1 // SPDX-License-Identifier: GPL-2.0-only
3 * builtin-timechart.c - make an svg timechart of system activity
5 * (C) Copyright 2009 Intel Corporation
8 * Arjan van de Ven <arjan@linux.intel.com>
15 #include "util/color.h"
16 #include <linux/list.h>
17 #include "util/evlist.h" // for struct evsel_str_handler
18 #include "util/evsel.h"
19 #include <linux/kernel.h>
20 #include <linux/rbtree.h>
21 #include <linux/time64.h>
22 #include <linux/zalloc.h>
23 #include "util/symbol.h"
24 #include "util/thread.h"
25 #include "util/callchain.h"
28 #include "util/header.h"
29 #include <subcmd/pager.h>
30 #include <subcmd/parse-options.h>
31 #include "util/parse-events.h"
32 #include "util/event.h"
33 #include "util/session.h"
34 #include "util/svghelper.h"
35 #include "util/tool.h"
36 #include "util/data.h"
37 #include "util/debug.h"
38 #include <linux/err.h>
40 #ifdef LACKS_OPEN_MEMSTREAM_PROTOTYPE
41 FILE *open_memstream(char **ptr, size_t *sizeloc);
44 #define SUPPORT_OLD_POWER_EVENTS 1
45 #define PWR_EVENT_EXIT -1
52 struct perf_tool tool;
53 struct per_pid *all_data;
54 struct power_event *power_events;
55 struct wake_event *wake_events;
58 u64 min_freq, /* Lowest CPU frequency seen */
59 max_freq, /* Highest CPU frequency seen */
61 first_time, last_time;
67 /* IO related settings */
80 * Datastructure layout:
81 * We keep an list of "pid"s, matching the kernels notion of a task struct.
82 * Each "pid" entry, has a list of "comm"s.
83 * this is because we want to track different programs different, while
84 * exec will reuse the original pid (by design).
85 * Each comm has a list of samples that will be used to draw
101 struct per_pidcomm *all;
102 struct per_pidcomm *current;
107 struct per_pidcomm *next;
123 struct cpu_sample *samples;
124 struct io_sample *io_samples;
127 struct sample_wrapper {
128 struct sample_wrapper *next;
131 unsigned char data[];
135 #define TYPE_RUNNING 1
136 #define TYPE_WAITING 2
137 #define TYPE_BLOCKED 3
140 struct cpu_sample *next;
146 const char *backtrace;
159 struct io_sample *next;
174 struct power_event *next;
183 struct wake_event *next;
187 const char *backtrace;
190 struct process_filter {
193 struct process_filter *next;
196 static struct process_filter *process_filter;
199 static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
201 struct per_pid *cursor = tchart->all_data;
204 if (cursor->pid == pid)
206 cursor = cursor->next;
208 cursor = zalloc(sizeof(*cursor));
209 assert(cursor != NULL);
211 cursor->next = tchart->all_data;
212 tchart->all_data = cursor;
216 static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
219 struct per_pidcomm *c;
220 p = find_create_pid(tchart, pid);
223 if (c->comm && strcmp(c->comm, comm) == 0) {
228 c->comm = strdup(comm);
234 c = zalloc(sizeof(*c));
236 c->comm = strdup(comm);
242 static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
244 struct per_pid *p, *pp;
245 p = find_create_pid(tchart, pid);
246 pp = find_create_pid(tchart, ppid);
248 if (pp->current && pp->current->comm && !p->current)
249 pid_set_comm(tchart, pid, pp->current->comm);
251 p->start_time = timestamp;
252 if (p->current && !p->current->start_time) {
253 p->current->start_time = timestamp;
254 p->current->state_since = timestamp;
258 static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
261 p = find_create_pid(tchart, pid);
262 p->end_time = timestamp;
264 p->current->end_time = timestamp;
267 static void pid_put_sample(struct timechart *tchart, int pid, int type,
268 unsigned int cpu, u64 start, u64 end,
269 const char *backtrace)
272 struct per_pidcomm *c;
273 struct cpu_sample *sample;
275 p = find_create_pid(tchart, pid);
278 c = zalloc(sizeof(*c));
285 sample = zalloc(sizeof(*sample));
286 assert(sample != NULL);
287 sample->start_time = start;
288 sample->end_time = end;
290 sample->next = c->samples;
292 sample->backtrace = backtrace;
295 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
296 c->total_time += (end-start);
297 p->total_time += (end-start);
300 if (c->start_time == 0 || c->start_time > start)
301 c->start_time = start;
302 if (p->start_time == 0 || p->start_time > start)
303 p->start_time = start;
306 #define MAX_CPUS 4096
308 static u64 cpus_cstate_start_times[MAX_CPUS];
309 static int cpus_cstate_state[MAX_CPUS];
310 static u64 cpus_pstate_start_times[MAX_CPUS];
311 static u64 cpus_pstate_state[MAX_CPUS];
313 static int process_comm_event(struct perf_tool *tool,
314 union perf_event *event,
315 struct perf_sample *sample __maybe_unused,
316 struct machine *machine __maybe_unused)
318 struct timechart *tchart = container_of(tool, struct timechart, tool);
319 pid_set_comm(tchart, event->comm.tid, event->comm.comm);
323 static int process_fork_event(struct perf_tool *tool,
324 union perf_event *event,
325 struct perf_sample *sample __maybe_unused,
326 struct machine *machine __maybe_unused)
328 struct timechart *tchart = container_of(tool, struct timechart, tool);
329 pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
333 static int process_exit_event(struct perf_tool *tool,
334 union perf_event *event,
335 struct perf_sample *sample __maybe_unused,
336 struct machine *machine __maybe_unused)
338 struct timechart *tchart = container_of(tool, struct timechart, tool);
339 pid_exit(tchart, event->fork.pid, event->fork.time);
343 #ifdef SUPPORT_OLD_POWER_EVENTS
344 static int use_old_power_events;
347 static void c_state_start(int cpu, u64 timestamp, int state)
349 cpus_cstate_start_times[cpu] = timestamp;
350 cpus_cstate_state[cpu] = state;
353 static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
355 struct power_event *pwr = zalloc(sizeof(*pwr));
360 pwr->state = cpus_cstate_state[cpu];
361 pwr->start_time = cpus_cstate_start_times[cpu];
362 pwr->end_time = timestamp;
365 pwr->next = tchart->power_events;
367 tchart->power_events = pwr;
370 static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
372 struct power_event *pwr;
374 if (new_freq > 8000000) /* detect invalid data */
377 pwr = zalloc(sizeof(*pwr));
381 pwr->state = cpus_pstate_state[cpu];
382 pwr->start_time = cpus_pstate_start_times[cpu];
383 pwr->end_time = timestamp;
386 pwr->next = tchart->power_events;
388 if (!pwr->start_time)
389 pwr->start_time = tchart->first_time;
391 tchart->power_events = pwr;
393 cpus_pstate_state[cpu] = new_freq;
394 cpus_pstate_start_times[cpu] = timestamp;
396 if ((u64)new_freq > tchart->max_freq)
397 tchart->max_freq = new_freq;
399 if (new_freq < tchart->min_freq || tchart->min_freq == 0)
400 tchart->min_freq = new_freq;
402 if (new_freq == tchart->max_freq - 1000)
403 tchart->turbo_frequency = tchart->max_freq;
406 static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
407 int waker, int wakee, u8 flags, const char *backtrace)
410 struct wake_event *we = zalloc(sizeof(*we));
415 we->time = timestamp;
417 we->backtrace = backtrace;
419 if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
423 we->next = tchart->wake_events;
424 tchart->wake_events = we;
425 p = find_create_pid(tchart, we->wakee);
427 if (p && p->current && p->current->state == TYPE_NONE) {
428 p->current->state_since = timestamp;
429 p->current->state = TYPE_WAITING;
431 if (p && p->current && p->current->state == TYPE_BLOCKED) {
432 pid_put_sample(tchart, p->pid, p->current->state, cpu,
433 p->current->state_since, timestamp, NULL);
434 p->current->state_since = timestamp;
435 p->current->state = TYPE_WAITING;
439 static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
440 int prev_pid, int next_pid, u64 prev_state,
441 const char *backtrace)
443 struct per_pid *p = NULL, *prev_p;
445 prev_p = find_create_pid(tchart, prev_pid);
447 p = find_create_pid(tchart, next_pid);
449 if (prev_p->current && prev_p->current->state != TYPE_NONE)
450 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
451 prev_p->current->state_since, timestamp,
453 if (p && p->current) {
454 if (p->current->state != TYPE_NONE)
455 pid_put_sample(tchart, next_pid, p->current->state, cpu,
456 p->current->state_since, timestamp,
459 p->current->state_since = timestamp;
460 p->current->state = TYPE_RUNNING;
463 if (prev_p->current) {
464 prev_p->current->state = TYPE_NONE;
465 prev_p->current->state_since = timestamp;
467 prev_p->current->state = TYPE_BLOCKED;
469 prev_p->current->state = TYPE_WAITING;
473 static const char *cat_backtrace(union perf_event *event,
474 struct perf_sample *sample,
475 struct machine *machine)
477 struct addr_location al;
481 u8 cpumode = PERF_RECORD_MISC_USER;
482 struct addr_location tal;
483 struct ip_callchain *chain = sample->callchain;
484 FILE *f = open_memstream(&p, &p_len);
487 perror("open_memstream error");
494 if (machine__resolve(machine, &al, sample) < 0) {
495 fprintf(stderr, "problem processing %d event, skipping it.\n",
500 for (i = 0; i < chain->nr; i++) {
503 if (callchain_param.order == ORDER_CALLEE)
506 ip = chain->ips[chain->nr - i - 1];
508 if (ip >= PERF_CONTEXT_MAX) {
510 case PERF_CONTEXT_HV:
511 cpumode = PERF_RECORD_MISC_HYPERVISOR;
513 case PERF_CONTEXT_KERNEL:
514 cpumode = PERF_RECORD_MISC_KERNEL;
516 case PERF_CONTEXT_USER:
517 cpumode = PERF_RECORD_MISC_USER;
520 pr_debug("invalid callchain context: "
521 "%"PRId64"\n", (s64) ip);
524 * It seems the callchain is corrupted.
534 if (thread__find_symbol(al.thread, cpumode, ip, &tal))
535 fprintf(f, "..... %016" PRIx64 " %s\n", ip, tal.sym->name);
537 fprintf(f, "..... %016" PRIx64 "\n", ip);
540 addr_location__put(&al);
547 typedef int (*tracepoint_handler)(struct timechart *tchart,
549 struct perf_sample *sample,
550 const char *backtrace);
552 static int process_sample_event(struct perf_tool *tool,
553 union perf_event *event,
554 struct perf_sample *sample,
556 struct machine *machine)
558 struct timechart *tchart = container_of(tool, struct timechart, tool);
560 if (evsel->core.attr.sample_type & PERF_SAMPLE_TIME) {
561 if (!tchart->first_time || tchart->first_time > sample->time)
562 tchart->first_time = sample->time;
563 if (tchart->last_time < sample->time)
564 tchart->last_time = sample->time;
567 if (evsel->handler != NULL) {
568 tracepoint_handler f = evsel->handler;
569 return f(tchart, evsel, sample,
570 cat_backtrace(event, sample, machine));
577 process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
579 struct perf_sample *sample,
580 const char *backtrace __maybe_unused)
582 u32 state = evsel__intval(evsel, sample, "state");
583 u32 cpu_id = evsel__intval(evsel, sample, "cpu_id");
585 if (state == (u32)PWR_EVENT_EXIT)
586 c_state_end(tchart, cpu_id, sample->time);
588 c_state_start(cpu_id, sample->time, state);
593 process_sample_cpu_frequency(struct timechart *tchart,
595 struct perf_sample *sample,
596 const char *backtrace __maybe_unused)
598 u32 state = evsel__intval(evsel, sample, "state");
599 u32 cpu_id = evsel__intval(evsel, sample, "cpu_id");
601 p_state_change(tchart, cpu_id, sample->time, state);
606 process_sample_sched_wakeup(struct timechart *tchart,
608 struct perf_sample *sample,
609 const char *backtrace)
611 u8 flags = evsel__intval(evsel, sample, "common_flags");
612 int waker = evsel__intval(evsel, sample, "common_pid");
613 int wakee = evsel__intval(evsel, sample, "pid");
615 sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
620 process_sample_sched_switch(struct timechart *tchart,
622 struct perf_sample *sample,
623 const char *backtrace)
625 int prev_pid = evsel__intval(evsel, sample, "prev_pid");
626 int next_pid = evsel__intval(evsel, sample, "next_pid");
627 u64 prev_state = evsel__intval(evsel, sample, "prev_state");
629 sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
630 prev_state, backtrace);
634 #ifdef SUPPORT_OLD_POWER_EVENTS
636 process_sample_power_start(struct timechart *tchart __maybe_unused,
638 struct perf_sample *sample,
639 const char *backtrace __maybe_unused)
641 u64 cpu_id = evsel__intval(evsel, sample, "cpu_id");
642 u64 value = evsel__intval(evsel, sample, "value");
644 c_state_start(cpu_id, sample->time, value);
649 process_sample_power_end(struct timechart *tchart,
650 struct evsel *evsel __maybe_unused,
651 struct perf_sample *sample,
652 const char *backtrace __maybe_unused)
654 c_state_end(tchart, sample->cpu, sample->time);
659 process_sample_power_frequency(struct timechart *tchart,
661 struct perf_sample *sample,
662 const char *backtrace __maybe_unused)
664 u64 cpu_id = evsel__intval(evsel, sample, "cpu_id");
665 u64 value = evsel__intval(evsel, sample, "value");
667 p_state_change(tchart, cpu_id, sample->time, value);
670 #endif /* SUPPORT_OLD_POWER_EVENTS */
673 * After the last sample we need to wrap up the current C/P state
674 * and close out each CPU for these.
676 static void end_sample_processing(struct timechart *tchart)
679 struct power_event *pwr;
681 for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
684 pwr = zalloc(sizeof(*pwr));
688 pwr->state = cpus_cstate_state[cpu];
689 pwr->start_time = cpus_cstate_start_times[cpu];
690 pwr->end_time = tchart->last_time;
693 pwr->next = tchart->power_events;
695 tchart->power_events = pwr;
699 pwr = zalloc(sizeof(*pwr));
703 pwr->state = cpus_pstate_state[cpu];
704 pwr->start_time = cpus_pstate_start_times[cpu];
705 pwr->end_time = tchart->last_time;
708 pwr->next = tchart->power_events;
710 if (!pwr->start_time)
711 pwr->start_time = tchart->first_time;
713 pwr->state = tchart->min_freq;
714 tchart->power_events = pwr;
718 static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
721 struct per_pid *p = find_create_pid(tchart, pid);
722 struct per_pidcomm *c = p->current;
723 struct io_sample *sample;
724 struct io_sample *prev;
727 c = zalloc(sizeof(*c));
735 prev = c->io_samples;
737 if (prev && prev->start_time && !prev->end_time) {
738 pr_warning("Skip invalid start event: "
739 "previous event already started!\n");
741 /* remove previous event that has been started,
742 * we are not sure we will ever get an end for it */
743 c->io_samples = prev->next;
748 sample = zalloc(sizeof(*sample));
751 sample->start_time = start;
754 sample->next = c->io_samples;
755 c->io_samples = sample;
757 if (c->start_time == 0 || c->start_time > start)
758 c->start_time = start;
763 static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
766 struct per_pid *p = find_create_pid(tchart, pid);
767 struct per_pidcomm *c = p->current;
768 struct io_sample *sample, *prev;
771 pr_warning("Invalid pidcomm!\n");
775 sample = c->io_samples;
777 if (!sample) /* skip partially captured events */
780 if (sample->end_time) {
781 pr_warning("Skip invalid end event: "
782 "previous event already ended!\n");
786 if (sample->type != type) {
787 pr_warning("Skip invalid end event: invalid event type!\n");
791 sample->end_time = end;
794 /* we want to be able to see small and fast transfers, so make them
795 * at least min_time long, but don't overlap them */
796 if (sample->end_time - sample->start_time < tchart->min_time)
797 sample->end_time = sample->start_time + tchart->min_time;
798 if (prev && sample->start_time < prev->end_time) {
799 if (prev->err) /* try to make errors more visible */
800 sample->start_time = prev->end_time;
802 prev->end_time = sample->start_time;
807 } else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
808 type == IOTYPE_TX || type == IOTYPE_RX) {
810 if ((u64)ret > c->max_bytes)
813 c->total_bytes += ret;
814 p->total_bytes += ret;
818 /* merge two requests to make svg smaller and render-friendly */
820 prev->type == sample->type &&
821 prev->err == sample->err &&
822 prev->fd == sample->fd &&
823 prev->end_time + tchart->merge_dist >= sample->start_time) {
825 sample->bytes += prev->bytes;
826 sample->merges += prev->merges + 1;
828 sample->start_time = prev->start_time;
829 sample->next = prev->next;
832 if (!sample->err && sample->bytes > c->max_bytes)
833 c->max_bytes = sample->bytes;
842 process_enter_read(struct timechart *tchart,
844 struct perf_sample *sample)
846 long fd = evsel__intval(evsel, sample, "fd");
847 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
852 process_exit_read(struct timechart *tchart,
854 struct perf_sample *sample)
856 long ret = evsel__intval(evsel, sample, "ret");
857 return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
862 process_enter_write(struct timechart *tchart,
864 struct perf_sample *sample)
866 long fd = evsel__intval(evsel, sample, "fd");
867 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
872 process_exit_write(struct timechart *tchart,
874 struct perf_sample *sample)
876 long ret = evsel__intval(evsel, sample, "ret");
877 return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
882 process_enter_sync(struct timechart *tchart,
884 struct perf_sample *sample)
886 long fd = evsel__intval(evsel, sample, "fd");
887 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
892 process_exit_sync(struct timechart *tchart,
894 struct perf_sample *sample)
896 long ret = evsel__intval(evsel, sample, "ret");
897 return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
902 process_enter_tx(struct timechart *tchart,
904 struct perf_sample *sample)
906 long fd = evsel__intval(evsel, sample, "fd");
907 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
912 process_exit_tx(struct timechart *tchart,
914 struct perf_sample *sample)
916 long ret = evsel__intval(evsel, sample, "ret");
917 return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
922 process_enter_rx(struct timechart *tchart,
924 struct perf_sample *sample)
926 long fd = evsel__intval(evsel, sample, "fd");
927 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
932 process_exit_rx(struct timechart *tchart,
934 struct perf_sample *sample)
936 long ret = evsel__intval(evsel, sample, "ret");
937 return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
942 process_enter_poll(struct timechart *tchart,
944 struct perf_sample *sample)
946 long fd = evsel__intval(evsel, sample, "fd");
947 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
952 process_exit_poll(struct timechart *tchart,
954 struct perf_sample *sample)
956 long ret = evsel__intval(evsel, sample, "ret");
957 return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
962 * Sort the pid datastructure
964 static void sort_pids(struct timechart *tchart)
966 struct per_pid *new_list, *p, *cursor, *prev;
967 /* sort by ppid first, then by pid, lowest to highest */
971 while (tchart->all_data) {
972 p = tchart->all_data;
973 tchart->all_data = p->next;
976 if (new_list == NULL) {
984 if (cursor->ppid > p->ppid ||
985 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
986 /* must insert before */
988 p->next = prev->next;
1001 cursor = cursor->next;
1006 tchart->all_data = new_list;
1010 static void draw_c_p_states(struct timechart *tchart)
1012 struct power_event *pwr;
1013 pwr = tchart->power_events;
1016 * two pass drawing so that the P state bars are on top of the C state blocks
1019 if (pwr->type == CSTATE)
1020 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1024 pwr = tchart->power_events;
1026 if (pwr->type == PSTATE) {
1028 pwr->state = tchart->min_freq;
1029 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1035 static void draw_wakeups(struct timechart *tchart)
1037 struct wake_event *we;
1039 struct per_pidcomm *c;
1041 we = tchart->wake_events;
1043 int from = 0, to = 0;
1044 char *task_from = NULL, *task_to = NULL;
1046 /* locate the column of the waker and wakee */
1047 p = tchart->all_data;
1049 if (p->pid == we->waker || p->pid == we->wakee) {
1052 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
1053 if (p->pid == we->waker && !from) {
1055 task_from = strdup(c->comm);
1057 if (p->pid == we->wakee && !to) {
1059 task_to = strdup(c->comm);
1066 if (p->pid == we->waker && !from) {
1068 task_from = strdup(c->comm);
1070 if (p->pid == we->wakee && !to) {
1072 task_to = strdup(c->comm);
1081 task_from = malloc(40);
1082 sprintf(task_from, "[%i]", we->waker);
1085 task_to = malloc(40);
1086 sprintf(task_to, "[%i]", we->wakee);
1089 if (we->waker == -1)
1090 svg_interrupt(we->time, to, we->backtrace);
1091 else if (from && to && abs(from - to) == 1)
1092 svg_wakeline(we->time, from, to, we->backtrace);
1094 svg_partial_wakeline(we->time, from, task_from, to,
1095 task_to, we->backtrace);
1103 static void draw_cpu_usage(struct timechart *tchart)
1106 struct per_pidcomm *c;
1107 struct cpu_sample *sample;
1108 p = tchart->all_data;
1112 sample = c->samples;
1114 if (sample->type == TYPE_RUNNING) {
1115 svg_process(sample->cpu,
1123 sample = sample->next;
1131 static void draw_io_bars(struct timechart *tchart)
1137 struct per_pidcomm *c;
1138 struct io_sample *sample;
1141 p = tchart->all_data;
1151 svg_box(Y, c->start_time, c->end_time, "process3");
1152 sample = c->io_samples;
1153 for (sample = c->io_samples; sample; sample = sample->next) {
1154 double h = (double)sample->bytes / c->max_bytes;
1156 if (tchart->skip_eagain &&
1157 sample->err == -EAGAIN)
1163 if (sample->type == IOTYPE_SYNC)
1168 sample->err ? "error" : "sync",
1172 else if (sample->type == IOTYPE_POLL)
1177 sample->err ? "error" : "poll",
1181 else if (sample->type == IOTYPE_READ)
1186 sample->err ? "error" : "disk",
1190 else if (sample->type == IOTYPE_WRITE)
1195 sample->err ? "error" : "disk",
1199 else if (sample->type == IOTYPE_RX)
1204 sample->err ? "error" : "net",
1208 else if (sample->type == IOTYPE_TX)
1213 sample->err ? "error" : "net",
1220 bytes = c->total_bytes;
1222 bytes = bytes / 1024;
1226 bytes = bytes / 1024;
1230 bytes = bytes / 1024;
1235 sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1236 svg_text(Y, c->start_time, comm);
1246 static void draw_process_bars(struct timechart *tchart)
1249 struct per_pidcomm *c;
1250 struct cpu_sample *sample;
1253 Y = 2 * tchart->numcpus + 2;
1255 p = tchart->all_data;
1265 svg_box(Y, c->start_time, c->end_time, "process");
1266 sample = c->samples;
1268 if (sample->type == TYPE_RUNNING)
1269 svg_running(Y, sample->cpu,
1273 if (sample->type == TYPE_BLOCKED)
1274 svg_blocked(Y, sample->cpu,
1278 if (sample->type == TYPE_WAITING)
1279 svg_waiting(Y, sample->cpu,
1283 sample = sample->next;
1288 if (c->total_time > 5000000000) /* 5 seconds */
1289 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / (double)NSEC_PER_SEC);
1291 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / (double)NSEC_PER_MSEC);
1293 svg_text(Y, c->start_time, comm);
1303 static void add_process_filter(const char *string)
1305 int pid = strtoull(string, NULL, 10);
1306 struct process_filter *filt = malloc(sizeof(*filt));
1311 filt->name = strdup(string);
1313 filt->next = process_filter;
1315 process_filter = filt;
1318 static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1320 struct process_filter *filt;
1321 if (!process_filter)
1324 filt = process_filter;
1326 if (filt->pid && p->pid == filt->pid)
1328 if (strcmp(filt->name, c->comm) == 0)
1335 static int determine_display_tasks_filtered(struct timechart *tchart)
1338 struct per_pidcomm *c;
1341 p = tchart->all_data;
1344 if (p->start_time == 1)
1345 p->start_time = tchart->first_time;
1347 /* no exit marker, task kept running to the end */
1348 if (p->end_time == 0)
1349 p->end_time = tchart->last_time;
1356 if (c->start_time == 1)
1357 c->start_time = tchart->first_time;
1359 if (passes_filter(p, c)) {
1365 if (c->end_time == 0)
1366 c->end_time = tchart->last_time;
1375 static int determine_display_tasks(struct timechart *tchart, u64 threshold)
1378 struct per_pidcomm *c;
1381 p = tchart->all_data;
1384 if (p->start_time == 1)
1385 p->start_time = tchart->first_time;
1387 /* no exit marker, task kept running to the end */
1388 if (p->end_time == 0)
1389 p->end_time = tchart->last_time;
1390 if (p->total_time >= threshold)
1398 if (c->start_time == 1)
1399 c->start_time = tchart->first_time;
1401 if (c->total_time >= threshold) {
1406 if (c->end_time == 0)
1407 c->end_time = tchart->last_time;
1416 static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1419 struct per_pidcomm *c;
1422 p = timechart->all_data;
1424 /* no exit marker, task kept running to the end */
1425 if (p->end_time == 0)
1426 p->end_time = timechart->last_time;
1433 if (c->total_bytes >= threshold) {
1438 if (c->end_time == 0)
1439 c->end_time = timechart->last_time;
1448 #define BYTES_THRESH (1 * 1024 * 1024)
1449 #define TIME_THRESH 10000000
1451 static void write_svg_file(struct timechart *tchart, const char *filename)
1455 int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
1457 if (tchart->power_only)
1458 tchart->proc_num = 0;
1460 /* We'd like to show at least proc_num tasks;
1461 * be less picky if we have fewer */
1464 count = determine_display_tasks_filtered(tchart);
1465 else if (tchart->io_events)
1466 count = determine_display_io_tasks(tchart, thresh);
1468 count = determine_display_tasks(tchart, thresh);
1470 } while (!process_filter && thresh && count < tchart->proc_num);
1472 if (!tchart->proc_num)
1475 if (tchart->io_events) {
1476 open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
1481 draw_io_bars(tchart);
1483 open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1489 for (i = 0; i < tchart->numcpus; i++)
1490 svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1492 draw_cpu_usage(tchart);
1493 if (tchart->proc_num)
1494 draw_process_bars(tchart);
1495 if (!tchart->tasks_only)
1496 draw_c_p_states(tchart);
1497 if (tchart->proc_num)
1498 draw_wakeups(tchart);
1504 static int process_header(struct perf_file_section *section __maybe_unused,
1505 struct perf_header *ph,
1507 int fd __maybe_unused,
1510 struct timechart *tchart = data;
1514 tchart->numcpus = ph->env.nr_cpus_avail;
1517 case HEADER_CPU_TOPOLOGY:
1518 if (!tchart->topology)
1521 if (svg_build_topology_map(&ph->env))
1522 fprintf(stderr, "problem building topology\n");
1532 static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1534 const struct evsel_str_handler power_tracepoints[] = {
1535 { "power:cpu_idle", process_sample_cpu_idle },
1536 { "power:cpu_frequency", process_sample_cpu_frequency },
1537 { "sched:sched_wakeup", process_sample_sched_wakeup },
1538 { "sched:sched_switch", process_sample_sched_switch },
1539 #ifdef SUPPORT_OLD_POWER_EVENTS
1540 { "power:power_start", process_sample_power_start },
1541 { "power:power_end", process_sample_power_end },
1542 { "power:power_frequency", process_sample_power_frequency },
1545 { "syscalls:sys_enter_read", process_enter_read },
1546 { "syscalls:sys_enter_pread64", process_enter_read },
1547 { "syscalls:sys_enter_readv", process_enter_read },
1548 { "syscalls:sys_enter_preadv", process_enter_read },
1549 { "syscalls:sys_enter_write", process_enter_write },
1550 { "syscalls:sys_enter_pwrite64", process_enter_write },
1551 { "syscalls:sys_enter_writev", process_enter_write },
1552 { "syscalls:sys_enter_pwritev", process_enter_write },
1553 { "syscalls:sys_enter_sync", process_enter_sync },
1554 { "syscalls:sys_enter_sync_file_range", process_enter_sync },
1555 { "syscalls:sys_enter_fsync", process_enter_sync },
1556 { "syscalls:sys_enter_msync", process_enter_sync },
1557 { "syscalls:sys_enter_recvfrom", process_enter_rx },
1558 { "syscalls:sys_enter_recvmmsg", process_enter_rx },
1559 { "syscalls:sys_enter_recvmsg", process_enter_rx },
1560 { "syscalls:sys_enter_sendto", process_enter_tx },
1561 { "syscalls:sys_enter_sendmsg", process_enter_tx },
1562 { "syscalls:sys_enter_sendmmsg", process_enter_tx },
1563 { "syscalls:sys_enter_epoll_pwait", process_enter_poll },
1564 { "syscalls:sys_enter_epoll_wait", process_enter_poll },
1565 { "syscalls:sys_enter_poll", process_enter_poll },
1566 { "syscalls:sys_enter_ppoll", process_enter_poll },
1567 { "syscalls:sys_enter_pselect6", process_enter_poll },
1568 { "syscalls:sys_enter_select", process_enter_poll },
1570 { "syscalls:sys_exit_read", process_exit_read },
1571 { "syscalls:sys_exit_pread64", process_exit_read },
1572 { "syscalls:sys_exit_readv", process_exit_read },
1573 { "syscalls:sys_exit_preadv", process_exit_read },
1574 { "syscalls:sys_exit_write", process_exit_write },
1575 { "syscalls:sys_exit_pwrite64", process_exit_write },
1576 { "syscalls:sys_exit_writev", process_exit_write },
1577 { "syscalls:sys_exit_pwritev", process_exit_write },
1578 { "syscalls:sys_exit_sync", process_exit_sync },
1579 { "syscalls:sys_exit_sync_file_range", process_exit_sync },
1580 { "syscalls:sys_exit_fsync", process_exit_sync },
1581 { "syscalls:sys_exit_msync", process_exit_sync },
1582 { "syscalls:sys_exit_recvfrom", process_exit_rx },
1583 { "syscalls:sys_exit_recvmmsg", process_exit_rx },
1584 { "syscalls:sys_exit_recvmsg", process_exit_rx },
1585 { "syscalls:sys_exit_sendto", process_exit_tx },
1586 { "syscalls:sys_exit_sendmsg", process_exit_tx },
1587 { "syscalls:sys_exit_sendmmsg", process_exit_tx },
1588 { "syscalls:sys_exit_epoll_pwait", process_exit_poll },
1589 { "syscalls:sys_exit_epoll_wait", process_exit_poll },
1590 { "syscalls:sys_exit_poll", process_exit_poll },
1591 { "syscalls:sys_exit_ppoll", process_exit_poll },
1592 { "syscalls:sys_exit_pselect6", process_exit_poll },
1593 { "syscalls:sys_exit_select", process_exit_poll },
1595 struct perf_data data = {
1597 .mode = PERF_DATA_MODE_READ,
1598 .force = tchart->force,
1601 struct perf_session *session = perf_session__new(&data, false,
1605 if (IS_ERR(session))
1606 return PTR_ERR(session);
1608 symbol__init(&session->header.env);
1610 (void)perf_header__process_sections(&session->header,
1611 perf_data__fd(session->data),
1615 if (!perf_session__has_traces(session, "timechart record"))
1618 if (perf_session__set_tracepoints_handlers(session,
1619 power_tracepoints)) {
1620 pr_err("Initializing session tracepoint handlers failed\n");
1624 ret = perf_session__process_events(session);
1628 end_sample_processing(tchart);
1632 write_svg_file(tchart, output_name);
1634 pr_info("Written %2.1f seconds of trace to %s.\n",
1635 (tchart->last_time - tchart->first_time) / (double)NSEC_PER_SEC, output_name);
1637 perf_session__delete(session);
1641 static int timechart__io_record(int argc, const char **argv)
1643 unsigned int rec_argc, i;
1644 const char **rec_argv;
1646 char *filter = NULL;
1648 const char * const common_args[] = {
1649 "record", "-a", "-R", "-c", "1",
1651 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1653 const char * const disk_events[] = {
1654 "syscalls:sys_enter_read",
1655 "syscalls:sys_enter_pread64",
1656 "syscalls:sys_enter_readv",
1657 "syscalls:sys_enter_preadv",
1658 "syscalls:sys_enter_write",
1659 "syscalls:sys_enter_pwrite64",
1660 "syscalls:sys_enter_writev",
1661 "syscalls:sys_enter_pwritev",
1662 "syscalls:sys_enter_sync",
1663 "syscalls:sys_enter_sync_file_range",
1664 "syscalls:sys_enter_fsync",
1665 "syscalls:sys_enter_msync",
1667 "syscalls:sys_exit_read",
1668 "syscalls:sys_exit_pread64",
1669 "syscalls:sys_exit_readv",
1670 "syscalls:sys_exit_preadv",
1671 "syscalls:sys_exit_write",
1672 "syscalls:sys_exit_pwrite64",
1673 "syscalls:sys_exit_writev",
1674 "syscalls:sys_exit_pwritev",
1675 "syscalls:sys_exit_sync",
1676 "syscalls:sys_exit_sync_file_range",
1677 "syscalls:sys_exit_fsync",
1678 "syscalls:sys_exit_msync",
1680 unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1682 const char * const net_events[] = {
1683 "syscalls:sys_enter_recvfrom",
1684 "syscalls:sys_enter_recvmmsg",
1685 "syscalls:sys_enter_recvmsg",
1686 "syscalls:sys_enter_sendto",
1687 "syscalls:sys_enter_sendmsg",
1688 "syscalls:sys_enter_sendmmsg",
1690 "syscalls:sys_exit_recvfrom",
1691 "syscalls:sys_exit_recvmmsg",
1692 "syscalls:sys_exit_recvmsg",
1693 "syscalls:sys_exit_sendto",
1694 "syscalls:sys_exit_sendmsg",
1695 "syscalls:sys_exit_sendmmsg",
1697 unsigned int net_events_nr = ARRAY_SIZE(net_events);
1699 const char * const poll_events[] = {
1700 "syscalls:sys_enter_epoll_pwait",
1701 "syscalls:sys_enter_epoll_wait",
1702 "syscalls:sys_enter_poll",
1703 "syscalls:sys_enter_ppoll",
1704 "syscalls:sys_enter_pselect6",
1705 "syscalls:sys_enter_select",
1707 "syscalls:sys_exit_epoll_pwait",
1708 "syscalls:sys_exit_epoll_wait",
1709 "syscalls:sys_exit_poll",
1710 "syscalls:sys_exit_ppoll",
1711 "syscalls:sys_exit_pselect6",
1712 "syscalls:sys_exit_select",
1714 unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1716 rec_argc = common_args_nr +
1717 disk_events_nr * 4 +
1719 poll_events_nr * 4 +
1721 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1723 if (rec_argv == NULL)
1726 if (asprintf(&filter, "common_pid != %d", getpid()) < 0) {
1732 for (i = 0; i < common_args_nr; i++)
1733 *p++ = strdup(common_args[i]);
1735 for (i = 0; i < disk_events_nr; i++) {
1736 if (!is_valid_tracepoint(disk_events[i])) {
1742 *p++ = strdup(disk_events[i]);
1746 for (i = 0; i < net_events_nr; i++) {
1747 if (!is_valid_tracepoint(net_events[i])) {
1753 *p++ = strdup(net_events[i]);
1757 for (i = 0; i < poll_events_nr; i++) {
1758 if (!is_valid_tracepoint(poll_events[i])) {
1764 *p++ = strdup(poll_events[i]);
1769 for (i = 0; i < (unsigned int)argc; i++)
1772 return cmd_record(rec_argc, rec_argv);
1776 static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1778 unsigned int rec_argc, i, j;
1779 const char **rec_argv;
1781 unsigned int record_elems;
1783 const char * const common_args[] = {
1784 "record", "-a", "-R", "-c", "1",
1786 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1788 const char * const backtrace_args[] = {
1791 unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1793 const char * const power_args[] = {
1794 "-e", "power:cpu_frequency",
1795 "-e", "power:cpu_idle",
1797 unsigned int power_args_nr = ARRAY_SIZE(power_args);
1799 const char * const old_power_args[] = {
1800 #ifdef SUPPORT_OLD_POWER_EVENTS
1801 "-e", "power:power_start",
1802 "-e", "power:power_end",
1803 "-e", "power:power_frequency",
1806 unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1808 const char * const tasks_args[] = {
1809 "-e", "sched:sched_wakeup",
1810 "-e", "sched:sched_switch",
1812 unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1814 #ifdef SUPPORT_OLD_POWER_EVENTS
1815 if (!is_valid_tracepoint("power:cpu_idle") &&
1816 is_valid_tracepoint("power:power_start")) {
1817 use_old_power_events = 1;
1820 old_power_args_nr = 0;
1824 if (tchart->power_only)
1827 if (tchart->tasks_only) {
1829 old_power_args_nr = 0;
1832 if (!tchart->with_backtrace)
1833 backtrace_args_no = 0;
1835 record_elems = common_args_nr + tasks_args_nr +
1836 power_args_nr + old_power_args_nr + backtrace_args_no;
1838 rec_argc = record_elems + argc;
1839 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1841 if (rec_argv == NULL)
1845 for (i = 0; i < common_args_nr; i++)
1846 *p++ = strdup(common_args[i]);
1848 for (i = 0; i < backtrace_args_no; i++)
1849 *p++ = strdup(backtrace_args[i]);
1851 for (i = 0; i < tasks_args_nr; i++)
1852 *p++ = strdup(tasks_args[i]);
1854 for (i = 0; i < power_args_nr; i++)
1855 *p++ = strdup(power_args[i]);
1857 for (i = 0; i < old_power_args_nr; i++)
1858 *p++ = strdup(old_power_args[i]);
1860 for (j = 0; j < (unsigned int)argc; j++)
1863 return cmd_record(rec_argc, rec_argv);
1867 parse_process(const struct option *opt __maybe_unused, const char *arg,
1868 int __maybe_unused unset)
1871 add_process_filter(arg);
1876 parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1877 int __maybe_unused unset)
1879 unsigned long duration = strtoul(arg, NULL, 0);
1881 if (svg_highlight || svg_highlight_name)
1885 svg_highlight = duration;
1887 svg_highlight_name = strdup(arg);
1893 parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1896 u64 *value = opt->value;
1898 if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1901 *value *= NSEC_PER_MSEC;
1904 *value *= NSEC_PER_USEC;
1916 int cmd_timechart(int argc, const char **argv)
1918 struct timechart tchart = {
1920 .comm = process_comm_event,
1921 .fork = process_fork_event,
1922 .exit = process_exit_event,
1923 .sample = process_sample_event,
1924 .ordered_events = true,
1927 .min_time = NSEC_PER_MSEC,
1930 const char *output_name = "output.svg";
1931 const struct option timechart_common_options[] = {
1932 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1933 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only, "output processes data only"),
1936 const struct option timechart_options[] = {
1937 OPT_STRING('i', "input", &input_name, "file", "input file name"),
1938 OPT_STRING('o', "output", &output_name, "file", "output file name"),
1939 OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1940 OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1941 "highlight tasks. Pass duration in ns or process name.",
1943 OPT_CALLBACK('p', "process", NULL, "process",
1944 "process selector. Pass a pid or process name.",
1946 OPT_CALLBACK(0, "symfs", NULL, "directory",
1947 "Look for files with symbols relative to this directory",
1948 symbol__config_symfs),
1949 OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1950 "min. number of tasks to print"),
1951 OPT_BOOLEAN('t', "topology", &tchart.topology,
1952 "sort CPUs according to topology"),
1953 OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1954 "skip EAGAIN errors"),
1955 OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1956 "all IO faster than min-time will visually appear longer",
1958 OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1959 "merge events that are merge-dist us apart",
1961 OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
1962 OPT_PARENT(timechart_common_options),
1964 const char * const timechart_subcommands[] = { "record", NULL };
1965 const char *timechart_usage[] = {
1966 "perf timechart [<options>] {record}",
1969 const struct option timechart_record_options[] = {
1970 OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1971 "record only IO data"),
1972 OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1973 OPT_PARENT(timechart_common_options),
1975 const char * const timechart_record_usage[] = {
1976 "perf timechart record [<options>]",
1979 argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
1980 timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1982 if (tchart.power_only && tchart.tasks_only) {
1983 pr_err("-P and -T options cannot be used at the same time.\n");
1987 if (argc && !strncmp(argv[0], "rec", 3)) {
1988 argc = parse_options(argc, argv, timechart_record_options,
1989 timechart_record_usage,
1990 PARSE_OPT_STOP_AT_NON_OPTION);
1992 if (tchart.power_only && tchart.tasks_only) {
1993 pr_err("-P and -T options cannot be used at the same time.\n");
1998 return timechart__io_record(argc, argv);
2000 return timechart__record(&tchart, argc, argv);
2002 usage_with_options(timechart_usage, timechart_options);
2006 return __cmd_timechart(&tchart, output_name);