perf tools: Enhance the matching of sub-commands abbreviations
[linux-2.6-microblaze.git] / tools / perf / builtin-timechart.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * builtin-timechart.c - make an svg timechart of system activity
4  *
5  * (C) Copyright 2009 Intel Corporation
6  *
7  * Authors:
8  *     Arjan van de Ven <arjan@linux.intel.com>
9  */
10
11 #include <errno.h>
12 #include <inttypes.h>
13
14 #include "builtin.h"
15 #include "util/color.h"
16 #include <linux/list.h>
17 #include "util/evlist.h" // for struct evsel_str_handler
18 #include "util/evsel.h"
19 #include <linux/kernel.h>
20 #include <linux/rbtree.h>
21 #include <linux/time64.h>
22 #include <linux/zalloc.h>
23 #include "util/symbol.h"
24 #include "util/thread.h"
25 #include "util/callchain.h"
26
27 #include "perf.h"
28 #include "util/header.h"
29 #include <subcmd/pager.h>
30 #include <subcmd/parse-options.h>
31 #include "util/parse-events.h"
32 #include "util/event.h"
33 #include "util/session.h"
34 #include "util/svghelper.h"
35 #include "util/tool.h"
36 #include "util/data.h"
37 #include "util/debug.h"
38 #include "util/string2.h"
39 #include <linux/err.h>
40
41 #ifdef LACKS_OPEN_MEMSTREAM_PROTOTYPE
42 FILE *open_memstream(char **ptr, size_t *sizeloc);
43 #endif
44
45 #define SUPPORT_OLD_POWER_EVENTS 1
46 #define PWR_EVENT_EXIT -1
47
48 struct per_pid;
49 struct power_event;
50 struct wake_event;
51
52 struct timechart {
53         struct perf_tool        tool;
54         struct per_pid          *all_data;
55         struct power_event      *power_events;
56         struct wake_event       *wake_events;
57         int                     proc_num;
58         unsigned int            numcpus;
59         u64                     min_freq,       /* Lowest CPU frequency seen */
60                                 max_freq,       /* Highest CPU frequency seen */
61                                 turbo_frequency,
62                                 first_time, last_time;
63         bool                    power_only,
64                                 tasks_only,
65                                 with_backtrace,
66                                 topology;
67         bool                    force;
68         /* IO related settings */
69         bool                    io_only,
70                                 skip_eagain;
71         u64                     io_events;
72         u64                     min_time,
73                                 merge_dist;
74 };
75
76 struct per_pidcomm;
77 struct cpu_sample;
78 struct io_sample;
79
80 /*
81  * Datastructure layout:
82  * We keep an list of "pid"s, matching the kernels notion of a task struct.
83  * Each "pid" entry, has a list of "comm"s.
84  *      this is because we want to track different programs different, while
85  *      exec will reuse the original pid (by design).
86  * Each comm has a list of samples that will be used to draw
87  * final graph.
88  */
89
90 struct per_pid {
91         struct per_pid *next;
92
93         int             pid;
94         int             ppid;
95
96         u64             start_time;
97         u64             end_time;
98         u64             total_time;
99         u64             total_bytes;
100         int             display;
101
102         struct per_pidcomm *all;
103         struct per_pidcomm *current;
104 };
105
106
107 struct per_pidcomm {
108         struct per_pidcomm *next;
109
110         u64             start_time;
111         u64             end_time;
112         u64             total_time;
113         u64             max_bytes;
114         u64             total_bytes;
115
116         int             Y;
117         int             display;
118
119         long            state;
120         u64             state_since;
121
122         char            *comm;
123
124         struct cpu_sample *samples;
125         struct io_sample  *io_samples;
126 };
127
128 struct sample_wrapper {
129         struct sample_wrapper *next;
130
131         u64             timestamp;
132         unsigned char   data[];
133 };
134
135 #define TYPE_NONE       0
136 #define TYPE_RUNNING    1
137 #define TYPE_WAITING    2
138 #define TYPE_BLOCKED    3
139
140 struct cpu_sample {
141         struct cpu_sample *next;
142
143         u64 start_time;
144         u64 end_time;
145         int type;
146         int cpu;
147         const char *backtrace;
148 };
149
150 enum {
151         IOTYPE_READ,
152         IOTYPE_WRITE,
153         IOTYPE_SYNC,
154         IOTYPE_TX,
155         IOTYPE_RX,
156         IOTYPE_POLL,
157 };
158
159 struct io_sample {
160         struct io_sample *next;
161
162         u64 start_time;
163         u64 end_time;
164         u64 bytes;
165         int type;
166         int fd;
167         int err;
168         int merges;
169 };
170
171 #define CSTATE 1
172 #define PSTATE 2
173
174 struct power_event {
175         struct power_event *next;
176         int type;
177         int state;
178         u64 start_time;
179         u64 end_time;
180         int cpu;
181 };
182
183 struct wake_event {
184         struct wake_event *next;
185         int waker;
186         int wakee;
187         u64 time;
188         const char *backtrace;
189 };
190
191 struct process_filter {
192         char                    *name;
193         int                     pid;
194         struct process_filter   *next;
195 };
196
197 static struct process_filter *process_filter;
198
199
200 static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
201 {
202         struct per_pid *cursor = tchart->all_data;
203
204         while (cursor) {
205                 if (cursor->pid == pid)
206                         return cursor;
207                 cursor = cursor->next;
208         }
209         cursor = zalloc(sizeof(*cursor));
210         assert(cursor != NULL);
211         cursor->pid = pid;
212         cursor->next = tchart->all_data;
213         tchart->all_data = cursor;
214         return cursor;
215 }
216
217 static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
218 {
219         struct per_pid *p;
220         struct per_pidcomm *c;
221         p = find_create_pid(tchart, pid);
222         c = p->all;
223         while (c) {
224                 if (c->comm && strcmp(c->comm, comm) == 0) {
225                         p->current = c;
226                         return;
227                 }
228                 if (!c->comm) {
229                         c->comm = strdup(comm);
230                         p->current = c;
231                         return;
232                 }
233                 c = c->next;
234         }
235         c = zalloc(sizeof(*c));
236         assert(c != NULL);
237         c->comm = strdup(comm);
238         p->current = c;
239         c->next = p->all;
240         p->all = c;
241 }
242
243 static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
244 {
245         struct per_pid *p, *pp;
246         p = find_create_pid(tchart, pid);
247         pp = find_create_pid(tchart, ppid);
248         p->ppid = ppid;
249         if (pp->current && pp->current->comm && !p->current)
250                 pid_set_comm(tchart, pid, pp->current->comm);
251
252         p->start_time = timestamp;
253         if (p->current && !p->current->start_time) {
254                 p->current->start_time = timestamp;
255                 p->current->state_since = timestamp;
256         }
257 }
258
259 static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
260 {
261         struct per_pid *p;
262         p = find_create_pid(tchart, pid);
263         p->end_time = timestamp;
264         if (p->current)
265                 p->current->end_time = timestamp;
266 }
267
268 static void pid_put_sample(struct timechart *tchart, int pid, int type,
269                            unsigned int cpu, u64 start, u64 end,
270                            const char *backtrace)
271 {
272         struct per_pid *p;
273         struct per_pidcomm *c;
274         struct cpu_sample *sample;
275
276         p = find_create_pid(tchart, pid);
277         c = p->current;
278         if (!c) {
279                 c = zalloc(sizeof(*c));
280                 assert(c != NULL);
281                 p->current = c;
282                 c->next = p->all;
283                 p->all = c;
284         }
285
286         sample = zalloc(sizeof(*sample));
287         assert(sample != NULL);
288         sample->start_time = start;
289         sample->end_time = end;
290         sample->type = type;
291         sample->next = c->samples;
292         sample->cpu = cpu;
293         sample->backtrace = backtrace;
294         c->samples = sample;
295
296         if (sample->type == TYPE_RUNNING && end > start && start > 0) {
297                 c->total_time += (end-start);
298                 p->total_time += (end-start);
299         }
300
301         if (c->start_time == 0 || c->start_time > start)
302                 c->start_time = start;
303         if (p->start_time == 0 || p->start_time > start)
304                 p->start_time = start;
305 }
306
307 #define MAX_CPUS 4096
308
309 static u64 cpus_cstate_start_times[MAX_CPUS];
310 static int cpus_cstate_state[MAX_CPUS];
311 static u64 cpus_pstate_start_times[MAX_CPUS];
312 static u64 cpus_pstate_state[MAX_CPUS];
313
314 static int process_comm_event(struct perf_tool *tool,
315                               union perf_event *event,
316                               struct perf_sample *sample __maybe_unused,
317                               struct machine *machine __maybe_unused)
318 {
319         struct timechart *tchart = container_of(tool, struct timechart, tool);
320         pid_set_comm(tchart, event->comm.tid, event->comm.comm);
321         return 0;
322 }
323
324 static int process_fork_event(struct perf_tool *tool,
325                               union perf_event *event,
326                               struct perf_sample *sample __maybe_unused,
327                               struct machine *machine __maybe_unused)
328 {
329         struct timechart *tchart = container_of(tool, struct timechart, tool);
330         pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
331         return 0;
332 }
333
334 static int process_exit_event(struct perf_tool *tool,
335                               union perf_event *event,
336                               struct perf_sample *sample __maybe_unused,
337                               struct machine *machine __maybe_unused)
338 {
339         struct timechart *tchart = container_of(tool, struct timechart, tool);
340         pid_exit(tchart, event->fork.pid, event->fork.time);
341         return 0;
342 }
343
344 #ifdef SUPPORT_OLD_POWER_EVENTS
345 static int use_old_power_events;
346 #endif
347
348 static void c_state_start(int cpu, u64 timestamp, int state)
349 {
350         cpus_cstate_start_times[cpu] = timestamp;
351         cpus_cstate_state[cpu] = state;
352 }
353
354 static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
355 {
356         struct power_event *pwr = zalloc(sizeof(*pwr));
357
358         if (!pwr)
359                 return;
360
361         pwr->state = cpus_cstate_state[cpu];
362         pwr->start_time = cpus_cstate_start_times[cpu];
363         pwr->end_time = timestamp;
364         pwr->cpu = cpu;
365         pwr->type = CSTATE;
366         pwr->next = tchart->power_events;
367
368         tchart->power_events = pwr;
369 }
370
371 static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
372 {
373         struct power_event *pwr;
374
375         if (new_freq > 8000000) /* detect invalid data */
376                 return;
377
378         pwr = zalloc(sizeof(*pwr));
379         if (!pwr)
380                 return;
381
382         pwr->state = cpus_pstate_state[cpu];
383         pwr->start_time = cpus_pstate_start_times[cpu];
384         pwr->end_time = timestamp;
385         pwr->cpu = cpu;
386         pwr->type = PSTATE;
387         pwr->next = tchart->power_events;
388
389         if (!pwr->start_time)
390                 pwr->start_time = tchart->first_time;
391
392         tchart->power_events = pwr;
393
394         cpus_pstate_state[cpu] = new_freq;
395         cpus_pstate_start_times[cpu] = timestamp;
396
397         if ((u64)new_freq > tchart->max_freq)
398                 tchart->max_freq = new_freq;
399
400         if (new_freq < tchart->min_freq || tchart->min_freq == 0)
401                 tchart->min_freq = new_freq;
402
403         if (new_freq == tchart->max_freq - 1000)
404                 tchart->turbo_frequency = tchart->max_freq;
405 }
406
407 static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
408                          int waker, int wakee, u8 flags, const char *backtrace)
409 {
410         struct per_pid *p;
411         struct wake_event *we = zalloc(sizeof(*we));
412
413         if (!we)
414                 return;
415
416         we->time = timestamp;
417         we->waker = waker;
418         we->backtrace = backtrace;
419
420         if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
421                 we->waker = -1;
422
423         we->wakee = wakee;
424         we->next = tchart->wake_events;
425         tchart->wake_events = we;
426         p = find_create_pid(tchart, we->wakee);
427
428         if (p && p->current && p->current->state == TYPE_NONE) {
429                 p->current->state_since = timestamp;
430                 p->current->state = TYPE_WAITING;
431         }
432         if (p && p->current && p->current->state == TYPE_BLOCKED) {
433                 pid_put_sample(tchart, p->pid, p->current->state, cpu,
434                                p->current->state_since, timestamp, NULL);
435                 p->current->state_since = timestamp;
436                 p->current->state = TYPE_WAITING;
437         }
438 }
439
440 static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
441                          int prev_pid, int next_pid, u64 prev_state,
442                          const char *backtrace)
443 {
444         struct per_pid *p = NULL, *prev_p;
445
446         prev_p = find_create_pid(tchart, prev_pid);
447
448         p = find_create_pid(tchart, next_pid);
449
450         if (prev_p->current && prev_p->current->state != TYPE_NONE)
451                 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
452                                prev_p->current->state_since, timestamp,
453                                backtrace);
454         if (p && p->current) {
455                 if (p->current->state != TYPE_NONE)
456                         pid_put_sample(tchart, next_pid, p->current->state, cpu,
457                                        p->current->state_since, timestamp,
458                                        backtrace);
459
460                 p->current->state_since = timestamp;
461                 p->current->state = TYPE_RUNNING;
462         }
463
464         if (prev_p->current) {
465                 prev_p->current->state = TYPE_NONE;
466                 prev_p->current->state_since = timestamp;
467                 if (prev_state & 2)
468                         prev_p->current->state = TYPE_BLOCKED;
469                 if (prev_state == 0)
470                         prev_p->current->state = TYPE_WAITING;
471         }
472 }
473
474 static const char *cat_backtrace(union perf_event *event,
475                                  struct perf_sample *sample,
476                                  struct machine *machine)
477 {
478         struct addr_location al;
479         unsigned int i;
480         char *p = NULL;
481         size_t p_len;
482         u8 cpumode = PERF_RECORD_MISC_USER;
483         struct addr_location tal;
484         struct ip_callchain *chain = sample->callchain;
485         FILE *f = open_memstream(&p, &p_len);
486
487         if (!f) {
488                 perror("open_memstream error");
489                 return NULL;
490         }
491
492         if (!chain)
493                 goto exit;
494
495         if (machine__resolve(machine, &al, sample) < 0) {
496                 fprintf(stderr, "problem processing %d event, skipping it.\n",
497                         event->header.type);
498                 goto exit;
499         }
500
501         for (i = 0; i < chain->nr; i++) {
502                 u64 ip;
503
504                 if (callchain_param.order == ORDER_CALLEE)
505                         ip = chain->ips[i];
506                 else
507                         ip = chain->ips[chain->nr - i - 1];
508
509                 if (ip >= PERF_CONTEXT_MAX) {
510                         switch (ip) {
511                         case PERF_CONTEXT_HV:
512                                 cpumode = PERF_RECORD_MISC_HYPERVISOR;
513                                 break;
514                         case PERF_CONTEXT_KERNEL:
515                                 cpumode = PERF_RECORD_MISC_KERNEL;
516                                 break;
517                         case PERF_CONTEXT_USER:
518                                 cpumode = PERF_RECORD_MISC_USER;
519                                 break;
520                         default:
521                                 pr_debug("invalid callchain context: "
522                                          "%"PRId64"\n", (s64) ip);
523
524                                 /*
525                                  * It seems the callchain is corrupted.
526                                  * Discard all.
527                                  */
528                                 zfree(&p);
529                                 goto exit_put;
530                         }
531                         continue;
532                 }
533
534                 tal.filtered = 0;
535                 if (thread__find_symbol(al.thread, cpumode, ip, &tal))
536                         fprintf(f, "..... %016" PRIx64 " %s\n", ip, tal.sym->name);
537                 else
538                         fprintf(f, "..... %016" PRIx64 "\n", ip);
539         }
540 exit_put:
541         addr_location__put(&al);
542 exit:
543         fclose(f);
544
545         return p;
546 }
547
548 typedef int (*tracepoint_handler)(struct timechart *tchart,
549                                   struct evsel *evsel,
550                                   struct perf_sample *sample,
551                                   const char *backtrace);
552
553 static int process_sample_event(struct perf_tool *tool,
554                                 union perf_event *event,
555                                 struct perf_sample *sample,
556                                 struct evsel *evsel,
557                                 struct machine *machine)
558 {
559         struct timechart *tchart = container_of(tool, struct timechart, tool);
560
561         if (evsel->core.attr.sample_type & PERF_SAMPLE_TIME) {
562                 if (!tchart->first_time || tchart->first_time > sample->time)
563                         tchart->first_time = sample->time;
564                 if (tchart->last_time < sample->time)
565                         tchart->last_time = sample->time;
566         }
567
568         if (evsel->handler != NULL) {
569                 tracepoint_handler f = evsel->handler;
570                 return f(tchart, evsel, sample,
571                          cat_backtrace(event, sample, machine));
572         }
573
574         return 0;
575 }
576
577 static int
578 process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
579                         struct evsel *evsel,
580                         struct perf_sample *sample,
581                         const char *backtrace __maybe_unused)
582 {
583         u32 state  = evsel__intval(evsel, sample, "state");
584         u32 cpu_id = evsel__intval(evsel, sample, "cpu_id");
585
586         if (state == (u32)PWR_EVENT_EXIT)
587                 c_state_end(tchart, cpu_id, sample->time);
588         else
589                 c_state_start(cpu_id, sample->time, state);
590         return 0;
591 }
592
593 static int
594 process_sample_cpu_frequency(struct timechart *tchart,
595                              struct evsel *evsel,
596                              struct perf_sample *sample,
597                              const char *backtrace __maybe_unused)
598 {
599         u32 state  = evsel__intval(evsel, sample, "state");
600         u32 cpu_id = evsel__intval(evsel, sample, "cpu_id");
601
602         p_state_change(tchart, cpu_id, sample->time, state);
603         return 0;
604 }
605
606 static int
607 process_sample_sched_wakeup(struct timechart *tchart,
608                             struct evsel *evsel,
609                             struct perf_sample *sample,
610                             const char *backtrace)
611 {
612         u8 flags  = evsel__intval(evsel, sample, "common_flags");
613         int waker = evsel__intval(evsel, sample, "common_pid");
614         int wakee = evsel__intval(evsel, sample, "pid");
615
616         sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
617         return 0;
618 }
619
620 static int
621 process_sample_sched_switch(struct timechart *tchart,
622                             struct evsel *evsel,
623                             struct perf_sample *sample,
624                             const char *backtrace)
625 {
626         int prev_pid   = evsel__intval(evsel, sample, "prev_pid");
627         int next_pid   = evsel__intval(evsel, sample, "next_pid");
628         u64 prev_state = evsel__intval(evsel, sample, "prev_state");
629
630         sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
631                      prev_state, backtrace);
632         return 0;
633 }
634
635 #ifdef SUPPORT_OLD_POWER_EVENTS
636 static int
637 process_sample_power_start(struct timechart *tchart __maybe_unused,
638                            struct evsel *evsel,
639                            struct perf_sample *sample,
640                            const char *backtrace __maybe_unused)
641 {
642         u64 cpu_id = evsel__intval(evsel, sample, "cpu_id");
643         u64 value  = evsel__intval(evsel, sample, "value");
644
645         c_state_start(cpu_id, sample->time, value);
646         return 0;
647 }
648
649 static int
650 process_sample_power_end(struct timechart *tchart,
651                          struct evsel *evsel __maybe_unused,
652                          struct perf_sample *sample,
653                          const char *backtrace __maybe_unused)
654 {
655         c_state_end(tchart, sample->cpu, sample->time);
656         return 0;
657 }
658
659 static int
660 process_sample_power_frequency(struct timechart *tchart,
661                                struct evsel *evsel,
662                                struct perf_sample *sample,
663                                const char *backtrace __maybe_unused)
664 {
665         u64 cpu_id = evsel__intval(evsel, sample, "cpu_id");
666         u64 value  = evsel__intval(evsel, sample, "value");
667
668         p_state_change(tchart, cpu_id, sample->time, value);
669         return 0;
670 }
671 #endif /* SUPPORT_OLD_POWER_EVENTS */
672
673 /*
674  * After the last sample we need to wrap up the current C/P state
675  * and close out each CPU for these.
676  */
677 static void end_sample_processing(struct timechart *tchart)
678 {
679         u64 cpu;
680         struct power_event *pwr;
681
682         for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
683                 /* C state */
684 #if 0
685                 pwr = zalloc(sizeof(*pwr));
686                 if (!pwr)
687                         return;
688
689                 pwr->state = cpus_cstate_state[cpu];
690                 pwr->start_time = cpus_cstate_start_times[cpu];
691                 pwr->end_time = tchart->last_time;
692                 pwr->cpu = cpu;
693                 pwr->type = CSTATE;
694                 pwr->next = tchart->power_events;
695
696                 tchart->power_events = pwr;
697 #endif
698                 /* P state */
699
700                 pwr = zalloc(sizeof(*pwr));
701                 if (!pwr)
702                         return;
703
704                 pwr->state = cpus_pstate_state[cpu];
705                 pwr->start_time = cpus_pstate_start_times[cpu];
706                 pwr->end_time = tchart->last_time;
707                 pwr->cpu = cpu;
708                 pwr->type = PSTATE;
709                 pwr->next = tchart->power_events;
710
711                 if (!pwr->start_time)
712                         pwr->start_time = tchart->first_time;
713                 if (!pwr->state)
714                         pwr->state = tchart->min_freq;
715                 tchart->power_events = pwr;
716         }
717 }
718
719 static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
720                                u64 start, int fd)
721 {
722         struct per_pid *p = find_create_pid(tchart, pid);
723         struct per_pidcomm *c = p->current;
724         struct io_sample *sample;
725         struct io_sample *prev;
726
727         if (!c) {
728                 c = zalloc(sizeof(*c));
729                 if (!c)
730                         return -ENOMEM;
731                 p->current = c;
732                 c->next = p->all;
733                 p->all = c;
734         }
735
736         prev = c->io_samples;
737
738         if (prev && prev->start_time && !prev->end_time) {
739                 pr_warning("Skip invalid start event: "
740                            "previous event already started!\n");
741
742                 /* remove previous event that has been started,
743                  * we are not sure we will ever get an end for it */
744                 c->io_samples = prev->next;
745                 free(prev);
746                 return 0;
747         }
748
749         sample = zalloc(sizeof(*sample));
750         if (!sample)
751                 return -ENOMEM;
752         sample->start_time = start;
753         sample->type = type;
754         sample->fd = fd;
755         sample->next = c->io_samples;
756         c->io_samples = sample;
757
758         if (c->start_time == 0 || c->start_time > start)
759                 c->start_time = start;
760
761         return 0;
762 }
763
764 static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
765                              u64 end, long ret)
766 {
767         struct per_pid *p = find_create_pid(tchart, pid);
768         struct per_pidcomm *c = p->current;
769         struct io_sample *sample, *prev;
770
771         if (!c) {
772                 pr_warning("Invalid pidcomm!\n");
773                 return -1;
774         }
775
776         sample = c->io_samples;
777
778         if (!sample) /* skip partially captured events */
779                 return 0;
780
781         if (sample->end_time) {
782                 pr_warning("Skip invalid end event: "
783                            "previous event already ended!\n");
784                 return 0;
785         }
786
787         if (sample->type != type) {
788                 pr_warning("Skip invalid end event: invalid event type!\n");
789                 return 0;
790         }
791
792         sample->end_time = end;
793         prev = sample->next;
794
795         /* we want to be able to see small and fast transfers, so make them
796          * at least min_time long, but don't overlap them */
797         if (sample->end_time - sample->start_time < tchart->min_time)
798                 sample->end_time = sample->start_time + tchart->min_time;
799         if (prev && sample->start_time < prev->end_time) {
800                 if (prev->err) /* try to make errors more visible */
801                         sample->start_time = prev->end_time;
802                 else
803                         prev->end_time = sample->start_time;
804         }
805
806         if (ret < 0) {
807                 sample->err = ret;
808         } else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
809                    type == IOTYPE_TX || type == IOTYPE_RX) {
810
811                 if ((u64)ret > c->max_bytes)
812                         c->max_bytes = ret;
813
814                 c->total_bytes += ret;
815                 p->total_bytes += ret;
816                 sample->bytes = ret;
817         }
818
819         /* merge two requests to make svg smaller and render-friendly */
820         if (prev &&
821             prev->type == sample->type &&
822             prev->err == sample->err &&
823             prev->fd == sample->fd &&
824             prev->end_time + tchart->merge_dist >= sample->start_time) {
825
826                 sample->bytes += prev->bytes;
827                 sample->merges += prev->merges + 1;
828
829                 sample->start_time = prev->start_time;
830                 sample->next = prev->next;
831                 free(prev);
832
833                 if (!sample->err && sample->bytes > c->max_bytes)
834                         c->max_bytes = sample->bytes;
835         }
836
837         tchart->io_events++;
838
839         return 0;
840 }
841
842 static int
843 process_enter_read(struct timechart *tchart,
844                    struct evsel *evsel,
845                    struct perf_sample *sample)
846 {
847         long fd = evsel__intval(evsel, sample, "fd");
848         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
849                                    sample->time, fd);
850 }
851
852 static int
853 process_exit_read(struct timechart *tchart,
854                   struct evsel *evsel,
855                   struct perf_sample *sample)
856 {
857         long ret = evsel__intval(evsel, sample, "ret");
858         return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
859                                  sample->time, ret);
860 }
861
862 static int
863 process_enter_write(struct timechart *tchart,
864                     struct evsel *evsel,
865                     struct perf_sample *sample)
866 {
867         long fd = evsel__intval(evsel, sample, "fd");
868         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
869                                    sample->time, fd);
870 }
871
872 static int
873 process_exit_write(struct timechart *tchart,
874                    struct evsel *evsel,
875                    struct perf_sample *sample)
876 {
877         long ret = evsel__intval(evsel, sample, "ret");
878         return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
879                                  sample->time, ret);
880 }
881
882 static int
883 process_enter_sync(struct timechart *tchart,
884                    struct evsel *evsel,
885                    struct perf_sample *sample)
886 {
887         long fd = evsel__intval(evsel, sample, "fd");
888         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
889                                    sample->time, fd);
890 }
891
892 static int
893 process_exit_sync(struct timechart *tchart,
894                   struct evsel *evsel,
895                   struct perf_sample *sample)
896 {
897         long ret = evsel__intval(evsel, sample, "ret");
898         return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
899                                  sample->time, ret);
900 }
901
902 static int
903 process_enter_tx(struct timechart *tchart,
904                  struct evsel *evsel,
905                  struct perf_sample *sample)
906 {
907         long fd = evsel__intval(evsel, sample, "fd");
908         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
909                                    sample->time, fd);
910 }
911
912 static int
913 process_exit_tx(struct timechart *tchart,
914                 struct evsel *evsel,
915                 struct perf_sample *sample)
916 {
917         long ret = evsel__intval(evsel, sample, "ret");
918         return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
919                                  sample->time, ret);
920 }
921
922 static int
923 process_enter_rx(struct timechart *tchart,
924                  struct evsel *evsel,
925                  struct perf_sample *sample)
926 {
927         long fd = evsel__intval(evsel, sample, "fd");
928         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
929                                    sample->time, fd);
930 }
931
932 static int
933 process_exit_rx(struct timechart *tchart,
934                 struct evsel *evsel,
935                 struct perf_sample *sample)
936 {
937         long ret = evsel__intval(evsel, sample, "ret");
938         return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
939                                  sample->time, ret);
940 }
941
942 static int
943 process_enter_poll(struct timechart *tchart,
944                    struct evsel *evsel,
945                    struct perf_sample *sample)
946 {
947         long fd = evsel__intval(evsel, sample, "fd");
948         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
949                                    sample->time, fd);
950 }
951
952 static int
953 process_exit_poll(struct timechart *tchart,
954                   struct evsel *evsel,
955                   struct perf_sample *sample)
956 {
957         long ret = evsel__intval(evsel, sample, "ret");
958         return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
959                                  sample->time, ret);
960 }
961
962 /*
963  * Sort the pid datastructure
964  */
965 static void sort_pids(struct timechart *tchart)
966 {
967         struct per_pid *new_list, *p, *cursor, *prev;
968         /* sort by ppid first, then by pid, lowest to highest */
969
970         new_list = NULL;
971
972         while (tchart->all_data) {
973                 p = tchart->all_data;
974                 tchart->all_data = p->next;
975                 p->next = NULL;
976
977                 if (new_list == NULL) {
978                         new_list = p;
979                         p->next = NULL;
980                         continue;
981                 }
982                 prev = NULL;
983                 cursor = new_list;
984                 while (cursor) {
985                         if (cursor->ppid > p->ppid ||
986                                 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
987                                 /* must insert before */
988                                 if (prev) {
989                                         p->next = prev->next;
990                                         prev->next = p;
991                                         cursor = NULL;
992                                         continue;
993                                 } else {
994                                         p->next = new_list;
995                                         new_list = p;
996                                         cursor = NULL;
997                                         continue;
998                                 }
999                         }
1000
1001                         prev = cursor;
1002                         cursor = cursor->next;
1003                         if (!cursor)
1004                                 prev->next = p;
1005                 }
1006         }
1007         tchart->all_data = new_list;
1008 }
1009
1010
1011 static void draw_c_p_states(struct timechart *tchart)
1012 {
1013         struct power_event *pwr;
1014         pwr = tchart->power_events;
1015
1016         /*
1017          * two pass drawing so that the P state bars are on top of the C state blocks
1018          */
1019         while (pwr) {
1020                 if (pwr->type == CSTATE)
1021                         svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1022                 pwr = pwr->next;
1023         }
1024
1025         pwr = tchart->power_events;
1026         while (pwr) {
1027                 if (pwr->type == PSTATE) {
1028                         if (!pwr->state)
1029                                 pwr->state = tchart->min_freq;
1030                         svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1031                 }
1032                 pwr = pwr->next;
1033         }
1034 }
1035
1036 static void draw_wakeups(struct timechart *tchart)
1037 {
1038         struct wake_event *we;
1039         struct per_pid *p;
1040         struct per_pidcomm *c;
1041
1042         we = tchart->wake_events;
1043         while (we) {
1044                 int from = 0, to = 0;
1045                 char *task_from = NULL, *task_to = NULL;
1046
1047                 /* locate the column of the waker and wakee */
1048                 p = tchart->all_data;
1049                 while (p) {
1050                         if (p->pid == we->waker || p->pid == we->wakee) {
1051                                 c = p->all;
1052                                 while (c) {
1053                                         if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
1054                                                 if (p->pid == we->waker && !from) {
1055                                                         from = c->Y;
1056                                                         task_from = strdup(c->comm);
1057                                                 }
1058                                                 if (p->pid == we->wakee && !to) {
1059                                                         to = c->Y;
1060                                                         task_to = strdup(c->comm);
1061                                                 }
1062                                         }
1063                                         c = c->next;
1064                                 }
1065                                 c = p->all;
1066                                 while (c) {
1067                                         if (p->pid == we->waker && !from) {
1068                                                 from = c->Y;
1069                                                 task_from = strdup(c->comm);
1070                                         }
1071                                         if (p->pid == we->wakee && !to) {
1072                                                 to = c->Y;
1073                                                 task_to = strdup(c->comm);
1074                                         }
1075                                         c = c->next;
1076                                 }
1077                         }
1078                         p = p->next;
1079                 }
1080
1081                 if (!task_from) {
1082                         task_from = malloc(40);
1083                         sprintf(task_from, "[%i]", we->waker);
1084                 }
1085                 if (!task_to) {
1086                         task_to = malloc(40);
1087                         sprintf(task_to, "[%i]", we->wakee);
1088                 }
1089
1090                 if (we->waker == -1)
1091                         svg_interrupt(we->time, to, we->backtrace);
1092                 else if (from && to && abs(from - to) == 1)
1093                         svg_wakeline(we->time, from, to, we->backtrace);
1094                 else
1095                         svg_partial_wakeline(we->time, from, task_from, to,
1096                                              task_to, we->backtrace);
1097                 we = we->next;
1098
1099                 free(task_from);
1100                 free(task_to);
1101         }
1102 }
1103
1104 static void draw_cpu_usage(struct timechart *tchart)
1105 {
1106         struct per_pid *p;
1107         struct per_pidcomm *c;
1108         struct cpu_sample *sample;
1109         p = tchart->all_data;
1110         while (p) {
1111                 c = p->all;
1112                 while (c) {
1113                         sample = c->samples;
1114                         while (sample) {
1115                                 if (sample->type == TYPE_RUNNING) {
1116                                         svg_process(sample->cpu,
1117                                                     sample->start_time,
1118                                                     sample->end_time,
1119                                                     p->pid,
1120                                                     c->comm,
1121                                                     sample->backtrace);
1122                                 }
1123
1124                                 sample = sample->next;
1125                         }
1126                         c = c->next;
1127                 }
1128                 p = p->next;
1129         }
1130 }
1131
1132 static void draw_io_bars(struct timechart *tchart)
1133 {
1134         const char *suf;
1135         double bytes;
1136         char comm[256];
1137         struct per_pid *p;
1138         struct per_pidcomm *c;
1139         struct io_sample *sample;
1140         int Y = 1;
1141
1142         p = tchart->all_data;
1143         while (p) {
1144                 c = p->all;
1145                 while (c) {
1146                         if (!c->display) {
1147                                 c->Y = 0;
1148                                 c = c->next;
1149                                 continue;
1150                         }
1151
1152                         svg_box(Y, c->start_time, c->end_time, "process3");
1153                         sample = c->io_samples;
1154                         for (sample = c->io_samples; sample; sample = sample->next) {
1155                                 double h = (double)sample->bytes / c->max_bytes;
1156
1157                                 if (tchart->skip_eagain &&
1158                                     sample->err == -EAGAIN)
1159                                         continue;
1160
1161                                 if (sample->err)
1162                                         h = 1;
1163
1164                                 if (sample->type == IOTYPE_SYNC)
1165                                         svg_fbox(Y,
1166                                                 sample->start_time,
1167                                                 sample->end_time,
1168                                                 1,
1169                                                 sample->err ? "error" : "sync",
1170                                                 sample->fd,
1171                                                 sample->err,
1172                                                 sample->merges);
1173                                 else if (sample->type == IOTYPE_POLL)
1174                                         svg_fbox(Y,
1175                                                 sample->start_time,
1176                                                 sample->end_time,
1177                                                 1,
1178                                                 sample->err ? "error" : "poll",
1179                                                 sample->fd,
1180                                                 sample->err,
1181                                                 sample->merges);
1182                                 else if (sample->type == IOTYPE_READ)
1183                                         svg_ubox(Y,
1184                                                 sample->start_time,
1185                                                 sample->end_time,
1186                                                 h,
1187                                                 sample->err ? "error" : "disk",
1188                                                 sample->fd,
1189                                                 sample->err,
1190                                                 sample->merges);
1191                                 else if (sample->type == IOTYPE_WRITE)
1192                                         svg_lbox(Y,
1193                                                 sample->start_time,
1194                                                 sample->end_time,
1195                                                 h,
1196                                                 sample->err ? "error" : "disk",
1197                                                 sample->fd,
1198                                                 sample->err,
1199                                                 sample->merges);
1200                                 else if (sample->type == IOTYPE_RX)
1201                                         svg_ubox(Y,
1202                                                 sample->start_time,
1203                                                 sample->end_time,
1204                                                 h,
1205                                                 sample->err ? "error" : "net",
1206                                                 sample->fd,
1207                                                 sample->err,
1208                                                 sample->merges);
1209                                 else if (sample->type == IOTYPE_TX)
1210                                         svg_lbox(Y,
1211                                                 sample->start_time,
1212                                                 sample->end_time,
1213                                                 h,
1214                                                 sample->err ? "error" : "net",
1215                                                 sample->fd,
1216                                                 sample->err,
1217                                                 sample->merges);
1218                         }
1219
1220                         suf = "";
1221                         bytes = c->total_bytes;
1222                         if (bytes > 1024) {
1223                                 bytes = bytes / 1024;
1224                                 suf = "K";
1225                         }
1226                         if (bytes > 1024) {
1227                                 bytes = bytes / 1024;
1228                                 suf = "M";
1229                         }
1230                         if (bytes > 1024) {
1231                                 bytes = bytes / 1024;
1232                                 suf = "G";
1233                         }
1234
1235
1236                         sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1237                         svg_text(Y, c->start_time, comm);
1238
1239                         c->Y = Y;
1240                         Y++;
1241                         c = c->next;
1242                 }
1243                 p = p->next;
1244         }
1245 }
1246
1247 static void draw_process_bars(struct timechart *tchart)
1248 {
1249         struct per_pid *p;
1250         struct per_pidcomm *c;
1251         struct cpu_sample *sample;
1252         int Y = 0;
1253
1254         Y = 2 * tchart->numcpus + 2;
1255
1256         p = tchart->all_data;
1257         while (p) {
1258                 c = p->all;
1259                 while (c) {
1260                         if (!c->display) {
1261                                 c->Y = 0;
1262                                 c = c->next;
1263                                 continue;
1264                         }
1265
1266                         svg_box(Y, c->start_time, c->end_time, "process");
1267                         sample = c->samples;
1268                         while (sample) {
1269                                 if (sample->type == TYPE_RUNNING)
1270                                         svg_running(Y, sample->cpu,
1271                                                     sample->start_time,
1272                                                     sample->end_time,
1273                                                     sample->backtrace);
1274                                 if (sample->type == TYPE_BLOCKED)
1275                                         svg_blocked(Y, sample->cpu,
1276                                                     sample->start_time,
1277                                                     sample->end_time,
1278                                                     sample->backtrace);
1279                                 if (sample->type == TYPE_WAITING)
1280                                         svg_waiting(Y, sample->cpu,
1281                                                     sample->start_time,
1282                                                     sample->end_time,
1283                                                     sample->backtrace);
1284                                 sample = sample->next;
1285                         }
1286
1287                         if (c->comm) {
1288                                 char comm[256];
1289                                 if (c->total_time > 5000000000) /* 5 seconds */
1290                                         sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / (double)NSEC_PER_SEC);
1291                                 else
1292                                         sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / (double)NSEC_PER_MSEC);
1293
1294                                 svg_text(Y, c->start_time, comm);
1295                         }
1296                         c->Y = Y;
1297                         Y++;
1298                         c = c->next;
1299                 }
1300                 p = p->next;
1301         }
1302 }
1303
1304 static void add_process_filter(const char *string)
1305 {
1306         int pid = strtoull(string, NULL, 10);
1307         struct process_filter *filt = malloc(sizeof(*filt));
1308
1309         if (!filt)
1310                 return;
1311
1312         filt->name = strdup(string);
1313         filt->pid  = pid;
1314         filt->next = process_filter;
1315
1316         process_filter = filt;
1317 }
1318
1319 static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1320 {
1321         struct process_filter *filt;
1322         if (!process_filter)
1323                 return 1;
1324
1325         filt = process_filter;
1326         while (filt) {
1327                 if (filt->pid && p->pid == filt->pid)
1328                         return 1;
1329                 if (strcmp(filt->name, c->comm) == 0)
1330                         return 1;
1331                 filt = filt->next;
1332         }
1333         return 0;
1334 }
1335
1336 static int determine_display_tasks_filtered(struct timechart *tchart)
1337 {
1338         struct per_pid *p;
1339         struct per_pidcomm *c;
1340         int count = 0;
1341
1342         p = tchart->all_data;
1343         while (p) {
1344                 p->display = 0;
1345                 if (p->start_time == 1)
1346                         p->start_time = tchart->first_time;
1347
1348                 /* no exit marker, task kept running to the end */
1349                 if (p->end_time == 0)
1350                         p->end_time = tchart->last_time;
1351
1352                 c = p->all;
1353
1354                 while (c) {
1355                         c->display = 0;
1356
1357                         if (c->start_time == 1)
1358                                 c->start_time = tchart->first_time;
1359
1360                         if (passes_filter(p, c)) {
1361                                 c->display = 1;
1362                                 p->display = 1;
1363                                 count++;
1364                         }
1365
1366                         if (c->end_time == 0)
1367                                 c->end_time = tchart->last_time;
1368
1369                         c = c->next;
1370                 }
1371                 p = p->next;
1372         }
1373         return count;
1374 }
1375
1376 static int determine_display_tasks(struct timechart *tchart, u64 threshold)
1377 {
1378         struct per_pid *p;
1379         struct per_pidcomm *c;
1380         int count = 0;
1381
1382         p = tchart->all_data;
1383         while (p) {
1384                 p->display = 0;
1385                 if (p->start_time == 1)
1386                         p->start_time = tchart->first_time;
1387
1388                 /* no exit marker, task kept running to the end */
1389                 if (p->end_time == 0)
1390                         p->end_time = tchart->last_time;
1391                 if (p->total_time >= threshold)
1392                         p->display = 1;
1393
1394                 c = p->all;
1395
1396                 while (c) {
1397                         c->display = 0;
1398
1399                         if (c->start_time == 1)
1400                                 c->start_time = tchart->first_time;
1401
1402                         if (c->total_time >= threshold) {
1403                                 c->display = 1;
1404                                 count++;
1405                         }
1406
1407                         if (c->end_time == 0)
1408                                 c->end_time = tchart->last_time;
1409
1410                         c = c->next;
1411                 }
1412                 p = p->next;
1413         }
1414         return count;
1415 }
1416
1417 static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1418 {
1419         struct per_pid *p;
1420         struct per_pidcomm *c;
1421         int count = 0;
1422
1423         p = timechart->all_data;
1424         while (p) {
1425                 /* no exit marker, task kept running to the end */
1426                 if (p->end_time == 0)
1427                         p->end_time = timechart->last_time;
1428
1429                 c = p->all;
1430
1431                 while (c) {
1432                         c->display = 0;
1433
1434                         if (c->total_bytes >= threshold) {
1435                                 c->display = 1;
1436                                 count++;
1437                         }
1438
1439                         if (c->end_time == 0)
1440                                 c->end_time = timechart->last_time;
1441
1442                         c = c->next;
1443                 }
1444                 p = p->next;
1445         }
1446         return count;
1447 }
1448
1449 #define BYTES_THRESH (1 * 1024 * 1024)
1450 #define TIME_THRESH 10000000
1451
1452 static void write_svg_file(struct timechart *tchart, const char *filename)
1453 {
1454         u64 i;
1455         int count;
1456         int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
1457
1458         if (tchart->power_only)
1459                 tchart->proc_num = 0;
1460
1461         /* We'd like to show at least proc_num tasks;
1462          * be less picky if we have fewer */
1463         do {
1464                 if (process_filter)
1465                         count = determine_display_tasks_filtered(tchart);
1466                 else if (tchart->io_events)
1467                         count = determine_display_io_tasks(tchart, thresh);
1468                 else
1469                         count = determine_display_tasks(tchart, thresh);
1470                 thresh /= 10;
1471         } while (!process_filter && thresh && count < tchart->proc_num);
1472
1473         if (!tchart->proc_num)
1474                 count = 0;
1475
1476         if (tchart->io_events) {
1477                 open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
1478
1479                 svg_time_grid(0.5);
1480                 svg_io_legenda();
1481
1482                 draw_io_bars(tchart);
1483         } else {
1484                 open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1485
1486                 svg_time_grid(0);
1487
1488                 svg_legenda();
1489
1490                 for (i = 0; i < tchart->numcpus; i++)
1491                         svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1492
1493                 draw_cpu_usage(tchart);
1494                 if (tchart->proc_num)
1495                         draw_process_bars(tchart);
1496                 if (!tchart->tasks_only)
1497                         draw_c_p_states(tchart);
1498                 if (tchart->proc_num)
1499                         draw_wakeups(tchart);
1500         }
1501
1502         svg_close();
1503 }
1504
1505 static int process_header(struct perf_file_section *section __maybe_unused,
1506                           struct perf_header *ph,
1507                           int feat,
1508                           int fd __maybe_unused,
1509                           void *data)
1510 {
1511         struct timechart *tchart = data;
1512
1513         switch (feat) {
1514         case HEADER_NRCPUS:
1515                 tchart->numcpus = ph->env.nr_cpus_avail;
1516                 break;
1517
1518         case HEADER_CPU_TOPOLOGY:
1519                 if (!tchart->topology)
1520                         break;
1521
1522                 if (svg_build_topology_map(&ph->env))
1523                         fprintf(stderr, "problem building topology\n");
1524                 break;
1525
1526         default:
1527                 break;
1528         }
1529
1530         return 0;
1531 }
1532
1533 static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1534 {
1535         const struct evsel_str_handler power_tracepoints[] = {
1536                 { "power:cpu_idle",             process_sample_cpu_idle },
1537                 { "power:cpu_frequency",        process_sample_cpu_frequency },
1538                 { "sched:sched_wakeup",         process_sample_sched_wakeup },
1539                 { "sched:sched_switch",         process_sample_sched_switch },
1540 #ifdef SUPPORT_OLD_POWER_EVENTS
1541                 { "power:power_start",          process_sample_power_start },
1542                 { "power:power_end",            process_sample_power_end },
1543                 { "power:power_frequency",      process_sample_power_frequency },
1544 #endif
1545
1546                 { "syscalls:sys_enter_read",            process_enter_read },
1547                 { "syscalls:sys_enter_pread64",         process_enter_read },
1548                 { "syscalls:sys_enter_readv",           process_enter_read },
1549                 { "syscalls:sys_enter_preadv",          process_enter_read },
1550                 { "syscalls:sys_enter_write",           process_enter_write },
1551                 { "syscalls:sys_enter_pwrite64",        process_enter_write },
1552                 { "syscalls:sys_enter_writev",          process_enter_write },
1553                 { "syscalls:sys_enter_pwritev",         process_enter_write },
1554                 { "syscalls:sys_enter_sync",            process_enter_sync },
1555                 { "syscalls:sys_enter_sync_file_range", process_enter_sync },
1556                 { "syscalls:sys_enter_fsync",           process_enter_sync },
1557                 { "syscalls:sys_enter_msync",           process_enter_sync },
1558                 { "syscalls:sys_enter_recvfrom",        process_enter_rx },
1559                 { "syscalls:sys_enter_recvmmsg",        process_enter_rx },
1560                 { "syscalls:sys_enter_recvmsg",         process_enter_rx },
1561                 { "syscalls:sys_enter_sendto",          process_enter_tx },
1562                 { "syscalls:sys_enter_sendmsg",         process_enter_tx },
1563                 { "syscalls:sys_enter_sendmmsg",        process_enter_tx },
1564                 { "syscalls:sys_enter_epoll_pwait",     process_enter_poll },
1565                 { "syscalls:sys_enter_epoll_wait",      process_enter_poll },
1566                 { "syscalls:sys_enter_poll",            process_enter_poll },
1567                 { "syscalls:sys_enter_ppoll",           process_enter_poll },
1568                 { "syscalls:sys_enter_pselect6",        process_enter_poll },
1569                 { "syscalls:sys_enter_select",          process_enter_poll },
1570
1571                 { "syscalls:sys_exit_read",             process_exit_read },
1572                 { "syscalls:sys_exit_pread64",          process_exit_read },
1573                 { "syscalls:sys_exit_readv",            process_exit_read },
1574                 { "syscalls:sys_exit_preadv",           process_exit_read },
1575                 { "syscalls:sys_exit_write",            process_exit_write },
1576                 { "syscalls:sys_exit_pwrite64",         process_exit_write },
1577                 { "syscalls:sys_exit_writev",           process_exit_write },
1578                 { "syscalls:sys_exit_pwritev",          process_exit_write },
1579                 { "syscalls:sys_exit_sync",             process_exit_sync },
1580                 { "syscalls:sys_exit_sync_file_range",  process_exit_sync },
1581                 { "syscalls:sys_exit_fsync",            process_exit_sync },
1582                 { "syscalls:sys_exit_msync",            process_exit_sync },
1583                 { "syscalls:sys_exit_recvfrom",         process_exit_rx },
1584                 { "syscalls:sys_exit_recvmmsg",         process_exit_rx },
1585                 { "syscalls:sys_exit_recvmsg",          process_exit_rx },
1586                 { "syscalls:sys_exit_sendto",           process_exit_tx },
1587                 { "syscalls:sys_exit_sendmsg",          process_exit_tx },
1588                 { "syscalls:sys_exit_sendmmsg",         process_exit_tx },
1589                 { "syscalls:sys_exit_epoll_pwait",      process_exit_poll },
1590                 { "syscalls:sys_exit_epoll_wait",       process_exit_poll },
1591                 { "syscalls:sys_exit_poll",             process_exit_poll },
1592                 { "syscalls:sys_exit_ppoll",            process_exit_poll },
1593                 { "syscalls:sys_exit_pselect6",         process_exit_poll },
1594                 { "syscalls:sys_exit_select",           process_exit_poll },
1595         };
1596         struct perf_data data = {
1597                 .path  = input_name,
1598                 .mode  = PERF_DATA_MODE_READ,
1599                 .force = tchart->force,
1600         };
1601
1602         struct perf_session *session = perf_session__new(&data, &tchart->tool);
1603         int ret = -EINVAL;
1604
1605         if (IS_ERR(session))
1606                 return PTR_ERR(session);
1607
1608         symbol__init(&session->header.env);
1609
1610         (void)perf_header__process_sections(&session->header,
1611                                             perf_data__fd(session->data),
1612                                             tchart,
1613                                             process_header);
1614
1615         if (!perf_session__has_traces(session, "timechart record"))
1616                 goto out_delete;
1617
1618         if (perf_session__set_tracepoints_handlers(session,
1619                                                    power_tracepoints)) {
1620                 pr_err("Initializing session tracepoint handlers failed\n");
1621                 goto out_delete;
1622         }
1623
1624         ret = perf_session__process_events(session);
1625         if (ret)
1626                 goto out_delete;
1627
1628         end_sample_processing(tchart);
1629
1630         sort_pids(tchart);
1631
1632         write_svg_file(tchart, output_name);
1633
1634         pr_info("Written %2.1f seconds of trace to %s.\n",
1635                 (tchart->last_time - tchart->first_time) / (double)NSEC_PER_SEC, output_name);
1636 out_delete:
1637         perf_session__delete(session);
1638         return ret;
1639 }
1640
1641 static int timechart__io_record(int argc, const char **argv)
1642 {
1643         unsigned int rec_argc, i;
1644         const char **rec_argv;
1645         const char **p;
1646         char *filter = NULL;
1647
1648         const char * const common_args[] = {
1649                 "record", "-a", "-R", "-c", "1",
1650         };
1651         unsigned int common_args_nr = ARRAY_SIZE(common_args);
1652
1653         const char * const disk_events[] = {
1654                 "syscalls:sys_enter_read",
1655                 "syscalls:sys_enter_pread64",
1656                 "syscalls:sys_enter_readv",
1657                 "syscalls:sys_enter_preadv",
1658                 "syscalls:sys_enter_write",
1659                 "syscalls:sys_enter_pwrite64",
1660                 "syscalls:sys_enter_writev",
1661                 "syscalls:sys_enter_pwritev",
1662                 "syscalls:sys_enter_sync",
1663                 "syscalls:sys_enter_sync_file_range",
1664                 "syscalls:sys_enter_fsync",
1665                 "syscalls:sys_enter_msync",
1666
1667                 "syscalls:sys_exit_read",
1668                 "syscalls:sys_exit_pread64",
1669                 "syscalls:sys_exit_readv",
1670                 "syscalls:sys_exit_preadv",
1671                 "syscalls:sys_exit_write",
1672                 "syscalls:sys_exit_pwrite64",
1673                 "syscalls:sys_exit_writev",
1674                 "syscalls:sys_exit_pwritev",
1675                 "syscalls:sys_exit_sync",
1676                 "syscalls:sys_exit_sync_file_range",
1677                 "syscalls:sys_exit_fsync",
1678                 "syscalls:sys_exit_msync",
1679         };
1680         unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1681
1682         const char * const net_events[] = {
1683                 "syscalls:sys_enter_recvfrom",
1684                 "syscalls:sys_enter_recvmmsg",
1685                 "syscalls:sys_enter_recvmsg",
1686                 "syscalls:sys_enter_sendto",
1687                 "syscalls:sys_enter_sendmsg",
1688                 "syscalls:sys_enter_sendmmsg",
1689
1690                 "syscalls:sys_exit_recvfrom",
1691                 "syscalls:sys_exit_recvmmsg",
1692                 "syscalls:sys_exit_recvmsg",
1693                 "syscalls:sys_exit_sendto",
1694                 "syscalls:sys_exit_sendmsg",
1695                 "syscalls:sys_exit_sendmmsg",
1696         };
1697         unsigned int net_events_nr = ARRAY_SIZE(net_events);
1698
1699         const char * const poll_events[] = {
1700                 "syscalls:sys_enter_epoll_pwait",
1701                 "syscalls:sys_enter_epoll_wait",
1702                 "syscalls:sys_enter_poll",
1703                 "syscalls:sys_enter_ppoll",
1704                 "syscalls:sys_enter_pselect6",
1705                 "syscalls:sys_enter_select",
1706
1707                 "syscalls:sys_exit_epoll_pwait",
1708                 "syscalls:sys_exit_epoll_wait",
1709                 "syscalls:sys_exit_poll",
1710                 "syscalls:sys_exit_ppoll",
1711                 "syscalls:sys_exit_pselect6",
1712                 "syscalls:sys_exit_select",
1713         };
1714         unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1715
1716         rec_argc = common_args_nr +
1717                 disk_events_nr * 4 +
1718                 net_events_nr * 4 +
1719                 poll_events_nr * 4 +
1720                 argc;
1721         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1722
1723         if (rec_argv == NULL)
1724                 return -ENOMEM;
1725
1726         if (asprintf(&filter, "common_pid != %d", getpid()) < 0) {
1727                 free(rec_argv);
1728                 return -ENOMEM;
1729         }
1730
1731         p = rec_argv;
1732         for (i = 0; i < common_args_nr; i++)
1733                 *p++ = strdup(common_args[i]);
1734
1735         for (i = 0; i < disk_events_nr; i++) {
1736                 if (!is_valid_tracepoint(disk_events[i])) {
1737                         rec_argc -= 4;
1738                         continue;
1739                 }
1740
1741                 *p++ = "-e";
1742                 *p++ = strdup(disk_events[i]);
1743                 *p++ = "--filter";
1744                 *p++ = filter;
1745         }
1746         for (i = 0; i < net_events_nr; i++) {
1747                 if (!is_valid_tracepoint(net_events[i])) {
1748                         rec_argc -= 4;
1749                         continue;
1750                 }
1751
1752                 *p++ = "-e";
1753                 *p++ = strdup(net_events[i]);
1754                 *p++ = "--filter";
1755                 *p++ = filter;
1756         }
1757         for (i = 0; i < poll_events_nr; i++) {
1758                 if (!is_valid_tracepoint(poll_events[i])) {
1759                         rec_argc -= 4;
1760                         continue;
1761                 }
1762
1763                 *p++ = "-e";
1764                 *p++ = strdup(poll_events[i]);
1765                 *p++ = "--filter";
1766                 *p++ = filter;
1767         }
1768
1769         for (i = 0; i < (unsigned int)argc; i++)
1770                 *p++ = argv[i];
1771
1772         return cmd_record(rec_argc, rec_argv);
1773 }
1774
1775
1776 static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1777 {
1778         unsigned int rec_argc, i, j;
1779         const char **rec_argv;
1780         const char **p;
1781         unsigned int record_elems;
1782
1783         const char * const common_args[] = {
1784                 "record", "-a", "-R", "-c", "1",
1785         };
1786         unsigned int common_args_nr = ARRAY_SIZE(common_args);
1787
1788         const char * const backtrace_args[] = {
1789                 "-g",
1790         };
1791         unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1792
1793         const char * const power_args[] = {
1794                 "-e", "power:cpu_frequency",
1795                 "-e", "power:cpu_idle",
1796         };
1797         unsigned int power_args_nr = ARRAY_SIZE(power_args);
1798
1799         const char * const old_power_args[] = {
1800 #ifdef SUPPORT_OLD_POWER_EVENTS
1801                 "-e", "power:power_start",
1802                 "-e", "power:power_end",
1803                 "-e", "power:power_frequency",
1804 #endif
1805         };
1806         unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1807
1808         const char * const tasks_args[] = {
1809                 "-e", "sched:sched_wakeup",
1810                 "-e", "sched:sched_switch",
1811         };
1812         unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1813
1814 #ifdef SUPPORT_OLD_POWER_EVENTS
1815         if (!is_valid_tracepoint("power:cpu_idle") &&
1816             is_valid_tracepoint("power:power_start")) {
1817                 use_old_power_events = 1;
1818                 power_args_nr = 0;
1819         } else {
1820                 old_power_args_nr = 0;
1821         }
1822 #endif
1823
1824         if (tchart->power_only)
1825                 tasks_args_nr = 0;
1826
1827         if (tchart->tasks_only) {
1828                 power_args_nr = 0;
1829                 old_power_args_nr = 0;
1830         }
1831
1832         if (!tchart->with_backtrace)
1833                 backtrace_args_no = 0;
1834
1835         record_elems = common_args_nr + tasks_args_nr +
1836                 power_args_nr + old_power_args_nr + backtrace_args_no;
1837
1838         rec_argc = record_elems + argc;
1839         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1840
1841         if (rec_argv == NULL)
1842                 return -ENOMEM;
1843
1844         p = rec_argv;
1845         for (i = 0; i < common_args_nr; i++)
1846                 *p++ = strdup(common_args[i]);
1847
1848         for (i = 0; i < backtrace_args_no; i++)
1849                 *p++ = strdup(backtrace_args[i]);
1850
1851         for (i = 0; i < tasks_args_nr; i++)
1852                 *p++ = strdup(tasks_args[i]);
1853
1854         for (i = 0; i < power_args_nr; i++)
1855                 *p++ = strdup(power_args[i]);
1856
1857         for (i = 0; i < old_power_args_nr; i++)
1858                 *p++ = strdup(old_power_args[i]);
1859
1860         for (j = 0; j < (unsigned int)argc; j++)
1861                 *p++ = argv[j];
1862
1863         return cmd_record(rec_argc, rec_argv);
1864 }
1865
1866 static int
1867 parse_process(const struct option *opt __maybe_unused, const char *arg,
1868               int __maybe_unused unset)
1869 {
1870         if (arg)
1871                 add_process_filter(arg);
1872         return 0;
1873 }
1874
1875 static int
1876 parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1877                 int __maybe_unused unset)
1878 {
1879         unsigned long duration = strtoul(arg, NULL, 0);
1880
1881         if (svg_highlight || svg_highlight_name)
1882                 return -1;
1883
1884         if (duration)
1885                 svg_highlight = duration;
1886         else
1887                 svg_highlight_name = strdup(arg);
1888
1889         return 0;
1890 }
1891
1892 static int
1893 parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1894 {
1895         char unit = 'n';
1896         u64 *value = opt->value;
1897
1898         if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1899                 switch (unit) {
1900                 case 'm':
1901                         *value *= NSEC_PER_MSEC;
1902                         break;
1903                 case 'u':
1904                         *value *= NSEC_PER_USEC;
1905                         break;
1906                 case 'n':
1907                         break;
1908                 default:
1909                         return -1;
1910                 }
1911         }
1912
1913         return 0;
1914 }
1915
1916 int cmd_timechart(int argc, const char **argv)
1917 {
1918         struct timechart tchart = {
1919                 .tool = {
1920                         .comm            = process_comm_event,
1921                         .fork            = process_fork_event,
1922                         .exit            = process_exit_event,
1923                         .sample          = process_sample_event,
1924                         .ordered_events  = true,
1925                 },
1926                 .proc_num = 15,
1927                 .min_time = NSEC_PER_MSEC,
1928                 .merge_dist = 1000,
1929         };
1930         const char *output_name = "output.svg";
1931         const struct option timechart_common_options[] = {
1932         OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1933         OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only, "output processes data only"),
1934         OPT_END()
1935         };
1936         const struct option timechart_options[] = {
1937         OPT_STRING('i', "input", &input_name, "file", "input file name"),
1938         OPT_STRING('o', "output", &output_name, "file", "output file name"),
1939         OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1940         OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1941                       "highlight tasks. Pass duration in ns or process name.",
1942                        parse_highlight),
1943         OPT_CALLBACK('p', "process", NULL, "process",
1944                       "process selector. Pass a pid or process name.",
1945                        parse_process),
1946         OPT_CALLBACK(0, "symfs", NULL, "directory",
1947                      "Look for files with symbols relative to this directory",
1948                      symbol__config_symfs),
1949         OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1950                     "min. number of tasks to print"),
1951         OPT_BOOLEAN('t', "topology", &tchart.topology,
1952                     "sort CPUs according to topology"),
1953         OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1954                     "skip EAGAIN errors"),
1955         OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1956                      "all IO faster than min-time will visually appear longer",
1957                      parse_time),
1958         OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1959                      "merge events that are merge-dist us apart",
1960                      parse_time),
1961         OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
1962         OPT_PARENT(timechart_common_options),
1963         };
1964         const char * const timechart_subcommands[] = { "record", NULL };
1965         const char *timechart_usage[] = {
1966                 "perf timechart [<options>] {record}",
1967                 NULL
1968         };
1969         const struct option timechart_record_options[] = {
1970         OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1971                     "record only IO data"),
1972         OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1973         OPT_PARENT(timechart_common_options),
1974         };
1975         const char * const timechart_record_usage[] = {
1976                 "perf timechart record [<options>]",
1977                 NULL
1978         };
1979         argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
1980                         timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1981
1982         if (tchart.power_only && tchart.tasks_only) {
1983                 pr_err("-P and -T options cannot be used at the same time.\n");
1984                 return -1;
1985         }
1986
1987         if (argc && strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
1988                 argc = parse_options(argc, argv, timechart_record_options,
1989                                      timechart_record_usage,
1990                                      PARSE_OPT_STOP_AT_NON_OPTION);
1991
1992                 if (tchart.power_only && tchart.tasks_only) {
1993                         pr_err("-P and -T options cannot be used at the same time.\n");
1994                         return -1;
1995                 }
1996
1997                 if (tchart.io_only)
1998                         return timechart__io_record(argc, argv);
1999                 else
2000                         return timechart__record(&tchart, argc, argv);
2001         } else if (argc)
2002                 usage_with_options(timechart_usage, timechart_options);
2003
2004         setup_pager();
2005
2006         return __cmd_timechart(&tchart, output_name);
2007 }