Linux 6.9-rc1
[linux-2.6-microblaze.git] / tools / perf / Documentation / perf-c2c.txt
1 perf-c2c(1)
2 ===========
3
4 NAME
5 ----
6 perf-c2c - Shared Data C2C/HITM Analyzer.
7
8 SYNOPSIS
9 --------
10 [verse]
11 'perf c2c record' [<options>] <command>
12 'perf c2c record' [<options>] \-- [<record command options>] <command>
13 'perf c2c report' [<options>]
14
15 DESCRIPTION
16 -----------
17 C2C stands for Cache To Cache.
18
19 The perf c2c tool provides means for Shared Data C2C/HITM analysis. It allows
20 you to track down the cacheline contentions.
21
22 On Intel, the tool is based on load latency and precise store facility events
23 provided by Intel CPUs. On PowerPC, the tool uses random instruction sampling
24 with thresholding feature. On AMD, the tool uses IBS op pmu (due to hardware
25 limitations, perf c2c is not supported on Zen3 cpus). On Arm64 it uses SPE to
26 sample load and store operations, therefore hardware and kernel support is
27 required. See linkperf:perf-arm-spe[1] for a setup guide. Due to the
28 statistical nature of Arm SPE sampling, not every memory operation will be
29 sampled.
30
31 These events provide:
32   - memory address of the access
33   - type of the access (load and store details)
34   - latency (in cycles) of the load access
35
36 The c2c tool provide means to record this data and report back access details
37 for cachelines with highest contention - highest number of HITM accesses.
38
39 The basic workflow with this tool follows the standard record/report phase.
40 User uses the record command to record events data and report command to
41 display it.
42
43
44 RECORD OPTIONS
45 --------------
46 -e::
47 --event=::
48         Select the PMU event. Use 'perf c2c record -e list'
49         to list available events.
50
51 -v::
52 --verbose::
53         Be more verbose (show counter open errors, etc).
54
55 -l::
56 --ldlat::
57         Configure mem-loads latency. Supported on Intel and Arm64 processors
58         only. Ignored on other archs.
59
60 -k::
61 --all-kernel::
62         Configure all used events to run in kernel space.
63
64 -u::
65 --all-user::
66         Configure all used events to run in user space.
67
68 REPORT OPTIONS
69 --------------
70 -k::
71 --vmlinux=<file>::
72         vmlinux pathname
73
74 -v::
75 --verbose::
76         Be more verbose (show counter open errors, etc).
77
78 -i::
79 --input::
80         Specify the input file to process.
81
82 -N::
83 --node-info::
84         Show extra node info in report (see NODE INFO section)
85
86 -c::
87 --coalesce::
88         Specify sorting fields for single cacheline display.
89         Following fields are available: tid,pid,iaddr,dso
90         (see COALESCE)
91
92 -g::
93 --call-graph::
94         Setup callchains parameters.
95         Please refer to perf-report man page for details.
96
97 --stdio::
98         Force the stdio output (see STDIO OUTPUT)
99
100 --stats::
101         Display only statistic tables and force stdio mode.
102
103 --full-symbols::
104         Display full length of symbols.
105
106 --no-source::
107         Do not display Source:Line column.
108
109 --show-all::
110         Show all captured HITM lines, with no regard to HITM % 0.0005 limit.
111
112 -f::
113 --force::
114         Don't do ownership validation.
115
116 -d::
117 --display::
118         Switch to HITM type (rmt, lcl) or peer snooping type (peer) to display
119         and sort on. Total HITMs (tot) as default, except Arm64 uses peer mode
120         as default.
121
122 --stitch-lbr::
123         Show callgraph with stitched LBRs, which may have more complete
124         callgraph. The perf.data file must have been obtained using
125         perf c2c record --call-graph lbr.
126         Disabled by default. In common cases with call stack overflows,
127         it can recreate better call stacks than the default lbr call stack
128         output. But this approach is not foolproof. There can be cases
129         where it creates incorrect call stacks from incorrect matches.
130         The known limitations include exception handing such as
131         setjmp/longjmp will have calls/returns not match.
132
133 --double-cl::
134         Group the detection of shared cacheline events into double cacheline
135         granularity. Some architectures have an Adjacent Cacheline Prefetch
136         feature, which causes cacheline sharing to behave like the cacheline
137         size is doubled.
138
139 C2C RECORD
140 ----------
141 The perf c2c record command setup options related to HITM cacheline analysis
142 and calls standard perf record command.
143
144 Following perf record options are configured by default:
145 (check perf record man page for details)
146
147   -W,-d,--phys-data,--sample-cpu
148
149 Unless specified otherwise with '-e' option, following events are monitored by
150 default on Intel:
151
152   cpu/mem-loads,ldlat=30/P
153   cpu/mem-stores/P
154
155 following on AMD:
156
157   ibs_op//
158
159 and following on PowerPC:
160
161   cpu/mem-loads/
162   cpu/mem-stores/
163
164 User can pass any 'perf record' option behind '--' mark, like (to enable
165 callchains and system wide monitoring):
166
167   $ perf c2c record -- -g -a
168
169 Please check RECORD OPTIONS section for specific c2c record options.
170
171 C2C REPORT
172 ----------
173 The perf c2c report command displays shared data analysis.  It comes in two
174 display modes: stdio and tui (default).
175
176 The report command workflow is following:
177   - sort all the data based on the cacheline address
178   - store access details for each cacheline
179   - sort all cachelines based on user settings
180   - display data
181
182 In general perf report output consist of 2 basic views:
183   1) most expensive cachelines list
184   2) offsets details for each cacheline
185
186 For each cacheline in the 1) list we display following data:
187 (Both stdio and TUI modes follow the same fields output)
188
189   Index
190   - zero based index to identify the cacheline
191
192   Cacheline
193   - cacheline address (hex number)
194
195   Rmt/Lcl Hitm (Display with HITM types)
196   - cacheline percentage of all Remote/Local HITM accesses
197
198   Peer Snoop (Display with peer type)
199   - cacheline percentage of all peer accesses
200
201   LLC Load Hitm - Total, LclHitm, RmtHitm (For display with HITM types)
202   - count of Total/Local/Remote load HITMs
203
204   Load Peer - Total, Local, Remote (For display with peer type)
205   - count of Total/Local/Remote load from peer cache or DRAM
206
207   Total records
208   - sum of all cachelines accesses
209
210   Total loads
211   - sum of all load accesses
212
213   Total stores
214   - sum of all store accesses
215
216   Store Reference - L1Hit, L1Miss, N/A
217     L1Hit - store accesses that hit L1
218     L1Miss - store accesses that missed L1
219     N/A - store accesses with memory level is not available
220
221   Core Load Hit - FB, L1, L2
222   - count of load hits in FB (Fill Buffer), L1 and L2 cache
223
224   LLC Load Hit - LlcHit, LclHitm
225   - count of LLC load accesses, includes LLC hits and LLC HITMs
226
227   RMT Load Hit - RmtHit, RmtHitm
228   - count of remote load accesses, includes remote hits and remote HITMs;
229     on Arm neoverse cores, RmtHit is used to account remote accesses,
230     includes remote DRAM or any upward cache level in remote node
231
232   Load Dram - Lcl, Rmt
233   - count of local and remote DRAM accesses
234
235 For each offset in the 2) list we display following data:
236
237   HITM - Rmt, Lcl (Display with HITM types)
238   - % of Remote/Local HITM accesses for given offset within cacheline
239
240   Peer Snoop - Rmt, Lcl (Display with peer type)
241   - % of Remote/Local peer accesses for given offset within cacheline
242
243   Store Refs - L1 Hit, L1 Miss, N/A
244   - % of store accesses that hit L1, missed L1 and N/A (no available) memory
245     level for given offset within cacheline
246
247   Data address - Offset
248   - offset address
249
250   Pid
251   - pid of the process responsible for the accesses
252
253   Tid
254   - tid of the process responsible for the accesses
255
256   Code address
257   - code address responsible for the accesses
258
259   cycles - rmt hitm, lcl hitm, load (Display with HITM types)
260     - sum of cycles for given accesses - Remote/Local HITM and generic load
261
262   cycles - rmt peer, lcl peer, load (Display with peer type)
263     - sum of cycles for given accesses - Remote/Local peer load and generic load
264
265   cpu cnt
266     - number of cpus that participated on the access
267
268   Symbol
269     - code symbol related to the 'Code address' value
270
271   Shared Object
272     - shared object name related to the 'Code address' value
273
274   Source:Line
275     - source information related to the 'Code address' value
276
277   Node
278     - nodes participating on the access (see NODE INFO section)
279
280 NODE INFO
281 ---------
282 The 'Node' field displays nodes that accesses given cacheline
283 offset. Its output comes in 3 flavors:
284   - node IDs separated by ','
285   - node IDs with stats for each ID, in following format:
286       Node{cpus %hitms %stores} (Display with HITM types)
287       Node{cpus %peers %stores} (Display with peer type)
288   - node IDs with list of affected CPUs in following format:
289       Node{cpu list}
290
291 User can switch between above flavors with -N option or
292 use 'n' key to interactively switch in TUI mode.
293
294 COALESCE
295 --------
296 User can specify how to sort offsets for cacheline.
297
298 Following fields are available and governs the final
299 output fields set for cacheline offsets output:
300
301   tid   - coalesced by process TIDs
302   pid   - coalesced by process PIDs
303   iaddr - coalesced by code address, following fields are displayed:
304              Code address, Code symbol, Shared Object, Source line
305   dso   - coalesced by shared object
306
307 By default the coalescing is setup with 'pid,iaddr'.
308
309 STDIO OUTPUT
310 ------------
311 The stdio output displays data on standard output.
312
313 Following tables are displayed:
314   Trace Event Information
315   - overall statistics of memory accesses
316
317   Global Shared Cache Line Event Information
318   - overall statistics on shared cachelines
319
320   Shared Data Cache Line Table
321   - list of most expensive cachelines
322
323   Shared Cache Line Distribution Pareto
324   - list of all accessed offsets for each cacheline
325
326 TUI OUTPUT
327 ----------
328 The TUI output provides interactive interface to navigate
329 through cachelines list and to display offset details.
330
331 For details please refer to the help window by pressing '?' key.
332
333 CREDITS
334 -------
335 Although Don Zickus, Dick Fowles and Joe Mario worked together
336 to get this implemented, we got lots of early help from Arnaldo
337 Carvalho de Melo, Stephane Eranian, Jiri Olsa and Andi Kleen.
338
339 C2C BLOG
340 --------
341 Check Joe's blog on c2c tool for detailed use case explanation:
342   https://joemario.github.io/blog/2016/09/01/c2c-blog/
343
344 SEE ALSO
345 --------
346 linkperf:perf-record[1], linkperf:perf-mem[1], linkperf:perf-arm-spe[1]