Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux-2.6-microblaze.git] / tools / perf / builtin-sched.c
1 #include "builtin.h"
2 #include "perf.h"
3
4 #include "util/util.h"
5 #include "util/evlist.h"
6 #include "util/cache.h"
7 #include "util/evsel.h"
8 #include "util/symbol.h"
9 #include "util/thread.h"
10 #include "util/header.h"
11 #include "util/session.h"
12 #include "util/tool.h"
13 #include "util/cloexec.h"
14 #include "util/thread_map.h"
15 #include "util/color.h"
16 #include "util/stat.h"
17 #include "util/callchain.h"
18 #include "util/time-utils.h"
19
20 #include <subcmd/parse-options.h>
21 #include "util/trace-event.h"
22
23 #include "util/debug.h"
24
25 #include <linux/kernel.h>
26 #include <linux/log2.h>
27 #include <sys/prctl.h>
28 #include <sys/resource.h>
29 #include <inttypes.h>
30
31 #include <errno.h>
32 #include <semaphore.h>
33 #include <pthread.h>
34 #include <math.h>
35 #include <api/fs/fs.h>
36 #include <linux/time64.h>
37
38 #include "sane_ctype.h"
39
40 #define PR_SET_NAME             15               /* Set process name */
41 #define MAX_CPUS                4096
42 #define COMM_LEN                20
43 #define SYM_LEN                 129
44 #define MAX_PID                 1024000
45
46 struct sched_atom;
47
48 struct task_desc {
49         unsigned long           nr;
50         unsigned long           pid;
51         char                    comm[COMM_LEN];
52
53         unsigned long           nr_events;
54         unsigned long           curr_event;
55         struct sched_atom       **atoms;
56
57         pthread_t               thread;
58         sem_t                   sleep_sem;
59
60         sem_t                   ready_for_work;
61         sem_t                   work_done_sem;
62
63         u64                     cpu_usage;
64 };
65
66 enum sched_event_type {
67         SCHED_EVENT_RUN,
68         SCHED_EVENT_SLEEP,
69         SCHED_EVENT_WAKEUP,
70         SCHED_EVENT_MIGRATION,
71 };
72
73 struct sched_atom {
74         enum sched_event_type   type;
75         int                     specific_wait;
76         u64                     timestamp;
77         u64                     duration;
78         unsigned long           nr;
79         sem_t                   *wait_sem;
80         struct task_desc        *wakee;
81 };
82
83 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
84
85 /* task state bitmask, copied from include/linux/sched.h */
86 #define TASK_RUNNING            0
87 #define TASK_INTERRUPTIBLE      1
88 #define TASK_UNINTERRUPTIBLE    2
89 #define __TASK_STOPPED          4
90 #define __TASK_TRACED           8
91 /* in tsk->exit_state */
92 #define EXIT_DEAD               16
93 #define EXIT_ZOMBIE             32
94 #define EXIT_TRACE              (EXIT_ZOMBIE | EXIT_DEAD)
95 /* in tsk->state again */
96 #define TASK_DEAD               64
97 #define TASK_WAKEKILL           128
98 #define TASK_WAKING             256
99 #define TASK_PARKED             512
100
101 enum thread_state {
102         THREAD_SLEEPING = 0,
103         THREAD_WAIT_CPU,
104         THREAD_SCHED_IN,
105         THREAD_IGNORE
106 };
107
108 struct work_atom {
109         struct list_head        list;
110         enum thread_state       state;
111         u64                     sched_out_time;
112         u64                     wake_up_time;
113         u64                     sched_in_time;
114         u64                     runtime;
115 };
116
117 struct work_atoms {
118         struct list_head        work_list;
119         struct thread           *thread;
120         struct rb_node          node;
121         u64                     max_lat;
122         u64                     max_lat_at;
123         u64                     total_lat;
124         u64                     nb_atoms;
125         u64                     total_runtime;
126         int                     num_merged;
127 };
128
129 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
130
131 struct perf_sched;
132
133 struct trace_sched_handler {
134         int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
135                             struct perf_sample *sample, struct machine *machine);
136
137         int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
138                              struct perf_sample *sample, struct machine *machine);
139
140         int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
141                             struct perf_sample *sample, struct machine *machine);
142
143         /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
144         int (*fork_event)(struct perf_sched *sched, union perf_event *event,
145                           struct machine *machine);
146
147         int (*migrate_task_event)(struct perf_sched *sched,
148                                   struct perf_evsel *evsel,
149                                   struct perf_sample *sample,
150                                   struct machine *machine);
151 };
152
153 #define COLOR_PIDS PERF_COLOR_BLUE
154 #define COLOR_CPUS PERF_COLOR_BG_RED
155
156 struct perf_sched_map {
157         DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
158         int                     *comp_cpus;
159         bool                     comp;
160         struct thread_map       *color_pids;
161         const char              *color_pids_str;
162         struct cpu_map          *color_cpus;
163         const char              *color_cpus_str;
164         struct cpu_map          *cpus;
165         const char              *cpus_str;
166 };
167
168 struct perf_sched {
169         struct perf_tool tool;
170         const char       *sort_order;
171         unsigned long    nr_tasks;
172         struct task_desc **pid_to_task;
173         struct task_desc **tasks;
174         const struct trace_sched_handler *tp_handler;
175         pthread_mutex_t  start_work_mutex;
176         pthread_mutex_t  work_done_wait_mutex;
177         int              profile_cpu;
178 /*
179  * Track the current task - that way we can know whether there's any
180  * weird events, such as a task being switched away that is not current.
181  */
182         int              max_cpu;
183         u32              curr_pid[MAX_CPUS];
184         struct thread    *curr_thread[MAX_CPUS];
185         char             next_shortname1;
186         char             next_shortname2;
187         unsigned int     replay_repeat;
188         unsigned long    nr_run_events;
189         unsigned long    nr_sleep_events;
190         unsigned long    nr_wakeup_events;
191         unsigned long    nr_sleep_corrections;
192         unsigned long    nr_run_events_optimized;
193         unsigned long    targetless_wakeups;
194         unsigned long    multitarget_wakeups;
195         unsigned long    nr_runs;
196         unsigned long    nr_timestamps;
197         unsigned long    nr_unordered_timestamps;
198         unsigned long    nr_context_switch_bugs;
199         unsigned long    nr_events;
200         unsigned long    nr_lost_chunks;
201         unsigned long    nr_lost_events;
202         u64              run_measurement_overhead;
203         u64              sleep_measurement_overhead;
204         u64              start_time;
205         u64              cpu_usage;
206         u64              runavg_cpu_usage;
207         u64              parent_cpu_usage;
208         u64              runavg_parent_cpu_usage;
209         u64              sum_runtime;
210         u64              sum_fluct;
211         u64              run_avg;
212         u64              all_runtime;
213         u64              all_count;
214         u64              cpu_last_switched[MAX_CPUS];
215         struct rb_root   atom_root, sorted_atom_root, merged_atom_root;
216         struct list_head sort_list, cmp_pid;
217         bool force;
218         bool skip_merge;
219         struct perf_sched_map map;
220
221         /* options for timehist command */
222         bool            summary;
223         bool            summary_only;
224         bool            idle_hist;
225         bool            show_callchain;
226         unsigned int    max_stack;
227         bool            show_cpu_visual;
228         bool            show_wakeups;
229         bool            show_next;
230         bool            show_migrations;
231         bool            show_state;
232         u64             skipped_samples;
233         const char      *time_str;
234         struct perf_time_interval ptime;
235         struct perf_time_interval hist_time;
236 };
237
238 /* per thread run time data */
239 struct thread_runtime {
240         u64 last_time;      /* time of previous sched in/out event */
241         u64 dt_run;         /* run time */
242         u64 dt_sleep;       /* time between CPU access by sleep (off cpu) */
243         u64 dt_iowait;      /* time between CPU access by iowait (off cpu) */
244         u64 dt_preempt;     /* time between CPU access by preempt (off cpu) */
245         u64 dt_delay;       /* time between wakeup and sched-in */
246         u64 ready_to_run;   /* time of wakeup */
247
248         struct stats run_stats;
249         u64 total_run_time;
250         u64 total_sleep_time;
251         u64 total_iowait_time;
252         u64 total_preempt_time;
253         u64 total_delay_time;
254
255         int last_state;
256         u64 migrations;
257 };
258
259 /* per event run time data */
260 struct evsel_runtime {
261         u64 *last_time; /* time this event was last seen per cpu */
262         u32 ncpu;       /* highest cpu slot allocated */
263 };
264
265 /* per cpu idle time data */
266 struct idle_thread_runtime {
267         struct thread_runtime   tr;
268         struct thread           *last_thread;
269         struct rb_root          sorted_root;
270         struct callchain_root   callchain;
271         struct callchain_cursor cursor;
272 };
273
274 /* track idle times per cpu */
275 static struct thread **idle_threads;
276 static int idle_max_cpu;
277 static char idle_comm[] = "<idle>";
278
279 static u64 get_nsecs(void)
280 {
281         struct timespec ts;
282
283         clock_gettime(CLOCK_MONOTONIC, &ts);
284
285         return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
286 }
287
288 static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
289 {
290         u64 T0 = get_nsecs(), T1;
291
292         do {
293                 T1 = get_nsecs();
294         } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
295 }
296
297 static void sleep_nsecs(u64 nsecs)
298 {
299         struct timespec ts;
300
301         ts.tv_nsec = nsecs % 999999999;
302         ts.tv_sec = nsecs / 999999999;
303
304         nanosleep(&ts, NULL);
305 }
306
307 static void calibrate_run_measurement_overhead(struct perf_sched *sched)
308 {
309         u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
310         int i;
311
312         for (i = 0; i < 10; i++) {
313                 T0 = get_nsecs();
314                 burn_nsecs(sched, 0);
315                 T1 = get_nsecs();
316                 delta = T1-T0;
317                 min_delta = min(min_delta, delta);
318         }
319         sched->run_measurement_overhead = min_delta;
320
321         printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
322 }
323
324 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
325 {
326         u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
327         int i;
328
329         for (i = 0; i < 10; i++) {
330                 T0 = get_nsecs();
331                 sleep_nsecs(10000);
332                 T1 = get_nsecs();
333                 delta = T1-T0;
334                 min_delta = min(min_delta, delta);
335         }
336         min_delta -= 10000;
337         sched->sleep_measurement_overhead = min_delta;
338
339         printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
340 }
341
342 static struct sched_atom *
343 get_new_event(struct task_desc *task, u64 timestamp)
344 {
345         struct sched_atom *event = zalloc(sizeof(*event));
346         unsigned long idx = task->nr_events;
347         size_t size;
348
349         event->timestamp = timestamp;
350         event->nr = idx;
351
352         task->nr_events++;
353         size = sizeof(struct sched_atom *) * task->nr_events;
354         task->atoms = realloc(task->atoms, size);
355         BUG_ON(!task->atoms);
356
357         task->atoms[idx] = event;
358
359         return event;
360 }
361
362 static struct sched_atom *last_event(struct task_desc *task)
363 {
364         if (!task->nr_events)
365                 return NULL;
366
367         return task->atoms[task->nr_events - 1];
368 }
369
370 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
371                                 u64 timestamp, u64 duration)
372 {
373         struct sched_atom *event, *curr_event = last_event(task);
374
375         /*
376          * optimize an existing RUN event by merging this one
377          * to it:
378          */
379         if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
380                 sched->nr_run_events_optimized++;
381                 curr_event->duration += duration;
382                 return;
383         }
384
385         event = get_new_event(task, timestamp);
386
387         event->type = SCHED_EVENT_RUN;
388         event->duration = duration;
389
390         sched->nr_run_events++;
391 }
392
393 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
394                                    u64 timestamp, struct task_desc *wakee)
395 {
396         struct sched_atom *event, *wakee_event;
397
398         event = get_new_event(task, timestamp);
399         event->type = SCHED_EVENT_WAKEUP;
400         event->wakee = wakee;
401
402         wakee_event = last_event(wakee);
403         if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
404                 sched->targetless_wakeups++;
405                 return;
406         }
407         if (wakee_event->wait_sem) {
408                 sched->multitarget_wakeups++;
409                 return;
410         }
411
412         wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
413         sem_init(wakee_event->wait_sem, 0, 0);
414         wakee_event->specific_wait = 1;
415         event->wait_sem = wakee_event->wait_sem;
416
417         sched->nr_wakeup_events++;
418 }
419
420 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
421                                   u64 timestamp, u64 task_state __maybe_unused)
422 {
423         struct sched_atom *event = get_new_event(task, timestamp);
424
425         event->type = SCHED_EVENT_SLEEP;
426
427         sched->nr_sleep_events++;
428 }
429
430 static struct task_desc *register_pid(struct perf_sched *sched,
431                                       unsigned long pid, const char *comm)
432 {
433         struct task_desc *task;
434         static int pid_max;
435
436         if (sched->pid_to_task == NULL) {
437                 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
438                         pid_max = MAX_PID;
439                 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
440         }
441         if (pid >= (unsigned long)pid_max) {
442                 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
443                         sizeof(struct task_desc *))) == NULL);
444                 while (pid >= (unsigned long)pid_max)
445                         sched->pid_to_task[pid_max++] = NULL;
446         }
447
448         task = sched->pid_to_task[pid];
449
450         if (task)
451                 return task;
452
453         task = zalloc(sizeof(*task));
454         task->pid = pid;
455         task->nr = sched->nr_tasks;
456         strcpy(task->comm, comm);
457         /*
458          * every task starts in sleeping state - this gets ignored
459          * if there's no wakeup pointing to this sleep state:
460          */
461         add_sched_event_sleep(sched, task, 0, 0);
462
463         sched->pid_to_task[pid] = task;
464         sched->nr_tasks++;
465         sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
466         BUG_ON(!sched->tasks);
467         sched->tasks[task->nr] = task;
468
469         if (verbose > 0)
470                 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
471
472         return task;
473 }
474
475
476 static void print_task_traces(struct perf_sched *sched)
477 {
478         struct task_desc *task;
479         unsigned long i;
480
481         for (i = 0; i < sched->nr_tasks; i++) {
482                 task = sched->tasks[i];
483                 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
484                         task->nr, task->comm, task->pid, task->nr_events);
485         }
486 }
487
488 static void add_cross_task_wakeups(struct perf_sched *sched)
489 {
490         struct task_desc *task1, *task2;
491         unsigned long i, j;
492
493         for (i = 0; i < sched->nr_tasks; i++) {
494                 task1 = sched->tasks[i];
495                 j = i + 1;
496                 if (j == sched->nr_tasks)
497                         j = 0;
498                 task2 = sched->tasks[j];
499                 add_sched_event_wakeup(sched, task1, 0, task2);
500         }
501 }
502
503 static void perf_sched__process_event(struct perf_sched *sched,
504                                       struct sched_atom *atom)
505 {
506         int ret = 0;
507
508         switch (atom->type) {
509                 case SCHED_EVENT_RUN:
510                         burn_nsecs(sched, atom->duration);
511                         break;
512                 case SCHED_EVENT_SLEEP:
513                         if (atom->wait_sem)
514                                 ret = sem_wait(atom->wait_sem);
515                         BUG_ON(ret);
516                         break;
517                 case SCHED_EVENT_WAKEUP:
518                         if (atom->wait_sem)
519                                 ret = sem_post(atom->wait_sem);
520                         BUG_ON(ret);
521                         break;
522                 case SCHED_EVENT_MIGRATION:
523                         break;
524                 default:
525                         BUG_ON(1);
526         }
527 }
528
529 static u64 get_cpu_usage_nsec_parent(void)
530 {
531         struct rusage ru;
532         u64 sum;
533         int err;
534
535         err = getrusage(RUSAGE_SELF, &ru);
536         BUG_ON(err);
537
538         sum =  ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
539         sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
540
541         return sum;
542 }
543
544 static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
545 {
546         struct perf_event_attr attr;
547         char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
548         int fd;
549         struct rlimit limit;
550         bool need_privilege = false;
551
552         memset(&attr, 0, sizeof(attr));
553
554         attr.type = PERF_TYPE_SOFTWARE;
555         attr.config = PERF_COUNT_SW_TASK_CLOCK;
556
557 force_again:
558         fd = sys_perf_event_open(&attr, 0, -1, -1,
559                                  perf_event_open_cloexec_flag());
560
561         if (fd < 0) {
562                 if (errno == EMFILE) {
563                         if (sched->force) {
564                                 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
565                                 limit.rlim_cur += sched->nr_tasks - cur_task;
566                                 if (limit.rlim_cur > limit.rlim_max) {
567                                         limit.rlim_max = limit.rlim_cur;
568                                         need_privilege = true;
569                                 }
570                                 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
571                                         if (need_privilege && errno == EPERM)
572                                                 strcpy(info, "Need privilege\n");
573                                 } else
574                                         goto force_again;
575                         } else
576                                 strcpy(info, "Have a try with -f option\n");
577                 }
578                 pr_err("Error: sys_perf_event_open() syscall returned "
579                        "with %d (%s)\n%s", fd,
580                        str_error_r(errno, sbuf, sizeof(sbuf)), info);
581                 exit(EXIT_FAILURE);
582         }
583         return fd;
584 }
585
586 static u64 get_cpu_usage_nsec_self(int fd)
587 {
588         u64 runtime;
589         int ret;
590
591         ret = read(fd, &runtime, sizeof(runtime));
592         BUG_ON(ret != sizeof(runtime));
593
594         return runtime;
595 }
596
597 struct sched_thread_parms {
598         struct task_desc  *task;
599         struct perf_sched *sched;
600         int fd;
601 };
602
603 static void *thread_func(void *ctx)
604 {
605         struct sched_thread_parms *parms = ctx;
606         struct task_desc *this_task = parms->task;
607         struct perf_sched *sched = parms->sched;
608         u64 cpu_usage_0, cpu_usage_1;
609         unsigned long i, ret;
610         char comm2[22];
611         int fd = parms->fd;
612
613         zfree(&parms);
614
615         sprintf(comm2, ":%s", this_task->comm);
616         prctl(PR_SET_NAME, comm2);
617         if (fd < 0)
618                 return NULL;
619 again:
620         ret = sem_post(&this_task->ready_for_work);
621         BUG_ON(ret);
622         ret = pthread_mutex_lock(&sched->start_work_mutex);
623         BUG_ON(ret);
624         ret = pthread_mutex_unlock(&sched->start_work_mutex);
625         BUG_ON(ret);
626
627         cpu_usage_0 = get_cpu_usage_nsec_self(fd);
628
629         for (i = 0; i < this_task->nr_events; i++) {
630                 this_task->curr_event = i;
631                 perf_sched__process_event(sched, this_task->atoms[i]);
632         }
633
634         cpu_usage_1 = get_cpu_usage_nsec_self(fd);
635         this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
636         ret = sem_post(&this_task->work_done_sem);
637         BUG_ON(ret);
638
639         ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
640         BUG_ON(ret);
641         ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
642         BUG_ON(ret);
643
644         goto again;
645 }
646
647 static void create_tasks(struct perf_sched *sched)
648 {
649         struct task_desc *task;
650         pthread_attr_t attr;
651         unsigned long i;
652         int err;
653
654         err = pthread_attr_init(&attr);
655         BUG_ON(err);
656         err = pthread_attr_setstacksize(&attr,
657                         (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
658         BUG_ON(err);
659         err = pthread_mutex_lock(&sched->start_work_mutex);
660         BUG_ON(err);
661         err = pthread_mutex_lock(&sched->work_done_wait_mutex);
662         BUG_ON(err);
663         for (i = 0; i < sched->nr_tasks; i++) {
664                 struct sched_thread_parms *parms = malloc(sizeof(*parms));
665                 BUG_ON(parms == NULL);
666                 parms->task = task = sched->tasks[i];
667                 parms->sched = sched;
668                 parms->fd = self_open_counters(sched, i);
669                 sem_init(&task->sleep_sem, 0, 0);
670                 sem_init(&task->ready_for_work, 0, 0);
671                 sem_init(&task->work_done_sem, 0, 0);
672                 task->curr_event = 0;
673                 err = pthread_create(&task->thread, &attr, thread_func, parms);
674                 BUG_ON(err);
675         }
676 }
677
678 static void wait_for_tasks(struct perf_sched *sched)
679 {
680         u64 cpu_usage_0, cpu_usage_1;
681         struct task_desc *task;
682         unsigned long i, ret;
683
684         sched->start_time = get_nsecs();
685         sched->cpu_usage = 0;
686         pthread_mutex_unlock(&sched->work_done_wait_mutex);
687
688         for (i = 0; i < sched->nr_tasks; i++) {
689                 task = sched->tasks[i];
690                 ret = sem_wait(&task->ready_for_work);
691                 BUG_ON(ret);
692                 sem_init(&task->ready_for_work, 0, 0);
693         }
694         ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
695         BUG_ON(ret);
696
697         cpu_usage_0 = get_cpu_usage_nsec_parent();
698
699         pthread_mutex_unlock(&sched->start_work_mutex);
700
701         for (i = 0; i < sched->nr_tasks; i++) {
702                 task = sched->tasks[i];
703                 ret = sem_wait(&task->work_done_sem);
704                 BUG_ON(ret);
705                 sem_init(&task->work_done_sem, 0, 0);
706                 sched->cpu_usage += task->cpu_usage;
707                 task->cpu_usage = 0;
708         }
709
710         cpu_usage_1 = get_cpu_usage_nsec_parent();
711         if (!sched->runavg_cpu_usage)
712                 sched->runavg_cpu_usage = sched->cpu_usage;
713         sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
714
715         sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
716         if (!sched->runavg_parent_cpu_usage)
717                 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
718         sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
719                                          sched->parent_cpu_usage)/sched->replay_repeat;
720
721         ret = pthread_mutex_lock(&sched->start_work_mutex);
722         BUG_ON(ret);
723
724         for (i = 0; i < sched->nr_tasks; i++) {
725                 task = sched->tasks[i];
726                 sem_init(&task->sleep_sem, 0, 0);
727                 task->curr_event = 0;
728         }
729 }
730
731 static void run_one_test(struct perf_sched *sched)
732 {
733         u64 T0, T1, delta, avg_delta, fluct;
734
735         T0 = get_nsecs();
736         wait_for_tasks(sched);
737         T1 = get_nsecs();
738
739         delta = T1 - T0;
740         sched->sum_runtime += delta;
741         sched->nr_runs++;
742
743         avg_delta = sched->sum_runtime / sched->nr_runs;
744         if (delta < avg_delta)
745                 fluct = avg_delta - delta;
746         else
747                 fluct = delta - avg_delta;
748         sched->sum_fluct += fluct;
749         if (!sched->run_avg)
750                 sched->run_avg = delta;
751         sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
752
753         printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
754
755         printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
756
757         printf("cpu: %0.2f / %0.2f",
758                 (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
759
760 #if 0
761         /*
762          * rusage statistics done by the parent, these are less
763          * accurate than the sched->sum_exec_runtime based statistics:
764          */
765         printf(" [%0.2f / %0.2f]",
766                 (double)sched->parent_cpu_usage / NSEC_PER_MSEC,
767                 (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
768 #endif
769
770         printf("\n");
771
772         if (sched->nr_sleep_corrections)
773                 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
774         sched->nr_sleep_corrections = 0;
775 }
776
777 static void test_calibrations(struct perf_sched *sched)
778 {
779         u64 T0, T1;
780
781         T0 = get_nsecs();
782         burn_nsecs(sched, NSEC_PER_MSEC);
783         T1 = get_nsecs();
784
785         printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
786
787         T0 = get_nsecs();
788         sleep_nsecs(NSEC_PER_MSEC);
789         T1 = get_nsecs();
790
791         printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
792 }
793
794 static int
795 replay_wakeup_event(struct perf_sched *sched,
796                     struct perf_evsel *evsel, struct perf_sample *sample,
797                     struct machine *machine __maybe_unused)
798 {
799         const char *comm = perf_evsel__strval(evsel, sample, "comm");
800         const u32 pid    = perf_evsel__intval(evsel, sample, "pid");
801         struct task_desc *waker, *wakee;
802
803         if (verbose > 0) {
804                 printf("sched_wakeup event %p\n", evsel);
805
806                 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
807         }
808
809         waker = register_pid(sched, sample->tid, "<unknown>");
810         wakee = register_pid(sched, pid, comm);
811
812         add_sched_event_wakeup(sched, waker, sample->time, wakee);
813         return 0;
814 }
815
816 static int replay_switch_event(struct perf_sched *sched,
817                                struct perf_evsel *evsel,
818                                struct perf_sample *sample,
819                                struct machine *machine __maybe_unused)
820 {
821         const char *prev_comm  = perf_evsel__strval(evsel, sample, "prev_comm"),
822                    *next_comm  = perf_evsel__strval(evsel, sample, "next_comm");
823         const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
824                   next_pid = perf_evsel__intval(evsel, sample, "next_pid");
825         const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
826         struct task_desc *prev, __maybe_unused *next;
827         u64 timestamp0, timestamp = sample->time;
828         int cpu = sample->cpu;
829         s64 delta;
830
831         if (verbose > 0)
832                 printf("sched_switch event %p\n", evsel);
833
834         if (cpu >= MAX_CPUS || cpu < 0)
835                 return 0;
836
837         timestamp0 = sched->cpu_last_switched[cpu];
838         if (timestamp0)
839                 delta = timestamp - timestamp0;
840         else
841                 delta = 0;
842
843         if (delta < 0) {
844                 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
845                 return -1;
846         }
847
848         pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
849                  prev_comm, prev_pid, next_comm, next_pid, delta);
850
851         prev = register_pid(sched, prev_pid, prev_comm);
852         next = register_pid(sched, next_pid, next_comm);
853
854         sched->cpu_last_switched[cpu] = timestamp;
855
856         add_sched_event_run(sched, prev, timestamp, delta);
857         add_sched_event_sleep(sched, prev, timestamp, prev_state);
858
859         return 0;
860 }
861
862 static int replay_fork_event(struct perf_sched *sched,
863                              union perf_event *event,
864                              struct machine *machine)
865 {
866         struct thread *child, *parent;
867
868         child = machine__findnew_thread(machine, event->fork.pid,
869                                         event->fork.tid);
870         parent = machine__findnew_thread(machine, event->fork.ppid,
871                                          event->fork.ptid);
872
873         if (child == NULL || parent == NULL) {
874                 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
875                                  child, parent);
876                 goto out_put;
877         }
878
879         if (verbose > 0) {
880                 printf("fork event\n");
881                 printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
882                 printf("...  child: %s/%d\n", thread__comm_str(child), child->tid);
883         }
884
885         register_pid(sched, parent->tid, thread__comm_str(parent));
886         register_pid(sched, child->tid, thread__comm_str(child));
887 out_put:
888         thread__put(child);
889         thread__put(parent);
890         return 0;
891 }
892
893 struct sort_dimension {
894         const char              *name;
895         sort_fn_t               cmp;
896         struct list_head        list;
897 };
898
899 static int
900 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
901 {
902         struct sort_dimension *sort;
903         int ret = 0;
904
905         BUG_ON(list_empty(list));
906
907         list_for_each_entry(sort, list, list) {
908                 ret = sort->cmp(l, r);
909                 if (ret)
910                         return ret;
911         }
912
913         return ret;
914 }
915
916 static struct work_atoms *
917 thread_atoms_search(struct rb_root *root, struct thread *thread,
918                          struct list_head *sort_list)
919 {
920         struct rb_node *node = root->rb_node;
921         struct work_atoms key = { .thread = thread };
922
923         while (node) {
924                 struct work_atoms *atoms;
925                 int cmp;
926
927                 atoms = container_of(node, struct work_atoms, node);
928
929                 cmp = thread_lat_cmp(sort_list, &key, atoms);
930                 if (cmp > 0)
931                         node = node->rb_left;
932                 else if (cmp < 0)
933                         node = node->rb_right;
934                 else {
935                         BUG_ON(thread != atoms->thread);
936                         return atoms;
937                 }
938         }
939         return NULL;
940 }
941
942 static void
943 __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
944                          struct list_head *sort_list)
945 {
946         struct rb_node **new = &(root->rb_node), *parent = NULL;
947
948         while (*new) {
949                 struct work_atoms *this;
950                 int cmp;
951
952                 this = container_of(*new, struct work_atoms, node);
953                 parent = *new;
954
955                 cmp = thread_lat_cmp(sort_list, data, this);
956
957                 if (cmp > 0)
958                         new = &((*new)->rb_left);
959                 else
960                         new = &((*new)->rb_right);
961         }
962
963         rb_link_node(&data->node, parent, new);
964         rb_insert_color(&data->node, root);
965 }
966
967 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
968 {
969         struct work_atoms *atoms = zalloc(sizeof(*atoms));
970         if (!atoms) {
971                 pr_err("No memory at %s\n", __func__);
972                 return -1;
973         }
974
975         atoms->thread = thread__get(thread);
976         INIT_LIST_HEAD(&atoms->work_list);
977         __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
978         return 0;
979 }
980
981 static char sched_out_state(u64 prev_state)
982 {
983         const char *str = TASK_STATE_TO_CHAR_STR;
984
985         return str[prev_state];
986 }
987
988 static int
989 add_sched_out_event(struct work_atoms *atoms,
990                     char run_state,
991                     u64 timestamp)
992 {
993         struct work_atom *atom = zalloc(sizeof(*atom));
994         if (!atom) {
995                 pr_err("Non memory at %s", __func__);
996                 return -1;
997         }
998
999         atom->sched_out_time = timestamp;
1000
1001         if (run_state == 'R') {
1002                 atom->state = THREAD_WAIT_CPU;
1003                 atom->wake_up_time = atom->sched_out_time;
1004         }
1005
1006         list_add_tail(&atom->list, &atoms->work_list);
1007         return 0;
1008 }
1009
1010 static void
1011 add_runtime_event(struct work_atoms *atoms, u64 delta,
1012                   u64 timestamp __maybe_unused)
1013 {
1014         struct work_atom *atom;
1015
1016         BUG_ON(list_empty(&atoms->work_list));
1017
1018         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1019
1020         atom->runtime += delta;
1021         atoms->total_runtime += delta;
1022 }
1023
1024 static void
1025 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1026 {
1027         struct work_atom *atom;
1028         u64 delta;
1029
1030         if (list_empty(&atoms->work_list))
1031                 return;
1032
1033         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1034
1035         if (atom->state != THREAD_WAIT_CPU)
1036                 return;
1037
1038         if (timestamp < atom->wake_up_time) {
1039                 atom->state = THREAD_IGNORE;
1040                 return;
1041         }
1042
1043         atom->state = THREAD_SCHED_IN;
1044         atom->sched_in_time = timestamp;
1045
1046         delta = atom->sched_in_time - atom->wake_up_time;
1047         atoms->total_lat += delta;
1048         if (delta > atoms->max_lat) {
1049                 atoms->max_lat = delta;
1050                 atoms->max_lat_at = timestamp;
1051         }
1052         atoms->nb_atoms++;
1053 }
1054
1055 static int latency_switch_event(struct perf_sched *sched,
1056                                 struct perf_evsel *evsel,
1057                                 struct perf_sample *sample,
1058                                 struct machine *machine)
1059 {
1060         const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1061                   next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1062         const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
1063         struct work_atoms *out_events, *in_events;
1064         struct thread *sched_out, *sched_in;
1065         u64 timestamp0, timestamp = sample->time;
1066         int cpu = sample->cpu, err = -1;
1067         s64 delta;
1068
1069         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1070
1071         timestamp0 = sched->cpu_last_switched[cpu];
1072         sched->cpu_last_switched[cpu] = timestamp;
1073         if (timestamp0)
1074                 delta = timestamp - timestamp0;
1075         else
1076                 delta = 0;
1077
1078         if (delta < 0) {
1079                 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1080                 return -1;
1081         }
1082
1083         sched_out = machine__findnew_thread(machine, -1, prev_pid);
1084         sched_in = machine__findnew_thread(machine, -1, next_pid);
1085         if (sched_out == NULL || sched_in == NULL)
1086                 goto out_put;
1087
1088         out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1089         if (!out_events) {
1090                 if (thread_atoms_insert(sched, sched_out))
1091                         goto out_put;
1092                 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1093                 if (!out_events) {
1094                         pr_err("out-event: Internal tree error");
1095                         goto out_put;
1096                 }
1097         }
1098         if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1099                 return -1;
1100
1101         in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1102         if (!in_events) {
1103                 if (thread_atoms_insert(sched, sched_in))
1104                         goto out_put;
1105                 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1106                 if (!in_events) {
1107                         pr_err("in-event: Internal tree error");
1108                         goto out_put;
1109                 }
1110                 /*
1111                  * Take came in we have not heard about yet,
1112                  * add in an initial atom in runnable state:
1113                  */
1114                 if (add_sched_out_event(in_events, 'R', timestamp))
1115                         goto out_put;
1116         }
1117         add_sched_in_event(in_events, timestamp);
1118         err = 0;
1119 out_put:
1120         thread__put(sched_out);
1121         thread__put(sched_in);
1122         return err;
1123 }
1124
1125 static int latency_runtime_event(struct perf_sched *sched,
1126                                  struct perf_evsel *evsel,
1127                                  struct perf_sample *sample,
1128                                  struct machine *machine)
1129 {
1130         const u32 pid      = perf_evsel__intval(evsel, sample, "pid");
1131         const u64 runtime  = perf_evsel__intval(evsel, sample, "runtime");
1132         struct thread *thread = machine__findnew_thread(machine, -1, pid);
1133         struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1134         u64 timestamp = sample->time;
1135         int cpu = sample->cpu, err = -1;
1136
1137         if (thread == NULL)
1138                 return -1;
1139
1140         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1141         if (!atoms) {
1142                 if (thread_atoms_insert(sched, thread))
1143                         goto out_put;
1144                 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1145                 if (!atoms) {
1146                         pr_err("in-event: Internal tree error");
1147                         goto out_put;
1148                 }
1149                 if (add_sched_out_event(atoms, 'R', timestamp))
1150                         goto out_put;
1151         }
1152
1153         add_runtime_event(atoms, runtime, timestamp);
1154         err = 0;
1155 out_put:
1156         thread__put(thread);
1157         return err;
1158 }
1159
1160 static int latency_wakeup_event(struct perf_sched *sched,
1161                                 struct perf_evsel *evsel,
1162                                 struct perf_sample *sample,
1163                                 struct machine *machine)
1164 {
1165         const u32 pid     = perf_evsel__intval(evsel, sample, "pid");
1166         struct work_atoms *atoms;
1167         struct work_atom *atom;
1168         struct thread *wakee;
1169         u64 timestamp = sample->time;
1170         int err = -1;
1171
1172         wakee = machine__findnew_thread(machine, -1, pid);
1173         if (wakee == NULL)
1174                 return -1;
1175         atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1176         if (!atoms) {
1177                 if (thread_atoms_insert(sched, wakee))
1178                         goto out_put;
1179                 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1180                 if (!atoms) {
1181                         pr_err("wakeup-event: Internal tree error");
1182                         goto out_put;
1183                 }
1184                 if (add_sched_out_event(atoms, 'S', timestamp))
1185                         goto out_put;
1186         }
1187
1188         BUG_ON(list_empty(&atoms->work_list));
1189
1190         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1191
1192         /*
1193          * As we do not guarantee the wakeup event happens when
1194          * task is out of run queue, also may happen when task is
1195          * on run queue and wakeup only change ->state to TASK_RUNNING,
1196          * then we should not set the ->wake_up_time when wake up a
1197          * task which is on run queue.
1198          *
1199          * You WILL be missing events if you've recorded only
1200          * one CPU, or are only looking at only one, so don't
1201          * skip in this case.
1202          */
1203         if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1204                 goto out_ok;
1205
1206         sched->nr_timestamps++;
1207         if (atom->sched_out_time > timestamp) {
1208                 sched->nr_unordered_timestamps++;
1209                 goto out_ok;
1210         }
1211
1212         atom->state = THREAD_WAIT_CPU;
1213         atom->wake_up_time = timestamp;
1214 out_ok:
1215         err = 0;
1216 out_put:
1217         thread__put(wakee);
1218         return err;
1219 }
1220
1221 static int latency_migrate_task_event(struct perf_sched *sched,
1222                                       struct perf_evsel *evsel,
1223                                       struct perf_sample *sample,
1224                                       struct machine *machine)
1225 {
1226         const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1227         u64 timestamp = sample->time;
1228         struct work_atoms *atoms;
1229         struct work_atom *atom;
1230         struct thread *migrant;
1231         int err = -1;
1232
1233         /*
1234          * Only need to worry about migration when profiling one CPU.
1235          */
1236         if (sched->profile_cpu == -1)
1237                 return 0;
1238
1239         migrant = machine__findnew_thread(machine, -1, pid);
1240         if (migrant == NULL)
1241                 return -1;
1242         atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1243         if (!atoms) {
1244                 if (thread_atoms_insert(sched, migrant))
1245                         goto out_put;
1246                 register_pid(sched, migrant->tid, thread__comm_str(migrant));
1247                 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1248                 if (!atoms) {
1249                         pr_err("migration-event: Internal tree error");
1250                         goto out_put;
1251                 }
1252                 if (add_sched_out_event(atoms, 'R', timestamp))
1253                         goto out_put;
1254         }
1255
1256         BUG_ON(list_empty(&atoms->work_list));
1257
1258         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1259         atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1260
1261         sched->nr_timestamps++;
1262
1263         if (atom->sched_out_time > timestamp)
1264                 sched->nr_unordered_timestamps++;
1265         err = 0;
1266 out_put:
1267         thread__put(migrant);
1268         return err;
1269 }
1270
1271 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1272 {
1273         int i;
1274         int ret;
1275         u64 avg;
1276         char max_lat_at[32];
1277
1278         if (!work_list->nb_atoms)
1279                 return;
1280         /*
1281          * Ignore idle threads:
1282          */
1283         if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1284                 return;
1285
1286         sched->all_runtime += work_list->total_runtime;
1287         sched->all_count   += work_list->nb_atoms;
1288
1289         if (work_list->num_merged > 1)
1290                 ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1291         else
1292                 ret = printf("  %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1293
1294         for (i = 0; i < 24 - ret; i++)
1295                 printf(" ");
1296
1297         avg = work_list->total_lat / work_list->nb_atoms;
1298         timestamp__scnprintf_usec(work_list->max_lat_at, max_lat_at, sizeof(max_lat_at));
1299
1300         printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13s s\n",
1301               (double)work_list->total_runtime / NSEC_PER_MSEC,
1302                  work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1303                  (double)work_list->max_lat / NSEC_PER_MSEC,
1304                  max_lat_at);
1305 }
1306
1307 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1308 {
1309         if (l->thread == r->thread)
1310                 return 0;
1311         if (l->thread->tid < r->thread->tid)
1312                 return -1;
1313         if (l->thread->tid > r->thread->tid)
1314                 return 1;
1315         return (int)(l->thread - r->thread);
1316 }
1317
1318 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1319 {
1320         u64 avgl, avgr;
1321
1322         if (!l->nb_atoms)
1323                 return -1;
1324
1325         if (!r->nb_atoms)
1326                 return 1;
1327
1328         avgl = l->total_lat / l->nb_atoms;
1329         avgr = r->total_lat / r->nb_atoms;
1330
1331         if (avgl < avgr)
1332                 return -1;
1333         if (avgl > avgr)
1334                 return 1;
1335
1336         return 0;
1337 }
1338
1339 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1340 {
1341         if (l->max_lat < r->max_lat)
1342                 return -1;
1343         if (l->max_lat > r->max_lat)
1344                 return 1;
1345
1346         return 0;
1347 }
1348
1349 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1350 {
1351         if (l->nb_atoms < r->nb_atoms)
1352                 return -1;
1353         if (l->nb_atoms > r->nb_atoms)
1354                 return 1;
1355
1356         return 0;
1357 }
1358
1359 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1360 {
1361         if (l->total_runtime < r->total_runtime)
1362                 return -1;
1363         if (l->total_runtime > r->total_runtime)
1364                 return 1;
1365
1366         return 0;
1367 }
1368
1369 static int sort_dimension__add(const char *tok, struct list_head *list)
1370 {
1371         size_t i;
1372         static struct sort_dimension avg_sort_dimension = {
1373                 .name = "avg",
1374                 .cmp  = avg_cmp,
1375         };
1376         static struct sort_dimension max_sort_dimension = {
1377                 .name = "max",
1378                 .cmp  = max_cmp,
1379         };
1380         static struct sort_dimension pid_sort_dimension = {
1381                 .name = "pid",
1382                 .cmp  = pid_cmp,
1383         };
1384         static struct sort_dimension runtime_sort_dimension = {
1385                 .name = "runtime",
1386                 .cmp  = runtime_cmp,
1387         };
1388         static struct sort_dimension switch_sort_dimension = {
1389                 .name = "switch",
1390                 .cmp  = switch_cmp,
1391         };
1392         struct sort_dimension *available_sorts[] = {
1393                 &pid_sort_dimension,
1394                 &avg_sort_dimension,
1395                 &max_sort_dimension,
1396                 &switch_sort_dimension,
1397                 &runtime_sort_dimension,
1398         };
1399
1400         for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1401                 if (!strcmp(available_sorts[i]->name, tok)) {
1402                         list_add_tail(&available_sorts[i]->list, list);
1403
1404                         return 0;
1405                 }
1406         }
1407
1408         return -1;
1409 }
1410
1411 static void perf_sched__sort_lat(struct perf_sched *sched)
1412 {
1413         struct rb_node *node;
1414         struct rb_root *root = &sched->atom_root;
1415 again:
1416         for (;;) {
1417                 struct work_atoms *data;
1418                 node = rb_first(root);
1419                 if (!node)
1420                         break;
1421
1422                 rb_erase(node, root);
1423                 data = rb_entry(node, struct work_atoms, node);
1424                 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1425         }
1426         if (root == &sched->atom_root) {
1427                 root = &sched->merged_atom_root;
1428                 goto again;
1429         }
1430 }
1431
1432 static int process_sched_wakeup_event(struct perf_tool *tool,
1433                                       struct perf_evsel *evsel,
1434                                       struct perf_sample *sample,
1435                                       struct machine *machine)
1436 {
1437         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1438
1439         if (sched->tp_handler->wakeup_event)
1440                 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1441
1442         return 0;
1443 }
1444
1445 union map_priv {
1446         void    *ptr;
1447         bool     color;
1448 };
1449
1450 static bool thread__has_color(struct thread *thread)
1451 {
1452         union map_priv priv = {
1453                 .ptr = thread__priv(thread),
1454         };
1455
1456         return priv.color;
1457 }
1458
1459 static struct thread*
1460 map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1461 {
1462         struct thread *thread = machine__findnew_thread(machine, pid, tid);
1463         union map_priv priv = {
1464                 .color = false,
1465         };
1466
1467         if (!sched->map.color_pids || !thread || thread__priv(thread))
1468                 return thread;
1469
1470         if (thread_map__has(sched->map.color_pids, tid))
1471                 priv.color = true;
1472
1473         thread__set_priv(thread, priv.ptr);
1474         return thread;
1475 }
1476
1477 static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1478                             struct perf_sample *sample, struct machine *machine)
1479 {
1480         const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1481         struct thread *sched_in;
1482         int new_shortname;
1483         u64 timestamp0, timestamp = sample->time;
1484         s64 delta;
1485         int i, this_cpu = sample->cpu;
1486         int cpus_nr;
1487         bool new_cpu = false;
1488         const char *color = PERF_COLOR_NORMAL;
1489         char stimestamp[32];
1490
1491         BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1492
1493         if (this_cpu > sched->max_cpu)
1494                 sched->max_cpu = this_cpu;
1495
1496         if (sched->map.comp) {
1497                 cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1498                 if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) {
1499                         sched->map.comp_cpus[cpus_nr++] = this_cpu;
1500                         new_cpu = true;
1501                 }
1502         } else
1503                 cpus_nr = sched->max_cpu;
1504
1505         timestamp0 = sched->cpu_last_switched[this_cpu];
1506         sched->cpu_last_switched[this_cpu] = timestamp;
1507         if (timestamp0)
1508                 delta = timestamp - timestamp0;
1509         else
1510                 delta = 0;
1511
1512         if (delta < 0) {
1513                 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1514                 return -1;
1515         }
1516
1517         sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1518         if (sched_in == NULL)
1519                 return -1;
1520
1521         sched->curr_thread[this_cpu] = thread__get(sched_in);
1522
1523         printf("  ");
1524
1525         new_shortname = 0;
1526         if (!sched_in->shortname[0]) {
1527                 if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1528                         /*
1529                          * Don't allocate a letter-number for swapper:0
1530                          * as a shortname. Instead, we use '.' for it.
1531                          */
1532                         sched_in->shortname[0] = '.';
1533                         sched_in->shortname[1] = ' ';
1534                 } else {
1535                         sched_in->shortname[0] = sched->next_shortname1;
1536                         sched_in->shortname[1] = sched->next_shortname2;
1537
1538                         if (sched->next_shortname1 < 'Z') {
1539                                 sched->next_shortname1++;
1540                         } else {
1541                                 sched->next_shortname1 = 'A';
1542                                 if (sched->next_shortname2 < '9')
1543                                         sched->next_shortname2++;
1544                                 else
1545                                         sched->next_shortname2 = '0';
1546                         }
1547                 }
1548                 new_shortname = 1;
1549         }
1550
1551         for (i = 0; i < cpus_nr; i++) {
1552                 int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i;
1553                 struct thread *curr_thread = sched->curr_thread[cpu];
1554                 const char *pid_color = color;
1555                 const char *cpu_color = color;
1556
1557                 if (curr_thread && thread__has_color(curr_thread))
1558                         pid_color = COLOR_PIDS;
1559
1560                 if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu))
1561                         continue;
1562
1563                 if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu))
1564                         cpu_color = COLOR_CPUS;
1565
1566                 if (cpu != this_cpu)
1567                         color_fprintf(stdout, color, " ");
1568                 else
1569                         color_fprintf(stdout, cpu_color, "*");
1570
1571                 if (sched->curr_thread[cpu])
1572                         color_fprintf(stdout, pid_color, "%2s ", sched->curr_thread[cpu]->shortname);
1573                 else
1574                         color_fprintf(stdout, color, "   ");
1575         }
1576
1577         if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu))
1578                 goto out;
1579
1580         timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1581         color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1582         if (new_shortname || (verbose > 0 && sched_in->tid)) {
1583                 const char *pid_color = color;
1584
1585                 if (thread__has_color(sched_in))
1586                         pid_color = COLOR_PIDS;
1587
1588                 color_fprintf(stdout, pid_color, "%s => %s:%d",
1589                        sched_in->shortname, thread__comm_str(sched_in), sched_in->tid);
1590         }
1591
1592         if (sched->map.comp && new_cpu)
1593                 color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1594
1595 out:
1596         color_fprintf(stdout, color, "\n");
1597
1598         thread__put(sched_in);
1599
1600         return 0;
1601 }
1602
1603 static int process_sched_switch_event(struct perf_tool *tool,
1604                                       struct perf_evsel *evsel,
1605                                       struct perf_sample *sample,
1606                                       struct machine *machine)
1607 {
1608         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1609         int this_cpu = sample->cpu, err = 0;
1610         u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1611             next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1612
1613         if (sched->curr_pid[this_cpu] != (u32)-1) {
1614                 /*
1615                  * Are we trying to switch away a PID that is
1616                  * not current?
1617                  */
1618                 if (sched->curr_pid[this_cpu] != prev_pid)
1619                         sched->nr_context_switch_bugs++;
1620         }
1621
1622         if (sched->tp_handler->switch_event)
1623                 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1624
1625         sched->curr_pid[this_cpu] = next_pid;
1626         return err;
1627 }
1628
1629 static int process_sched_runtime_event(struct perf_tool *tool,
1630                                        struct perf_evsel *evsel,
1631                                        struct perf_sample *sample,
1632                                        struct machine *machine)
1633 {
1634         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1635
1636         if (sched->tp_handler->runtime_event)
1637                 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1638
1639         return 0;
1640 }
1641
1642 static int perf_sched__process_fork_event(struct perf_tool *tool,
1643                                           union perf_event *event,
1644                                           struct perf_sample *sample,
1645                                           struct machine *machine)
1646 {
1647         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1648
1649         /* run the fork event through the perf machineruy */
1650         perf_event__process_fork(tool, event, sample, machine);
1651
1652         /* and then run additional processing needed for this command */
1653         if (sched->tp_handler->fork_event)
1654                 return sched->tp_handler->fork_event(sched, event, machine);
1655
1656         return 0;
1657 }
1658
1659 static int process_sched_migrate_task_event(struct perf_tool *tool,
1660                                             struct perf_evsel *evsel,
1661                                             struct perf_sample *sample,
1662                                             struct machine *machine)
1663 {
1664         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1665
1666         if (sched->tp_handler->migrate_task_event)
1667                 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1668
1669         return 0;
1670 }
1671
1672 typedef int (*tracepoint_handler)(struct perf_tool *tool,
1673                                   struct perf_evsel *evsel,
1674                                   struct perf_sample *sample,
1675                                   struct machine *machine);
1676
1677 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1678                                                  union perf_event *event __maybe_unused,
1679                                                  struct perf_sample *sample,
1680                                                  struct perf_evsel *evsel,
1681                                                  struct machine *machine)
1682 {
1683         int err = 0;
1684
1685         if (evsel->handler != NULL) {
1686                 tracepoint_handler f = evsel->handler;
1687                 err = f(tool, evsel, sample, machine);
1688         }
1689
1690         return err;
1691 }
1692
1693 static int perf_sched__read_events(struct perf_sched *sched)
1694 {
1695         const struct perf_evsel_str_handler handlers[] = {
1696                 { "sched:sched_switch",       process_sched_switch_event, },
1697                 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1698                 { "sched:sched_wakeup",       process_sched_wakeup_event, },
1699                 { "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1700                 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1701         };
1702         struct perf_session *session;
1703         struct perf_data_file file = {
1704                 .path = input_name,
1705                 .mode = PERF_DATA_MODE_READ,
1706                 .force = sched->force,
1707         };
1708         int rc = -1;
1709
1710         session = perf_session__new(&file, false, &sched->tool);
1711         if (session == NULL) {
1712                 pr_debug("No Memory for session\n");
1713                 return -1;
1714         }
1715
1716         symbol__init(&session->header.env);
1717
1718         if (perf_session__set_tracepoints_handlers(session, handlers))
1719                 goto out_delete;
1720
1721         if (perf_session__has_traces(session, "record -R")) {
1722                 int err = perf_session__process_events(session);
1723                 if (err) {
1724                         pr_err("Failed to process events, error %d", err);
1725                         goto out_delete;
1726                 }
1727
1728                 sched->nr_events      = session->evlist->stats.nr_events[0];
1729                 sched->nr_lost_events = session->evlist->stats.total_lost;
1730                 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1731         }
1732
1733         rc = 0;
1734 out_delete:
1735         perf_session__delete(session);
1736         return rc;
1737 }
1738
1739 /*
1740  * scheduling times are printed as msec.usec
1741  */
1742 static inline void print_sched_time(unsigned long long nsecs, int width)
1743 {
1744         unsigned long msecs;
1745         unsigned long usecs;
1746
1747         msecs  = nsecs / NSEC_PER_MSEC;
1748         nsecs -= msecs * NSEC_PER_MSEC;
1749         usecs  = nsecs / NSEC_PER_USEC;
1750         printf("%*lu.%03lu ", width, msecs, usecs);
1751 }
1752
1753 /*
1754  * returns runtime data for event, allocating memory for it the
1755  * first time it is used.
1756  */
1757 static struct evsel_runtime *perf_evsel__get_runtime(struct perf_evsel *evsel)
1758 {
1759         struct evsel_runtime *r = evsel->priv;
1760
1761         if (r == NULL) {
1762                 r = zalloc(sizeof(struct evsel_runtime));
1763                 evsel->priv = r;
1764         }
1765
1766         return r;
1767 }
1768
1769 /*
1770  * save last time event was seen per cpu
1771  */
1772 static void perf_evsel__save_time(struct perf_evsel *evsel,
1773                                   u64 timestamp, u32 cpu)
1774 {
1775         struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1776
1777         if (r == NULL)
1778                 return;
1779
1780         if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1781                 int i, n = __roundup_pow_of_two(cpu+1);
1782                 void *p = r->last_time;
1783
1784                 p = realloc(r->last_time, n * sizeof(u64));
1785                 if (!p)
1786                         return;
1787
1788                 r->last_time = p;
1789                 for (i = r->ncpu; i < n; ++i)
1790                         r->last_time[i] = (u64) 0;
1791
1792                 r->ncpu = n;
1793         }
1794
1795         r->last_time[cpu] = timestamp;
1796 }
1797
1798 /* returns last time this event was seen on the given cpu */
1799 static u64 perf_evsel__get_time(struct perf_evsel *evsel, u32 cpu)
1800 {
1801         struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1802
1803         if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1804                 return 0;
1805
1806         return r->last_time[cpu];
1807 }
1808
1809 static int comm_width = 30;
1810
1811 static char *timehist_get_commstr(struct thread *thread)
1812 {
1813         static char str[32];
1814         const char *comm = thread__comm_str(thread);
1815         pid_t tid = thread->tid;
1816         pid_t pid = thread->pid_;
1817         int n;
1818
1819         if (pid == 0)
1820                 n = scnprintf(str, sizeof(str), "%s", comm);
1821
1822         else if (tid != pid)
1823                 n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1824
1825         else
1826                 n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1827
1828         if (n > comm_width)
1829                 comm_width = n;
1830
1831         return str;
1832 }
1833
1834 static void timehist_header(struct perf_sched *sched)
1835 {
1836         u32 ncpus = sched->max_cpu + 1;
1837         u32 i, j;
1838
1839         printf("%15s %6s ", "time", "cpu");
1840
1841         if (sched->show_cpu_visual) {
1842                 printf(" ");
1843                 for (i = 0, j = 0; i < ncpus; ++i) {
1844                         printf("%x", j++);
1845                         if (j > 15)
1846                                 j = 0;
1847                 }
1848                 printf(" ");
1849         }
1850
1851         printf(" %-*s  %9s  %9s  %9s", comm_width,
1852                 "task name", "wait time", "sch delay", "run time");
1853
1854         if (sched->show_state)
1855                 printf("  %s", "state");
1856
1857         printf("\n");
1858
1859         /*
1860          * units row
1861          */
1862         printf("%15s %-6s ", "", "");
1863
1864         if (sched->show_cpu_visual)
1865                 printf(" %*s ", ncpus, "");
1866
1867         printf(" %-*s  %9s  %9s  %9s", comm_width,
1868                "[tid/pid]", "(msec)", "(msec)", "(msec)");
1869
1870         if (sched->show_state)
1871                 printf("  %5s", "");
1872
1873         printf("\n");
1874
1875         /*
1876          * separator
1877          */
1878         printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
1879
1880         if (sched->show_cpu_visual)
1881                 printf(" %.*s ", ncpus, graph_dotted_line);
1882
1883         printf(" %.*s  %.9s  %.9s  %.9s", comm_width,
1884                 graph_dotted_line, graph_dotted_line, graph_dotted_line,
1885                 graph_dotted_line);
1886
1887         if (sched->show_state)
1888                 printf("  %.5s", graph_dotted_line);
1889
1890         printf("\n");
1891 }
1892
1893 static char task_state_char(struct thread *thread, int state)
1894 {
1895         static const char state_to_char[] = TASK_STATE_TO_CHAR_STR;
1896         unsigned bit = state ? ffs(state) : 0;
1897
1898         /* 'I' for idle */
1899         if (thread->tid == 0)
1900                 return 'I';
1901
1902         return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?';
1903 }
1904
1905 static void timehist_print_sample(struct perf_sched *sched,
1906                                   struct perf_evsel *evsel,
1907                                   struct perf_sample *sample,
1908                                   struct addr_location *al,
1909                                   struct thread *thread,
1910                                   u64 t, int state)
1911 {
1912         struct thread_runtime *tr = thread__priv(thread);
1913         const char *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
1914         const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1915         u32 max_cpus = sched->max_cpu + 1;
1916         char tstr[64];
1917         char nstr[30];
1918         u64 wait_time;
1919
1920         timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
1921         printf("%15s [%04d] ", tstr, sample->cpu);
1922
1923         if (sched->show_cpu_visual) {
1924                 u32 i;
1925                 char c;
1926
1927                 printf(" ");
1928                 for (i = 0; i < max_cpus; ++i) {
1929                         /* flag idle times with 'i'; others are sched events */
1930                         if (i == sample->cpu)
1931                                 c = (thread->tid == 0) ? 'i' : 's';
1932                         else
1933                                 c = ' ';
1934                         printf("%c", c);
1935                 }
1936                 printf(" ");
1937         }
1938
1939         printf(" %-*s ", comm_width, timehist_get_commstr(thread));
1940
1941         wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
1942         print_sched_time(wait_time, 6);
1943
1944         print_sched_time(tr->dt_delay, 6);
1945         print_sched_time(tr->dt_run, 6);
1946
1947         if (sched->show_state)
1948                 printf(" %5c ", task_state_char(thread, state));
1949
1950         if (sched->show_next) {
1951                 snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
1952                 printf(" %-*s", comm_width, nstr);
1953         }
1954
1955         if (sched->show_wakeups && !sched->show_next)
1956                 printf("  %-*s", comm_width, "");
1957
1958         if (thread->tid == 0)
1959                 goto out;
1960
1961         if (sched->show_callchain)
1962                 printf("  ");
1963
1964         sample__fprintf_sym(sample, al, 0,
1965                             EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
1966                             EVSEL__PRINT_CALLCHAIN_ARROW |
1967                             EVSEL__PRINT_SKIP_IGNORED,
1968                             &callchain_cursor, stdout);
1969
1970 out:
1971         printf("\n");
1972 }
1973
1974 /*
1975  * Explanation of delta-time stats:
1976  *
1977  *            t = time of current schedule out event
1978  *        tprev = time of previous sched out event
1979  *                also time of schedule-in event for current task
1980  *    last_time = time of last sched change event for current task
1981  *                (i.e, time process was last scheduled out)
1982  * ready_to_run = time of wakeup for current task
1983  *
1984  * -----|------------|------------|------------|------
1985  *    last         ready        tprev          t
1986  *    time         to run
1987  *
1988  *      |-------- dt_wait --------|
1989  *                   |- dt_delay -|-- dt_run --|
1990  *
1991  *   dt_run = run time of current task
1992  *  dt_wait = time between last schedule out event for task and tprev
1993  *            represents time spent off the cpu
1994  * dt_delay = time between wakeup and schedule-in of task
1995  */
1996
1997 static void timehist_update_runtime_stats(struct thread_runtime *r,
1998                                          u64 t, u64 tprev)
1999 {
2000         r->dt_delay   = 0;
2001         r->dt_sleep   = 0;
2002         r->dt_iowait  = 0;
2003         r->dt_preempt = 0;
2004         r->dt_run     = 0;
2005
2006         if (tprev) {
2007                 r->dt_run = t - tprev;
2008                 if (r->ready_to_run) {
2009                         if (r->ready_to_run > tprev)
2010                                 pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2011                         else
2012                                 r->dt_delay = tprev - r->ready_to_run;
2013                 }
2014
2015                 if (r->last_time > tprev)
2016                         pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2017                 else if (r->last_time) {
2018                         u64 dt_wait = tprev - r->last_time;
2019
2020                         if (r->last_state == TASK_RUNNING)
2021                                 r->dt_preempt = dt_wait;
2022                         else if (r->last_state == TASK_UNINTERRUPTIBLE)
2023                                 r->dt_iowait = dt_wait;
2024                         else
2025                                 r->dt_sleep = dt_wait;
2026                 }
2027         }
2028
2029         update_stats(&r->run_stats, r->dt_run);
2030
2031         r->total_run_time     += r->dt_run;
2032         r->total_delay_time   += r->dt_delay;
2033         r->total_sleep_time   += r->dt_sleep;
2034         r->total_iowait_time  += r->dt_iowait;
2035         r->total_preempt_time += r->dt_preempt;
2036 }
2037
2038 static bool is_idle_sample(struct perf_sample *sample,
2039                            struct perf_evsel *evsel)
2040 {
2041         /* pid 0 == swapper == idle task */
2042         if (strcmp(perf_evsel__name(evsel), "sched:sched_switch") == 0)
2043                 return perf_evsel__intval(evsel, sample, "prev_pid") == 0;
2044
2045         return sample->pid == 0;
2046 }
2047
2048 static void save_task_callchain(struct perf_sched *sched,
2049                                 struct perf_sample *sample,
2050                                 struct perf_evsel *evsel,
2051                                 struct machine *machine)
2052 {
2053         struct callchain_cursor *cursor = &callchain_cursor;
2054         struct thread *thread;
2055
2056         /* want main thread for process - has maps */
2057         thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2058         if (thread == NULL) {
2059                 pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2060                 return;
2061         }
2062
2063         if (!symbol_conf.use_callchain || sample->callchain == NULL)
2064                 return;
2065
2066         if (thread__resolve_callchain(thread, cursor, evsel, sample,
2067                                       NULL, NULL, sched->max_stack + 2) != 0) {
2068                 if (verbose > 0)
2069                         pr_err("Failed to resolve callchain. Skipping\n");
2070
2071                 return;
2072         }
2073
2074         callchain_cursor_commit(cursor);
2075
2076         while (true) {
2077                 struct callchain_cursor_node *node;
2078                 struct symbol *sym;
2079
2080                 node = callchain_cursor_current(cursor);
2081                 if (node == NULL)
2082                         break;
2083
2084                 sym = node->sym;
2085                 if (sym) {
2086                         if (!strcmp(sym->name, "schedule") ||
2087                             !strcmp(sym->name, "__schedule") ||
2088                             !strcmp(sym->name, "preempt_schedule"))
2089                                 sym->ignore = 1;
2090                 }
2091
2092                 callchain_cursor_advance(cursor);
2093         }
2094 }
2095
2096 static int init_idle_thread(struct thread *thread)
2097 {
2098         struct idle_thread_runtime *itr;
2099
2100         thread__set_comm(thread, idle_comm, 0);
2101
2102         itr = zalloc(sizeof(*itr));
2103         if (itr == NULL)
2104                 return -ENOMEM;
2105
2106         init_stats(&itr->tr.run_stats);
2107         callchain_init(&itr->callchain);
2108         callchain_cursor_reset(&itr->cursor);
2109         thread__set_priv(thread, itr);
2110
2111         return 0;
2112 }
2113
2114 /*
2115  * Track idle stats per cpu by maintaining a local thread
2116  * struct for the idle task on each cpu.
2117  */
2118 static int init_idle_threads(int ncpu)
2119 {
2120         int i, ret;
2121
2122         idle_threads = zalloc(ncpu * sizeof(struct thread *));
2123         if (!idle_threads)
2124                 return -ENOMEM;
2125
2126         idle_max_cpu = ncpu;
2127
2128         /* allocate the actual thread struct if needed */
2129         for (i = 0; i < ncpu; ++i) {
2130                 idle_threads[i] = thread__new(0, 0);
2131                 if (idle_threads[i] == NULL)
2132                         return -ENOMEM;
2133
2134                 ret = init_idle_thread(idle_threads[i]);
2135                 if (ret < 0)
2136                         return ret;
2137         }
2138
2139         return 0;
2140 }
2141
2142 static void free_idle_threads(void)
2143 {
2144         int i;
2145
2146         if (idle_threads == NULL)
2147                 return;
2148
2149         for (i = 0; i < idle_max_cpu; ++i) {
2150                 if ((idle_threads[i]))
2151                         thread__delete(idle_threads[i]);
2152         }
2153
2154         free(idle_threads);
2155 }
2156
2157 static struct thread *get_idle_thread(int cpu)
2158 {
2159         /*
2160          * expand/allocate array of pointers to local thread
2161          * structs if needed
2162          */
2163         if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2164                 int i, j = __roundup_pow_of_two(cpu+1);
2165                 void *p;
2166
2167                 p = realloc(idle_threads, j * sizeof(struct thread *));
2168                 if (!p)
2169                         return NULL;
2170
2171                 idle_threads = (struct thread **) p;
2172                 for (i = idle_max_cpu; i < j; ++i)
2173                         idle_threads[i] = NULL;
2174
2175                 idle_max_cpu = j;
2176         }
2177
2178         /* allocate a new thread struct if needed */
2179         if (idle_threads[cpu] == NULL) {
2180                 idle_threads[cpu] = thread__new(0, 0);
2181
2182                 if (idle_threads[cpu]) {
2183                         if (init_idle_thread(idle_threads[cpu]) < 0)
2184                                 return NULL;
2185                 }
2186         }
2187
2188         return idle_threads[cpu];
2189 }
2190
2191 static void save_idle_callchain(struct idle_thread_runtime *itr,
2192                                 struct perf_sample *sample)
2193 {
2194         if (!symbol_conf.use_callchain || sample->callchain == NULL)
2195                 return;
2196
2197         callchain_cursor__copy(&itr->cursor, &callchain_cursor);
2198 }
2199
2200 /*
2201  * handle runtime stats saved per thread
2202  */
2203 static struct thread_runtime *thread__init_runtime(struct thread *thread)
2204 {
2205         struct thread_runtime *r;
2206
2207         r = zalloc(sizeof(struct thread_runtime));
2208         if (!r)
2209                 return NULL;
2210
2211         init_stats(&r->run_stats);
2212         thread__set_priv(thread, r);
2213
2214         return r;
2215 }
2216
2217 static struct thread_runtime *thread__get_runtime(struct thread *thread)
2218 {
2219         struct thread_runtime *tr;
2220
2221         tr = thread__priv(thread);
2222         if (tr == NULL) {
2223                 tr = thread__init_runtime(thread);
2224                 if (tr == NULL)
2225                         pr_debug("Failed to malloc memory for runtime data.\n");
2226         }
2227
2228         return tr;
2229 }
2230
2231 static struct thread *timehist_get_thread(struct perf_sched *sched,
2232                                           struct perf_sample *sample,
2233                                           struct machine *machine,
2234                                           struct perf_evsel *evsel)
2235 {
2236         struct thread *thread;
2237
2238         if (is_idle_sample(sample, evsel)) {
2239                 thread = get_idle_thread(sample->cpu);
2240                 if (thread == NULL)
2241                         pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2242
2243         } else {
2244                 /* there were samples with tid 0 but non-zero pid */
2245                 thread = machine__findnew_thread(machine, sample->pid,
2246                                                  sample->tid ?: sample->pid);
2247                 if (thread == NULL) {
2248                         pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2249                                  sample->tid);
2250                 }
2251
2252                 save_task_callchain(sched, sample, evsel, machine);
2253                 if (sched->idle_hist) {
2254                         struct thread *idle;
2255                         struct idle_thread_runtime *itr;
2256
2257                         idle = get_idle_thread(sample->cpu);
2258                         if (idle == NULL) {
2259                                 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2260                                 return NULL;
2261                         }
2262
2263                         itr = thread__priv(idle);
2264                         if (itr == NULL)
2265                                 return NULL;
2266
2267                         itr->last_thread = thread;
2268
2269                         /* copy task callchain when entering to idle */
2270                         if (perf_evsel__intval(evsel, sample, "next_pid") == 0)
2271                                 save_idle_callchain(itr, sample);
2272                 }
2273         }
2274
2275         return thread;
2276 }
2277
2278 static bool timehist_skip_sample(struct perf_sched *sched,
2279                                  struct thread *thread,
2280                                  struct perf_evsel *evsel,
2281                                  struct perf_sample *sample)
2282 {
2283         bool rc = false;
2284
2285         if (thread__is_filtered(thread)) {
2286                 rc = true;
2287                 sched->skipped_samples++;
2288         }
2289
2290         if (sched->idle_hist) {
2291                 if (strcmp(perf_evsel__name(evsel), "sched:sched_switch"))
2292                         rc = true;
2293                 else if (perf_evsel__intval(evsel, sample, "prev_pid") != 0 &&
2294                          perf_evsel__intval(evsel, sample, "next_pid") != 0)
2295                         rc = true;
2296         }
2297
2298         return rc;
2299 }
2300
2301 static void timehist_print_wakeup_event(struct perf_sched *sched,
2302                                         struct perf_evsel *evsel,
2303                                         struct perf_sample *sample,
2304                                         struct machine *machine,
2305                                         struct thread *awakened)
2306 {
2307         struct thread *thread;
2308         char tstr[64];
2309
2310         thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2311         if (thread == NULL)
2312                 return;
2313
2314         /* show wakeup unless both awakee and awaker are filtered */
2315         if (timehist_skip_sample(sched, thread, evsel, sample) &&
2316             timehist_skip_sample(sched, awakened, evsel, sample)) {
2317                 return;
2318         }
2319
2320         timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2321         printf("%15s [%04d] ", tstr, sample->cpu);
2322         if (sched->show_cpu_visual)
2323                 printf(" %*s ", sched->max_cpu + 1, "");
2324
2325         printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2326
2327         /* dt spacer */
2328         printf("  %9s  %9s  %9s ", "", "", "");
2329
2330         printf("awakened: %s", timehist_get_commstr(awakened));
2331
2332         printf("\n");
2333 }
2334
2335 static int timehist_sched_wakeup_event(struct perf_tool *tool,
2336                                        union perf_event *event __maybe_unused,
2337                                        struct perf_evsel *evsel,
2338                                        struct perf_sample *sample,
2339                                        struct machine *machine)
2340 {
2341         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2342         struct thread *thread;
2343         struct thread_runtime *tr = NULL;
2344         /* want pid of awakened task not pid in sample */
2345         const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2346
2347         thread = machine__findnew_thread(machine, 0, pid);
2348         if (thread == NULL)
2349                 return -1;
2350
2351         tr = thread__get_runtime(thread);
2352         if (tr == NULL)
2353                 return -1;
2354
2355         if (tr->ready_to_run == 0)
2356                 tr->ready_to_run = sample->time;
2357
2358         /* show wakeups if requested */
2359         if (sched->show_wakeups &&
2360             !perf_time__skip_sample(&sched->ptime, sample->time))
2361                 timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2362
2363         return 0;
2364 }
2365
2366 static void timehist_print_migration_event(struct perf_sched *sched,
2367                                         struct perf_evsel *evsel,
2368                                         struct perf_sample *sample,
2369                                         struct machine *machine,
2370                                         struct thread *migrated)
2371 {
2372         struct thread *thread;
2373         char tstr[64];
2374         u32 max_cpus = sched->max_cpu + 1;
2375         u32 ocpu, dcpu;
2376
2377         if (sched->summary_only)
2378                 return;
2379
2380         max_cpus = sched->max_cpu + 1;
2381         ocpu = perf_evsel__intval(evsel, sample, "orig_cpu");
2382         dcpu = perf_evsel__intval(evsel, sample, "dest_cpu");
2383
2384         thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2385         if (thread == NULL)
2386                 return;
2387
2388         if (timehist_skip_sample(sched, thread, evsel, sample) &&
2389             timehist_skip_sample(sched, migrated, evsel, sample)) {
2390                 return;
2391         }
2392
2393         timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2394         printf("%15s [%04d] ", tstr, sample->cpu);
2395
2396         if (sched->show_cpu_visual) {
2397                 u32 i;
2398                 char c;
2399
2400                 printf("  ");
2401                 for (i = 0; i < max_cpus; ++i) {
2402                         c = (i == sample->cpu) ? 'm' : ' ';
2403                         printf("%c", c);
2404                 }
2405                 printf("  ");
2406         }
2407
2408         printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2409
2410         /* dt spacer */
2411         printf("  %9s  %9s  %9s ", "", "", "");
2412
2413         printf("migrated: %s", timehist_get_commstr(migrated));
2414         printf(" cpu %d => %d", ocpu, dcpu);
2415
2416         printf("\n");
2417 }
2418
2419 static int timehist_migrate_task_event(struct perf_tool *tool,
2420                                        union perf_event *event __maybe_unused,
2421                                        struct perf_evsel *evsel,
2422                                        struct perf_sample *sample,
2423                                        struct machine *machine)
2424 {
2425         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2426         struct thread *thread;
2427         struct thread_runtime *tr = NULL;
2428         /* want pid of migrated task not pid in sample */
2429         const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2430
2431         thread = machine__findnew_thread(machine, 0, pid);
2432         if (thread == NULL)
2433                 return -1;
2434
2435         tr = thread__get_runtime(thread);
2436         if (tr == NULL)
2437                 return -1;
2438
2439         tr->migrations++;
2440
2441         /* show migrations if requested */
2442         timehist_print_migration_event(sched, evsel, sample, machine, thread);
2443
2444         return 0;
2445 }
2446
2447 static int timehist_sched_change_event(struct perf_tool *tool,
2448                                        union perf_event *event,
2449                                        struct perf_evsel *evsel,
2450                                        struct perf_sample *sample,
2451                                        struct machine *machine)
2452 {
2453         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2454         struct perf_time_interval *ptime = &sched->ptime;
2455         struct addr_location al;
2456         struct thread *thread;
2457         struct thread_runtime *tr = NULL;
2458         u64 tprev, t = sample->time;
2459         int rc = 0;
2460         int state = perf_evsel__intval(evsel, sample, "prev_state");
2461
2462
2463         if (machine__resolve(machine, &al, sample) < 0) {
2464                 pr_err("problem processing %d event. skipping it\n",
2465                        event->header.type);
2466                 rc = -1;
2467                 goto out;
2468         }
2469
2470         thread = timehist_get_thread(sched, sample, machine, evsel);
2471         if (thread == NULL) {
2472                 rc = -1;
2473                 goto out;
2474         }
2475
2476         if (timehist_skip_sample(sched, thread, evsel, sample))
2477                 goto out;
2478
2479         tr = thread__get_runtime(thread);
2480         if (tr == NULL) {
2481                 rc = -1;
2482                 goto out;
2483         }
2484
2485         tprev = perf_evsel__get_time(evsel, sample->cpu);
2486
2487         /*
2488          * If start time given:
2489          * - sample time is under window user cares about - skip sample
2490          * - tprev is under window user cares about  - reset to start of window
2491          */
2492         if (ptime->start && ptime->start > t)
2493                 goto out;
2494
2495         if (tprev && ptime->start > tprev)
2496                 tprev = ptime->start;
2497
2498         /*
2499          * If end time given:
2500          * - previous sched event is out of window - we are done
2501          * - sample time is beyond window user cares about - reset it
2502          *   to close out stats for time window interest
2503          */
2504         if (ptime->end) {
2505                 if (tprev > ptime->end)
2506                         goto out;
2507
2508                 if (t > ptime->end)
2509                         t = ptime->end;
2510         }
2511
2512         if (!sched->idle_hist || thread->tid == 0) {
2513                 timehist_update_runtime_stats(tr, t, tprev);
2514
2515                 if (sched->idle_hist) {
2516                         struct idle_thread_runtime *itr = (void *)tr;
2517                         struct thread_runtime *last_tr;
2518
2519                         BUG_ON(thread->tid != 0);
2520
2521                         if (itr->last_thread == NULL)
2522                                 goto out;
2523
2524                         /* add current idle time as last thread's runtime */
2525                         last_tr = thread__get_runtime(itr->last_thread);
2526                         if (last_tr == NULL)
2527                                 goto out;
2528
2529                         timehist_update_runtime_stats(last_tr, t, tprev);
2530                         /*
2531                          * remove delta time of last thread as it's not updated
2532                          * and otherwise it will show an invalid value next
2533                          * time.  we only care total run time and run stat.
2534                          */
2535                         last_tr->dt_run = 0;
2536                         last_tr->dt_delay = 0;
2537                         last_tr->dt_sleep = 0;
2538                         last_tr->dt_iowait = 0;
2539                         last_tr->dt_preempt = 0;
2540
2541                         if (itr->cursor.nr)
2542                                 callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2543
2544                         itr->last_thread = NULL;
2545                 }
2546         }
2547
2548         if (!sched->summary_only)
2549                 timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2550
2551 out:
2552         if (sched->hist_time.start == 0 && t >= ptime->start)
2553                 sched->hist_time.start = t;
2554         if (ptime->end == 0 || t <= ptime->end)
2555                 sched->hist_time.end = t;
2556
2557         if (tr) {
2558                 /* time of this sched_switch event becomes last time task seen */
2559                 tr->last_time = sample->time;
2560
2561                 /* last state is used to determine where to account wait time */
2562                 tr->last_state = state;
2563
2564                 /* sched out event for task so reset ready to run time */
2565                 tr->ready_to_run = 0;
2566         }
2567
2568         perf_evsel__save_time(evsel, sample->time, sample->cpu);
2569
2570         return rc;
2571 }
2572
2573 static int timehist_sched_switch_event(struct perf_tool *tool,
2574                              union perf_event *event,
2575                              struct perf_evsel *evsel,
2576                              struct perf_sample *sample,
2577                              struct machine *machine __maybe_unused)
2578 {
2579         return timehist_sched_change_event(tool, event, evsel, sample, machine);
2580 }
2581
2582 static int process_lost(struct perf_tool *tool __maybe_unused,
2583                         union perf_event *event,
2584                         struct perf_sample *sample,
2585                         struct machine *machine __maybe_unused)
2586 {
2587         char tstr[64];
2588
2589         timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2590         printf("%15s ", tstr);
2591         printf("lost %" PRIu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2592
2593         return 0;
2594 }
2595
2596
2597 static void print_thread_runtime(struct thread *t,
2598                                  struct thread_runtime *r)
2599 {
2600         double mean = avg_stats(&r->run_stats);
2601         float stddev;
2602
2603         printf("%*s   %5d  %9" PRIu64 " ",
2604                comm_width, timehist_get_commstr(t), t->ppid,
2605                (u64) r->run_stats.n);
2606
2607         print_sched_time(r->total_run_time, 8);
2608         stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2609         print_sched_time(r->run_stats.min, 6);
2610         printf(" ");
2611         print_sched_time((u64) mean, 6);
2612         printf(" ");
2613         print_sched_time(r->run_stats.max, 6);
2614         printf("  ");
2615         printf("%5.2f", stddev);
2616         printf("   %5" PRIu64, r->migrations);
2617         printf("\n");
2618 }
2619
2620 static void print_thread_waittime(struct thread *t,
2621                                   struct thread_runtime *r)
2622 {
2623         printf("%*s   %5d  %9" PRIu64 " ",
2624                comm_width, timehist_get_commstr(t), t->ppid,
2625                (u64) r->run_stats.n);
2626
2627         print_sched_time(r->total_run_time, 8);
2628         print_sched_time(r->total_sleep_time, 6);
2629         printf(" ");
2630         print_sched_time(r->total_iowait_time, 6);
2631         printf(" ");
2632         print_sched_time(r->total_preempt_time, 6);
2633         printf(" ");
2634         print_sched_time(r->total_delay_time, 6);
2635         printf("\n");
2636 }
2637
2638 struct total_run_stats {
2639         struct perf_sched *sched;
2640         u64  sched_count;
2641         u64  task_count;
2642         u64  total_run_time;
2643 };
2644
2645 static int __show_thread_runtime(struct thread *t, void *priv)
2646 {
2647         struct total_run_stats *stats = priv;
2648         struct thread_runtime *r;
2649
2650         if (thread__is_filtered(t))
2651                 return 0;
2652
2653         r = thread__priv(t);
2654         if (r && r->run_stats.n) {
2655                 stats->task_count++;
2656                 stats->sched_count += r->run_stats.n;
2657                 stats->total_run_time += r->total_run_time;
2658
2659                 if (stats->sched->show_state)
2660                         print_thread_waittime(t, r);
2661                 else
2662                         print_thread_runtime(t, r);
2663         }
2664
2665         return 0;
2666 }
2667
2668 static int show_thread_runtime(struct thread *t, void *priv)
2669 {
2670         if (t->dead)
2671                 return 0;
2672
2673         return __show_thread_runtime(t, priv);
2674 }
2675
2676 static int show_deadthread_runtime(struct thread *t, void *priv)
2677 {
2678         if (!t->dead)
2679                 return 0;
2680
2681         return __show_thread_runtime(t, priv);
2682 }
2683
2684 static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2685 {
2686         const char *sep = " <- ";
2687         struct callchain_list *chain;
2688         size_t ret = 0;
2689         char bf[1024];
2690         bool first;
2691
2692         if (node == NULL)
2693                 return 0;
2694
2695         ret = callchain__fprintf_folded(fp, node->parent);
2696         first = (ret == 0);
2697
2698         list_for_each_entry(chain, &node->val, list) {
2699                 if (chain->ip >= PERF_CONTEXT_MAX)
2700                         continue;
2701                 if (chain->ms.sym && chain->ms.sym->ignore)
2702                         continue;
2703                 ret += fprintf(fp, "%s%s", first ? "" : sep,
2704                                callchain_list__sym_name(chain, bf, sizeof(bf),
2705                                                         false));
2706                 first = false;
2707         }
2708
2709         return ret;
2710 }
2711
2712 static size_t timehist_print_idlehist_callchain(struct rb_root *root)
2713 {
2714         size_t ret = 0;
2715         FILE *fp = stdout;
2716         struct callchain_node *chain;
2717         struct rb_node *rb_node = rb_first(root);
2718
2719         printf("  %16s  %8s  %s\n", "Idle time (msec)", "Count", "Callchains");
2720         printf("  %.16s  %.8s  %.50s\n", graph_dotted_line, graph_dotted_line,
2721                graph_dotted_line);
2722
2723         while (rb_node) {
2724                 chain = rb_entry(rb_node, struct callchain_node, rb_node);
2725                 rb_node = rb_next(rb_node);
2726
2727                 ret += fprintf(fp, "  ");
2728                 print_sched_time(chain->hit, 12);
2729                 ret += 16;  /* print_sched_time returns 2nd arg + 4 */
2730                 ret += fprintf(fp, " %8d  ", chain->count);
2731                 ret += callchain__fprintf_folded(fp, chain);
2732                 ret += fprintf(fp, "\n");
2733         }
2734
2735         return ret;
2736 }
2737
2738 static void timehist_print_summary(struct perf_sched *sched,
2739                                    struct perf_session *session)
2740 {
2741         struct machine *m = &session->machines.host;
2742         struct total_run_stats totals;
2743         u64 task_count;
2744         struct thread *t;
2745         struct thread_runtime *r;
2746         int i;
2747         u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2748
2749         memset(&totals, 0, sizeof(totals));
2750         totals.sched = sched;
2751
2752         if (sched->idle_hist) {
2753                 printf("\nIdle-time summary\n");
2754                 printf("%*s  parent  sched-out  ", comm_width, "comm");
2755                 printf("  idle-time   min-idle    avg-idle    max-idle  stddev  migrations\n");
2756         } else if (sched->show_state) {
2757                 printf("\nWait-time summary\n");
2758                 printf("%*s  parent   sched-in  ", comm_width, "comm");
2759                 printf("   run-time      sleep      iowait     preempt       delay\n");
2760         } else {
2761                 printf("\nRuntime summary\n");
2762                 printf("%*s  parent   sched-in  ", comm_width, "comm");
2763                 printf("   run-time    min-run     avg-run     max-run  stddev  migrations\n");
2764         }
2765         printf("%*s            (count)  ", comm_width, "");
2766         printf("     (msec)     (msec)      (msec)      (msec)       %s\n",
2767                sched->show_state ? "(msec)" : "%");
2768         printf("%.117s\n", graph_dotted_line);
2769
2770         machine__for_each_thread(m, show_thread_runtime, &totals);
2771         task_count = totals.task_count;
2772         if (!task_count)
2773                 printf("<no still running tasks>\n");
2774
2775         printf("\nTerminated tasks:\n");
2776         machine__for_each_thread(m, show_deadthread_runtime, &totals);
2777         if (task_count == totals.task_count)
2778                 printf("<no terminated tasks>\n");
2779
2780         /* CPU idle stats not tracked when samples were skipped */
2781         if (sched->skipped_samples && !sched->idle_hist)
2782                 return;
2783
2784         printf("\nIdle stats:\n");
2785         for (i = 0; i < idle_max_cpu; ++i) {
2786                 t = idle_threads[i];
2787                 if (!t)
2788                         continue;
2789
2790                 r = thread__priv(t);
2791                 if (r && r->run_stats.n) {
2792                         totals.sched_count += r->run_stats.n;
2793                         printf("    CPU %2d idle for ", i);
2794                         print_sched_time(r->total_run_time, 6);
2795                         printf(" msec  (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2796                 } else
2797                         printf("    CPU %2d idle entire time window\n", i);
2798         }
2799
2800         if (sched->idle_hist && symbol_conf.use_callchain) {
2801                 callchain_param.mode  = CHAIN_FOLDED;
2802                 callchain_param.value = CCVAL_PERIOD;
2803
2804                 callchain_register_param(&callchain_param);
2805
2806                 printf("\nIdle stats by callchain:\n");
2807                 for (i = 0; i < idle_max_cpu; ++i) {
2808                         struct idle_thread_runtime *itr;
2809
2810                         t = idle_threads[i];
2811                         if (!t)
2812                                 continue;
2813
2814                         itr = thread__priv(t);
2815                         if (itr == NULL)
2816                                 continue;
2817
2818                         callchain_param.sort(&itr->sorted_root, &itr->callchain,
2819                                              0, &callchain_param);
2820
2821                         printf("  CPU %2d:", i);
2822                         print_sched_time(itr->tr.total_run_time, 6);
2823                         printf(" msec\n");
2824                         timehist_print_idlehist_callchain(&itr->sorted_root);
2825                         printf("\n");
2826                 }
2827         }
2828
2829         printf("\n"
2830                "    Total number of unique tasks: %" PRIu64 "\n"
2831                "Total number of context switches: %" PRIu64 "\n",
2832                totals.task_count, totals.sched_count);
2833
2834         printf("           Total run time (msec): ");
2835         print_sched_time(totals.total_run_time, 2);
2836         printf("\n");
2837
2838         printf("    Total scheduling time (msec): ");
2839         print_sched_time(hist_time, 2);
2840         printf(" (x %d)\n", sched->max_cpu);
2841 }
2842
2843 typedef int (*sched_handler)(struct perf_tool *tool,
2844                           union perf_event *event,
2845                           struct perf_evsel *evsel,
2846                           struct perf_sample *sample,
2847                           struct machine *machine);
2848
2849 static int perf_timehist__process_sample(struct perf_tool *tool,
2850                                          union perf_event *event,
2851                                          struct perf_sample *sample,
2852                                          struct perf_evsel *evsel,
2853                                          struct machine *machine)
2854 {
2855         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2856         int err = 0;
2857         int this_cpu = sample->cpu;
2858
2859         if (this_cpu > sched->max_cpu)
2860                 sched->max_cpu = this_cpu;
2861
2862         if (evsel->handler != NULL) {
2863                 sched_handler f = evsel->handler;
2864
2865                 err = f(tool, event, evsel, sample, machine);
2866         }
2867
2868         return err;
2869 }
2870
2871 static int timehist_check_attr(struct perf_sched *sched,
2872                                struct perf_evlist *evlist)
2873 {
2874         struct perf_evsel *evsel;
2875         struct evsel_runtime *er;
2876
2877         list_for_each_entry(evsel, &evlist->entries, node) {
2878                 er = perf_evsel__get_runtime(evsel);
2879                 if (er == NULL) {
2880                         pr_err("Failed to allocate memory for evsel runtime data\n");
2881                         return -1;
2882                 }
2883
2884                 if (sched->show_callchain &&
2885                     !(evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN)) {
2886                         pr_info("Samples do not have callchains.\n");
2887                         sched->show_callchain = 0;
2888                         symbol_conf.use_callchain = 0;
2889                 }
2890         }
2891
2892         return 0;
2893 }
2894
2895 static int perf_sched__timehist(struct perf_sched *sched)
2896 {
2897         const struct perf_evsel_str_handler handlers[] = {
2898                 { "sched:sched_switch",       timehist_sched_switch_event, },
2899                 { "sched:sched_wakeup",       timehist_sched_wakeup_event, },
2900                 { "sched:sched_wakeup_new",   timehist_sched_wakeup_event, },
2901         };
2902         const struct perf_evsel_str_handler migrate_handlers[] = {
2903                 { "sched:sched_migrate_task", timehist_migrate_task_event, },
2904         };
2905         struct perf_data_file file = {
2906                 .path = input_name,
2907                 .mode = PERF_DATA_MODE_READ,
2908                 .force = sched->force,
2909         };
2910
2911         struct perf_session *session;
2912         struct perf_evlist *evlist;
2913         int err = -1;
2914
2915         /*
2916          * event handlers for timehist option
2917          */
2918         sched->tool.sample       = perf_timehist__process_sample;
2919         sched->tool.mmap         = perf_event__process_mmap;
2920         sched->tool.comm         = perf_event__process_comm;
2921         sched->tool.exit         = perf_event__process_exit;
2922         sched->tool.fork         = perf_event__process_fork;
2923         sched->tool.lost         = process_lost;
2924         sched->tool.attr         = perf_event__process_attr;
2925         sched->tool.tracing_data = perf_event__process_tracing_data;
2926         sched->tool.build_id     = perf_event__process_build_id;
2927
2928         sched->tool.ordered_events = true;
2929         sched->tool.ordering_requires_timestamps = true;
2930
2931         symbol_conf.use_callchain = sched->show_callchain;
2932
2933         session = perf_session__new(&file, false, &sched->tool);
2934         if (session == NULL)
2935                 return -ENOMEM;
2936
2937         evlist = session->evlist;
2938
2939         symbol__init(&session->header.env);
2940
2941         if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
2942                 pr_err("Invalid time string\n");
2943                 return -EINVAL;
2944         }
2945
2946         if (timehist_check_attr(sched, evlist) != 0)
2947                 goto out;
2948
2949         setup_pager();
2950
2951         /* setup per-evsel handlers */
2952         if (perf_session__set_tracepoints_handlers(session, handlers))
2953                 goto out;
2954
2955         /* sched_switch event at a minimum needs to exist */
2956         if (!perf_evlist__find_tracepoint_by_name(session->evlist,
2957                                                   "sched:sched_switch")) {
2958                 pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
2959                 goto out;
2960         }
2961
2962         if (sched->show_migrations &&
2963             perf_session__set_tracepoints_handlers(session, migrate_handlers))
2964                 goto out;
2965
2966         /* pre-allocate struct for per-CPU idle stats */
2967         sched->max_cpu = session->header.env.nr_cpus_online;
2968         if (sched->max_cpu == 0)
2969                 sched->max_cpu = 4;
2970         if (init_idle_threads(sched->max_cpu))
2971                 goto out;
2972
2973         /* summary_only implies summary option, but don't overwrite summary if set */
2974         if (sched->summary_only)
2975                 sched->summary = sched->summary_only;
2976
2977         if (!sched->summary_only)
2978                 timehist_header(sched);
2979
2980         err = perf_session__process_events(session);
2981         if (err) {
2982                 pr_err("Failed to process events, error %d", err);
2983                 goto out;
2984         }
2985
2986         sched->nr_events      = evlist->stats.nr_events[0];
2987         sched->nr_lost_events = evlist->stats.total_lost;
2988         sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
2989
2990         if (sched->summary)
2991                 timehist_print_summary(sched, session);
2992
2993 out:
2994         free_idle_threads();
2995         perf_session__delete(session);
2996
2997         return err;
2998 }
2999
3000
3001 static void print_bad_events(struct perf_sched *sched)
3002 {
3003         if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3004                 printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3005                         (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3006                         sched->nr_unordered_timestamps, sched->nr_timestamps);
3007         }
3008         if (sched->nr_lost_events && sched->nr_events) {
3009                 printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3010                         (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3011                         sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3012         }
3013         if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3014                 printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
3015                         (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3016                         sched->nr_context_switch_bugs, sched->nr_timestamps);
3017                 if (sched->nr_lost_events)
3018                         printf(" (due to lost events?)");
3019                 printf("\n");
3020         }
3021 }
3022
3023 static void __merge_work_atoms(struct rb_root *root, struct work_atoms *data)
3024 {
3025         struct rb_node **new = &(root->rb_node), *parent = NULL;
3026         struct work_atoms *this;
3027         const char *comm = thread__comm_str(data->thread), *this_comm;
3028
3029         while (*new) {
3030                 int cmp;
3031
3032                 this = container_of(*new, struct work_atoms, node);
3033                 parent = *new;
3034
3035                 this_comm = thread__comm_str(this->thread);
3036                 cmp = strcmp(comm, this_comm);
3037                 if (cmp > 0) {
3038                         new = &((*new)->rb_left);
3039                 } else if (cmp < 0) {
3040                         new = &((*new)->rb_right);
3041                 } else {
3042                         this->num_merged++;
3043                         this->total_runtime += data->total_runtime;
3044                         this->nb_atoms += data->nb_atoms;
3045                         this->total_lat += data->total_lat;
3046                         list_splice(&data->work_list, &this->work_list);
3047                         if (this->max_lat < data->max_lat) {
3048                                 this->max_lat = data->max_lat;
3049                                 this->max_lat_at = data->max_lat_at;
3050                         }
3051                         zfree(&data);
3052                         return;
3053                 }
3054         }
3055
3056         data->num_merged++;
3057         rb_link_node(&data->node, parent, new);
3058         rb_insert_color(&data->node, root);
3059 }
3060
3061 static void perf_sched__merge_lat(struct perf_sched *sched)
3062 {
3063         struct work_atoms *data;
3064         struct rb_node *node;
3065
3066         if (sched->skip_merge)
3067                 return;
3068
3069         while ((node = rb_first(&sched->atom_root))) {
3070                 rb_erase(node, &sched->atom_root);
3071                 data = rb_entry(node, struct work_atoms, node);
3072                 __merge_work_atoms(&sched->merged_atom_root, data);
3073         }
3074 }
3075
3076 static int perf_sched__lat(struct perf_sched *sched)
3077 {
3078         struct rb_node *next;
3079
3080         setup_pager();
3081
3082         if (perf_sched__read_events(sched))
3083                 return -1;
3084
3085         perf_sched__merge_lat(sched);
3086         perf_sched__sort_lat(sched);
3087
3088         printf("\n -----------------------------------------------------------------------------------------------------------------\n");
3089         printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at       |\n");
3090         printf(" -----------------------------------------------------------------------------------------------------------------\n");
3091
3092         next = rb_first(&sched->sorted_atom_root);
3093
3094         while (next) {
3095                 struct work_atoms *work_list;
3096
3097                 work_list = rb_entry(next, struct work_atoms, node);
3098                 output_lat_thread(sched, work_list);
3099                 next = rb_next(next);
3100                 thread__zput(work_list->thread);
3101         }
3102
3103         printf(" -----------------------------------------------------------------------------------------------------------------\n");
3104         printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
3105                 (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3106
3107         printf(" ---------------------------------------------------\n");
3108
3109         print_bad_events(sched);
3110         printf("\n");
3111
3112         return 0;
3113 }
3114
3115 static int setup_map_cpus(struct perf_sched *sched)
3116 {
3117         struct cpu_map *map;
3118
3119         sched->max_cpu  = sysconf(_SC_NPROCESSORS_CONF);
3120
3121         if (sched->map.comp) {
3122                 sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int));
3123                 if (!sched->map.comp_cpus)
3124                         return -1;
3125         }
3126
3127         if (!sched->map.cpus_str)
3128                 return 0;
3129
3130         map = cpu_map__new(sched->map.cpus_str);
3131         if (!map) {
3132                 pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3133                 return -1;
3134         }
3135
3136         sched->map.cpus = map;
3137         return 0;
3138 }
3139
3140 static int setup_color_pids(struct perf_sched *sched)
3141 {
3142         struct thread_map *map;
3143
3144         if (!sched->map.color_pids_str)
3145                 return 0;
3146
3147         map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3148         if (!map) {
3149                 pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3150                 return -1;
3151         }
3152
3153         sched->map.color_pids = map;
3154         return 0;
3155 }
3156
3157 static int setup_color_cpus(struct perf_sched *sched)
3158 {
3159         struct cpu_map *map;
3160
3161         if (!sched->map.color_cpus_str)
3162                 return 0;
3163
3164         map = cpu_map__new(sched->map.color_cpus_str);
3165         if (!map) {
3166                 pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3167                 return -1;
3168         }
3169
3170         sched->map.color_cpus = map;
3171         return 0;
3172 }
3173
3174 static int perf_sched__map(struct perf_sched *sched)
3175 {
3176         if (setup_map_cpus(sched))
3177                 return -1;
3178
3179         if (setup_color_pids(sched))
3180                 return -1;
3181
3182         if (setup_color_cpus(sched))
3183                 return -1;
3184
3185         setup_pager();
3186         if (perf_sched__read_events(sched))
3187                 return -1;
3188         print_bad_events(sched);
3189         return 0;
3190 }
3191
3192 static int perf_sched__replay(struct perf_sched *sched)
3193 {
3194         unsigned long i;
3195
3196         calibrate_run_measurement_overhead(sched);
3197         calibrate_sleep_measurement_overhead(sched);
3198
3199         test_calibrations(sched);
3200
3201         if (perf_sched__read_events(sched))
3202                 return -1;
3203
3204         printf("nr_run_events:        %ld\n", sched->nr_run_events);
3205         printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
3206         printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
3207
3208         if (sched->targetless_wakeups)
3209                 printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
3210         if (sched->multitarget_wakeups)
3211                 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3212         if (sched->nr_run_events_optimized)
3213                 printf("run atoms optimized: %ld\n",
3214                         sched->nr_run_events_optimized);
3215
3216         print_task_traces(sched);
3217         add_cross_task_wakeups(sched);
3218
3219         create_tasks(sched);
3220         printf("------------------------------------------------------------\n");
3221         for (i = 0; i < sched->replay_repeat; i++)
3222                 run_one_test(sched);
3223
3224         return 0;
3225 }
3226
3227 static void setup_sorting(struct perf_sched *sched, const struct option *options,
3228                           const char * const usage_msg[])
3229 {
3230         char *tmp, *tok, *str = strdup(sched->sort_order);
3231
3232         for (tok = strtok_r(str, ", ", &tmp);
3233                         tok; tok = strtok_r(NULL, ", ", &tmp)) {
3234                 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3235                         usage_with_options_msg(usage_msg, options,
3236                                         "Unknown --sort key: `%s'", tok);
3237                 }
3238         }
3239
3240         free(str);
3241
3242         sort_dimension__add("pid", &sched->cmp_pid);
3243 }
3244
3245 static int __cmd_record(int argc, const char **argv)
3246 {
3247         unsigned int rec_argc, i, j;
3248         const char **rec_argv;
3249         const char * const record_args[] = {
3250                 "record",
3251                 "-a",
3252                 "-R",
3253                 "-m", "1024",
3254                 "-c", "1",
3255                 "-e", "sched:sched_switch",
3256                 "-e", "sched:sched_stat_wait",
3257                 "-e", "sched:sched_stat_sleep",
3258                 "-e", "sched:sched_stat_iowait",
3259                 "-e", "sched:sched_stat_runtime",
3260                 "-e", "sched:sched_process_fork",
3261                 "-e", "sched:sched_wakeup",
3262                 "-e", "sched:sched_wakeup_new",
3263                 "-e", "sched:sched_migrate_task",
3264         };
3265
3266         rec_argc = ARRAY_SIZE(record_args) + argc - 1;
3267         rec_argv = calloc(rec_argc + 1, sizeof(char *));
3268
3269         if (rec_argv == NULL)
3270                 return -ENOMEM;
3271
3272         for (i = 0; i < ARRAY_SIZE(record_args); i++)
3273                 rec_argv[i] = strdup(record_args[i]);
3274
3275         for (j = 1; j < (unsigned int)argc; j++, i++)
3276                 rec_argv[i] = argv[j];
3277
3278         BUG_ON(i != rec_argc);
3279
3280         return cmd_record(i, rec_argv);
3281 }
3282
3283 int cmd_sched(int argc, const char **argv)
3284 {
3285         const char default_sort_order[] = "avg, max, switch, runtime";
3286         struct perf_sched sched = {
3287                 .tool = {
3288                         .sample          = perf_sched__process_tracepoint_sample,
3289                         .comm            = perf_event__process_comm,
3290                         .namespaces      = perf_event__process_namespaces,
3291                         .lost            = perf_event__process_lost,
3292                         .fork            = perf_sched__process_fork_event,
3293                         .ordered_events = true,
3294                 },
3295                 .cmp_pid              = LIST_HEAD_INIT(sched.cmp_pid),
3296                 .sort_list            = LIST_HEAD_INIT(sched.sort_list),
3297                 .start_work_mutex     = PTHREAD_MUTEX_INITIALIZER,
3298                 .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
3299                 .sort_order           = default_sort_order,
3300                 .replay_repeat        = 10,
3301                 .profile_cpu          = -1,
3302                 .next_shortname1      = 'A',
3303                 .next_shortname2      = '0',
3304                 .skip_merge           = 0,
3305                 .show_callchain       = 1,
3306                 .max_stack            = 5,
3307         };
3308         const struct option sched_options[] = {
3309         OPT_STRING('i', "input", &input_name, "file",
3310                     "input file name"),
3311         OPT_INCR('v', "verbose", &verbose,
3312                     "be more verbose (show symbol address, etc)"),
3313         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3314                     "dump raw trace in ASCII"),
3315         OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3316         OPT_END()
3317         };
3318         const struct option latency_options[] = {
3319         OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3320                    "sort by key(s): runtime, switch, avg, max"),
3321         OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3322                     "CPU to profile on"),
3323         OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3324                     "latency stats per pid instead of per comm"),
3325         OPT_PARENT(sched_options)
3326         };
3327         const struct option replay_options[] = {
3328         OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3329                      "repeat the workload replay N times (-1: infinite)"),
3330         OPT_PARENT(sched_options)
3331         };
3332         const struct option map_options[] = {
3333         OPT_BOOLEAN(0, "compact", &sched.map.comp,
3334                     "map output in compact mode"),
3335         OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3336                    "highlight given pids in map"),
3337         OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3338                     "highlight given CPUs in map"),
3339         OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3340                     "display given CPUs in map"),
3341         OPT_PARENT(sched_options)
3342         };
3343         const struct option timehist_options[] = {
3344         OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3345                    "file", "vmlinux pathname"),
3346         OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3347                    "file", "kallsyms pathname"),
3348         OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3349                     "Display call chains if present (default on)"),
3350         OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3351                    "Maximum number of functions to display backtrace."),
3352         OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3353                     "Look for files with symbols relative to this directory"),
3354         OPT_BOOLEAN('s', "summary", &sched.summary_only,
3355                     "Show only syscall summary with statistics"),
3356         OPT_BOOLEAN('S', "with-summary", &sched.summary,
3357                     "Show all syscalls and summary with statistics"),
3358         OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3359         OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3360         OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3361         OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3362         OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3363         OPT_STRING(0, "time", &sched.time_str, "str",
3364                    "Time span for analysis (start,stop)"),
3365         OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3366         OPT_PARENT(sched_options)
3367         };
3368
3369         const char * const latency_usage[] = {
3370                 "perf sched latency [<options>]",
3371                 NULL
3372         };
3373         const char * const replay_usage[] = {
3374                 "perf sched replay [<options>]",
3375                 NULL
3376         };
3377         const char * const map_usage[] = {
3378                 "perf sched map [<options>]",
3379                 NULL
3380         };
3381         const char * const timehist_usage[] = {
3382                 "perf sched timehist [<options>]",
3383                 NULL
3384         };
3385         const char *const sched_subcommands[] = { "record", "latency", "map",
3386                                                   "replay", "script",
3387                                                   "timehist", NULL };
3388         const char *sched_usage[] = {
3389                 NULL,
3390                 NULL
3391         };
3392         struct trace_sched_handler lat_ops  = {
3393                 .wakeup_event       = latency_wakeup_event,
3394                 .switch_event       = latency_switch_event,
3395                 .runtime_event      = latency_runtime_event,
3396                 .migrate_task_event = latency_migrate_task_event,
3397         };
3398         struct trace_sched_handler map_ops  = {
3399                 .switch_event       = map_switch_event,
3400         };
3401         struct trace_sched_handler replay_ops  = {
3402                 .wakeup_event       = replay_wakeup_event,
3403                 .switch_event       = replay_switch_event,
3404                 .fork_event         = replay_fork_event,
3405         };
3406         unsigned int i;
3407
3408         for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
3409                 sched.curr_pid[i] = -1;
3410
3411         argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3412                                         sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3413         if (!argc)
3414                 usage_with_options(sched_usage, sched_options);
3415
3416         /*
3417          * Aliased to 'perf script' for now:
3418          */
3419         if (!strcmp(argv[0], "script"))
3420                 return cmd_script(argc, argv);
3421
3422         if (!strncmp(argv[0], "rec", 3)) {
3423                 return __cmd_record(argc, argv);
3424         } else if (!strncmp(argv[0], "lat", 3)) {
3425                 sched.tp_handler = &lat_ops;
3426                 if (argc > 1) {
3427                         argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3428                         if (argc)
3429                                 usage_with_options(latency_usage, latency_options);
3430                 }
3431                 setup_sorting(&sched, latency_options, latency_usage);
3432                 return perf_sched__lat(&sched);
3433         } else if (!strcmp(argv[0], "map")) {
3434                 if (argc) {
3435                         argc = parse_options(argc, argv, map_options, map_usage, 0);
3436                         if (argc)
3437                                 usage_with_options(map_usage, map_options);
3438                 }
3439                 sched.tp_handler = &map_ops;
3440                 setup_sorting(&sched, latency_options, latency_usage);
3441                 return perf_sched__map(&sched);
3442         } else if (!strncmp(argv[0], "rep", 3)) {
3443                 sched.tp_handler = &replay_ops;
3444                 if (argc) {
3445                         argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3446                         if (argc)
3447                                 usage_with_options(replay_usage, replay_options);
3448                 }
3449                 return perf_sched__replay(&sched);
3450         } else if (!strcmp(argv[0], "timehist")) {
3451                 if (argc) {
3452                         argc = parse_options(argc, argv, timehist_options,
3453                                              timehist_usage, 0);
3454                         if (argc)
3455                                 usage_with_options(timehist_usage, timehist_options);
3456                 }
3457                 if ((sched.show_wakeups || sched.show_next) &&
3458                     sched.summary_only) {
3459                         pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3460                         parse_options_usage(timehist_usage, timehist_options, "s", true);
3461                         if (sched.show_wakeups)
3462                                 parse_options_usage(NULL, timehist_options, "w", true);
3463                         if (sched.show_next)
3464                                 parse_options_usage(NULL, timehist_options, "n", true);
3465                         return -EINVAL;
3466                 }
3467
3468                 return perf_sched__timehist(&sched);
3469         } else {
3470                 usage_with_options(sched_usage, sched_options);
3471         }
3472
3473         return 0;
3474 }