;
1015
1016         id = sample->id;
1017         if (!id)
1018                 return NULL;
1019
1020         sid = perf_evlist__id2sid(session->evlist, id);
1021         if (!sid)
1022                 return NULL;
1023
1024         idx = sid->idx;
1025
1026         if (idx >= queues->nr_queues)
1027                 return NULL;
1028
1029         return &queues->queue_array[idx];
1030 }
1031
1032 int auxtrace_queues__add_sample(struct auxtrace_queues *queues,
1033                                 struct perf_session *session,
1034                                 struct perf_sample *sample, u64 data_offset,
1035                                 u64 reference)
1036 {
1037         struct auxtrace_buffer buffer = {
1038                 .pid = -1,
1039                 .data_offset = data_offset,
1040                 .reference = reference,
1041                 .size = sample->aux_sample.size,
1042         };
1043         struct perf_sample_id *sid;
1044         u64 id = sample->id;
1045         unsigned int idx;
1046
1047         if (!id)
1048                 return -EINVAL;
1049
1050         sid = perf_evlist__id2sid(session->evlist, id);
1051         if (!sid)
1052                 return -ENOENT;
1053
1054         idx = sid->idx;
1055         buffer.tid = sid->tid;
1056         buffer.cpu = sid->cpu;
1057
1058         return auxtrace_queues__add_buffer(queues, session, idx, &buffer, NULL);
1059 }
1060
1061 struct queue_data {
1062         bool samples;
1063         bool events;
1064 };
1065
1066 static int auxtrace_queue_data_cb(struct perf_session *session,
1067                                   union perf_event *event, u64 offset,
1068                                   void *data)
1069 {
1070         struct queue_data *qd = data;
1071         struct perf_sample sample;
1072         int err;
1073
1074         if (qd->events && event->header.type == PERF_RECORD_AUXTRACE) {
1075                 if (event->header.size < sizeof(struct perf_record_auxtrace))
1076                         return -EINVAL;
1077                 offset += event->header.size;
1078                 return session->auxtrace->queue_data(session, NULL, event,
1079                                                      offset);
1080         }
1081
1082         if (!qd->samples || event->header.type != PERF_RECORD_SAMPLE)
1083                 return 0;
1084
1085         err = perf_evlist__parse_sample(session->evlist, event, &sample);
1086         if (err)
1087                 return err;
1088
1089         if (!sample.aux_sample.size)
1090                 return 0;
1091
1092         offset += sample.aux_sample.data - (void *)event;
1093
1094         return session->auxtrace->queue_data(session, &sample, NULL, offset);
1095 }
1096
1097 int auxtrace_queue_data(struct perf_session *session, bool samples, bool events)
1098 {
1099         struct queue_data qd = {
1100                 .samples = samples,
1101                 .events = events,
1102         };
1103
1104         if (auxtrace__dont_decode(session))
1105                 return 0;
1106
1107         if (!session->auxtrace || !session->auxtrace->queue_data)
1108                 return -EINVAL;
1109
1110         return perf_session__peek_events(session, session->header.data_offset,
1111                                          session->header.data_size,
1112                                          auxtrace_queue_data_cb, &qd);
1113 }
1114
1115 void *auxtrace_buffer__get_data(struct auxtrace_buffer *buffer, int fd)
1116 {
1117         size_t adj = buffer->data_offset & (page_size - 1);
1118         size_t size = buffer->size + adj;
1119         off_t file_offset = buffer->data_offset - adj;
1120         void *addr;
1121
1122         if (buffer->data)
1123                 return buffer->data;
1124
1125         addr = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, file_offset);
1126         if (addr == MAP_FAILED)
1127                 return NULL;
1128
1129         buffer->mmap_addr = addr;
1130         buffer->mmap_size = size;
1131
1132         buffer->data = addr + adj;
1133
1134         return buffer->data;
1135 }
1136
1137 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
1138 {
1139         if (!buffer->data || !buffer->mmap_addr)
1140                 return;
1141         munmap(buffer->mmap_addr, buffer->mmap_size);
1142         buffer->mmap_addr = NULL;
1143         buffer->mmap_size = 0;
1144         buffer->data = NULL;
1145         buffer->use_data = NULL;
1146 }
1147
1148 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
1149 {
1150         auxtrace_buffer__put_data(buffer);
1151         if (buffer->data_needs_freeing) {
1152                 buffer->data_needs_freeing = false;
1153                 zfree(&buffer->data);
1154                 buffer->use_data = NULL;
1155                 buffer->size = 0;
1156         }
1157 }
1158
1159 void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
1160 {
1161         auxtrace_buffer__drop_data(buffer);
1162         free(buffer);
1163 }
1164
1165 void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1166                           int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1167                           const char *msg, u64 timestamp)
1168 {
1169         size_t size;
1170
1171         memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error));
1172
1173         auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
1174         auxtrace_error->type = type;
1175         auxtrace_error->code = code;
1176         auxtrace_error->cpu = cpu;
1177         auxtrace_error->pid = pid;
1178         auxtrace_error->tid = tid;
1179         auxtrace_error->fmt = 1;
1180         auxtrace_error->ip = ip;
1181         auxtrace_error->time = timestamp;
1182         strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
1183
1184         size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
1185                strlen(auxtrace_error->msg) + 1;
1186         auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
1187 }
1188
1189 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
1190                                          struct perf_tool *tool,
1191                                          struct perf_session *session,
1192                                          perf_event__handler_t process)
1193 {
1194         union perf_event *ev;
1195         size_t priv_size;
1196         int err;
1197
1198         pr_debug2("Synthesizing auxtrace information\n");
1199         priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
1200         ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size);
1201         if (!ev)
1202                 return -ENOMEM;
1203
1204         ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
1205         ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) +
1206                                         priv_size;
1207         err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
1208                                          priv_size);
1209         if (err)
1210                 goto out_free;
1211
1212         err = process(tool, ev, NULL, NULL);
1213 out_free:
1214         free(ev);
1215         return err;
1216 }
1217
1218 static void unleader_evsel(struct evlist *evlist, struct evsel *leader)
1219 {
1220         struct evsel *new_leader = NULL;
1221         struct evsel *evsel;
1222
1223         /* Find new leader for the group */
1224         evlist__for_each_entry(evlist, evsel) {
1225                 if (evsel->leader != leader || evsel == leader)
1226                         continue;
1227                 if (!new_leader)
1228                         new_leader = evsel;
1229                 evsel->leader = new_leader;
1230         }
1231
1232         /* Update group information */
1233         if (new_leader) {
1234                 zfree(&new_leader->group_name);
1235                 new_leader->group_name = leader->group_name;
1236                 leader->group_name = NULL;
1237
1238                 new_leader->core.nr_members = leader->core.nr_members - 1;
1239                 leader->core.nr_members = 1;
1240         }
1241 }
1242
1243 static void unleader_auxtrace(struct perf_session *session)
1244 {
1245         struct evsel *evsel;
1246
1247         evlist__for_each_entry(session->evlist, evsel) {
1248                 if (auxtrace__evsel_is_auxtrace(session, evsel) &&
1249                     evsel__is_group_leader(evsel)) {
1250                         unleader_evsel(session->evlist, evsel);
1251                 }
1252         }
1253 }
1254
1255 int perf_event__process_auxtrace_info(struct perf_session *session,
1256                                       union perf_event *event)
1257 {
1258         enum auxtrace_type type = event->auxtrace_info.type;
1259         int err;
1260
1261         if (dump_trace)
1262                 fprintf(stdout, " type: %u\n", type);
1263
1264         switch (type) {
1265         case PERF_AUXTRACE_INTEL_PT:
1266                 err = intel_pt_process_auxtrace_info(event, session);
1267                 break;
1268         case PERF_AUXTRACE_INTEL_BTS:
1269                 err = intel_bts_process_auxtrace_info(event, session);
1270                 break;
1271         case PERF_AUXTRACE_ARM_SPE:
1272                 err = arm_spe_process_auxtrace_info(event, session);
1273                 break;
1274         case PERF_AUXTRACE_CS_ETM:
1275                 err = cs_etm__process_auxtrace_info(event, session);
1276                 break;
1277         case PERF_AUXTRACE_S390_CPUMSF:
1278                 err = s390_cpumsf_process_auxtrace_info(event, session);
1279                 break;
1280         case PERF_AUXTRACE_UNKNOWN:
1281         default:
1282                 return -EINVAL;
1283         }
1284
1285         if (err)
1286                 return err;
1287
1288         unleader_auxtrace(session);
1289
1290         return 0;
1291 }
1292
1293 s64 perf_event__process_auxtrace(struct perf_session *session,
1294                                  union perf_event *event)
1295 {
1296         s64 err;
1297
1298         if (dump_trace)
1299                 fprintf(stdout, " size: %#"PRI_lx64"  offset: %#"PRI_lx64"  ref: %#"PRI_lx64"  idx: %u  tid: %d  cpu: %d\n",
1300                         event->auxtrace.size, event->auxtrace.offset,
1301                         event->auxtrace.reference, event->auxtrace.idx,
1302                         event->auxtrace.tid, event->auxtrace.cpu);
1303
1304         if (auxtrace__dont_decode(session))
1305                 return event->auxtrace.size;
1306
1307         if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
1308                 return -EINVAL;
1309
1310         err = session->auxtrace->process_auxtrace_event(session, event, session->tool);
1311         if (err < 0)
1312                 return err;
1313
1314         return event->auxtrace.size;
1315 }
1316
1317 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE         PERF_ITRACE_PERIOD_NANOSECS
1318 #define PERF_ITRACE_DEFAULT_PERIOD              100000
1319 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ        16
1320 #define PERF_ITRACE_MAX_CALLCHAIN_SZ            1024
1321 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ      64
1322 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ          1024
1323
1324 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts,
1325                                     bool no_sample)
1326 {
1327         synth_opts->branches = true;
1328         synth_opts->transactions = true;
1329         synth_opts->ptwrites = true;
1330         synth_opts->pwr_events = true;
1331         synth_opts->other_events = true;
1332         synth_opts->errors = true;
1333         synth_opts->flc = true;
1334         synth_opts->llc = true;
1335         synth_opts->tlb = true;
1336         synth_opts->remote_access = true;
1337
1338         if (no_sample) {
1339                 synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS;
1340                 synth_opts->period = 1;
1341                 synth_opts->calls = true;
1342         } else {
1343                 synth_opts->instructions = true;
1344                 synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1345                 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1346         }
1347         synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1348         synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1349         synth_opts->initial_skip = 0;
1350 }
1351
1352 /*
1353  * Please check tools/perf/Documentation/perf-script.txt for information
1354  * about the options parsed here, which is introduced after this cset,
1355  * when support in 'perf script' for these options is introduced.
1356  */
1357 int itrace_parse_synth_opts(const struct option *opt, const char *str,
1358                             int unset)
1359 {
1360         struct itrace_synth_opts *synth_opts = opt->value;
1361         const char *p;
1362         char *endptr;
1363         bool period_type_set = false;
1364         bool period_set = false;
1365
1366         synth_opts->set = true;
1367
1368         if (unset) {
1369                 synth_opts->dont_decode = true;
1370                 return 0;
1371         }
1372
1373         if (!str) {
1374                 itrace_synth_opts__set_default(synth_opts,
1375                                                synth_opts->default_no_sample);
1376                 return 0;
1377         }
1378
1379         for (p = str; *p;) {
1380                 switch (*p++) {
1381                 case 'i':
1382                         synth_opts->instructions = true;
1383                         while (*p == ' ' || *p == ',')
1384                                 p += 1;
1385                         if (isdigit(*p)) {
1386                                 synth_opts->period = strtoull(p, &endptr, 10);
1387                                 period_set = true;
1388                                 p = endptr;
1389                                 while (*p == ' ' || *p == ',')
1390                                         p += 1;
1391                                 switch (*p++) {
1392                                 case 'i':
1393                                         synth_opts->period_type =
1394                                                 PERF_ITRACE_PERIOD_INSTRUCTIONS;
1395                                         period_type_set = true;
1396                                         break;
1397                                 case 't':
1398                                         synth_opts->period_type =
1399                                                 PERF_ITRACE_PERIOD_TICKS;
1400                                         period_type_set = true;
1401                                         break;
1402                                 case 'm':
1403                                         synth_opts->period *= 1000;
1404                                         /* Fall through */
1405                                 case 'u':
1406                                         synth_opts->period *= 1000;
1407                                         /* Fall through */
1408                                 case 'n':
1409                                         if (*p++ != 's')
1410                                                 goto out_err;
1411                                         synth_opts->period_type =
1412                                                 PERF_ITRACE_PERIOD_NANOSECS;
1413                                         period_type_set = true;
1414                                         break;
1415                                 case '\0':
1416                                         goto out;
1417                                 default:
1418                                         goto out_err;
1419                                 }
1420                         }
1421                         break;
1422                 case 'b':
1423                         synth_opts->branches = true;
1424                         break;
1425                 case 'x':
1426                         synth_opts->transactions = true;
1427                         break;
1428                 case 'w':
1429                         synth_opts->ptwrites = true;
1430                         break;
1431                 case 'p':
1432                         synth_opts->pwr_events = true;
1433                         break;
1434                 case 'o':
1435                         synth_opts->other_events = true;
1436                         break;
1437                 case 'e':
1438                         synth_opts->errors = true;
1439                         break;
1440                 case 'd':
1441                         synth_opts->log = true;
1442                         break;
1443                 case 'c':
1444                         synth_opts->branches = true;
1445                         synth_opts->calls = true;
1446                         break;
1447                 case 'r':
1448                         synth_opts->branches = true;
1449                         synth_opts->returns = true;
1450                         break;
1451                 case 'G':
1452                 case 'g':
1453                         if (p[-1] == 'G')
1454                                 synth_opts->add_callchain = true;
1455                         else
1456                                 synth_opts->callchain = true;
1457                         synth_opts->callchain_sz =
1458                                         PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1459                         while (*p == ' ' || *p == ',')
1460                                 p += 1;
1461                         if (isdigit(*p)) {
1462                                 unsigned int val;
1463
1464                                 val = strtoul(p, &endptr, 10);
1465                                 p = endptr;
1466                                 if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1467                                         goto out_err;
1468                                 synth_opts->callchain_sz = val;
1469                         }
1470                         break;
1471                 case 'L':
1472                 case 'l':
1473                         if (p[-1] == 'L')
1474                                 synth_opts->add_last_branch = true;
1475                         else
1476                                 synth_opts->last_branch = true;
1477                         synth_opts->last_branch_sz =
1478                                         PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1479                         while (*p == ' ' || *p == ',')
1480                                 p += 1;
1481                         if (isdigit(*p)) {
1482                                 unsigned int val;
1483
1484                                 val = strtoul(p, &endptr, 10);
1485                                 p = endptr;
1486                                 if (!val ||
1487                                     val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1488                                         goto out_err;
1489                                 synth_opts->last_branch_sz = val;
1490                         }
1491                         break;
1492                 case 's':
1493                         synth_opts->initial_skip = strtoul(p, &endptr, 10);
1494                         if (p == endptr)
1495                                 goto out_err;
1496                         p = endptr;
1497                         break;
1498                 case 'f':
1499                         synth_opts->flc = true;
1500                         break;
1501                 case 'm':
1502                         synth_opts->llc = true;
1503                         break;
1504                 case 't':
1505                         synth_opts->tlb = true;
1506                         break;
1507                 case 'a':
1508                         synth_opts->remote_access = true;
1509                         break;
1510                 case ' ':
1511                 case ',':
1512                         break;
1513                 default:
1514                         goto out_err;
1515                 }
1516         }
1517 out:
1518         if (synth_opts->instructions) {
1519                 if (!period_type_set)
1520                         synth_opts->period_type =
1521                                         PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1522                 if (!period_set)
1523                         synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1524         }
1525
1526         return 0;
1527
1528 out_err:
1529         pr_err("Bad Instruction Tracing options '%s'\n", str);
1530         return -EINVAL;
1531 }
1532
1533 static const char * const auxtrace_error_type_name[] = {
1534         [PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1535 };
1536
1537 static const char *auxtrace_error_name(int type)
1538 {
1539         const char *error_type_name = NULL;
1540
1541         if (type < PERF_AUXTRACE_ERROR_MAX)
1542                 error_type_name = auxtrace_error_type_name[type];
1543         if (!error_type_name)
1544                 error_type_name = "unknown AUX";
1545         return error_type_name;
1546 }
1547
1548 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1549 {
1550         struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1551         unsigned long long nsecs = e->time;
1552         const char *msg = e->msg;
1553         int ret;
1554
1555         ret = fprintf(fp, " %s error type %u",
1556                       auxtrace_error_name(e->type), e->type);
1557
1558         if (e->fmt && nsecs) {
1559                 unsigned long secs = nsecs / NSEC_PER_SEC;
1560
1561                 nsecs -= secs * NSEC_PER_SEC;
1562                 ret += fprintf(fp, " time %lu.%09llu", secs, nsecs);
1563         } else {
1564                 ret += fprintf(fp, " time 0");
1565         }
1566
1567         if (!e->fmt)
1568                 msg = (const char *)&e->time;
1569
1570         ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n",
1571                        e->cpu, e->pid, e->tid, e->ip, e->code, msg);
1572         return ret;
1573 }
1574
1575 void perf_session__auxtrace_error_inc(struct perf_session *session,
1576                                       union perf_event *event)
1577 {
1578         struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1579
1580         if (e->type < PERF_AUXTRACE_ERROR_MAX)
1581                 session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1582 }
1583
1584 void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1585 {
1586         int i;
1587
1588         for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1589                 if (!stats->nr_auxtrace_errors[i])
1590                         continue;
1591                 ui__warning("%u %s errors\n",
1592                             stats->nr_auxtrace_errors[i],
1593                             auxtrace_error_name(i));
1594         }
1595 }
1596
1597 int perf_event__process_auxtrace_error(struct perf_session *session,
1598                                        union perf_event *event)
1599 {
1600         if (auxtrace__dont_decode(session))
1601                 return 0;
1602
1603         perf_event__fprintf_auxtrace_error(event, stdout);
1604         return 0;
1605 }
1606
1607 static int __auxtrace_mmap__read(struct mmap *map,
1608                                  struct auxtrace_record *itr,
1609                                  struct perf_tool *tool, process_auxtrace_t fn,
1610                                  bool snapshot, size_t snapshot_size)
1611 {
1612         struct auxtrace_mmap *mm = &map->auxtrace_mmap;
1613         u64 head, old = mm->prev, offset, ref;
1614         unsigned char *data = mm->base;
1615         size_t size, head_off, old_off, len1, len2, padding;
1616         union perf_event ev;
1617         void *data1, *data2;
1618
1619         if (snapshot) {
1620                 head = auxtrace_mmap__read_snapshot_head(mm);
1621                 if (auxtrace_record__find_snapshot(itr, mm->idx, mm, data,
1622                                                    &head, &old))
1623                         return -1;
1624         } else {
1625                 head = auxtrace_mmap__read_head(mm);
1626         }
1627
1628         if (old == head)
1629                 return 0;
1630
1631         pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1632                   mm->idx, old, head, head - old);
1633
1634         if (mm->mask) {
1635                 head_off = head & mm->mask;
1636                 old_off = old & mm->mask;
1637         } else {
1638                 head_off = head % mm->len;
1639                 old_off = old % mm->len;
1640         }
1641
1642         if (head_off > old_off)
1643                 size = head_off - old_off;
1644         else
1645                 size = mm->len - (old_off - head_off);
1646
1647         if (snapshot && size > snapshot_size)
1648                 size = snapshot_size;
1649
1650         ref = auxtrace_record__reference(itr);
1651
1652         if (head > old || size <= head || mm->mask) {
1653                 offset = head - size;
1654         } else {
1655                 /*
1656                  * When the buffer size is not a power of 2, 'head' wraps at the
1657                  * highest multiple of the buffer size, so we have to subtract
1658                  * the remainder here.
1659                  */
1660                 u64 rem = (0ULL - mm->len) % mm->len;
1661
1662                 offset = head - size - rem;
1663         }
1664
1665         if (size > head_off) {
1666                 len1 = size - head_off;
1667                 data1 = &data[mm->len - len1];
1668                 len2 = head_off;
1669                 data2 = &data[0];
1670         } else {
1671                 len1 = size;
1672                 data1 = &data[head_off - len1];
1673                 len2 = 0;
1674                 data2 = NULL;
1675         }
1676
1677         if (itr->alignment) {
1678                 unsigned int unwanted = len1 % itr->alignment;
1679
1680                 len1 -= unwanted;
1681                 size -= unwanted;
1682         }
1683
1684         /* padding must be written by fn() e.g. record__process_auxtrace() */
1685         padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1);
1686         if (padding)
1687                 padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding;
1688
1689         memset(&ev, 0, sizeof(ev));
1690         ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1691         ev.auxtrace.header.size = sizeof(ev.auxtrace);
1692         ev.auxtrace.size = size + padding;
1693         ev.auxtrace.offset = offset;
1694         ev.auxtrace.reference = ref;
1695         ev.auxtrace.idx = mm->idx;
1696         ev.auxtrace.tid = mm->tid;
1697         ev.auxtrace.cpu = mm->cpu;
1698
1699         if (fn(tool, map, &ev, data1, len1, data2, len2))
1700                 return -1;
1701
1702         mm->prev = head;
1703
1704         if (!snapshot) {
1705                 auxtrace_mmap__write_tail(mm, head);
1706                 if (itr->read_finish) {
1707                         int err;
1708
1709                         err = itr->read_finish(itr, mm->idx);
1710                         if (err < 0)
1711                                 return err;
1712                 }
1713         }
1714
1715         return 1;
1716 }
1717
1718 int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr,
1719                         struct perf_tool *tool, process_auxtrace_t fn)
1720 {
1721         return __auxtrace_mmap__read(map, itr, tool, fn, false, 0);
1722 }
1723
1724 int auxtrace_mmap__read_snapshot(struct mmap *map,
1725                                  struct auxtrace_record *itr,
1726                                  struct perf_tool *tool, process_auxtrace_t fn,
1727                                  size_t snapshot_size)
1728 {
1729         return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size);
1730 }
1731
1732 /**
1733  * struct auxtrace_cache - hash table to implement a cache
1734  * @hashtable: the hashtable
1735  * @sz: hashtable size (number of hlists)
1736  * @entry_size: size of an entry
1737  * @limit: limit the number of entries to this maximum, when reached the cache
1738  *         is dropped and caching begins again with an empty cache
1739  * @cnt: current number of entries
1740  * @bits: hashtable size (@sz = 2^@bits)
1741  */
1742 struct auxtrace_cache {
1743         struct hlist_head *hashtable;
1744         size_t sz;
1745         size_t entry_size;
1746         size_t limit;
1747         size_t cnt;
1748         unsigned int bits;
1749 };
1750
1751 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1752                                            unsigned int limit_percent)
1753 {
1754         struct auxtrace_cache *c;
1755         struct hlist_head *ht;
1756         size_t sz, i;
1757
1758         c = zalloc(sizeof(struct auxtrace_cache));
1759         if (!c)
1760                 return NULL;
1761
1762         sz = 1UL << bits;
1763
1764         ht = calloc(sz, sizeof(struct hlist_head));
1765         if (!ht)
1766                 goto out_free;
1767
1768         for (i = 0; i < sz; i++)
1769                 INIT_HLIST_HEAD(&ht[i]);
1770
1771         c->hashtable = ht;
1772         c->sz = sz;
1773         c->entry_size = entry_size;
1774         c->limit = (c->sz * limit_percent) / 100;
1775         c->bits = bits;
1776
1777         return c;
1778
1779 out_free:
1780         free(c);
1781         return NULL;
1782 }
1783
1784 static void auxtrace_cache__drop(struct auxtrace_cache *c)
1785 {
1786         struct auxtrace_cache_entry *entry;
1787         struct hlist_node *tmp;
1788         size_t i;
1789
1790         if (!c)
1791                 return;
1792
1793         for (i = 0; i < c->sz; i++) {
1794                 hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
1795                         hlist_del(&entry->hash);
1796                         auxtrace_cache__free_entry(c, entry);
1797                 }
1798         }
1799
1800         c->cnt = 0;
1801 }
1802
1803 void auxtrace_cache__free(struct auxtrace_cache *c)
1804 {
1805         if (!c)
1806                 return;
1807
1808         auxtrace_cache__drop(c);
1809         zfree(&c->hashtable);
1810         free(c);
1811 }
1812
1813 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
1814 {
1815         return malloc(c->entry_size);
1816 }
1817
1818 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
1819                                 void *entry)
1820 {
1821         free(entry);
1822 }
1823
1824 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
1825                         struct auxtrace_cache_entry *entry)
1826 {
1827         if (c->limit && ++c->cnt > c->limit)
1828                 auxtrace_cache__drop(c);
1829
1830         entry->key = key;
1831         hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
1832
1833         return 0;
1834 }
1835
1836 static struct auxtrace_cache_entry *auxtrace_cache__rm(struct auxtrace_cache *c,
1837                                                        u32 key)
1838 {
1839         struct auxtrace_cache_entry *entry;
1840         struct hlist_head *hlist;
1841         struct hlist_node *n;
1842
1843         if (!c)
1844                 return NULL;
1845
1846         hlist = &c->hashtable[hash_32(key, c->bits)];
1847         hlist_for_each_entry_safe(entry, n, hlist, hash) {
1848                 if (entry->key == key) {
1849                         hlist_del(&entry->hash);
1850                         return entry;
1851                 }
1852         }
1853
1854         return NULL;
1855 }
1856
1857 void auxtrace_cache__remove(struct auxtrace_cache *c, u32 key)
1858 {
1859         struct auxtrace_cache_entry *entry = auxtrace_cache__rm(c, key);
1860
1861         auxtrace_cache__free_entry(c, entry);
1862 }
1863
1864 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
1865 {
1866         struct auxtrace_cache_entry *entry;
1867         struct hlist_head *hlist;
1868
1869         if (!c)
1870                 return NULL;
1871
1872         hlist = &c->hashtable[hash_32(key, c->bits)];
1873         hlist_for_each_entry(entry, hlist, hash) {
1874                 if (entry->key == key)
1875                         return entry;
1876         }
1877
1878         return NULL;
1879 }
1880
1881 static void addr_filter__free_str(struct addr_filter *filt)
1882 {
1883         zfree(&filt->str);
1884         filt->action   = NULL;
1885         filt->sym_from = NULL;
1886         filt->sym_to   = NULL;
1887         filt->filename = NULL;
1888 }
1889
1890 static struct addr_filter *addr_filter__new(void)
1891 {
1892         struct addr_filter *filt = zalloc(sizeof(*filt));
1893
1894         if (filt)
1895                 INIT_LIST_HEAD(&filt->list);
1896
1897         return filt;
1898 }
1899
1900 static void addr_filter__free(struct addr_filter *filt)
1901 {
1902         if (filt)
1903                 addr_filter__free_str(filt);
1904         free(filt);
1905 }
1906
1907 static void addr_filters__add(struct addr_filters *filts,
1908                               struct addr_filter *filt)
1909 {
1910         list_add_tail(&filt->list, &filts->head);
1911         filts->cnt += 1;
1912 }
1913
1914 static void addr_filters__del(struct addr_filters *filts,
1915                               struct addr_filter *filt)
1916 {
1917         list_del_init(&filt->list);
1918         filts->cnt -= 1;
1919 }
1920
1921 void addr_filters__init(struct addr_filters *filts)
1922 {
1923         INIT_LIST_HEAD(&filts->head);
1924         filts->cnt = 0;
1925 }
1926
1927 void addr_filters__exit(struct addr_filters *filts)
1928 {
1929         struct addr_filter *filt, *n;
1930
1931         list_for_each_entry_safe(filt, n, &filts->head, list) {
1932                 addr_filters__del(filts, filt);
1933                 addr_filter__free(filt);
1934         }
1935 }
1936
1937 static int parse_num_or_str(char **inp, u64 *num, const char **str,
1938                             const char *str_delim)
1939 {
1940         *inp += strspn(*inp, " ");
1941
1942         if (isdigit(**inp)) {
1943                 char *endptr;
1944
1945                 if (!num)
1946                         return -EINVAL;
1947                 errno = 0;
1948                 *num = strtoull(*inp, &endptr, 0);
1949                 if (errno)
1950                         return -errno;
1951                 if (endptr == *inp)
1952                         return -EINVAL;
1953                 *inp = endptr;
1954         } else {
1955                 size_t n;
1956
1957                 if (!str)
1958                         return -EINVAL;
1959                 *inp += strspn(*inp, " ");
1960                 *str = *inp;
1961                 n = strcspn(*inp, str_delim);
1962                 if (!n)
1963                         return -EINVAL;
1964                 *inp += n;
1965                 if (**inp) {
1966                         **inp = '\0';
1967                         *inp += 1;
1968                 }
1969         }
1970         return 0;
1971 }
1972
1973 static int parse_action(struct addr_filter *filt)
1974 {
1975         if (!strcmp(filt->action, "filter")) {
1976                 filt->start = true;
1977                 filt->range = true;
1978         } else if (!strcmp(filt->action, "start")) {
1979                 filt->start = true;
1980         } else if (!strcmp(filt->action, "stop")) {
1981                 filt->start = false;
1982         } else if (!strcmp(filt->action, "tracestop")) {
1983                 filt->start = false;
1984                 filt->range = true;
1985                 filt->action += 5; /* Change 'tracestop' to 'stop' */
1986         } else {
1987                 return -EINVAL;
1988         }
1989         return 0;
1990 }
1991
1992 static int parse_sym_idx(char **inp, int *idx)
1993 {
1994         *idx = -1;
1995
1996         *inp += strspn(*inp, " ");
1997
1998         if (**inp != '#')
1999                 return 0;
2000
2001         *inp += 1;
2002
2003         if (**inp == 'g' || **inp == 'G') {
2004                 *inp += 1;
2005                 *idx = 0;
2006         } else {
2007                 unsigned long num;
2008                 char *endptr;
2009
2010                 errno = 0;
2011                 num = strtoul(*inp, &endptr, 0);
2012                 if (errno)
2013                         return -errno;
2014                 if (endptr == *inp || num > INT_MAX)
2015                         return -EINVAL;
2016                 *inp = endptr;
2017                 *idx = num;
2018         }
2019
2020         return 0;
2021 }
2022
2023 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
2024 {
2025         int err = parse_num_or_str(inp, num, str, " ");
2026
2027         if (!err && *str)
2028                 err = parse_sym_idx(inp, idx);
2029
2030         return err;
2031 }
2032
2033 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
2034 {
2035         char *fstr;
2036         int err;
2037
2038         filt->str = fstr = strdup(*filter_inp);
2039         if (!fstr)
2040                 return -ENOMEM;
2041
2042         err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
2043         if (err)
2044                 goto out_err;
2045
2046         err = parse_action(filt);
2047         if (err)
2048                 goto out_err;
2049
2050         err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
2051                               &filt->sym_from_idx);
2052         if (err)
2053                 goto out_err;
2054
2055         fstr += strspn(fstr, " ");
2056
2057         if (*fstr == '/') {
2058                 fstr += 1;
2059                 err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
2060                                       &filt->sym_to_idx);
2061                 if (err)
2062                         goto out_err;
2063                 filt->range = true;
2064         }
2065
2066         fstr += strspn(fstr, " ");
2067
2068         if (*fstr == '@') {
2069                 fstr += 1;
2070                 err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
2071                 if (err)
2072                         goto out_err;
2073         }
2074
2075         fstr += strspn(fstr, " ,");
2076
2077         *filter_inp += fstr - filt->str;
2078
2079         return 0;
2080
2081 out_err:
2082         addr_filter__free_str(filt);
2083
2084         return err;
2085 }
2086
2087 int addr_filters__parse_bare_filter(struct addr_filters *filts,
2088                                     const char *filter)
2089 {
2090         struct addr_filter *filt;
2091         const char *fstr = filter;
2092         int err;
2093
2094         while (*fstr) {
2095                 filt = addr_filter__new();
2096                 err = parse_one_filter(filt, &fstr);
2097                 if (err) {
2098                         addr_filter__free(filt);
2099                         addr_filters__exit(filts);
2100                         return err;
2101                 }
2102                 addr_filters__add(filts, filt);
2103         }
2104
2105         return 0;
2106 }
2107
2108 struct sym_args {
2109         const char      *name;
2110         u64             start;
2111         u64             size;
2112         int             idx;
2113         int             cnt;
2114         bool            started;
2115         bool            global;
2116         bool            selected;
2117         bool            duplicate;
2118         bool            near;
2119 };
2120
2121 static bool kern_sym_match(struct sym_args *args, const char *name, char type)
2122 {
2123         /* A function with the same name, and global or the n'th found or any */
2124         return kallsyms__is_function(type) &&
2125                !strcmp(name, args->name) &&
2126                ((args->global && isupper(type)) ||
2127                 (args->selected && ++(args->cnt) == args->idx) ||
2128                 (!args->global && !args->selected));
2129 }
2130
2131 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2132 {
2133         struct sym_args *args = arg;
2134
2135         if (args->started) {
2136                 if (!args->size)
2137                         args->size = start - args->start;
2138                 if (args->selected) {
2139                         if (args->size)
2140                                 return 1;
2141                 } else if (kern_sym_match(args, name, type)) {
2142                         args->duplicate = true;
2143                         return 1;
2144                 }
2145         } else if (kern_sym_match(args, name, type)) {
2146                 args->started = true;
2147                 args->start = start;
2148         }
2149
2150         return 0;
2151 }
2152
2153 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2154 {
2155         struct sym_args *args = arg;
2156
2157         if (kern_sym_match(args, name, type)) {
2158                 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2159                        ++args->cnt, start, type, name);
2160                 args->near = true;
2161         } else if (args->near) {
2162                 args->near = false;
2163                 pr_err("\t\twhich is near\t\t%s\n", name);
2164         }
2165
2166         return 0;
2167 }
2168
2169 static int sym_not_found_error(const char *sym_name, int idx)
2170 {
2171         if (idx > 0) {
2172                 pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
2173                        idx, sym_name);
2174         } else if (!idx) {
2175                 pr_err("Global symbol '%s' not found.\n", sym_name);
2176         } else {
2177                 pr_err("Symbol '%s' not found.\n", sym_name);
2178         }
2179         pr_err("Note that symbols must be functions.\n");
2180
2181         return -EINVAL;
2182 }
2183
2184 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
2185 {
2186         struct sym_args args = {
2187                 .name = sym_name,
2188                 .idx = idx,
2189                 .global = !idx,
2190                 .selected = idx > 0,
2191         };
2192         int err;
2193
2194         *start = 0;
2195         *size = 0;
2196
2197         err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
2198         if (err < 0) {
2199                 pr_err("Failed to parse /proc/kallsyms\n");
2200                 return err;
2201         }
2202
2203         if (args.duplicate) {
2204                 pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
2205                 args.cnt = 0;
2206                 kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
2207                 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2208                        sym_name);
2209                 pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2210                 return -EINVAL;
2211         }
2212
2213         if (!args.started) {
2214                 pr_err("Kernel symbol lookup: ");
2215                 return sym_not_found_error(sym_name, idx);
2216         }
2217
2218         *start = args.start;
2219         *size = args.size;
2220
2221         return 0;
2222 }
2223
2224 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
2225                                char type, u64 start)
2226 {
2227         struct sym_args *args = arg;
2228
2229         if (!kallsyms__is_function(type))
2230                 return 0;
2231
2232         if (!args->started) {
2233                 args->started = true;
2234                 args->start = start;
2235         }
2236         /* Don't know exactly where the kernel ends, so we add a page */
2237         args->size = round_up(start, page_size) + page_size - args->start;
2238
2239         return 0;
2240 }
2241
2242 static int addr_filter__entire_kernel(struct addr_filter *filt)
2243 {
2244         struct sym_args args = { .started = false };
2245         int err;
2246
2247         err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
2248         if (err < 0 || !args.started) {
2249                 pr_err("Failed to parse /proc/kallsyms\n");
2250                 return err;
2251         }
2252
2253         filt->addr = args.start;
2254         filt->size = args.size;
2255
2256         return 0;
2257 }
2258
2259 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
2260 {
2261         if (start + size >= filt->addr)
2262                 return 0;
2263
2264         if (filt->sym_from) {
2265                 pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
2266                        filt->sym_to, start, filt->sym_from, filt->addr);
2267         } else {
2268                 pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
2269                        filt->sym_to, start, filt->addr);
2270         }
2271
2272         return -EINVAL;
2273 }
2274
2275 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
2276 {
2277         bool no_size = false;
2278         u64 start, size;
2279         int err;
2280
2281         if (symbol_conf.kptr_restrict) {
2282                 pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
2283                 return -EINVAL;
2284         }
2285
2286         if (filt->sym_from && !strcmp(filt->sym_from, "*"))
2287                 return addr_filter__entire_kernel(filt);
2288
2289         if (filt->sym_from) {
2290                 err = find_kern_sym(filt->sym_from, &start, &size,
2291                                     filt->sym_from_idx);
2292                 if (err)
2293                         return err;
2294                 filt->addr = start;
2295                 if (filt->range && !filt->size && !filt->sym_to) {
2296                         filt->size = size;
2297                         no_size = !size;
2298                 }
2299         }
2300
2301         if (filt->sym_to) {
2302                 err = find_kern_sym(filt->sym_to, &start, &size,
2303                                     filt->sym_to_idx);
2304                 if (err)
2305                         return err;
2306
2307                 err = check_end_after_start(filt, start, size);
2308                 if (err)
2309                         return err;
2310                 filt->size = start + size - filt->addr;
2311                 no_size = !size;
2312         }
2313
2314         /* The very last symbol in kallsyms does not imply a particular size */
2315         if (no_size) {
2316                 pr_err("Cannot determine size of symbol '%s'\n",
2317                        filt->sym_to ? filt->sym_to : filt->sym_from);
2318                 return -EINVAL;
2319         }
2320
2321         return 0;
2322 }
2323
2324 static struct dso *load_dso(const char *name)
2325 {
2326         struct map *map;
2327         struct dso *dso;
2328
2329         map = dso__new_map(name);
2330         if (!map)
2331                 return NULL;
2332
2333         if (map__load(map) < 0)
2334                 pr_err("File '%s' not found or has no symbols.\n", name);
2335
2336         dso = dso__get(map->dso);
2337
2338         map__put(map);
2339
2340         return dso;
2341 }
2342
2343 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
2344                           int idx)
2345 {
2346         /* Same name, and global or the n'th found or any */
2347         return !arch__compare_symbol_names(name, sym->name) &&
2348                ((!idx && sym->binding == STB_GLOBAL) ||
2349                 (idx > 0 && ++*cnt == idx) ||
2350                 idx < 0);
2351 }
2352
2353 static void print_duplicate_syms(struct dso *dso, const char *sym_name)
2354 {
2355         struct symbol *sym;
2356         bool near = false;
2357         int cnt = 0;
2358
2359         pr_err("Multiple symbols with name '%s'\n", sym_name);
2360
2361         sym = dso__first_symbol(dso);
2362         while (sym) {
2363                 if (dso_sym_match(sym, sym_name, &cnt, -1)) {
2364                         pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2365                                ++cnt, sym->start,
2366                                sym->binding == STB_GLOBAL ? 'g' :
2367                                sym->binding == STB_LOCAL  ? 'l' : 'w',
2368                                sym->name);
2369                         near = true;
2370                 } else if (near) {
2371                         near = false;
2372                         pr_err("\t\twhich is near\t\t%s\n", sym->name);
2373                 }
2374                 sym = dso__next_symbol(sym);
2375         }
2376
2377         pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2378                sym_name);
2379         pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2380 }
2381
2382 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
2383                         u64 *size, int idx)
2384 {
2385         struct symbol *sym;
2386         int cnt = 0;
2387
2388         *start = 0;
2389         *size = 0;
2390
2391         sym = dso__first_symbol(dso);
2392         while (sym) {
2393                 if (*start) {
2394                         if (!*size)
2395                                 *size = sym->start - *start;
2396                         if (idx > 0) {
2397                                 if (*size)
2398                                         return 1;
2399                         } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2400                                 print_duplicate_syms(dso, sym_name);
2401                                 return -EINVAL;
2402                         }
2403                 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2404                         *start = sym->start;
2405                         *size = sym->end - sym->start;
2406                 }
2407                 sym = dso__next_symbol(sym);
2408         }
2409
2410         if (!*start)
2411                 return sym_not_found_error(sym_name, idx);
2412
2413         return 0;
2414 }
2415
2416 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
2417 {
2418         if (dso__data_file_size(dso, NULL)) {
2419                 pr_err("Failed to determine filter for %s\nCannot determine file size.\n",
2420                        filt->filename);
2421                 return -EINVAL;
2422         }
2423
2424         filt->addr = 0;
2425         filt->size = dso->data.file_size;
2426
2427         return 0;
2428 }
2429
2430 static int addr_filter__resolve_syms(struct addr_filter *filt)
2431 {
2432         u64 start, size;
2433         struct dso *dso;
2434         int err = 0;
2435
2436         if (!filt->sym_from && !filt->sym_to)
2437                 return 0;
2438
2439         if (!filt->filename)
2440                 return addr_filter__resolve_kernel_syms(filt);
2441
2442         dso = load_dso(filt->filename);
2443         if (!dso) {
2444                 pr_err("Failed to load symbols from: %s\n", filt->filename);
2445                 return -EINVAL;
2446         }
2447
2448         if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2449                 err = addr_filter__entire_dso(filt, dso);
2450                 goto put_dso;
2451         }
2452
2453         if (filt->sym_from) {
2454                 err = find_dso_sym(dso, filt->sym_from, &start, &size,
2455                                    filt->sym_from_idx);
2456                 if (err)
2457                         goto put_dso;
2458                 filt->addr = start;
2459                 if (filt->range && !filt->size && !filt->sym_to)
2460                         filt->size = size;
2461         }
2462
2463         if (filt->sym_to) {
2464                 err = find_dso_sym(dso, filt->sym_to, &start, &size,
2465                                    filt->sym_to_idx);
2466                 if (err)
2467                         goto put_dso;
2468
2469                 err = check_end_after_start(filt, start, size);
2470                 if (err)
2471                         return err;
2472
2473                 filt->size = start + size - filt->addr;
2474         }
2475
2476 put_dso:
2477         dso__put(dso);
2478
2479         return err;
2480 }
2481
2482 static char *addr_filter__to_str(struct addr_filter *filt)
2483 {
2484         char filename_buf[PATH_MAX];
2485         const char *at = "";
2486         const char *fn = "";
2487         char *filter;
2488         int err;
2489
2490         if (filt->filename) {
2491                 at = "@";
2492                 fn = realpath(filt->filename, filename_buf);
2493                 if (!fn)
2494                         return NULL;
2495         }
2496
2497         if (filt->range) {
2498                 err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2499                                filt->action, filt->addr, filt->size, at, fn);
2500         } else {
2501                 err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2502                                filt->action, filt->addr, at, fn);
2503         }
2504
2505         return err < 0 ? NULL : filter;
2506 }
2507
2508 static int parse_addr_filter(struct evsel *evsel, const char *filter,
2509                              int max_nr)
2510 {
2511         struct addr_filters filts;
2512         struct addr_filter *filt;
2513         int err;
2514
2515         addr_filters__init(&filts);
2516
2517         err = addr_filters__parse_bare_filter(&filts, filter);
2518         if (err)
2519                 goto out_exit;
2520
2521         if (filts.cnt > max_nr) {
2522                 pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2523                        filts.cnt, max_nr);
2524                 err = -EINVAL;
2525                 goto out_exit;
2526         }
2527
2528         list_for_each_entry(filt, &filts.head, list) {
2529                 char *new_filter;
2530
2531                 err = addr_filter__resolve_syms(filt);
2532                 if (err)
2533                         goto out_exit;
2534
2535                 new_filter = addr_filter__to_str(filt);
2536                 if (!new_filter) {
2537                         err = -ENOMEM;
2538                         goto out_exit;
2539                 }
2540
2541                 if (evsel__append_addr_filter(evsel, new_filter)) {
2542                         err = -ENOMEM;
2543                         goto out_exit;
2544                 }
2545         }
2546
2547 out_exit:
2548         addr_filters__exit(&filts);
2549
2550         if (err) {
2551                 pr_err("Failed to parse address filter: '%s'\n", filter);
2552                 pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2553                 pr_err("Where multiple filters are separated by space or comma.\n");
2554         }
2555
2556         return err;
2557 }
2558
2559 static int evsel__nr_addr_filter(struct evsel *evsel)
2560 {
2561         struct perf_pmu *pmu = evsel__find_pmu(evsel);
2562         int nr_addr_filters = 0;
2563
2564         if (!pmu)
2565                 return 0;
2566
2567         perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2568
2569         return nr_addr_filters;
2570 }
2571
2572 int auxtrace_parse_filters(struct evlist *evlist)
2573 {
2574         struct evsel *evsel;
2575         char *filter;
2576         int err, max_nr;
2577
2578         evlist__for_each_entry(evlist, evsel) {
2579                 filter = evsel->filter;
2580                 max_nr = evsel__nr_addr_filter(evsel);
2581                 if (!filter || !max_nr)
2582                         continue;
2583                 evsel->filter = NULL;
2584                 err = parse_addr_filter(evsel, filter, max_nr);
2585                 free(filter);
2586                 if (err)
2587                         return err;
2588                 pr_debug("Address filter: %s\n", evsel->filter);
2589         }
2590
2591         return 0;
2592 }
2593
2594 int auxtrace__process_event(struct perf_session *session, union perf_event *event,
2595                             struct perf_sample *sample, struct perf_tool *tool)
2596 {
2597         if (!session->auxtrace)
2598                 return 0;
2599
2600         return session->auxtrace->process_event(session, event, sample, tool);
2601 }
2602
2603 void auxtrace__dump_auxtrace_sample(struct perf_session *session,
2604                                     struct perf_sample *sample)
2605 {
2606         if (!session->auxtrace || !session->auxtrace->dump_auxtrace_sample ||
2607             auxtrace__dont_decode(session))
2608                 return;
2609
2610         session->auxtrace->dump_auxtrace_sample(session, sample);
2611 }
2612
2613 int auxtrace__flush_events(struct perf_session *session, struct perf_tool *tool)
2614 {
2615         if (!session->auxtrace)
2616                 return 0;
2617
2618         return session->auxtrace->flush_events(session, tool);
2619 }
2620
2621 void auxtrace__free_events(struct perf_session *session)
2622 {
2623         if (!session->auxtrace)
2624                 return;
2625
2626         return session->auxtrace->free_events(session);
2627 }
2628
2629 void auxtrace__free(struct perf_session *session)
2630 {
2631         if (!session->auxtrace)
2632                 return;
2633
2634         return session->auxtrace->free(session);
2635 }
2636
2637 bool auxtrace__evsel_is_auxtrace(struct perf_session *session,
2638                                  struct evsel *evsel)
2639 {
2640         if (!session->auxtrace || !session->auxtrace->evsel_is_auxtrace)
2641                 return false;
2642
2643         return session->auxtrace->evsel_is_auxtrace(session, evsel);
2644 }