perf: ftrace: Add filter support for option -F/--funcs
[linux-2.6-microblaze.git] / tools / perf / Documentation / perf-stat.txt
1 perf-stat(1)
2 ============
3
4 NAME
5 ----
6 perf-stat - Run a command and gather performance counter statistics
7
8 SYNOPSIS
9 --------
10 [verse]
11 'perf stat' [-e <EVENT> | --event=EVENT] [-a] <command>
12 'perf stat' [-e <EVENT> | --event=EVENT] [-a] -- <command> [<options>]
13 'perf stat' [-e <EVENT> | --event=EVENT] [-a] record [-o file] -- <command> [<options>]
14 'perf stat' report [-i file]
15
16 DESCRIPTION
17 -----------
18 This command runs a command and gathers performance counter statistics
19 from it.
20
21
22 OPTIONS
23 -------
24 <command>...::
25         Any command you can specify in a shell.
26
27 record::
28         See STAT RECORD.
29
30 report::
31         See STAT REPORT.
32
33 -e::
34 --event=::
35         Select the PMU event. Selection can be:
36
37         - a symbolic event name (use 'perf list' to list all events)
38
39         - a raw PMU event (eventsel+umask) in the form of rNNN where NNN is a
40           hexadecimal event descriptor.
41
42         - a symbolic or raw PMU event followed by an optional colon
43           and a list of event modifiers, e.g., cpu-cycles:p.  See the
44           linkperf:perf-list[1] man page for details on event modifiers.
45
46         - a symbolically formed event like 'pmu/param1=0x3,param2/' where
47           param1 and param2 are defined as formats for the PMU in
48           /sys/bus/event_source/devices/<pmu>/format/*
49
50           'percore' is a event qualifier that sums up the event counts for both
51           hardware threads in a core. For example:
52           perf stat -A -a -e cpu/event,percore=1/,otherevent ...
53
54         - a symbolically formed event like 'pmu/config=M,config1=N,config2=K/'
55           where M, N, K are numbers (in decimal, hex, octal format).
56           Acceptable values for each of 'config', 'config1' and 'config2'
57           parameters are defined by corresponding entries in
58           /sys/bus/event_source/devices/<pmu>/format/*
59
60         Note that the last two syntaxes support prefix and glob matching in
61         the PMU name to simplify creation of events across multiple instances
62         of the same type of PMU in large systems (e.g. memory controller PMUs).
63         Multiple PMU instances are typical for uncore PMUs, so the prefix
64         'uncore_' is also ignored when performing this match.
65
66
67 -i::
68 --no-inherit::
69         child tasks do not inherit counters
70 -p::
71 --pid=<pid>::
72         stat events on existing process id (comma separated list)
73
74 -t::
75 --tid=<tid>::
76         stat events on existing thread id (comma separated list)
77
78 ifdef::HAVE_LIBPFM[]
79 --pfm-events events::
80 Select a PMU event using libpfm4 syntax (see http://perfmon2.sf.net)
81 including support for event filters. For example '--pfm-events
82 inst_retired:any_p:u:c=1:i'. More than one event can be passed to the
83 option using the comma separator. Hardware events and generic hardware
84 events cannot be mixed together. The latter must be used with the -e
85 option. The -e option and this one can be mixed and matched.  Events
86 can be grouped using the {} notation.
87 endif::HAVE_LIBPFM[]
88
89 -a::
90 --all-cpus::
91         system-wide collection from all CPUs (default if no target is specified)
92
93 --no-scale::
94         Don't scale/normalize counter values
95
96 -d::
97 --detailed::
98         print more detailed statistics, can be specified up to 3 times
99
100            -d:          detailed events, L1 and LLC data cache
101         -d -d:     more detailed events, dTLB and iTLB events
102      -d -d -d:     very detailed events, adding prefetch events
103
104 -r::
105 --repeat=<n>::
106         repeat command and print average + stddev (max: 100). 0 means forever.
107
108 -B::
109 --big-num::
110         print large numbers with thousands' separators according to locale.
111         Enabled by default. Use "--no-big-num" to disable.
112         Default setting can be changed with "perf config stat.big-num=false".
113
114 -C::
115 --cpu=::
116 Count only on the list of CPUs provided. Multiple CPUs can be provided as a
117 comma-separated list with no space: 0,1. Ranges of CPUs are specified with -: 0-2.
118 In per-thread mode, this option is ignored. The -a option is still necessary
119 to activate system-wide monitoring. Default is to count on all CPUs.
120
121 -A::
122 --no-aggr::
123 Do not aggregate counts across all monitored CPUs.
124
125 -n::
126 --null::
127         null run - don't start any counters
128
129 -v::
130 --verbose::
131         be more verbose (show counter open errors, etc)
132
133 -x SEP::
134 --field-separator SEP::
135 print counts using a CSV-style output to make it easy to import directly into
136 spreadsheets. Columns are separated by the string specified in SEP.
137
138 --table:: Display time for each run (-r option), in a table format, e.g.:
139
140   $ perf stat --null -r 5 --table perf bench sched pipe
141
142    Performance counter stats for 'perf bench sched pipe' (5 runs):
143
144              # Table of individual measurements:
145              5.189 (-0.293) #
146              5.189 (-0.294) #
147              5.186 (-0.296) #
148              5.663 (+0.181) ##
149              6.186 (+0.703) ####
150
151              # Final result:
152              5.483 +- 0.198 seconds time elapsed  ( +-  3.62% )
153
154 -G name::
155 --cgroup name::
156 monitor only in the container (cgroup) called "name". This option is available only
157 in per-cpu mode. The cgroup filesystem must be mounted. All threads belonging to
158 container "name" are monitored when they run on the monitored CPUs. Multiple cgroups
159 can be provided. Each cgroup is applied to the corresponding event, i.e., first cgroup
160 to first event, second cgroup to second event and so on. It is possible to provide
161 an empty cgroup (monitor all the time) using, e.g., -G foo,,bar. Cgroups must have
162 corresponding events, i.e., they always refer to events defined earlier on the command
163 line. If the user wants to track multiple events for a specific cgroup, the user can
164 use '-e e1 -e e2 -G foo,foo' or just use '-e e1 -e e2 -G foo'.
165
166 If wanting to monitor, say, 'cycles' for a cgroup and also for system wide, this
167 command line can be used: 'perf stat -e cycles -G cgroup_name -a -e cycles'.
168
169 -o file::
170 --output file::
171 Print the output into the designated file.
172
173 --append::
174 Append to the output file designated with the -o option. Ignored if -o is not specified.
175
176 --log-fd::
177
178 Log output to fd, instead of stderr.  Complementary to --output, and mutually exclusive
179 with it.  --append may be used here.  Examples:
180      3>results  perf stat --log-fd 3          -- $cmd
181      3>>results perf stat --log-fd 3 --append -- $cmd
182
183 --control=fifo:ctl-fifo[,ack-fifo]::
184 --control=fd:ctl-fd[,ack-fd]::
185 ctl-fifo / ack-fifo are opened and used as ctl-fd / ack-fd as follows.
186 Listen on ctl-fd descriptor for command to control measurement ('enable': enable events,
187 'disable': disable events). Measurements can be started with events disabled using
188 --delay=-1 option. Optionally send control command completion ('ack\n') to ack-fd descriptor
189 to synchronize with the controlling process. Example of bash shell script to enable and
190 disable events during measurements:
191
192  #!/bin/bash
193
194  ctl_dir=/tmp/
195
196  ctl_fifo=${ctl_dir}perf_ctl.fifo
197  test -p ${ctl_fifo} && unlink ${ctl_fifo}
198  mkfifo ${ctl_fifo}
199  exec {ctl_fd}<>${ctl_fifo}
200
201  ctl_ack_fifo=${ctl_dir}perf_ctl_ack.fifo
202  test -p ${ctl_ack_fifo} && unlink ${ctl_ack_fifo}
203  mkfifo ${ctl_ack_fifo}
204  exec {ctl_fd_ack}<>${ctl_ack_fifo}
205
206  perf stat -D -1 -e cpu-cycles -a -I 1000       \
207            --control fd:${ctl_fd},${ctl_fd_ack} \
208            -- sleep 30 &
209  perf_pid=$!
210
211  sleep 5  && echo 'enable' >&${ctl_fd} && read -u ${ctl_fd_ack} e1 && echo "enabled(${e1})"
212  sleep 10 && echo 'disable' >&${ctl_fd} && read -u ${ctl_fd_ack} d1 && echo "disabled(${d1})"
213
214  exec {ctl_fd_ack}>&-
215  unlink ${ctl_ack_fifo}
216
217  exec {ctl_fd}>&-
218  unlink ${ctl_fifo}
219
220  wait -n ${perf_pid}
221  exit $?
222
223
224 --pre::
225 --post::
226         Pre and post measurement hooks, e.g.:
227
228 perf stat --repeat 10 --null --sync --pre 'make -s O=defconfig-build/clean' -- make -s -j64 O=defconfig-build/ bzImage
229
230 -I msecs::
231 --interval-print msecs::
232 Print count deltas every N milliseconds (minimum: 1ms)
233 The overhead percentage could be high in some cases, for instance with small, sub 100ms intervals.  Use with caution.
234         example: 'perf stat -I 1000 -e cycles -a sleep 5'
235
236 If the metric exists, it is calculated by the counts generated in this interval and the metric is printed after #.
237
238 --interval-count times::
239 Print count deltas for fixed number of times.
240 This option should be used together with "-I" option.
241         example: 'perf stat -I 1000 --interval-count 2 -e cycles -a'
242
243 --interval-clear::
244 Clear the screen before next interval.
245
246 --timeout msecs::
247 Stop the 'perf stat' session and print count deltas after N milliseconds (minimum: 10 ms).
248 This option is not supported with the "-I" option.
249         example: 'perf stat --time 2000 -e cycles -a'
250
251 --metric-only::
252 Only print computed metrics. Print them in a single line.
253 Don't show any raw values. Not supported with --per-thread.
254
255 --per-socket::
256 Aggregate counts per processor socket for system-wide mode measurements.  This
257 is a useful mode to detect imbalance between sockets.  To enable this mode,
258 use --per-socket in addition to -a. (system-wide).  The output includes the
259 socket number and the number of online processors on that socket. This is
260 useful to gauge the amount of aggregation.
261
262 --per-die::
263 Aggregate counts per processor die for system-wide mode measurements.  This
264 is a useful mode to detect imbalance between dies.  To enable this mode,
265 use --per-die in addition to -a. (system-wide).  The output includes the
266 die number and the number of online processors on that die. This is
267 useful to gauge the amount of aggregation.
268
269 --per-core::
270 Aggregate counts per physical processor for system-wide mode measurements.  This
271 is a useful mode to detect imbalance between physical cores.  To enable this mode,
272 use --per-core in addition to -a. (system-wide).  The output includes the
273 core number and the number of online logical processors on that physical processor.
274
275 --per-thread::
276 Aggregate counts per monitored threads, when monitoring threads (-t option)
277 or processes (-p option).
278
279 --per-node::
280 Aggregate counts per NUMA nodes for system-wide mode measurements. This
281 is a useful mode to detect imbalance between NUMA nodes. To enable this
282 mode, use --per-node in addition to -a. (system-wide).
283
284 -D msecs::
285 --delay msecs::
286 After starting the program, wait msecs before measuring (-1: start with events
287 disabled). This is useful to filter out the startup phase of the program,
288 which is often very different.
289
290 -T::
291 --transaction::
292
293 Print statistics of transactional execution if supported.
294
295 --metric-no-group::
296 By default, events to compute a metric are placed in weak groups. The
297 group tries to enforce scheduling all or none of the events. The
298 --metric-no-group option places events outside of groups and may
299 increase the chance of the event being scheduled - leading to more
300 accuracy. However, as events may not be scheduled together accuracy
301 for metrics like instructions per cycle can be lower - as both metrics
302 may no longer be being measured at the same time.
303
304 --metric-no-merge::
305 By default metric events in different weak groups can be shared if one
306 group contains all the events needed by another. In such cases one
307 group will be eliminated reducing event multiplexing and making it so
308 that certain groups of metrics sum to 100%. A downside to sharing a
309 group is that the group may require multiplexing and so accuracy for a
310 small group that need not have multiplexing is lowered. This option
311 forbids the event merging logic from sharing events between groups and
312 may be used to increase accuracy in this case.
313
314 STAT RECORD
315 -----------
316 Stores stat data into perf data file.
317
318 -o file::
319 --output file::
320 Output file name.
321
322 STAT REPORT
323 -----------
324 Reads and reports stat data from perf data file.
325
326 -i file::
327 --input file::
328 Input file name.
329
330 --per-socket::
331 Aggregate counts per processor socket for system-wide mode measurements.
332
333 --per-die::
334 Aggregate counts per processor die for system-wide mode measurements.
335
336 --per-core::
337 Aggregate counts per physical processor for system-wide mode measurements.
338
339 -M::
340 --metrics::
341 Print metrics or metricgroups specified in a comma separated list.
342 For a group all metrics from the group are added.
343 The events from the metrics are automatically measured.
344 See perf list output for the possble metrics and metricgroups.
345
346 -A::
347 --no-aggr::
348 Do not aggregate counts across all monitored CPUs.
349
350 --topdown::
351 Print top down level 1 metrics if supported by the CPU. This allows to
352 determine bottle necks in the CPU pipeline for CPU bound workloads,
353 by breaking the cycles consumed down into frontend bound, backend bound,
354 bad speculation and retiring.
355
356 Frontend bound means that the CPU cannot fetch and decode instructions fast
357 enough. Backend bound means that computation or memory access is the bottle
358 neck. Bad Speculation means that the CPU wasted cycles due to branch
359 mispredictions and similar issues. Retiring means that the CPU computed without
360 an apparently bottleneck. The bottleneck is only the real bottleneck
361 if the workload is actually bound by the CPU and not by something else.
362
363 For best results it is usually a good idea to use it with interval
364 mode like -I 1000, as the bottleneck of workloads can change often.
365
366 The top down metrics are collected per core instead of per
367 CPU thread. Per core mode is automatically enabled
368 and -a (global monitoring) is needed, requiring root rights or
369 perf.perf_event_paranoid=-1.
370
371 Topdown uses the full Performance Monitoring Unit, and needs
372 disabling of the NMI watchdog (as root):
373 echo 0 > /proc/sys/kernel/nmi_watchdog
374 for best results. Otherwise the bottlenecks may be inconsistent
375 on workload with changing phases.
376
377 This enables --metric-only, unless overridden with --no-metric-only.
378
379 To interpret the results it is usually needed to know on which
380 CPUs the workload runs on. If needed the CPUs can be forced using
381 taskset.
382
383 --no-merge::
384 Do not merge results from same PMUs.
385
386 When multiple events are created from a single event specification,
387 stat will, by default, aggregate the event counts and show the result
388 in a single row. This option disables that behavior and shows
389 the individual events and counts.
390
391 Multiple events are created from a single event specification when:
392 1. Prefix or glob matching is used for the PMU name.
393 2. Aliases, which are listed immediately after the Kernel PMU events
394    by perf list, are used.
395
396 --smi-cost::
397 Measure SMI cost if msr/aperf/ and msr/smi/ events are supported.
398
399 During the measurement, the /sys/device/cpu/freeze_on_smi will be set to
400 freeze core counters on SMI.
401 The aperf counter will not be effected by the setting.
402 The cost of SMI can be measured by (aperf - unhalted core cycles).
403
404 In practice, the percentages of SMI cycles is very useful for performance
405 oriented analysis. --metric_only will be applied by default.
406 The output is SMI cycles%, equals to (aperf - unhalted core cycles) / aperf
407
408 Users who wants to get the actual value can apply --no-metric-only.
409
410 --all-kernel::
411 Configure all used events to run in kernel space.
412
413 --all-user::
414 Configure all used events to run in user space.
415
416 --percore-show-thread::
417 The event modifier "percore" has supported to sum up the event counts
418 for all hardware threads in a core and show the counts per core.
419
420 This option with event modifier "percore" enabled also sums up the event
421 counts for all hardware threads in a core but show the sum counts per
422 hardware thread. This is essentially a replacement for the any bit and
423 convenient for post processing.
424
425 --summary::
426 Print summary for interval mode (-I).
427
428 EXAMPLES
429 --------
430
431 $ perf stat -- make
432
433    Performance counter stats for 'make':
434
435         83723.452481      task-clock:u (msec)       #    1.004 CPUs utilized
436                    0      context-switches:u        #    0.000 K/sec
437                    0      cpu-migrations:u          #    0.000 K/sec
438            3,228,188      page-faults:u             #    0.039 M/sec
439      229,570,665,834      cycles:u                  #    2.742 GHz
440      313,163,853,778      instructions:u            #    1.36  insn per cycle
441       69,704,684,856      branches:u                #  832.559 M/sec
442        2,078,861,393      branch-misses:u           #    2.98% of all branches
443
444         83.409183620 seconds time elapsed
445
446         74.684747000 seconds user
447          8.739217000 seconds sys
448
449 TIMINGS
450 -------
451 As displayed in the example above we can display 3 types of timings.
452 We always display the time the counters were enabled/alive:
453
454         83.409183620 seconds time elapsed
455
456 For workload sessions we also display time the workloads spent in
457 user/system lands:
458
459         74.684747000 seconds user
460          8.739217000 seconds sys
461
462 Those times are the very same as displayed by the 'time' tool.
463
464 CSV FORMAT
465 ----------
466
467 With -x, perf stat is able to output a not-quite-CSV format output
468 Commas in the output are not put into "". To make it easy to parse
469 it is recommended to use a different character like -x \;
470
471 The fields are in this order:
472
473         - optional usec time stamp in fractions of second (with -I xxx)
474         - optional CPU, core, or socket identifier
475         - optional number of logical CPUs aggregated
476         - counter value
477         - unit of the counter value or empty
478         - event name
479         - run time of counter
480         - percentage of measurement time the counter was running
481         - optional variance if multiple values are collected with -r
482         - optional metric value
483         - optional unit of metric
484
485 Additional metrics may be printed with all earlier fields being empty.
486
487 SEE ALSO
488 --------
489 linkperf:perf-top[1], linkperf:perf-list[1]