Merge tag 'efi-fixes-for-v6.9-1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / tools / perf / builtin-kwork.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * builtin-kwork.c
4  *
5  * Copyright (c) 2022  Huawei Inc,  Yang Jihong <yangjihong1@huawei.com>
6  */
7
8 #include "builtin.h"
9
10 #include "util/data.h"
11 #include "util/evlist.h"
12 #include "util/evsel.h"
13 #include "util/header.h"
14 #include "util/kwork.h"
15 #include "util/debug.h"
16 #include "util/session.h"
17 #include "util/symbol.h"
18 #include "util/thread.h"
19 #include "util/string2.h"
20 #include "util/callchain.h"
21 #include "util/evsel_fprintf.h"
22 #include "util/util.h"
23
24 #include <subcmd/pager.h>
25 #include <subcmd/parse-options.h>
26 #include <traceevent/event-parse.h>
27
28 #include <errno.h>
29 #include <inttypes.h>
30 #include <signal.h>
31 #include <linux/err.h>
32 #include <linux/time64.h>
33 #include <linux/zalloc.h>
34
35 /*
36  * report header elements width
37  */
38 #define PRINT_CPU_WIDTH 4
39 #define PRINT_COUNT_WIDTH 9
40 #define PRINT_RUNTIME_WIDTH 10
41 #define PRINT_LATENCY_WIDTH 10
42 #define PRINT_TIMESTAMP_WIDTH 17
43 #define PRINT_KWORK_NAME_WIDTH 30
44 #define RPINT_DECIMAL_WIDTH 3
45 #define PRINT_BRACKETPAIR_WIDTH 2
46 #define PRINT_TIME_UNIT_SEC_WIDTH 2
47 #define PRINT_TIME_UNIT_MESC_WIDTH 3
48 #define PRINT_PID_WIDTH 7
49 #define PRINT_TASK_NAME_WIDTH 16
50 #define PRINT_CPU_USAGE_WIDTH 6
51 #define PRINT_CPU_USAGE_DECIMAL_WIDTH 2
52 #define PRINT_CPU_USAGE_HIST_WIDTH 30
53 #define PRINT_RUNTIME_HEADER_WIDTH (PRINT_RUNTIME_WIDTH + PRINT_TIME_UNIT_MESC_WIDTH)
54 #define PRINT_LATENCY_HEADER_WIDTH (PRINT_LATENCY_WIDTH + PRINT_TIME_UNIT_MESC_WIDTH)
55 #define PRINT_TIMEHIST_CPU_WIDTH (PRINT_CPU_WIDTH + PRINT_BRACKETPAIR_WIDTH)
56 #define PRINT_TIMESTAMP_HEADER_WIDTH (PRINT_TIMESTAMP_WIDTH + PRINT_TIME_UNIT_SEC_WIDTH)
57
58 struct sort_dimension {
59         const char      *name;
60         int             (*cmp)(struct kwork_work *l, struct kwork_work *r);
61         struct          list_head list;
62 };
63
64 static int id_cmp(struct kwork_work *l, struct kwork_work *r)
65 {
66         if (l->cpu > r->cpu)
67                 return 1;
68         if (l->cpu < r->cpu)
69                 return -1;
70
71         if (l->id > r->id)
72                 return 1;
73         if (l->id < r->id)
74                 return -1;
75
76         return 0;
77 }
78
79 static int count_cmp(struct kwork_work *l, struct kwork_work *r)
80 {
81         if (l->nr_atoms > r->nr_atoms)
82                 return 1;
83         if (l->nr_atoms < r->nr_atoms)
84                 return -1;
85
86         return 0;
87 }
88
89 static int runtime_cmp(struct kwork_work *l, struct kwork_work *r)
90 {
91         if (l->total_runtime > r->total_runtime)
92                 return 1;
93         if (l->total_runtime < r->total_runtime)
94                 return -1;
95
96         return 0;
97 }
98
99 static int max_runtime_cmp(struct kwork_work *l, struct kwork_work *r)
100 {
101         if (l->max_runtime > r->max_runtime)
102                 return 1;
103         if (l->max_runtime < r->max_runtime)
104                 return -1;
105
106         return 0;
107 }
108
109 static int avg_latency_cmp(struct kwork_work *l, struct kwork_work *r)
110 {
111         u64 avgl, avgr;
112
113         if (!r->nr_atoms)
114                 return 1;
115         if (!l->nr_atoms)
116                 return -1;
117
118         avgl = l->total_latency / l->nr_atoms;
119         avgr = r->total_latency / r->nr_atoms;
120
121         if (avgl > avgr)
122                 return 1;
123         if (avgl < avgr)
124                 return -1;
125
126         return 0;
127 }
128
129 static int max_latency_cmp(struct kwork_work *l, struct kwork_work *r)
130 {
131         if (l->max_latency > r->max_latency)
132                 return 1;
133         if (l->max_latency < r->max_latency)
134                 return -1;
135
136         return 0;
137 }
138
139 static int cpu_usage_cmp(struct kwork_work *l, struct kwork_work *r)
140 {
141         if (l->cpu_usage > r->cpu_usage)
142                 return 1;
143         if (l->cpu_usage < r->cpu_usage)
144                 return -1;
145
146         return 0;
147 }
148
149 static int id_or_cpu_r_cmp(struct kwork_work *l, struct kwork_work *r)
150 {
151         if (l->id < r->id)
152                 return 1;
153         if (l->id > r->id)
154                 return -1;
155
156         if (l->id != 0)
157                 return 0;
158
159         if (l->cpu < r->cpu)
160                 return 1;
161         if (l->cpu > r->cpu)
162                 return -1;
163
164         return 0;
165 }
166
167 static int sort_dimension__add(struct perf_kwork *kwork __maybe_unused,
168                                const char *tok, struct list_head *list)
169 {
170         size_t i;
171         static struct sort_dimension max_sort_dimension = {
172                 .name = "max",
173                 .cmp  = max_runtime_cmp,
174         };
175         static struct sort_dimension id_sort_dimension = {
176                 .name = "id",
177                 .cmp  = id_cmp,
178         };
179         static struct sort_dimension runtime_sort_dimension = {
180                 .name = "runtime",
181                 .cmp  = runtime_cmp,
182         };
183         static struct sort_dimension count_sort_dimension = {
184                 .name = "count",
185                 .cmp  = count_cmp,
186         };
187         static struct sort_dimension avg_sort_dimension = {
188                 .name = "avg",
189                 .cmp  = avg_latency_cmp,
190         };
191         static struct sort_dimension rate_sort_dimension = {
192                 .name = "rate",
193                 .cmp  = cpu_usage_cmp,
194         };
195         static struct sort_dimension tid_sort_dimension = {
196                 .name = "tid",
197                 .cmp  = id_or_cpu_r_cmp,
198         };
199         struct sort_dimension *available_sorts[] = {
200                 &id_sort_dimension,
201                 &max_sort_dimension,
202                 &count_sort_dimension,
203                 &runtime_sort_dimension,
204                 &avg_sort_dimension,
205                 &rate_sort_dimension,
206                 &tid_sort_dimension,
207         };
208
209         if (kwork->report == KWORK_REPORT_LATENCY)
210                 max_sort_dimension.cmp = max_latency_cmp;
211
212         for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
213                 if (!strcmp(available_sorts[i]->name, tok)) {
214                         list_add_tail(&available_sorts[i]->list, list);
215                         return 0;
216                 }
217         }
218
219         return -1;
220 }
221
222 static void setup_sorting(struct perf_kwork *kwork,
223                           const struct option *options,
224                           const char * const usage_msg[])
225 {
226         char *tmp, *tok, *str = strdup(kwork->sort_order);
227
228         for (tok = strtok_r(str, ", ", &tmp);
229              tok; tok = strtok_r(NULL, ", ", &tmp)) {
230                 if (sort_dimension__add(kwork, tok, &kwork->sort_list) < 0)
231                         usage_with_options_msg(usage_msg, options,
232                                                "Unknown --sort key: `%s'", tok);
233         }
234
235         pr_debug("Sort order: %s\n", kwork->sort_order);
236         free(str);
237 }
238
239 static struct kwork_atom *atom_new(struct perf_kwork *kwork,
240                                    struct perf_sample *sample)
241 {
242         unsigned long i;
243         struct kwork_atom_page *page;
244         struct kwork_atom *atom = NULL;
245
246         list_for_each_entry(page, &kwork->atom_page_list, list) {
247                 if (!bitmap_full(page->bitmap, NR_ATOM_PER_PAGE)) {
248                         i = find_first_zero_bit(page->bitmap, NR_ATOM_PER_PAGE);
249                         BUG_ON(i >= NR_ATOM_PER_PAGE);
250                         atom = &page->atoms[i];
251                         goto found_atom;
252                 }
253         }
254
255         /*
256          * new page
257          */
258         page = zalloc(sizeof(*page));
259         if (page == NULL) {
260                 pr_err("Failed to zalloc kwork atom page\n");
261                 return NULL;
262         }
263
264         i = 0;
265         atom = &page->atoms[0];
266         list_add_tail(&page->list, &kwork->atom_page_list);
267
268 found_atom:
269         __set_bit(i, page->bitmap);
270         atom->time = sample->time;
271         atom->prev = NULL;
272         atom->page_addr = page;
273         atom->bit_inpage = i;
274         return atom;
275 }
276
277 static void atom_free(struct kwork_atom *atom)
278 {
279         if (atom->prev != NULL)
280                 atom_free(atom->prev);
281
282         __clear_bit(atom->bit_inpage,
283                     ((struct kwork_atom_page *)atom->page_addr)->bitmap);
284 }
285
286 static void atom_del(struct kwork_atom *atom)
287 {
288         list_del(&atom->list);
289         atom_free(atom);
290 }
291
292 static int work_cmp(struct list_head *list,
293                     struct kwork_work *l, struct kwork_work *r)
294 {
295         int ret = 0;
296         struct sort_dimension *sort;
297
298         BUG_ON(list_empty(list));
299
300         list_for_each_entry(sort, list, list) {
301                 ret = sort->cmp(l, r);
302                 if (ret)
303                         return ret;
304         }
305
306         return ret;
307 }
308
309 static struct kwork_work *work_search(struct rb_root_cached *root,
310                                       struct kwork_work *key,
311                                       struct list_head *sort_list)
312 {
313         int cmp;
314         struct kwork_work *work;
315         struct rb_node *node = root->rb_root.rb_node;
316
317         while (node) {
318                 work = container_of(node, struct kwork_work, node);
319                 cmp = work_cmp(sort_list, key, work);
320                 if (cmp > 0)
321                         node = node->rb_left;
322                 else if (cmp < 0)
323                         node = node->rb_right;
324                 else {
325                         if (work->name == NULL)
326                                 work->name = key->name;
327                         return work;
328                 }
329         }
330         return NULL;
331 }
332
333 static void work_insert(struct rb_root_cached *root,
334                         struct kwork_work *key, struct list_head *sort_list)
335 {
336         int cmp;
337         bool leftmost = true;
338         struct kwork_work *cur;
339         struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
340
341         while (*new) {
342                 cur = container_of(*new, struct kwork_work, node);
343                 parent = *new;
344                 cmp = work_cmp(sort_list, key, cur);
345
346                 if (cmp > 0)
347                         new = &((*new)->rb_left);
348                 else {
349                         new = &((*new)->rb_right);
350                         leftmost = false;
351                 }
352         }
353
354         rb_link_node(&key->node, parent, new);
355         rb_insert_color_cached(&key->node, root, leftmost);
356 }
357
358 static struct kwork_work *work_new(struct kwork_work *key)
359 {
360         int i;
361         struct kwork_work *work = zalloc(sizeof(*work));
362
363         if (work == NULL) {
364                 pr_err("Failed to zalloc kwork work\n");
365                 return NULL;
366         }
367
368         for (i = 0; i < KWORK_TRACE_MAX; i++)
369                 INIT_LIST_HEAD(&work->atom_list[i]);
370
371         work->id = key->id;
372         work->cpu = key->cpu;
373         work->name = key->name;
374         work->class = key->class;
375         return work;
376 }
377
378 static struct kwork_work *work_findnew(struct rb_root_cached *root,
379                                        struct kwork_work *key,
380                                        struct list_head *sort_list)
381 {
382         struct kwork_work *work = work_search(root, key, sort_list);
383
384         if (work != NULL)
385                 return work;
386
387         work = work_new(key);
388         if (work)
389                 work_insert(root, work, sort_list);
390
391         return work;
392 }
393
394 static void profile_update_timespan(struct perf_kwork *kwork,
395                                     struct perf_sample *sample)
396 {
397         if (!kwork->summary)
398                 return;
399
400         if ((kwork->timestart == 0) || (kwork->timestart > sample->time))
401                 kwork->timestart = sample->time;
402
403         if (kwork->timeend < sample->time)
404                 kwork->timeend = sample->time;
405 }
406
407 static bool profile_name_match(struct perf_kwork *kwork,
408                                struct kwork_work *work)
409 {
410         if (kwork->profile_name && work->name &&
411             (strcmp(work->name, kwork->profile_name) != 0)) {
412                 return false;
413         }
414
415         return true;
416 }
417
418 static bool profile_event_match(struct perf_kwork *kwork,
419                                 struct kwork_work *work,
420                                 struct perf_sample *sample)
421 {
422         int cpu = work->cpu;
423         u64 time = sample->time;
424         struct perf_time_interval *ptime = &kwork->ptime;
425
426         if ((kwork->cpu_list != NULL) && !test_bit(cpu, kwork->cpu_bitmap))
427                 return false;
428
429         if (((ptime->start != 0) && (ptime->start > time)) ||
430             ((ptime->end != 0) && (ptime->end < time)))
431                 return false;
432
433         /*
434          * report top needs to collect the runtime of all tasks to
435          * calculate the load of each core.
436          */
437         if ((kwork->report != KWORK_REPORT_TOP) &&
438             !profile_name_match(kwork, work)) {
439                 return false;
440         }
441
442         profile_update_timespan(kwork, sample);
443         return true;
444 }
445
446 static int work_push_atom(struct perf_kwork *kwork,
447                           struct kwork_class *class,
448                           enum kwork_trace_type src_type,
449                           enum kwork_trace_type dst_type,
450                           struct evsel *evsel,
451                           struct perf_sample *sample,
452                           struct machine *machine,
453                           struct kwork_work **ret_work,
454                           bool overwrite)
455 {
456         struct kwork_atom *atom, *dst_atom, *last_atom;
457         struct kwork_work *work, key;
458
459         BUG_ON(class->work_init == NULL);
460         class->work_init(kwork, class, &key, src_type, evsel, sample, machine);
461
462         atom = atom_new(kwork, sample);
463         if (atom == NULL)
464                 return -1;
465
466         work = work_findnew(&class->work_root, &key, &kwork->cmp_id);
467         if (work == NULL) {
468                 atom_free(atom);
469                 return -1;
470         }
471
472         if (!profile_event_match(kwork, work, sample)) {
473                 atom_free(atom);
474                 return 0;
475         }
476
477         if (dst_type < KWORK_TRACE_MAX) {
478                 dst_atom = list_last_entry_or_null(&work->atom_list[dst_type],
479                                                    struct kwork_atom, list);
480                 if (dst_atom != NULL) {
481                         atom->prev = dst_atom;
482                         list_del(&dst_atom->list);
483                 }
484         }
485
486         if (ret_work != NULL)
487                 *ret_work = work;
488
489         if (overwrite) {
490                 last_atom = list_last_entry_or_null(&work->atom_list[src_type],
491                                                     struct kwork_atom, list);
492                 if (last_atom) {
493                         atom_del(last_atom);
494
495                         kwork->nr_skipped_events[src_type]++;
496                         kwork->nr_skipped_events[KWORK_TRACE_MAX]++;
497                 }
498         }
499
500         list_add_tail(&atom->list, &work->atom_list[src_type]);
501
502         return 0;
503 }
504
505 static struct kwork_atom *work_pop_atom(struct perf_kwork *kwork,
506                                         struct kwork_class *class,
507                                         enum kwork_trace_type src_type,
508                                         enum kwork_trace_type dst_type,
509                                         struct evsel *evsel,
510                                         struct perf_sample *sample,
511                                         struct machine *machine,
512                                         struct kwork_work **ret_work)
513 {
514         struct kwork_atom *atom, *src_atom;
515         struct kwork_work *work, key;
516
517         BUG_ON(class->work_init == NULL);
518         class->work_init(kwork, class, &key, src_type, evsel, sample, machine);
519
520         work = work_findnew(&class->work_root, &key, &kwork->cmp_id);
521         if (ret_work != NULL)
522                 *ret_work = work;
523
524         if (work == NULL)
525                 return NULL;
526
527         if (!profile_event_match(kwork, work, sample))
528                 return NULL;
529
530         atom = list_last_entry_or_null(&work->atom_list[dst_type],
531                                        struct kwork_atom, list);
532         if (atom != NULL)
533                 return atom;
534
535         src_atom = atom_new(kwork, sample);
536         if (src_atom != NULL)
537                 list_add_tail(&src_atom->list, &work->atom_list[src_type]);
538         else {
539                 if (ret_work != NULL)
540                         *ret_work = NULL;
541         }
542
543         return NULL;
544 }
545
546 static struct kwork_work *find_work_by_id(struct rb_root_cached *root,
547                                           u64 id, int cpu)
548 {
549         struct rb_node *next;
550         struct kwork_work *work;
551
552         next = rb_first_cached(root);
553         while (next) {
554                 work = rb_entry(next, struct kwork_work, node);
555                 if ((cpu != -1 && work->id == id && work->cpu == cpu) ||
556                     (cpu == -1 && work->id == id))
557                         return work;
558
559                 next = rb_next(next);
560         }
561
562         return NULL;
563 }
564
565 static struct kwork_class *get_kwork_class(struct perf_kwork *kwork,
566                                            enum kwork_class_type type)
567 {
568         struct kwork_class *class;
569
570         list_for_each_entry(class, &kwork->class_list, list) {
571                 if (class->type == type)
572                         return class;
573         }
574
575         return NULL;
576 }
577
578 static void report_update_exit_event(struct kwork_work *work,
579                                      struct kwork_atom *atom,
580                                      struct perf_sample *sample)
581 {
582         u64 delta;
583         u64 exit_time = sample->time;
584         u64 entry_time = atom->time;
585
586         if ((entry_time != 0) && (exit_time >= entry_time)) {
587                 delta = exit_time - entry_time;
588                 if ((delta > work->max_runtime) ||
589                     (work->max_runtime == 0)) {
590                         work->max_runtime = delta;
591                         work->max_runtime_start = entry_time;
592                         work->max_runtime_end = exit_time;
593                 }
594                 work->total_runtime += delta;
595                 work->nr_atoms++;
596         }
597 }
598
599 static int report_entry_event(struct perf_kwork *kwork,
600                               struct kwork_class *class,
601                               struct evsel *evsel,
602                               struct perf_sample *sample,
603                               struct machine *machine)
604 {
605         return work_push_atom(kwork, class, KWORK_TRACE_ENTRY,
606                               KWORK_TRACE_MAX, evsel, sample,
607                               machine, NULL, true);
608 }
609
610 static int report_exit_event(struct perf_kwork *kwork,
611                              struct kwork_class *class,
612                              struct evsel *evsel,
613                              struct perf_sample *sample,
614                              struct machine *machine)
615 {
616         struct kwork_atom *atom = NULL;
617         struct kwork_work *work = NULL;
618
619         atom = work_pop_atom(kwork, class, KWORK_TRACE_EXIT,
620                              KWORK_TRACE_ENTRY, evsel, sample,
621                              machine, &work);
622         if (work == NULL)
623                 return -1;
624
625         if (atom != NULL) {
626                 report_update_exit_event(work, atom, sample);
627                 atom_del(atom);
628         }
629
630         return 0;
631 }
632
633 static void latency_update_entry_event(struct kwork_work *work,
634                                        struct kwork_atom *atom,
635                                        struct perf_sample *sample)
636 {
637         u64 delta;
638         u64 entry_time = sample->time;
639         u64 raise_time = atom->time;
640
641         if ((raise_time != 0) && (entry_time >= raise_time)) {
642                 delta = entry_time - raise_time;
643                 if ((delta > work->max_latency) ||
644                     (work->max_latency == 0)) {
645                         work->max_latency = delta;
646                         work->max_latency_start = raise_time;
647                         work->max_latency_end = entry_time;
648                 }
649                 work->total_latency += delta;
650                 work->nr_atoms++;
651         }
652 }
653
654 static int latency_raise_event(struct perf_kwork *kwork,
655                                struct kwork_class *class,
656                                struct evsel *evsel,
657                                struct perf_sample *sample,
658                                struct machine *machine)
659 {
660         return work_push_atom(kwork, class, KWORK_TRACE_RAISE,
661                               KWORK_TRACE_MAX, evsel, sample,
662                               machine, NULL, true);
663 }
664
665 static int latency_entry_event(struct perf_kwork *kwork,
666                                struct kwork_class *class,
667                                struct evsel *evsel,
668                                struct perf_sample *sample,
669                                struct machine *machine)
670 {
671         struct kwork_atom *atom = NULL;
672         struct kwork_work *work = NULL;
673
674         atom = work_pop_atom(kwork, class, KWORK_TRACE_ENTRY,
675                              KWORK_TRACE_RAISE, evsel, sample,
676                              machine, &work);
677         if (work == NULL)
678                 return -1;
679
680         if (atom != NULL) {
681                 latency_update_entry_event(work, atom, sample);
682                 atom_del(atom);
683         }
684
685         return 0;
686 }
687
688 static void timehist_save_callchain(struct perf_kwork *kwork,
689                                     struct perf_sample *sample,
690                                     struct evsel *evsel,
691                                     struct machine *machine)
692 {
693         struct symbol *sym;
694         struct thread *thread;
695         struct callchain_cursor_node *node;
696         struct callchain_cursor *cursor;
697
698         if (!kwork->show_callchain || sample->callchain == NULL)
699                 return;
700
701         /* want main thread for process - has maps */
702         thread = machine__findnew_thread(machine, sample->pid, sample->pid);
703         if (thread == NULL) {
704                 pr_debug("Failed to get thread for pid %d\n", sample->pid);
705                 return;
706         }
707
708         cursor = get_tls_callchain_cursor();
709
710         if (thread__resolve_callchain(thread, cursor, evsel, sample,
711                                       NULL, NULL, kwork->max_stack + 2) != 0) {
712                 pr_debug("Failed to resolve callchain, skipping\n");
713                 goto out_put;
714         }
715
716         callchain_cursor_commit(cursor);
717
718         while (true) {
719                 node = callchain_cursor_current(cursor);
720                 if (node == NULL)
721                         break;
722
723                 sym = node->ms.sym;
724                 if (sym) {
725                         if (!strcmp(sym->name, "__softirqentry_text_start") ||
726                             !strcmp(sym->name, "__do_softirq"))
727                                 sym->ignore = 1;
728                 }
729
730                 callchain_cursor_advance(cursor);
731         }
732
733 out_put:
734         thread__put(thread);
735 }
736
737 static void timehist_print_event(struct perf_kwork *kwork,
738                                  struct kwork_work *work,
739                                  struct kwork_atom *atom,
740                                  struct perf_sample *sample,
741                                  struct addr_location *al)
742 {
743         char entrytime[32], exittime[32];
744         char kwork_name[PRINT_KWORK_NAME_WIDTH];
745
746         /*
747          * runtime start
748          */
749         timestamp__scnprintf_usec(atom->time,
750                                   entrytime, sizeof(entrytime));
751         printf(" %*s ", PRINT_TIMESTAMP_WIDTH, entrytime);
752
753         /*
754          * runtime end
755          */
756         timestamp__scnprintf_usec(sample->time,
757                                   exittime, sizeof(exittime));
758         printf(" %*s ", PRINT_TIMESTAMP_WIDTH, exittime);
759
760         /*
761          * cpu
762          */
763         printf(" [%0*d] ", PRINT_CPU_WIDTH, work->cpu);
764
765         /*
766          * kwork name
767          */
768         if (work->class && work->class->work_name) {
769                 work->class->work_name(work, kwork_name,
770                                        PRINT_KWORK_NAME_WIDTH);
771                 printf(" %-*s ", PRINT_KWORK_NAME_WIDTH, kwork_name);
772         } else
773                 printf(" %-*s ", PRINT_KWORK_NAME_WIDTH, "");
774
775         /*
776          *runtime
777          */
778         printf(" %*.*f ",
779                PRINT_RUNTIME_WIDTH, RPINT_DECIMAL_WIDTH,
780                (double)(sample->time - atom->time) / NSEC_PER_MSEC);
781
782         /*
783          * delaytime
784          */
785         if (atom->prev != NULL)
786                 printf(" %*.*f ", PRINT_LATENCY_WIDTH, RPINT_DECIMAL_WIDTH,
787                        (double)(atom->time - atom->prev->time) / NSEC_PER_MSEC);
788         else
789                 printf(" %*s ", PRINT_LATENCY_WIDTH, " ");
790
791         /*
792          * callchain
793          */
794         if (kwork->show_callchain) {
795                 struct callchain_cursor *cursor = get_tls_callchain_cursor();
796
797                 if (cursor == NULL)
798                         return;
799
800                 printf(" ");
801
802                 sample__fprintf_sym(sample, al, 0,
803                                     EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
804                                     EVSEL__PRINT_CALLCHAIN_ARROW |
805                                     EVSEL__PRINT_SKIP_IGNORED,
806                                     cursor, symbol_conf.bt_stop_list,
807                                     stdout);
808         }
809
810         printf("\n");
811 }
812
813 static int timehist_raise_event(struct perf_kwork *kwork,
814                                 struct kwork_class *class,
815                                 struct evsel *evsel,
816                                 struct perf_sample *sample,
817                                 struct machine *machine)
818 {
819         return work_push_atom(kwork, class, KWORK_TRACE_RAISE,
820                               KWORK_TRACE_MAX, evsel, sample,
821                               machine, NULL, true);
822 }
823
824 static int timehist_entry_event(struct perf_kwork *kwork,
825                                 struct kwork_class *class,
826                                 struct evsel *evsel,
827                                 struct perf_sample *sample,
828                                 struct machine *machine)
829 {
830         int ret;
831         struct kwork_work *work = NULL;
832
833         ret = work_push_atom(kwork, class, KWORK_TRACE_ENTRY,
834                              KWORK_TRACE_RAISE, evsel, sample,
835                              machine, &work, true);
836         if (ret)
837                 return ret;
838
839         if (work != NULL)
840                 timehist_save_callchain(kwork, sample, evsel, machine);
841
842         return 0;
843 }
844
845 static int timehist_exit_event(struct perf_kwork *kwork,
846                                struct kwork_class *class,
847                                struct evsel *evsel,
848                                struct perf_sample *sample,
849                                struct machine *machine)
850 {
851         struct kwork_atom *atom = NULL;
852         struct kwork_work *work = NULL;
853         struct addr_location al;
854         int ret = 0;
855
856         addr_location__init(&al);
857         if (machine__resolve(machine, &al, sample) < 0) {
858                 pr_debug("Problem processing event, skipping it\n");
859                 ret = -1;
860                 goto out;
861         }
862
863         atom = work_pop_atom(kwork, class, KWORK_TRACE_EXIT,
864                              KWORK_TRACE_ENTRY, evsel, sample,
865                              machine, &work);
866         if (work == NULL) {
867                 ret = -1;
868                 goto out;
869         }
870
871         if (atom != NULL) {
872                 work->nr_atoms++;
873                 timehist_print_event(kwork, work, atom, sample, &al);
874                 atom_del(atom);
875         }
876
877 out:
878         addr_location__exit(&al);
879         return ret;
880 }
881
882 static void top_update_runtime(struct kwork_work *work,
883                                struct kwork_atom *atom,
884                                struct perf_sample *sample)
885 {
886         u64 delta;
887         u64 exit_time = sample->time;
888         u64 entry_time = atom->time;
889
890         if ((entry_time != 0) && (exit_time >= entry_time)) {
891                 delta = exit_time - entry_time;
892                 work->total_runtime += delta;
893         }
894 }
895
896 static int top_entry_event(struct perf_kwork *kwork,
897                            struct kwork_class *class,
898                            struct evsel *evsel,
899                            struct perf_sample *sample,
900                            struct machine *machine)
901 {
902         return work_push_atom(kwork, class, KWORK_TRACE_ENTRY,
903                               KWORK_TRACE_MAX, evsel, sample,
904                               machine, NULL, true);
905 }
906
907 static int top_exit_event(struct perf_kwork *kwork,
908                           struct kwork_class *class,
909                           struct evsel *evsel,
910                           struct perf_sample *sample,
911                           struct machine *machine)
912 {
913         struct kwork_work *work, *sched_work;
914         struct kwork_class *sched_class;
915         struct kwork_atom *atom;
916
917         atom = work_pop_atom(kwork, class, KWORK_TRACE_EXIT,
918                              KWORK_TRACE_ENTRY, evsel, sample,
919                              machine, &work);
920         if (!work)
921                 return -1;
922
923         if (atom) {
924                 sched_class = get_kwork_class(kwork, KWORK_CLASS_SCHED);
925                 if (sched_class) {
926                         sched_work = find_work_by_id(&sched_class->work_root,
927                                                      work->id, work->cpu);
928                         if (sched_work)
929                                 top_update_runtime(work, atom, sample);
930                 }
931                 atom_del(atom);
932         }
933
934         return 0;
935 }
936
937 static int top_sched_switch_event(struct perf_kwork *kwork,
938                                   struct kwork_class *class,
939                                   struct evsel *evsel,
940                                   struct perf_sample *sample,
941                                   struct machine *machine)
942 {
943         struct kwork_atom *atom;
944         struct kwork_work *work;
945
946         atom = work_pop_atom(kwork, class, KWORK_TRACE_EXIT,
947                              KWORK_TRACE_ENTRY, evsel, sample,
948                              machine, &work);
949         if (!work)
950                 return -1;
951
952         if (atom) {
953                 top_update_runtime(work, atom, sample);
954                 atom_del(atom);
955         }
956
957         return top_entry_event(kwork, class, evsel, sample, machine);
958 }
959
960 static struct kwork_class kwork_irq;
961 static int process_irq_handler_entry_event(struct perf_tool *tool,
962                                            struct evsel *evsel,
963                                            struct perf_sample *sample,
964                                            struct machine *machine)
965 {
966         struct perf_kwork *kwork = container_of(tool, struct perf_kwork, tool);
967
968         if (kwork->tp_handler->entry_event)
969                 return kwork->tp_handler->entry_event(kwork, &kwork_irq,
970                                                       evsel, sample, machine);
971         return 0;
972 }
973
974 static int process_irq_handler_exit_event(struct perf_tool *tool,
975                                           struct evsel *evsel,
976                                           struct perf_sample *sample,
977                                           struct machine *machine)
978 {
979         struct perf_kwork *kwork = container_of(tool, struct perf_kwork, tool);
980
981         if (kwork->tp_handler->exit_event)
982                 return kwork->tp_handler->exit_event(kwork, &kwork_irq,
983                                                      evsel, sample, machine);
984         return 0;
985 }
986
987 const struct evsel_str_handler irq_tp_handlers[] = {
988         { "irq:irq_handler_entry", process_irq_handler_entry_event, },
989         { "irq:irq_handler_exit",  process_irq_handler_exit_event,  },
990 };
991
992 static int irq_class_init(struct kwork_class *class,
993                           struct perf_session *session)
994 {
995         if (perf_session__set_tracepoints_handlers(session, irq_tp_handlers)) {
996                 pr_err("Failed to set irq tracepoints handlers\n");
997                 return -1;
998         }
999
1000         class->work_root = RB_ROOT_CACHED;
1001         return 0;
1002 }
1003
1004 static void irq_work_init(struct perf_kwork *kwork,
1005                           struct kwork_class *class,
1006                           struct kwork_work *work,
1007                           enum kwork_trace_type src_type __maybe_unused,
1008                           struct evsel *evsel,
1009                           struct perf_sample *sample,
1010                           struct machine *machine __maybe_unused)
1011 {
1012         work->class = class;
1013         work->cpu = sample->cpu;
1014
1015         if (kwork->report == KWORK_REPORT_TOP) {
1016                 work->id = evsel__intval_common(evsel, sample, "common_pid");
1017                 work->name = NULL;
1018         } else {
1019                 work->id = evsel__intval(evsel, sample, "irq");
1020                 work->name = evsel__strval(evsel, sample, "name");
1021         }
1022 }
1023
1024 static void irq_work_name(struct kwork_work *work, char *buf, int len)
1025 {
1026         snprintf(buf, len, "%s:%" PRIu64 "", work->name, work->id);
1027 }
1028
1029 static struct kwork_class kwork_irq = {
1030         .name           = "irq",
1031         .type           = KWORK_CLASS_IRQ,
1032         .nr_tracepoints = 2,
1033         .tp_handlers    = irq_tp_handlers,
1034         .class_init     = irq_class_init,
1035         .work_init      = irq_work_init,
1036         .work_name      = irq_work_name,
1037 };
1038
1039 static struct kwork_class kwork_softirq;
1040 static int process_softirq_raise_event(struct perf_tool *tool,
1041                                        struct evsel *evsel,
1042                                        struct perf_sample *sample,
1043                                        struct machine *machine)
1044 {
1045         struct perf_kwork *kwork = container_of(tool, struct perf_kwork, tool);
1046
1047         if (kwork->tp_handler->raise_event)
1048                 return kwork->tp_handler->raise_event(kwork, &kwork_softirq,
1049                                                       evsel, sample, machine);
1050
1051         return 0;
1052 }
1053
1054 static int process_softirq_entry_event(struct perf_tool *tool,
1055                                        struct evsel *evsel,
1056                                        struct perf_sample *sample,
1057                                        struct machine *machine)
1058 {
1059         struct perf_kwork *kwork = container_of(tool, struct perf_kwork, tool);
1060
1061         if (kwork->tp_handler->entry_event)
1062                 return kwork->tp_handler->entry_event(kwork, &kwork_softirq,
1063                                                       evsel, sample, machine);
1064
1065         return 0;
1066 }
1067
1068 static int process_softirq_exit_event(struct perf_tool *tool,
1069                                       struct evsel *evsel,
1070                                       struct perf_sample *sample,
1071                                       struct machine *machine)
1072 {
1073         struct perf_kwork *kwork = container_of(tool, struct perf_kwork, tool);
1074
1075         if (kwork->tp_handler->exit_event)
1076                 return kwork->tp_handler->exit_event(kwork, &kwork_softirq,
1077                                                      evsel, sample, machine);
1078
1079         return 0;
1080 }
1081
1082 const struct evsel_str_handler softirq_tp_handlers[] = {
1083         { "irq:softirq_raise", process_softirq_raise_event, },
1084         { "irq:softirq_entry", process_softirq_entry_event, },
1085         { "irq:softirq_exit",  process_softirq_exit_event,  },
1086 };
1087
1088 static int softirq_class_init(struct kwork_class *class,
1089                               struct perf_session *session)
1090 {
1091         if (perf_session__set_tracepoints_handlers(session,
1092                                                    softirq_tp_handlers)) {
1093                 pr_err("Failed to set softirq tracepoints handlers\n");
1094                 return -1;
1095         }
1096
1097         class->work_root = RB_ROOT_CACHED;
1098         return 0;
1099 }
1100
1101 static char *evsel__softirq_name(struct evsel *evsel, u64 num)
1102 {
1103         char *name = NULL;
1104         bool found = false;
1105         struct tep_print_flag_sym *sym = NULL;
1106         struct tep_print_arg *args = evsel->tp_format->print_fmt.args;
1107
1108         if ((args == NULL) || (args->next == NULL))
1109                 return NULL;
1110
1111         /* skip softirq field: "REC->vec" */
1112         for (sym = args->next->symbol.symbols; sym != NULL; sym = sym->next) {
1113                 if ((eval_flag(sym->value) == (unsigned long long)num) &&
1114                     (strlen(sym->str) != 0)) {
1115                         found = true;
1116                         break;
1117                 }
1118         }
1119
1120         if (!found)
1121                 return NULL;
1122
1123         name = strdup(sym->str);
1124         if (name == NULL) {
1125                 pr_err("Failed to copy symbol name\n");
1126                 return NULL;
1127         }
1128         return name;
1129 }
1130
1131 static void softirq_work_init(struct perf_kwork *kwork,
1132                               struct kwork_class *class,
1133                               struct kwork_work *work,
1134                               enum kwork_trace_type src_type __maybe_unused,
1135                               struct evsel *evsel,
1136                               struct perf_sample *sample,
1137                               struct machine *machine __maybe_unused)
1138 {
1139         u64 num;
1140
1141         work->class = class;
1142         work->cpu = sample->cpu;
1143
1144         if (kwork->report == KWORK_REPORT_TOP) {
1145                 work->id = evsel__intval_common(evsel, sample, "common_pid");
1146                 work->name = NULL;
1147         } else {
1148                 num = evsel__intval(evsel, sample, "vec");
1149                 work->id = num;
1150                 work->name = evsel__softirq_name(evsel, num);
1151         }
1152 }
1153
1154 static void softirq_work_name(struct kwork_work *work, char *buf, int len)
1155 {
1156         snprintf(buf, len, "(s)%s:%" PRIu64 "", work->name, work->id);
1157 }
1158
1159 static struct kwork_class kwork_softirq = {
1160         .name           = "softirq",
1161         .type           = KWORK_CLASS_SOFTIRQ,
1162         .nr_tracepoints = 3,
1163         .tp_handlers    = softirq_tp_handlers,
1164         .class_init     = softirq_class_init,
1165         .work_init      = softirq_work_init,
1166         .work_name      = softirq_work_name,
1167 };
1168
1169 static struct kwork_class kwork_workqueue;
1170 static int process_workqueue_activate_work_event(struct perf_tool *tool,
1171                                                  struct evsel *evsel,
1172                                                  struct perf_sample *sample,
1173                                                  struct machine *machine)
1174 {
1175         struct perf_kwork *kwork = container_of(tool, struct perf_kwork, tool);
1176
1177         if (kwork->tp_handler->raise_event)
1178                 return kwork->tp_handler->raise_event(kwork, &kwork_workqueue,
1179                                                     evsel, sample, machine);
1180
1181         return 0;
1182 }
1183
1184 static int process_workqueue_execute_start_event(struct perf_tool *tool,
1185                                                  struct evsel *evsel,
1186                                                  struct perf_sample *sample,
1187                                                  struct machine *machine)
1188 {
1189         struct perf_kwork *kwork = container_of(tool, struct perf_kwork, tool);
1190
1191         if (kwork->tp_handler->entry_event)
1192                 return kwork->tp_handler->entry_event(kwork, &kwork_workqueue,
1193                                                     evsel, sample, machine);
1194
1195         return 0;
1196 }
1197
1198 static int process_workqueue_execute_end_event(struct perf_tool *tool,
1199                                                struct evsel *evsel,
1200                                                struct perf_sample *sample,
1201                                                struct machine *machine)
1202 {
1203         struct perf_kwork *kwork = container_of(tool, struct perf_kwork, tool);
1204
1205         if (kwork->tp_handler->exit_event)
1206                 return kwork->tp_handler->exit_event(kwork, &kwork_workqueue,
1207                                                    evsel, sample, machine);
1208
1209         return 0;
1210 }
1211
1212 const struct evsel_str_handler workqueue_tp_handlers[] = {
1213         { "workqueue:workqueue_activate_work", process_workqueue_activate_work_event, },
1214         { "workqueue:workqueue_execute_start", process_workqueue_execute_start_event, },
1215         { "workqueue:workqueue_execute_end",   process_workqueue_execute_end_event,   },
1216 };
1217
1218 static int workqueue_class_init(struct kwork_class *class,
1219                                 struct perf_session *session)
1220 {
1221         if (perf_session__set_tracepoints_handlers(session,
1222                                                    workqueue_tp_handlers)) {
1223                 pr_err("Failed to set workqueue tracepoints handlers\n");
1224                 return -1;
1225         }
1226
1227         class->work_root = RB_ROOT_CACHED;
1228         return 0;
1229 }
1230
1231 static void workqueue_work_init(struct perf_kwork *kwork __maybe_unused,
1232                                 struct kwork_class *class,
1233                                 struct kwork_work *work,
1234                                 enum kwork_trace_type src_type __maybe_unused,
1235                                 struct evsel *evsel,
1236                                 struct perf_sample *sample,
1237                                 struct machine *machine)
1238 {
1239         char *modp = NULL;
1240         unsigned long long function_addr = evsel__intval(evsel,
1241                                                          sample, "function");
1242
1243         work->class = class;
1244         work->cpu = sample->cpu;
1245         work->id = evsel__intval(evsel, sample, "work");
1246         work->name = function_addr == 0 ? NULL :
1247                 machine__resolve_kernel_addr(machine, &function_addr, &modp);
1248 }
1249
1250 static void workqueue_work_name(struct kwork_work *work, char *buf, int len)
1251 {
1252         if (work->name != NULL)
1253                 snprintf(buf, len, "(w)%s", work->name);
1254         else
1255                 snprintf(buf, len, "(w)0x%" PRIx64, work->id);
1256 }
1257
1258 static struct kwork_class kwork_workqueue = {
1259         .name           = "workqueue",
1260         .type           = KWORK_CLASS_WORKQUEUE,
1261         .nr_tracepoints = 3,
1262         .tp_handlers    = workqueue_tp_handlers,
1263         .class_init     = workqueue_class_init,
1264         .work_init      = workqueue_work_init,
1265         .work_name      = workqueue_work_name,
1266 };
1267
1268 static struct kwork_class kwork_sched;
1269 static int process_sched_switch_event(struct perf_tool *tool,
1270                                       struct evsel *evsel,
1271                                       struct perf_sample *sample,
1272                                       struct machine *machine)
1273 {
1274         struct perf_kwork *kwork = container_of(tool, struct perf_kwork, tool);
1275
1276         if (kwork->tp_handler->sched_switch_event)
1277                 return kwork->tp_handler->sched_switch_event(kwork, &kwork_sched,
1278                                                              evsel, sample, machine);
1279         return 0;
1280 }
1281
1282 const struct evsel_str_handler sched_tp_handlers[] = {
1283         { "sched:sched_switch",  process_sched_switch_event, },
1284 };
1285
1286 static int sched_class_init(struct kwork_class *class,
1287                             struct perf_session *session)
1288 {
1289         if (perf_session__set_tracepoints_handlers(session,
1290                                                    sched_tp_handlers)) {
1291                 pr_err("Failed to set sched tracepoints handlers\n");
1292                 return -1;
1293         }
1294
1295         class->work_root = RB_ROOT_CACHED;
1296         return 0;
1297 }
1298
1299 static void sched_work_init(struct perf_kwork *kwork __maybe_unused,
1300                             struct kwork_class *class,
1301                             struct kwork_work *work,
1302                             enum kwork_trace_type src_type,
1303                             struct evsel *evsel,
1304                             struct perf_sample *sample,
1305                             struct machine *machine __maybe_unused)
1306 {
1307         work->class = class;
1308         work->cpu = sample->cpu;
1309
1310         if (src_type == KWORK_TRACE_EXIT) {
1311                 work->id = evsel__intval(evsel, sample, "prev_pid");
1312                 work->name = strdup(evsel__strval(evsel, sample, "prev_comm"));
1313         } else if (src_type == KWORK_TRACE_ENTRY) {
1314                 work->id = evsel__intval(evsel, sample, "next_pid");
1315                 work->name = strdup(evsel__strval(evsel, sample, "next_comm"));
1316         }
1317 }
1318
1319 static void sched_work_name(struct kwork_work *work, char *buf, int len)
1320 {
1321         snprintf(buf, len, "%s", work->name);
1322 }
1323
1324 static struct kwork_class kwork_sched = {
1325         .name           = "sched",
1326         .type           = KWORK_CLASS_SCHED,
1327         .nr_tracepoints = ARRAY_SIZE(sched_tp_handlers),
1328         .tp_handlers    = sched_tp_handlers,
1329         .class_init     = sched_class_init,
1330         .work_init      = sched_work_init,
1331         .work_name      = sched_work_name,
1332 };
1333
1334 static struct kwork_class *kwork_class_supported_list[KWORK_CLASS_MAX] = {
1335         [KWORK_CLASS_IRQ]       = &kwork_irq,
1336         [KWORK_CLASS_SOFTIRQ]   = &kwork_softirq,
1337         [KWORK_CLASS_WORKQUEUE] = &kwork_workqueue,
1338         [KWORK_CLASS_SCHED]     = &kwork_sched,
1339 };
1340
1341 static void print_separator(int len)
1342 {
1343         printf(" %.*s\n", len, graph_dotted_line);
1344 }
1345
1346 static int report_print_work(struct perf_kwork *kwork, struct kwork_work *work)
1347 {
1348         int ret = 0;
1349         char kwork_name[PRINT_KWORK_NAME_WIDTH];
1350         char max_runtime_start[32], max_runtime_end[32];
1351         char max_latency_start[32], max_latency_end[32];
1352
1353         printf(" ");
1354
1355         /*
1356          * kwork name
1357          */
1358         if (work->class && work->class->work_name) {
1359                 work->class->work_name(work, kwork_name,
1360                                        PRINT_KWORK_NAME_WIDTH);
1361                 ret += printf(" %-*s |", PRINT_KWORK_NAME_WIDTH, kwork_name);
1362         } else {
1363                 ret += printf(" %-*s |", PRINT_KWORK_NAME_WIDTH, "");
1364         }
1365
1366         /*
1367          * cpu
1368          */
1369         ret += printf(" %0*d |", PRINT_CPU_WIDTH, work->cpu);
1370
1371         /*
1372          * total runtime
1373          */
1374         if (kwork->report == KWORK_REPORT_RUNTIME) {
1375                 ret += printf(" %*.*f ms |",
1376                               PRINT_RUNTIME_WIDTH, RPINT_DECIMAL_WIDTH,
1377                               (double)work->total_runtime / NSEC_PER_MSEC);
1378         } else if (kwork->report == KWORK_REPORT_LATENCY) { // avg delay
1379                 ret += printf(" %*.*f ms |",
1380                               PRINT_LATENCY_WIDTH, RPINT_DECIMAL_WIDTH,
1381                               (double)work->total_latency /
1382                               work->nr_atoms / NSEC_PER_MSEC);
1383         }
1384
1385         /*
1386          * count
1387          */
1388         ret += printf(" %*" PRIu64 " |", PRINT_COUNT_WIDTH, work->nr_atoms);
1389
1390         /*
1391          * max runtime, max runtime start, max runtime end
1392          */
1393         if (kwork->report == KWORK_REPORT_RUNTIME) {
1394                 timestamp__scnprintf_usec(work->max_runtime_start,
1395                                           max_runtime_start,
1396                                           sizeof(max_runtime_start));
1397                 timestamp__scnprintf_usec(work->max_runtime_end,
1398                                           max_runtime_end,
1399                                           sizeof(max_runtime_end));
1400                 ret += printf(" %*.*f ms | %*s s | %*s s |",
1401                               PRINT_RUNTIME_WIDTH, RPINT_DECIMAL_WIDTH,
1402                               (double)work->max_runtime / NSEC_PER_MSEC,
1403                               PRINT_TIMESTAMP_WIDTH, max_runtime_start,
1404                               PRINT_TIMESTAMP_WIDTH, max_runtime_end);
1405         }
1406         /*
1407          * max delay, max delay start, max delay end
1408          */
1409         else if (kwork->report == KWORK_REPORT_LATENCY) {
1410                 timestamp__scnprintf_usec(work->max_latency_start,
1411                                           max_latency_start,
1412                                           sizeof(max_latency_start));
1413                 timestamp__scnprintf_usec(work->max_latency_end,
1414                                           max_latency_end,
1415                                           sizeof(max_latency_end));
1416                 ret += printf(" %*.*f ms | %*s s | %*s s |",
1417                               PRINT_LATENCY_WIDTH, RPINT_DECIMAL_WIDTH,
1418                               (double)work->max_latency / NSEC_PER_MSEC,
1419                               PRINT_TIMESTAMP_WIDTH, max_latency_start,
1420                               PRINT_TIMESTAMP_WIDTH, max_latency_end);
1421         }
1422
1423         printf("\n");
1424         return ret;
1425 }
1426
1427 static int report_print_header(struct perf_kwork *kwork)
1428 {
1429         int ret;
1430
1431         printf("\n ");
1432         ret = printf(" %-*s | %-*s |",
1433                      PRINT_KWORK_NAME_WIDTH, "Kwork Name",
1434                      PRINT_CPU_WIDTH, "Cpu");
1435
1436         if (kwork->report == KWORK_REPORT_RUNTIME) {
1437                 ret += printf(" %-*s |",
1438                               PRINT_RUNTIME_HEADER_WIDTH, "Total Runtime");
1439         } else if (kwork->report == KWORK_REPORT_LATENCY) {
1440                 ret += printf(" %-*s |",
1441                               PRINT_LATENCY_HEADER_WIDTH, "Avg delay");
1442         }
1443
1444         ret += printf(" %-*s |", PRINT_COUNT_WIDTH, "Count");
1445
1446         if (kwork->report == KWORK_REPORT_RUNTIME) {
1447                 ret += printf(" %-*s | %-*s | %-*s |",
1448                               PRINT_RUNTIME_HEADER_WIDTH, "Max runtime",
1449                               PRINT_TIMESTAMP_HEADER_WIDTH, "Max runtime start",
1450                               PRINT_TIMESTAMP_HEADER_WIDTH, "Max runtime end");
1451         } else if (kwork->report == KWORK_REPORT_LATENCY) {
1452                 ret += printf(" %-*s | %-*s | %-*s |",
1453                               PRINT_LATENCY_HEADER_WIDTH, "Max delay",
1454                               PRINT_TIMESTAMP_HEADER_WIDTH, "Max delay start",
1455                               PRINT_TIMESTAMP_HEADER_WIDTH, "Max delay end");
1456         }
1457
1458         printf("\n");
1459         print_separator(ret);
1460         return ret;
1461 }
1462
1463 static void timehist_print_header(void)
1464 {
1465         /*
1466          * header row
1467          */
1468         printf(" %-*s  %-*s  %-*s  %-*s  %-*s  %-*s\n",
1469                PRINT_TIMESTAMP_WIDTH, "Runtime start",
1470                PRINT_TIMESTAMP_WIDTH, "Runtime end",
1471                PRINT_TIMEHIST_CPU_WIDTH, "Cpu",
1472                PRINT_KWORK_NAME_WIDTH, "Kwork name",
1473                PRINT_RUNTIME_WIDTH, "Runtime",
1474                PRINT_RUNTIME_WIDTH, "Delaytime");
1475
1476         /*
1477          * units row
1478          */
1479         printf(" %-*s  %-*s  %-*s  %-*s  %-*s  %-*s\n",
1480                PRINT_TIMESTAMP_WIDTH, "",
1481                PRINT_TIMESTAMP_WIDTH, "",
1482                PRINT_TIMEHIST_CPU_WIDTH, "",
1483                PRINT_KWORK_NAME_WIDTH, "(TYPE)NAME:NUM",
1484                PRINT_RUNTIME_WIDTH, "(msec)",
1485                PRINT_RUNTIME_WIDTH, "(msec)");
1486
1487         /*
1488          * separator
1489          */
1490         printf(" %.*s  %.*s  %.*s  %.*s  %.*s  %.*s\n",
1491                PRINT_TIMESTAMP_WIDTH, graph_dotted_line,
1492                PRINT_TIMESTAMP_WIDTH, graph_dotted_line,
1493                PRINT_TIMEHIST_CPU_WIDTH, graph_dotted_line,
1494                PRINT_KWORK_NAME_WIDTH, graph_dotted_line,
1495                PRINT_RUNTIME_WIDTH, graph_dotted_line,
1496                PRINT_RUNTIME_WIDTH, graph_dotted_line);
1497 }
1498
1499 static void print_summary(struct perf_kwork *kwork)
1500 {
1501         u64 time = kwork->timeend - kwork->timestart;
1502
1503         printf("  Total count            : %9" PRIu64 "\n", kwork->all_count);
1504         printf("  Total runtime   (msec) : %9.3f (%.3f%% load average)\n",
1505                (double)kwork->all_runtime / NSEC_PER_MSEC,
1506                time == 0 ? 0 : (double)kwork->all_runtime / time);
1507         printf("  Total time span (msec) : %9.3f\n",
1508                (double)time / NSEC_PER_MSEC);
1509 }
1510
1511 static unsigned long long nr_list_entry(struct list_head *head)
1512 {
1513         struct list_head *pos;
1514         unsigned long long n = 0;
1515
1516         list_for_each(pos, head)
1517                 n++;
1518
1519         return n;
1520 }
1521
1522 static void print_skipped_events(struct perf_kwork *kwork)
1523 {
1524         int i;
1525         const char *const kwork_event_str[] = {
1526                 [KWORK_TRACE_RAISE] = "raise",
1527                 [KWORK_TRACE_ENTRY] = "entry",
1528                 [KWORK_TRACE_EXIT]  = "exit",
1529         };
1530
1531         if ((kwork->nr_skipped_events[KWORK_TRACE_MAX] != 0) &&
1532             (kwork->nr_events != 0)) {
1533                 printf("  INFO: %.3f%% skipped events (%" PRIu64 " including ",
1534                        (double)kwork->nr_skipped_events[KWORK_TRACE_MAX] /
1535                        (double)kwork->nr_events * 100.0,
1536                        kwork->nr_skipped_events[KWORK_TRACE_MAX]);
1537
1538                 for (i = 0; i < KWORK_TRACE_MAX; i++) {
1539                         printf("%" PRIu64 " %s%s",
1540                                kwork->nr_skipped_events[i],
1541                                kwork_event_str[i],
1542                                (i == KWORK_TRACE_MAX - 1) ? ")\n" : ", ");
1543                 }
1544         }
1545
1546         if (verbose > 0)
1547                 printf("  INFO: use %lld atom pages\n",
1548                        nr_list_entry(&kwork->atom_page_list));
1549 }
1550
1551 static void print_bad_events(struct perf_kwork *kwork)
1552 {
1553         if ((kwork->nr_lost_events != 0) && (kwork->nr_events != 0)) {
1554                 printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1555                        (double)kwork->nr_lost_events /
1556                        (double)kwork->nr_events * 100.0,
1557                        kwork->nr_lost_events, kwork->nr_events,
1558                        kwork->nr_lost_chunks);
1559         }
1560 }
1561
1562 const char *graph_load = "||||||||||||||||||||||||||||||||||||||||||||||||";
1563 const char *graph_idle = "                                                ";
1564 static void top_print_per_cpu_load(struct perf_kwork *kwork)
1565 {
1566         int i, load_width;
1567         u64 total, load, load_ratio;
1568         struct kwork_top_stat *stat = &kwork->top_stat;
1569
1570         for (i = 0; i < MAX_NR_CPUS; i++) {
1571                 total = stat->cpus_runtime[i].total;
1572                 load = stat->cpus_runtime[i].load;
1573                 if (test_bit(i, stat->all_cpus_bitmap) && total) {
1574                         load_ratio = load * 10000 / total;
1575                         load_width = PRINT_CPU_USAGE_HIST_WIDTH *
1576                                 load_ratio / 10000;
1577
1578                         printf("%%Cpu%-*d[%.*s%.*s %*.*f%%]\n",
1579                                PRINT_CPU_WIDTH, i,
1580                                load_width, graph_load,
1581                                PRINT_CPU_USAGE_HIST_WIDTH - load_width,
1582                                graph_idle,
1583                                PRINT_CPU_USAGE_WIDTH,
1584                                PRINT_CPU_USAGE_DECIMAL_WIDTH,
1585                                (double)load_ratio / 100);
1586                 }
1587         }
1588 }
1589
1590 static void top_print_cpu_usage(struct perf_kwork *kwork)
1591 {
1592         struct kwork_top_stat *stat = &kwork->top_stat;
1593         u64 idle_time = stat->cpus_runtime[MAX_NR_CPUS].idle;
1594         u64 hardirq_time = stat->cpus_runtime[MAX_NR_CPUS].irq;
1595         u64 softirq_time = stat->cpus_runtime[MAX_NR_CPUS].softirq;
1596         int cpus_nr = bitmap_weight(stat->all_cpus_bitmap, MAX_NR_CPUS);
1597         u64 cpus_total_time = stat->cpus_runtime[MAX_NR_CPUS].total;
1598
1599         printf("Total  : %*.*f ms, %d cpus\n",
1600                PRINT_RUNTIME_WIDTH, RPINT_DECIMAL_WIDTH,
1601                (double)cpus_total_time / NSEC_PER_MSEC,
1602                cpus_nr);
1603
1604         printf("%%Cpu(s): %*.*f%% id, %*.*f%% hi, %*.*f%% si\n",
1605                PRINT_CPU_USAGE_WIDTH, PRINT_CPU_USAGE_DECIMAL_WIDTH,
1606                cpus_total_time ? (double)idle_time * 100 / cpus_total_time : 0,
1607
1608                PRINT_CPU_USAGE_WIDTH, PRINT_CPU_USAGE_DECIMAL_WIDTH,
1609                cpus_total_time ? (double)hardirq_time * 100 / cpus_total_time : 0,
1610
1611                PRINT_CPU_USAGE_WIDTH, PRINT_CPU_USAGE_DECIMAL_WIDTH,
1612                cpus_total_time ? (double)softirq_time * 100 / cpus_total_time : 0);
1613
1614         top_print_per_cpu_load(kwork);
1615 }
1616
1617 static void top_print_header(struct perf_kwork *kwork __maybe_unused)
1618 {
1619         int ret;
1620
1621         printf("\n ");
1622         ret = printf(" %*s %s%*s%s %*s  %*s  %-*s",
1623                      PRINT_PID_WIDTH, "PID",
1624
1625                      kwork->use_bpf ? " " : "",
1626                      kwork->use_bpf ? PRINT_PID_WIDTH : 0,
1627                      kwork->use_bpf ? "SPID" : "",
1628                      kwork->use_bpf ? " " : "",
1629
1630                      PRINT_CPU_USAGE_WIDTH, "%CPU",
1631                      PRINT_RUNTIME_HEADER_WIDTH + RPINT_DECIMAL_WIDTH, "RUNTIME",
1632                      PRINT_TASK_NAME_WIDTH, "COMMAND");
1633         printf("\n ");
1634         print_separator(ret);
1635 }
1636
1637 static int top_print_work(struct perf_kwork *kwork __maybe_unused, struct kwork_work *work)
1638 {
1639         int ret = 0;
1640
1641         printf(" ");
1642
1643         /*
1644          * pid
1645          */
1646         ret += printf(" %*" PRIu64 " ", PRINT_PID_WIDTH, work->id);
1647
1648         /*
1649          * tgid
1650          */
1651         if (kwork->use_bpf)
1652                 ret += printf(" %*d ", PRINT_PID_WIDTH, work->tgid);
1653
1654         /*
1655          * cpu usage
1656          */
1657         ret += printf(" %*.*f ",
1658                       PRINT_CPU_USAGE_WIDTH, PRINT_CPU_USAGE_DECIMAL_WIDTH,
1659                       (double)work->cpu_usage / 100);
1660
1661         /*
1662          * total runtime
1663          */
1664         ret += printf(" %*.*f ms ",
1665                       PRINT_RUNTIME_WIDTH + RPINT_DECIMAL_WIDTH, RPINT_DECIMAL_WIDTH,
1666                       (double)work->total_runtime / NSEC_PER_MSEC);
1667
1668         /*
1669          * command
1670          */
1671         if (kwork->use_bpf)
1672                 ret += printf(" %s%s%s",
1673                               work->is_kthread ? "[" : "",
1674                               work->name,
1675                               work->is_kthread ? "]" : "");
1676         else
1677                 ret += printf(" %-*s", PRINT_TASK_NAME_WIDTH, work->name);
1678
1679         printf("\n");
1680         return ret;
1681 }
1682
1683 static void work_sort(struct perf_kwork *kwork,
1684                       struct kwork_class *class, struct rb_root_cached *root)
1685 {
1686         struct rb_node *node;
1687         struct kwork_work *data;
1688
1689         pr_debug("Sorting %s ...\n", class->name);
1690         for (;;) {
1691                 node = rb_first_cached(root);
1692                 if (!node)
1693                         break;
1694
1695                 rb_erase_cached(node, root);
1696                 data = rb_entry(node, struct kwork_work, node);
1697                 work_insert(&kwork->sorted_work_root,
1698                                data, &kwork->sort_list);
1699         }
1700 }
1701
1702 static void perf_kwork__sort(struct perf_kwork *kwork)
1703 {
1704         struct kwork_class *class;
1705
1706         list_for_each_entry(class, &kwork->class_list, list)
1707                 work_sort(kwork, class, &class->work_root);
1708 }
1709
1710 static int perf_kwork__check_config(struct perf_kwork *kwork,
1711                                     struct perf_session *session)
1712 {
1713         int ret;
1714         struct evsel *evsel;
1715         struct kwork_class *class;
1716
1717         static struct trace_kwork_handler report_ops = {
1718                 .entry_event = report_entry_event,
1719                 .exit_event  = report_exit_event,
1720         };
1721         static struct trace_kwork_handler latency_ops = {
1722                 .raise_event = latency_raise_event,
1723                 .entry_event = latency_entry_event,
1724         };
1725         static struct trace_kwork_handler timehist_ops = {
1726                 .raise_event = timehist_raise_event,
1727                 .entry_event = timehist_entry_event,
1728                 .exit_event  = timehist_exit_event,
1729         };
1730         static struct trace_kwork_handler top_ops = {
1731                 .entry_event        = timehist_entry_event,
1732                 .exit_event         = top_exit_event,
1733                 .sched_switch_event = top_sched_switch_event,
1734         };
1735
1736         switch (kwork->report) {
1737         case KWORK_REPORT_RUNTIME:
1738                 kwork->tp_handler = &report_ops;
1739                 break;
1740         case KWORK_REPORT_LATENCY:
1741                 kwork->tp_handler = &latency_ops;
1742                 break;
1743         case KWORK_REPORT_TIMEHIST:
1744                 kwork->tp_handler = &timehist_ops;
1745                 break;
1746         case KWORK_REPORT_TOP:
1747                 kwork->tp_handler = &top_ops;
1748                 break;
1749         default:
1750                 pr_debug("Invalid report type %d\n", kwork->report);
1751                 return -1;
1752         }
1753
1754         list_for_each_entry(class, &kwork->class_list, list)
1755                 if ((class->class_init != NULL) &&
1756                     (class->class_init(class, session) != 0))
1757                         return -1;
1758
1759         if (kwork->cpu_list != NULL) {
1760                 ret = perf_session__cpu_bitmap(session,
1761                                                kwork->cpu_list,
1762                                                kwork->cpu_bitmap);
1763                 if (ret < 0) {
1764                         pr_err("Invalid cpu bitmap\n");
1765                         return -1;
1766                 }
1767         }
1768
1769         if (kwork->time_str != NULL) {
1770                 ret = perf_time__parse_str(&kwork->ptime, kwork->time_str);
1771                 if (ret != 0) {
1772                         pr_err("Invalid time span\n");
1773                         return -1;
1774                 }
1775         }
1776
1777         list_for_each_entry(evsel, &session->evlist->core.entries, core.node) {
1778                 if (kwork->show_callchain && !evsel__has_callchain(evsel)) {
1779                         pr_debug("Samples do not have callchains\n");
1780                         kwork->show_callchain = 0;
1781                         symbol_conf.use_callchain = 0;
1782                 }
1783         }
1784
1785         return 0;
1786 }
1787
1788 static int perf_kwork__read_events(struct perf_kwork *kwork)
1789 {
1790         int ret = -1;
1791         struct perf_session *session = NULL;
1792
1793         struct perf_data data = {
1794                 .path  = input_name,
1795                 .mode  = PERF_DATA_MODE_READ,
1796                 .force = kwork->force,
1797         };
1798
1799         session = perf_session__new(&data, &kwork->tool);
1800         if (IS_ERR(session)) {
1801                 pr_debug("Error creating perf session\n");
1802                 return PTR_ERR(session);
1803         }
1804
1805         symbol__init(&session->header.env);
1806
1807         if (perf_kwork__check_config(kwork, session) != 0)
1808                 goto out_delete;
1809
1810         if (session->tevent.pevent &&
1811             tep_set_function_resolver(session->tevent.pevent,
1812                                       machine__resolve_kernel_addr,
1813                                       &session->machines.host) < 0) {
1814                 pr_err("Failed to set libtraceevent function resolver\n");
1815                 goto out_delete;
1816         }
1817
1818         if (kwork->report == KWORK_REPORT_TIMEHIST)
1819                 timehist_print_header();
1820
1821         ret = perf_session__process_events(session);
1822         if (ret) {
1823                 pr_debug("Failed to process events, error %d\n", ret);
1824                 goto out_delete;
1825         }
1826
1827         kwork->nr_events      = session->evlist->stats.nr_events[0];
1828         kwork->nr_lost_events = session->evlist->stats.total_lost;
1829         kwork->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1830
1831 out_delete:
1832         perf_session__delete(session);
1833         return ret;
1834 }
1835
1836 static void process_skipped_events(struct perf_kwork *kwork,
1837                                    struct kwork_work *work)
1838 {
1839         int i;
1840         unsigned long long count;
1841
1842         for (i = 0; i < KWORK_TRACE_MAX; i++) {
1843                 count = nr_list_entry(&work->atom_list[i]);
1844                 kwork->nr_skipped_events[i] += count;
1845                 kwork->nr_skipped_events[KWORK_TRACE_MAX] += count;
1846         }
1847 }
1848
1849 struct kwork_work *perf_kwork_add_work(struct perf_kwork *kwork,
1850                                        struct kwork_class *class,
1851                                        struct kwork_work *key)
1852 {
1853         struct kwork_work *work = NULL;
1854
1855         work = work_new(key);
1856         if (work == NULL)
1857                 return NULL;
1858
1859         work_insert(&class->work_root, work, &kwork->cmp_id);
1860         return work;
1861 }
1862
1863 static void sig_handler(int sig)
1864 {
1865         /*
1866          * Simply capture termination signal so that
1867          * the program can continue after pause returns
1868          */
1869         pr_debug("Capture signal %d\n", sig);
1870 }
1871
1872 static int perf_kwork__report_bpf(struct perf_kwork *kwork)
1873 {
1874         int ret;
1875
1876         signal(SIGINT, sig_handler);
1877         signal(SIGTERM, sig_handler);
1878
1879         ret = perf_kwork__trace_prepare_bpf(kwork);
1880         if (ret)
1881                 return -1;
1882
1883         printf("Starting trace, Hit <Ctrl+C> to stop and report\n");
1884
1885         perf_kwork__trace_start();
1886
1887         /*
1888          * a simple pause, wait here for stop signal
1889          */
1890         pause();
1891
1892         perf_kwork__trace_finish();
1893
1894         perf_kwork__report_read_bpf(kwork);
1895
1896         perf_kwork__report_cleanup_bpf();
1897
1898         return 0;
1899 }
1900
1901 static int perf_kwork__report(struct perf_kwork *kwork)
1902 {
1903         int ret;
1904         struct rb_node *next;
1905         struct kwork_work *work;
1906
1907         if (kwork->use_bpf)
1908                 ret = perf_kwork__report_bpf(kwork);
1909         else
1910                 ret = perf_kwork__read_events(kwork);
1911
1912         if (ret != 0)
1913                 return -1;
1914
1915         perf_kwork__sort(kwork);
1916
1917         setup_pager();
1918
1919         ret = report_print_header(kwork);
1920         next = rb_first_cached(&kwork->sorted_work_root);
1921         while (next) {
1922                 work = rb_entry(next, struct kwork_work, node);
1923                 process_skipped_events(kwork, work);
1924
1925                 if (work->nr_atoms != 0) {
1926                         report_print_work(kwork, work);
1927                         if (kwork->summary) {
1928                                 kwork->all_runtime += work->total_runtime;
1929                                 kwork->all_count += work->nr_atoms;
1930                         }
1931                 }
1932                 next = rb_next(next);
1933         }
1934         print_separator(ret);
1935
1936         if (kwork->summary) {
1937                 print_summary(kwork);
1938                 print_separator(ret);
1939         }
1940
1941         print_bad_events(kwork);
1942         print_skipped_events(kwork);
1943         printf("\n");
1944
1945         return 0;
1946 }
1947
1948 typedef int (*tracepoint_handler)(struct perf_tool *tool,
1949                                   struct evsel *evsel,
1950                                   struct perf_sample *sample,
1951                                   struct machine *machine);
1952
1953 static int perf_kwork__process_tracepoint_sample(struct perf_tool *tool,
1954                                                  union perf_event *event __maybe_unused,
1955                                                  struct perf_sample *sample,
1956                                                  struct evsel *evsel,
1957                                                  struct machine *machine)
1958 {
1959         int err = 0;
1960
1961         if (evsel->handler != NULL) {
1962                 tracepoint_handler f = evsel->handler;
1963
1964                 err = f(tool, evsel, sample, machine);
1965         }
1966
1967         return err;
1968 }
1969
1970 static int perf_kwork__timehist(struct perf_kwork *kwork)
1971 {
1972         /*
1973          * event handlers for timehist option
1974          */
1975         kwork->tool.comm         = perf_event__process_comm;
1976         kwork->tool.exit         = perf_event__process_exit;
1977         kwork->tool.fork         = perf_event__process_fork;
1978         kwork->tool.attr         = perf_event__process_attr;
1979         kwork->tool.tracing_data = perf_event__process_tracing_data;
1980         kwork->tool.build_id     = perf_event__process_build_id;
1981         kwork->tool.ordered_events = true;
1982         kwork->tool.ordering_requires_timestamps = true;
1983         symbol_conf.use_callchain = kwork->show_callchain;
1984
1985         if (symbol__validate_sym_arguments()) {
1986                 pr_err("Failed to validate sym arguments\n");
1987                 return -1;
1988         }
1989
1990         setup_pager();
1991
1992         return perf_kwork__read_events(kwork);
1993 }
1994
1995 static void top_calc_total_runtime(struct perf_kwork *kwork)
1996 {
1997         struct kwork_class *class;
1998         struct kwork_work *work;
1999         struct rb_node *next;
2000         struct kwork_top_stat *stat = &kwork->top_stat;
2001
2002         class = get_kwork_class(kwork, KWORK_CLASS_SCHED);
2003         if (!class)
2004                 return;
2005
2006         next = rb_first_cached(&class->work_root);
2007         while (next) {
2008                 work = rb_entry(next, struct kwork_work, node);
2009                 BUG_ON(work->cpu >= MAX_NR_CPUS);
2010                 stat->cpus_runtime[work->cpu].total += work->total_runtime;
2011                 stat->cpus_runtime[MAX_NR_CPUS].total += work->total_runtime;
2012                 next = rb_next(next);
2013         }
2014 }
2015
2016 static void top_calc_idle_time(struct perf_kwork *kwork,
2017                                 struct kwork_work *work)
2018 {
2019         struct kwork_top_stat *stat = &kwork->top_stat;
2020
2021         if (work->id == 0) {
2022                 stat->cpus_runtime[work->cpu].idle += work->total_runtime;
2023                 stat->cpus_runtime[MAX_NR_CPUS].idle += work->total_runtime;
2024         }
2025 }
2026
2027 static void top_calc_irq_runtime(struct perf_kwork *kwork,
2028                                  enum kwork_class_type type,
2029                                  struct kwork_work *work)
2030 {
2031         struct kwork_top_stat *stat = &kwork->top_stat;
2032
2033         if (type == KWORK_CLASS_IRQ) {
2034                 stat->cpus_runtime[work->cpu].irq += work->total_runtime;
2035                 stat->cpus_runtime[MAX_NR_CPUS].irq += work->total_runtime;
2036         } else if (type == KWORK_CLASS_SOFTIRQ) {
2037                 stat->cpus_runtime[work->cpu].softirq += work->total_runtime;
2038                 stat->cpus_runtime[MAX_NR_CPUS].softirq += work->total_runtime;
2039         }
2040 }
2041
2042 static void top_subtract_irq_runtime(struct perf_kwork *kwork,
2043                                      struct kwork_work *work)
2044 {
2045         struct kwork_class *class;
2046         struct kwork_work *data;
2047         unsigned int i;
2048         int irq_class_list[] = {KWORK_CLASS_IRQ, KWORK_CLASS_SOFTIRQ};
2049
2050         for (i = 0; i < ARRAY_SIZE(irq_class_list); i++) {
2051                 class = get_kwork_class(kwork, irq_class_list[i]);
2052                 if (!class)
2053                         continue;
2054
2055                 data = find_work_by_id(&class->work_root,
2056                                        work->id, work->cpu);
2057                 if (!data)
2058                         continue;
2059
2060                 if (work->total_runtime > data->total_runtime) {
2061                         work->total_runtime -= data->total_runtime;
2062                         top_calc_irq_runtime(kwork, irq_class_list[i], data);
2063                 }
2064         }
2065 }
2066
2067 static void top_calc_cpu_usage(struct perf_kwork *kwork)
2068 {
2069         struct kwork_class *class;
2070         struct kwork_work *work;
2071         struct rb_node *next;
2072         struct kwork_top_stat *stat = &kwork->top_stat;
2073
2074         class = get_kwork_class(kwork, KWORK_CLASS_SCHED);
2075         if (!class)
2076                 return;
2077
2078         next = rb_first_cached(&class->work_root);
2079         while (next) {
2080                 work = rb_entry(next, struct kwork_work, node);
2081
2082                 if (work->total_runtime == 0)
2083                         goto next;
2084
2085                 __set_bit(work->cpu, stat->all_cpus_bitmap);
2086
2087                 top_subtract_irq_runtime(kwork, work);
2088
2089                 work->cpu_usage = work->total_runtime * 10000 /
2090                         stat->cpus_runtime[work->cpu].total;
2091
2092                 top_calc_idle_time(kwork, work);
2093 next:
2094                 next = rb_next(next);
2095         }
2096 }
2097
2098 static void top_calc_load_runtime(struct perf_kwork *kwork,
2099                                   struct kwork_work *work)
2100 {
2101         struct kwork_top_stat *stat = &kwork->top_stat;
2102
2103         if (work->id != 0) {
2104                 stat->cpus_runtime[work->cpu].load += work->total_runtime;
2105                 stat->cpus_runtime[MAX_NR_CPUS].load += work->total_runtime;
2106         }
2107 }
2108
2109 static void top_merge_tasks(struct perf_kwork *kwork)
2110 {
2111         struct kwork_work *merged_work, *data;
2112         struct kwork_class *class;
2113         struct rb_node *node;
2114         int cpu;
2115         struct rb_root_cached merged_root = RB_ROOT_CACHED;
2116
2117         class = get_kwork_class(kwork, KWORK_CLASS_SCHED);
2118         if (!class)
2119                 return;
2120
2121         for (;;) {
2122                 node = rb_first_cached(&class->work_root);
2123                 if (!node)
2124                         break;
2125
2126                 rb_erase_cached(node, &class->work_root);
2127                 data = rb_entry(node, struct kwork_work, node);
2128
2129                 if (!profile_name_match(kwork, data))
2130                         continue;
2131
2132                 cpu = data->cpu;
2133                 merged_work = find_work_by_id(&merged_root, data->id,
2134                                               data->id == 0 ? cpu : -1);
2135                 if (!merged_work) {
2136                         work_insert(&merged_root, data, &kwork->cmp_id);
2137                 } else {
2138                         merged_work->total_runtime += data->total_runtime;
2139                         merged_work->cpu_usage += data->cpu_usage;
2140                 }
2141
2142                 top_calc_load_runtime(kwork, data);
2143         }
2144
2145         work_sort(kwork, class, &merged_root);
2146 }
2147
2148 static void perf_kwork__top_report(struct perf_kwork *kwork)
2149 {
2150         struct kwork_work *work;
2151         struct rb_node *next;
2152
2153         printf("\n");
2154
2155         top_print_cpu_usage(kwork);
2156         top_print_header(kwork);
2157         next = rb_first_cached(&kwork->sorted_work_root);
2158         while (next) {
2159                 work = rb_entry(next, struct kwork_work, node);
2160                 process_skipped_events(kwork, work);
2161
2162                 if (work->total_runtime == 0)
2163                         goto next;
2164
2165                 top_print_work(kwork, work);
2166
2167 next:
2168                 next = rb_next(next);
2169         }
2170
2171         printf("\n");
2172 }
2173
2174 static int perf_kwork__top_bpf(struct perf_kwork *kwork)
2175 {
2176         int ret;
2177
2178         signal(SIGINT, sig_handler);
2179         signal(SIGTERM, sig_handler);
2180
2181         ret = perf_kwork__top_prepare_bpf(kwork);
2182         if (ret)
2183                 return -1;
2184
2185         printf("Starting trace, Hit <Ctrl+C> to stop and report\n");
2186
2187         perf_kwork__top_start();
2188
2189         /*
2190          * a simple pause, wait here for stop signal
2191          */
2192         pause();
2193
2194         perf_kwork__top_finish();
2195
2196         perf_kwork__top_read_bpf(kwork);
2197
2198         perf_kwork__top_cleanup_bpf();
2199
2200         return 0;
2201
2202 }
2203
2204 static int perf_kwork__top(struct perf_kwork *kwork)
2205 {
2206         struct __top_cpus_runtime *cpus_runtime;
2207         int ret = 0;
2208
2209         cpus_runtime = zalloc(sizeof(struct __top_cpus_runtime) * (MAX_NR_CPUS + 1));
2210         if (!cpus_runtime)
2211                 return -1;
2212
2213         kwork->top_stat.cpus_runtime = cpus_runtime;
2214         bitmap_zero(kwork->top_stat.all_cpus_bitmap, MAX_NR_CPUS);
2215
2216         if (kwork->use_bpf)
2217                 ret = perf_kwork__top_bpf(kwork);
2218         else
2219                 ret = perf_kwork__read_events(kwork);
2220
2221         if (ret)
2222                 goto out;
2223
2224         top_calc_total_runtime(kwork);
2225         top_calc_cpu_usage(kwork);
2226         top_merge_tasks(kwork);
2227
2228         setup_pager();
2229
2230         perf_kwork__top_report(kwork);
2231
2232 out:
2233         free(kwork->top_stat.cpus_runtime);
2234         return ret;
2235 }
2236
2237 static void setup_event_list(struct perf_kwork *kwork,
2238                              const struct option *options,
2239                              const char * const usage_msg[])
2240 {
2241         int i;
2242         struct kwork_class *class;
2243         char *tmp, *tok, *str;
2244
2245         /*
2246          * set default events list if not specified
2247          */
2248         if (kwork->event_list_str == NULL)
2249                 kwork->event_list_str = "irq, softirq, workqueue";
2250
2251         str = strdup(kwork->event_list_str);
2252         for (tok = strtok_r(str, ", ", &tmp);
2253              tok; tok = strtok_r(NULL, ", ", &tmp)) {
2254                 for (i = 0; i < KWORK_CLASS_MAX; i++) {
2255                         class = kwork_class_supported_list[i];
2256                         if (strcmp(tok, class->name) == 0) {
2257                                 list_add_tail(&class->list, &kwork->class_list);
2258                                 break;
2259                         }
2260                 }
2261                 if (i == KWORK_CLASS_MAX) {
2262                         usage_with_options_msg(usage_msg, options,
2263                                                "Unknown --event key: `%s'", tok);
2264                 }
2265         }
2266         free(str);
2267
2268         pr_debug("Config event list:");
2269         list_for_each_entry(class, &kwork->class_list, list)
2270                 pr_debug(" %s", class->name);
2271         pr_debug("\n");
2272 }
2273
2274 static int perf_kwork__record(struct perf_kwork *kwork,
2275                               int argc, const char **argv)
2276 {
2277         const char **rec_argv;
2278         unsigned int rec_argc, i, j;
2279         struct kwork_class *class;
2280
2281         const char *const record_args[] = {
2282                 "record",
2283                 "-a",
2284                 "-R",
2285                 "-m", "1024",
2286                 "-c", "1",
2287         };
2288
2289         rec_argc = ARRAY_SIZE(record_args) + argc - 1;
2290
2291         list_for_each_entry(class, &kwork->class_list, list)
2292                 rec_argc += 2 * class->nr_tracepoints;
2293
2294         rec_argv = calloc(rec_argc + 1, sizeof(char *));
2295         if (rec_argv == NULL)
2296                 return -ENOMEM;
2297
2298         for (i = 0; i < ARRAY_SIZE(record_args); i++)
2299                 rec_argv[i] = strdup(record_args[i]);
2300
2301         list_for_each_entry(class, &kwork->class_list, list) {
2302                 for (j = 0; j < class->nr_tracepoints; j++) {
2303                         rec_argv[i++] = strdup("-e");
2304                         rec_argv[i++] = strdup(class->tp_handlers[j].name);
2305                 }
2306         }
2307
2308         for (j = 1; j < (unsigned int)argc; j++, i++)
2309                 rec_argv[i] = argv[j];
2310
2311         BUG_ON(i != rec_argc);
2312
2313         pr_debug("record comm: ");
2314         for (j = 0; j < rec_argc; j++)
2315                 pr_debug("%s ", rec_argv[j]);
2316         pr_debug("\n");
2317
2318         return cmd_record(i, rec_argv);
2319 }
2320
2321 int cmd_kwork(int argc, const char **argv)
2322 {
2323         static struct perf_kwork kwork = {
2324                 .class_list          = LIST_HEAD_INIT(kwork.class_list),
2325                 .tool = {
2326                         .mmap           = perf_event__process_mmap,
2327                         .mmap2          = perf_event__process_mmap2,
2328                         .sample         = perf_kwork__process_tracepoint_sample,
2329                         .ordered_events = true,
2330                 },
2331                 .atom_page_list      = LIST_HEAD_INIT(kwork.atom_page_list),
2332                 .sort_list           = LIST_HEAD_INIT(kwork.sort_list),
2333                 .cmp_id              = LIST_HEAD_INIT(kwork.cmp_id),
2334                 .sorted_work_root    = RB_ROOT_CACHED,
2335                 .tp_handler          = NULL,
2336                 .profile_name        = NULL,
2337                 .cpu_list            = NULL,
2338                 .time_str            = NULL,
2339                 .force               = false,
2340                 .event_list_str      = NULL,
2341                 .summary             = false,
2342                 .sort_order          = NULL,
2343                 .show_callchain      = false,
2344                 .max_stack           = 5,
2345                 .timestart           = 0,
2346                 .timeend             = 0,
2347                 .nr_events           = 0,
2348                 .nr_lost_chunks      = 0,
2349                 .nr_lost_events      = 0,
2350                 .all_runtime         = 0,
2351                 .all_count           = 0,
2352                 .nr_skipped_events   = { 0 },
2353         };
2354         static const char default_report_sort_order[] = "runtime, max, count";
2355         static const char default_latency_sort_order[] = "avg, max, count";
2356         static const char default_top_sort_order[] = "rate, runtime";
2357         const struct option kwork_options[] = {
2358         OPT_INCR('v', "verbose", &verbose,
2359                  "be more verbose (show symbol address, etc)"),
2360         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
2361                     "dump raw trace in ASCII"),
2362         OPT_STRING('k', "kwork", &kwork.event_list_str, "kwork",
2363                    "list of kwork to profile (irq, softirq, workqueue, sched, etc)"),
2364         OPT_BOOLEAN('f', "force", &kwork.force, "don't complain, do it"),
2365         OPT_END()
2366         };
2367         const struct option report_options[] = {
2368         OPT_STRING('s', "sort", &kwork.sort_order, "key[,key2...]",
2369                    "sort by key(s): runtime, max, count"),
2370         OPT_STRING('C', "cpu", &kwork.cpu_list, "cpu",
2371                    "list of cpus to profile"),
2372         OPT_STRING('n', "name", &kwork.profile_name, "name",
2373                    "event name to profile"),
2374         OPT_STRING(0, "time", &kwork.time_str, "str",
2375                    "Time span for analysis (start,stop)"),
2376         OPT_STRING('i', "input", &input_name, "file",
2377                    "input file name"),
2378         OPT_BOOLEAN('S', "with-summary", &kwork.summary,
2379                     "Show summary with statistics"),
2380 #ifdef HAVE_BPF_SKEL
2381         OPT_BOOLEAN('b', "use-bpf", &kwork.use_bpf,
2382                     "Use BPF to measure kwork runtime"),
2383 #endif
2384         OPT_PARENT(kwork_options)
2385         };
2386         const struct option latency_options[] = {
2387         OPT_STRING('s', "sort", &kwork.sort_order, "key[,key2...]",
2388                    "sort by key(s): avg, max, count"),
2389         OPT_STRING('C', "cpu", &kwork.cpu_list, "cpu",
2390                    "list of cpus to profile"),
2391         OPT_STRING('n', "name", &kwork.profile_name, "name",
2392                    "event name to profile"),
2393         OPT_STRING(0, "time", &kwork.time_str, "str",
2394                    "Time span for analysis (start,stop)"),
2395         OPT_STRING('i', "input", &input_name, "file",
2396                    "input file name"),
2397 #ifdef HAVE_BPF_SKEL
2398         OPT_BOOLEAN('b', "use-bpf", &kwork.use_bpf,
2399                     "Use BPF to measure kwork latency"),
2400 #endif
2401         OPT_PARENT(kwork_options)
2402         };
2403         const struct option timehist_options[] = {
2404         OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
2405                    "file", "vmlinux pathname"),
2406         OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
2407                    "file", "kallsyms pathname"),
2408         OPT_BOOLEAN('g', "call-graph", &kwork.show_callchain,
2409                     "Display call chains if present"),
2410         OPT_UINTEGER(0, "max-stack", &kwork.max_stack,
2411                    "Maximum number of functions to display backtrace."),
2412         OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
2413                     "Look for files with symbols relative to this directory"),
2414         OPT_STRING(0, "time", &kwork.time_str, "str",
2415                    "Time span for analysis (start,stop)"),
2416         OPT_STRING('C', "cpu", &kwork.cpu_list, "cpu",
2417                    "list of cpus to profile"),
2418         OPT_STRING('n', "name", &kwork.profile_name, "name",
2419                    "event name to profile"),
2420         OPT_STRING('i', "input", &input_name, "file",
2421                    "input file name"),
2422         OPT_PARENT(kwork_options)
2423         };
2424         const struct option top_options[] = {
2425         OPT_STRING('s', "sort", &kwork.sort_order, "key[,key2...]",
2426                    "sort by key(s): rate, runtime, tid"),
2427         OPT_STRING('C', "cpu", &kwork.cpu_list, "cpu",
2428                    "list of cpus to profile"),
2429         OPT_STRING('n', "name", &kwork.profile_name, "name",
2430                    "event name to profile"),
2431         OPT_STRING(0, "time", &kwork.time_str, "str",
2432                    "Time span for analysis (start,stop)"),
2433         OPT_STRING('i', "input", &input_name, "file",
2434                    "input file name"),
2435 #ifdef HAVE_BPF_SKEL
2436         OPT_BOOLEAN('b', "use-bpf", &kwork.use_bpf,
2437                     "Use BPF to measure task cpu usage"),
2438 #endif
2439         OPT_PARENT(kwork_options)
2440         };
2441         const char *kwork_usage[] = {
2442                 NULL,
2443                 NULL
2444         };
2445         const char * const report_usage[] = {
2446                 "perf kwork report [<options>]",
2447                 NULL
2448         };
2449         const char * const latency_usage[] = {
2450                 "perf kwork latency [<options>]",
2451                 NULL
2452         };
2453         const char * const timehist_usage[] = {
2454                 "perf kwork timehist [<options>]",
2455                 NULL
2456         };
2457         const char * const top_usage[] = {
2458                 "perf kwork top [<options>]",
2459                 NULL
2460         };
2461         const char *const kwork_subcommands[] = {
2462                 "record", "report", "latency", "timehist", "top", NULL
2463         };
2464
2465         argc = parse_options_subcommand(argc, argv, kwork_options,
2466                                         kwork_subcommands, kwork_usage,
2467                                         PARSE_OPT_STOP_AT_NON_OPTION);
2468         if (!argc)
2469                 usage_with_options(kwork_usage, kwork_options);
2470
2471         sort_dimension__add(&kwork, "id", &kwork.cmp_id);
2472
2473         if (strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
2474                 setup_event_list(&kwork, kwork_options, kwork_usage);
2475                 return perf_kwork__record(&kwork, argc, argv);
2476         } else if (strlen(argv[0]) > 2 && strstarts("report", argv[0])) {
2477                 kwork.sort_order = default_report_sort_order;
2478                 if (argc > 1) {
2479                         argc = parse_options(argc, argv, report_options, report_usage, 0);
2480                         if (argc)
2481                                 usage_with_options(report_usage, report_options);
2482                 }
2483                 kwork.report = KWORK_REPORT_RUNTIME;
2484                 setup_sorting(&kwork, report_options, report_usage);
2485                 setup_event_list(&kwork, kwork_options, kwork_usage);
2486                 return perf_kwork__report(&kwork);
2487         } else if (strlen(argv[0]) > 2 && strstarts("latency", argv[0])) {
2488                 kwork.sort_order = default_latency_sort_order;
2489                 if (argc > 1) {
2490                         argc = parse_options(argc, argv, latency_options, latency_usage, 0);
2491                         if (argc)
2492                                 usage_with_options(latency_usage, latency_options);
2493                 }
2494                 kwork.report = KWORK_REPORT_LATENCY;
2495                 setup_sorting(&kwork, latency_options, latency_usage);
2496                 setup_event_list(&kwork, kwork_options, kwork_usage);
2497                 return perf_kwork__report(&kwork);
2498         } else if (strlen(argv[0]) > 2 && strstarts("timehist", argv[0])) {
2499                 if (argc > 1) {
2500                         argc = parse_options(argc, argv, timehist_options, timehist_usage, 0);
2501                         if (argc)
2502                                 usage_with_options(timehist_usage, timehist_options);
2503                 }
2504                 kwork.report = KWORK_REPORT_TIMEHIST;
2505                 setup_event_list(&kwork, kwork_options, kwork_usage);
2506                 return perf_kwork__timehist(&kwork);
2507         } else if (strlen(argv[0]) > 2 && strstarts("top", argv[0])) {
2508                 kwork.sort_order = default_top_sort_order;
2509                 if (argc > 1) {
2510                         argc = parse_options(argc, argv, top_options, top_usage, 0);
2511                         if (argc)
2512                                 usage_with_options(top_usage, top_options);
2513                 }
2514                 kwork.report = KWORK_REPORT_TOP;
2515                 if (!kwork.event_list_str)
2516                         kwork.event_list_str = "sched, irq, softirq";
2517                 setup_event_list(&kwork, kwork_options, kwork_usage);
2518                 setup_sorting(&kwork, top_options, top_usage);
2519                 return perf_kwork__top(&kwork);
2520         } else
2521                 usage_with_options(kwork_usage, kwork_options);
2522
2523         return 0;
2524 }