s390/vdso: drop unnecessary cc-ldoption
[linux-2.6-microblaze.git] / tools / memory-model / Documentation / explanation.txt
1 Explanation of the Linux-Kernel Memory Consistency Model
2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3
4 :Author: Alan Stern <stern@rowland.harvard.edu>
5 :Created: October 2017
6
7 .. Contents
8
9   1. INTRODUCTION
10   2. BACKGROUND
11   3. A SIMPLE EXAMPLE
12   4. A SELECTION OF MEMORY MODELS
13   5. ORDERING AND CYCLES
14   6. EVENTS
15   7. THE PROGRAM ORDER RELATION: po AND po-loc
16   8. A WARNING
17   9. DEPENDENCY RELATIONS: data, addr, and ctrl
18   10. THE READS-FROM RELATION: rf, rfi, and rfe
19   11. CACHE COHERENCE AND THE COHERENCE ORDER RELATION: co, coi, and coe
20   12. THE FROM-READS RELATION: fr, fri, and fre
21   13. AN OPERATIONAL MODEL
22   14. PROPAGATION ORDER RELATION: cumul-fence
23   15. DERIVATION OF THE LKMM FROM THE OPERATIONAL MODEL
24   16. SEQUENTIAL CONSISTENCY PER VARIABLE
25   17. ATOMIC UPDATES: rmw
26   18. THE PRESERVED PROGRAM ORDER RELATION: ppo
27   19. AND THEN THERE WAS ALPHA
28   20. THE HAPPENS-BEFORE RELATION: hb
29   21. THE PROPAGATES-BEFORE RELATION: pb
30   22. RCU RELATIONS: rcu-link, gp, rscs, rcu-fence, and rb
31   23. LOCKING
32   24. ODDS AND ENDS
33
34
35
36 INTRODUCTION
37 ------------
38
39 The Linux-kernel memory consistency model (LKMM) is rather complex and
40 obscure.  This is particularly evident if you read through the
41 linux-kernel.bell and linux-kernel.cat files that make up the formal
42 version of the model; they are extremely terse and their meanings are
43 far from clear.
44
45 This document describes the ideas underlying the LKMM.  It is meant
46 for people who want to understand how the model was designed.  It does
47 not go into the details of the code in the .bell and .cat files;
48 rather, it explains in English what the code expresses symbolically.
49
50 Sections 2 (BACKGROUND) through 5 (ORDERING AND CYCLES) are aimed
51 toward beginners; they explain what memory consistency models are and
52 the basic notions shared by all such models.  People already familiar
53 with these concepts can skim or skip over them.  Sections 6 (EVENTS)
54 through 12 (THE FROM_READS RELATION) describe the fundamental
55 relations used in many models.  Starting in Section 13 (AN OPERATIONAL
56 MODEL), the workings of the LKMM itself are covered.
57
58 Warning: The code examples in this document are not written in the
59 proper format for litmus tests.  They don't include a header line, the
60 initializations are not enclosed in braces, the global variables are
61 not passed by pointers, and they don't have an "exists" clause at the
62 end.  Converting them to the right format is left as an exercise for
63 the reader.
64
65
66 BACKGROUND
67 ----------
68
69 A memory consistency model (or just memory model, for short) is
70 something which predicts, given a piece of computer code running on a
71 particular kind of system, what values may be obtained by the code's
72 load instructions.  The LKMM makes these predictions for code running
73 as part of the Linux kernel.
74
75 In practice, people tend to use memory models the other way around.
76 That is, given a piece of code and a collection of values specified
77 for the loads, the model will predict whether it is possible for the
78 code to run in such a way that the loads will indeed obtain the
79 specified values.  Of course, this is just another way of expressing
80 the same idea.
81
82 For code running on a uniprocessor system, the predictions are easy:
83 Each load instruction must obtain the value written by the most recent
84 store instruction accessing the same location (we ignore complicating
85 factors such as DMA and mixed-size accesses.)  But on multiprocessor
86 systems, with multiple CPUs making concurrent accesses to shared
87 memory locations, things aren't so simple.
88
89 Different architectures have differing memory models, and the Linux
90 kernel supports a variety of architectures.  The LKMM has to be fairly
91 permissive, in the sense that any behavior allowed by one of these
92 architectures also has to be allowed by the LKMM.
93
94
95 A SIMPLE EXAMPLE
96 ----------------
97
98 Here is a simple example to illustrate the basic concepts.  Consider
99 some code running as part of a device driver for an input device.  The
100 driver might contain an interrupt handler which collects data from the
101 device, stores it in a buffer, and sets a flag to indicate the buffer
102 is full.  Running concurrently on a different CPU might be a part of
103 the driver code being executed by a process in the midst of a read(2)
104 system call.  This code tests the flag to see whether the buffer is
105 ready, and if it is, copies the data back to userspace.  The buffer
106 and the flag are memory locations shared between the two CPUs.
107
108 We can abstract out the important pieces of the driver code as follows
109 (the reason for using WRITE_ONCE() and READ_ONCE() instead of simple
110 assignment statements is discussed later):
111
112         int buf = 0, flag = 0;
113
114         P0()
115         {
116                 WRITE_ONCE(buf, 1);
117                 WRITE_ONCE(flag, 1);
118         }
119
120         P1()
121         {
122                 int r1;
123                 int r2 = 0;
124
125                 r1 = READ_ONCE(flag);
126                 if (r1)
127                         r2 = READ_ONCE(buf);
128         }
129
130 Here the P0() function represents the interrupt handler running on one
131 CPU and P1() represents the read() routine running on another.  The
132 value 1 stored in buf represents input data collected from the device.
133 Thus, P0 stores the data in buf and then sets flag.  Meanwhile, P1
134 reads flag into the private variable r1, and if it is set, reads the
135 data from buf into a second private variable r2 for copying to
136 userspace.  (Presumably if flag is not set then the driver will wait a
137 while and try again.)
138
139 This pattern of memory accesses, where one CPU stores values to two
140 shared memory locations and another CPU loads from those locations in
141 the opposite order, is widely known as the "Message Passing" or MP
142 pattern.  It is typical of memory access patterns in the kernel.
143
144 Please note that this example code is a simplified abstraction.  Real
145 buffers are usually larger than a single integer, real device drivers
146 usually use sleep and wakeup mechanisms rather than polling for I/O
147 completion, and real code generally doesn't bother to copy values into
148 private variables before using them.  All that is beside the point;
149 the idea here is simply to illustrate the overall pattern of memory
150 accesses by the CPUs.
151
152 A memory model will predict what values P1 might obtain for its loads
153 from flag and buf, or equivalently, what values r1 and r2 might end up
154 with after the code has finished running.
155
156 Some predictions are trivial.  For instance, no sane memory model would
157 predict that r1 = 42 or r2 = -7, because neither of those values ever
158 gets stored in flag or buf.
159
160 Some nontrivial predictions are nonetheless quite simple.  For
161 instance, P1 might run entirely before P0 begins, in which case r1 and
162 r2 will both be 0 at the end.  Or P0 might run entirely before P1
163 begins, in which case r1 and r2 will both be 1.
164
165 The interesting predictions concern what might happen when the two
166 routines run concurrently.  One possibility is that P1 runs after P0's
167 store to buf but before the store to flag.  In this case, r1 and r2
168 will again both be 0.  (If P1 had been designed to read buf
169 unconditionally then we would instead have r1 = 0 and r2 = 1.)
170
171 However, the most interesting possibility is where r1 = 1 and r2 = 0.
172 If this were to occur it would mean the driver contains a bug, because
173 incorrect data would get sent to the user: 0 instead of 1.  As it
174 happens, the LKMM does predict this outcome can occur, and the example
175 driver code shown above is indeed buggy.
176
177
178 A SELECTION OF MEMORY MODELS
179 ----------------------------
180
181 The first widely cited memory model, and the simplest to understand,
182 is Sequential Consistency.  According to this model, systems behave as
183 if each CPU executed its instructions in order but with unspecified
184 timing.  In other words, the instructions from the various CPUs get
185 interleaved in a nondeterministic way, always according to some single
186 global order that agrees with the order of the instructions in the
187 program source for each CPU.  The model says that the value obtained
188 by each load is simply the value written by the most recently executed
189 store to the same memory location, from any CPU.
190
191 For the MP example code shown above, Sequential Consistency predicts
192 that the undesired result r1 = 1, r2 = 0 cannot occur.  The reasoning
193 goes like this:
194
195         Since r1 = 1, P0 must store 1 to flag before P1 loads 1 from
196         it, as loads can obtain values only from earlier stores.
197
198         P1 loads from flag before loading from buf, since CPUs execute
199         their instructions in order.
200
201         P1 must load 0 from buf before P0 stores 1 to it; otherwise r2
202         would be 1 since a load obtains its value from the most recent
203         store to the same address.
204
205         P0 stores 1 to buf before storing 1 to flag, since it executes
206         its instructions in order.
207
208         Since an instruction (in this case, P1's store to flag) cannot
209         execute before itself, the specified outcome is impossible.
210
211 However, real computer hardware almost never follows the Sequential
212 Consistency memory model; doing so would rule out too many valuable
213 performance optimizations.  On ARM and PowerPC architectures, for
214 instance, the MP example code really does sometimes yield r1 = 1 and
215 r2 = 0.
216
217 x86 and SPARC follow yet a different memory model: TSO (Total Store
218 Ordering).  This model predicts that the undesired outcome for the MP
219 pattern cannot occur, but in other respects it differs from Sequential
220 Consistency.  One example is the Store Buffer (SB) pattern, in which
221 each CPU stores to its own shared location and then loads from the
222 other CPU's location:
223
224         int x = 0, y = 0;
225
226         P0()
227         {
228                 int r0;
229
230                 WRITE_ONCE(x, 1);
231                 r0 = READ_ONCE(y);
232         }
233
234         P1()
235         {
236                 int r1;
237
238                 WRITE_ONCE(y, 1);
239                 r1 = READ_ONCE(x);
240         }
241
242 Sequential Consistency predicts that the outcome r0 = 0, r1 = 0 is
243 impossible.  (Exercise: Figure out the reasoning.)  But TSO allows
244 this outcome to occur, and in fact it does sometimes occur on x86 and
245 SPARC systems.
246
247 The LKMM was inspired by the memory models followed by PowerPC, ARM,
248 x86, Alpha, and other architectures.  However, it is different in
249 detail from each of them.
250
251
252 ORDERING AND CYCLES
253 -------------------
254
255 Memory models are all about ordering.  Often this is temporal ordering
256 (i.e., the order in which certain events occur) but it doesn't have to
257 be; consider for example the order of instructions in a program's
258 source code.  We saw above that Sequential Consistency makes an
259 important assumption that CPUs execute instructions in the same order
260 as those instructions occur in the code, and there are many other
261 instances of ordering playing central roles in memory models.
262
263 The counterpart to ordering is a cycle.  Ordering rules out cycles:
264 It's not possible to have X ordered before Y, Y ordered before Z, and
265 Z ordered before X, because this would mean that X is ordered before
266 itself.  The analysis of the MP example under Sequential Consistency
267 involved just such an impossible cycle:
268
269         W: P0 stores 1 to flag   executes before
270         X: P1 loads 1 from flag  executes before
271         Y: P1 loads 0 from buf   executes before
272         Z: P0 stores 1 to buf    executes before
273         W: P0 stores 1 to flag.
274
275 In short, if a memory model requires certain accesses to be ordered,
276 and a certain outcome for the loads in a piece of code can happen only
277 if those accesses would form a cycle, then the memory model predicts
278 that outcome cannot occur.
279
280 The LKMM is defined largely in terms of cycles, as we will see.
281
282
283 EVENTS
284 ------
285
286 The LKMM does not work directly with the C statements that make up
287 kernel source code.  Instead it considers the effects of those
288 statements in a more abstract form, namely, events.  The model
289 includes three types of events:
290
291         Read events correspond to loads from shared memory, such as
292         calls to READ_ONCE(), smp_load_acquire(), or
293         rcu_dereference().
294
295         Write events correspond to stores to shared memory, such as
296         calls to WRITE_ONCE(), smp_store_release(), or atomic_set().
297
298         Fence events correspond to memory barriers (also known as
299         fences), such as calls to smp_rmb() or rcu_read_lock().
300
301 These categories are not exclusive; a read or write event can also be
302 a fence.  This happens with functions like smp_load_acquire() or
303 spin_lock().  However, no single event can be both a read and a write.
304 Atomic read-modify-write accesses, such as atomic_inc() or xchg(),
305 correspond to a pair of events: a read followed by a write.  (The
306 write event is omitted for executions where it doesn't occur, such as
307 a cmpxchg() where the comparison fails.)
308
309 Other parts of the code, those which do not involve interaction with
310 shared memory, do not give rise to events.  Thus, arithmetic and
311 logical computations, control-flow instructions, or accesses to
312 private memory or CPU registers are not of central interest to the
313 memory model.  They only affect the model's predictions indirectly.
314 For example, an arithmetic computation might determine the value that
315 gets stored to a shared memory location (or in the case of an array
316 index, the address where the value gets stored), but the memory model
317 is concerned only with the store itself -- its value and its address
318 -- not the computation leading up to it.
319
320 Events in the LKMM can be linked by various relations, which we will
321 describe in the following sections.  The memory model requires certain
322 of these relations to be orderings, that is, it requires them not to
323 have any cycles.
324
325
326 THE PROGRAM ORDER RELATION: po AND po-loc
327 -----------------------------------------
328
329 The most important relation between events is program order (po).  You
330 can think of it as the order in which statements occur in the source
331 code after branches are taken into account and loops have been
332 unrolled.  A better description might be the order in which
333 instructions are presented to a CPU's execution unit.  Thus, we say
334 that X is po-before Y (written as "X ->po Y" in formulas) if X occurs
335 before Y in the instruction stream.
336
337 This is inherently a single-CPU relation; two instructions executing
338 on different CPUs are never linked by po.  Also, it is by definition
339 an ordering so it cannot have any cycles.
340
341 po-loc is a sub-relation of po.  It links two memory accesses when the
342 first comes before the second in program order and they access the
343 same memory location (the "-loc" suffix).
344
345 Although this may seem straightforward, there is one subtle aspect to
346 program order we need to explain.  The LKMM was inspired by low-level
347 architectural memory models which describe the behavior of machine
348 code, and it retains their outlook to a considerable extent.  The
349 read, write, and fence events used by the model are close in spirit to
350 individual machine instructions.  Nevertheless, the LKMM describes
351 kernel code written in C, and the mapping from C to machine code can
352 be extremely complex.
353
354 Optimizing compilers have great freedom in the way they translate
355 source code to object code.  They are allowed to apply transformations
356 that add memory accesses, eliminate accesses, combine them, split them
357 into pieces, or move them around.  Faced with all these possibilities,
358 the LKMM basically gives up.  It insists that the code it analyzes
359 must contain no ordinary accesses to shared memory; all accesses must
360 be performed using READ_ONCE(), WRITE_ONCE(), or one of the other
361 atomic or synchronization primitives.  These primitives prevent a
362 large number of compiler optimizations.  In particular, it is
363 guaranteed that the compiler will not remove such accesses from the
364 generated code (unless it can prove the accesses will never be
365 executed), it will not change the order in which they occur in the
366 code (within limits imposed by the C standard), and it will not
367 introduce extraneous accesses.
368
369 This explains why the MP and SB examples above used READ_ONCE() and
370 WRITE_ONCE() rather than ordinary memory accesses.  Thanks to this
371 usage, we can be certain that in the MP example, P0's write event to
372 buf really is po-before its write event to flag, and similarly for the
373 other shared memory accesses in the examples.
374
375 Private variables are not subject to this restriction.  Since they are
376 not shared between CPUs, they can be accessed normally without
377 READ_ONCE() or WRITE_ONCE(), and there will be no ill effects.  In
378 fact, they need not even be stored in normal memory at all -- in
379 principle a private variable could be stored in a CPU register (hence
380 the convention that these variables have names starting with the
381 letter 'r').
382
383
384 A WARNING
385 ---------
386
387 The protections provided by READ_ONCE(), WRITE_ONCE(), and others are
388 not perfect; and under some circumstances it is possible for the
389 compiler to undermine the memory model.  Here is an example.  Suppose
390 both branches of an "if" statement store the same value to the same
391 location:
392
393         r1 = READ_ONCE(x);
394         if (r1) {
395                 WRITE_ONCE(y, 2);
396                 ...  /* do something */
397         } else {
398                 WRITE_ONCE(y, 2);
399                 ...  /* do something else */
400         }
401
402 For this code, the LKMM predicts that the load from x will always be
403 executed before either of the stores to y.  However, a compiler could
404 lift the stores out of the conditional, transforming the code into
405 something resembling:
406
407         r1 = READ_ONCE(x);
408         WRITE_ONCE(y, 2);
409         if (r1) {
410                 ...  /* do something */
411         } else {
412                 ...  /* do something else */
413         }
414
415 Given this version of the code, the LKMM would predict that the load
416 from x could be executed after the store to y.  Thus, the memory
417 model's original prediction could be invalidated by the compiler.
418
419 Another issue arises from the fact that in C, arguments to many
420 operators and function calls can be evaluated in any order.  For
421 example:
422
423         r1 = f(5) + g(6);
424
425 The object code might call f(5) either before or after g(6); the
426 memory model cannot assume there is a fixed program order relation
427 between them.  (In fact, if the functions are inlined then the
428 compiler might even interleave their object code.)
429
430
431 DEPENDENCY RELATIONS: data, addr, and ctrl
432 ------------------------------------------
433
434 We say that two events are linked by a dependency relation when the
435 execution of the second event depends in some way on a value obtained
436 from memory by the first.  The first event must be a read, and the
437 value it obtains must somehow affect what the second event does.
438 There are three kinds of dependencies: data, address (addr), and
439 control (ctrl).
440
441 A read and a write event are linked by a data dependency if the value
442 obtained by the read affects the value stored by the write.  As a very
443 simple example:
444
445         int x, y;
446
447         r1 = READ_ONCE(x);
448         WRITE_ONCE(y, r1 + 5);
449
450 The value stored by the WRITE_ONCE obviously depends on the value
451 loaded by the READ_ONCE.  Such dependencies can wind through
452 arbitrarily complicated computations, and a write can depend on the
453 values of multiple reads.
454
455 A read event and another memory access event are linked by an address
456 dependency if the value obtained by the read affects the location
457 accessed by the other event.  The second event can be either a read or
458 a write.  Here's another simple example:
459
460         int a[20];
461         int i;
462
463         r1 = READ_ONCE(i);
464         r2 = READ_ONCE(a[r1]);
465
466 Here the location accessed by the second READ_ONCE() depends on the
467 index value loaded by the first.  Pointer indirection also gives rise
468 to address dependencies, since the address of a location accessed
469 through a pointer will depend on the value read earlier from that
470 pointer.
471
472 Finally, a read event and another memory access event are linked by a
473 control dependency if the value obtained by the read affects whether
474 the second event is executed at all.  Simple example:
475
476         int x, y;
477
478         r1 = READ_ONCE(x);
479         if (r1)
480                 WRITE_ONCE(y, 1984);
481
482 Execution of the WRITE_ONCE() is controlled by a conditional expression
483 which depends on the value obtained by the READ_ONCE(); hence there is
484 a control dependency from the load to the store.
485
486 It should be pretty obvious that events can only depend on reads that
487 come earlier in program order.  Symbolically, if we have R ->data X,
488 R ->addr X, or R ->ctrl X (where R is a read event), then we must also
489 have R ->po X.  It wouldn't make sense for a computation to depend
490 somehow on a value that doesn't get loaded from shared memory until
491 later in the code!
492
493
494 THE READS-FROM RELATION: rf, rfi, and rfe
495 -----------------------------------------
496
497 The reads-from relation (rf) links a write event to a read event when
498 the value loaded by the read is the value that was stored by the
499 write.  In colloquial terms, the load "reads from" the store.  We
500 write W ->rf R to indicate that the load R reads from the store W.  We
501 further distinguish the cases where the load and the store occur on
502 the same CPU (internal reads-from, or rfi) and where they occur on
503 different CPUs (external reads-from, or rfe).
504
505 For our purposes, a memory location's initial value is treated as
506 though it had been written there by an imaginary initial store that
507 executes on a separate CPU before the program runs.
508
509 Usage of the rf relation implicitly assumes that loads will always
510 read from a single store.  It doesn't apply properly in the presence
511 of load-tearing, where a load obtains some of its bits from one store
512 and some of them from another store.  Fortunately, use of READ_ONCE()
513 and WRITE_ONCE() will prevent load-tearing; it's not possible to have:
514
515         int x = 0;
516
517         P0()
518         {
519                 WRITE_ONCE(x, 0x1234);
520         }
521
522         P1()
523         {
524                 int r1;
525
526                 r1 = READ_ONCE(x);
527         }
528
529 and end up with r1 = 0x1200 (partly from x's initial value and partly
530 from the value stored by P0).
531
532 On the other hand, load-tearing is unavoidable when mixed-size
533 accesses are used.  Consider this example:
534
535         union {
536                 u32     w;
537                 u16     h[2];
538         } x;
539
540         P0()
541         {
542                 WRITE_ONCE(x.h[0], 0x1234);
543                 WRITE_ONCE(x.h[1], 0x5678);
544         }
545
546         P1()
547         {
548                 int r1;
549
550                 r1 = READ_ONCE(x.w);
551         }
552
553 If r1 = 0x56781234 (little-endian!) at the end, then P1 must have read
554 from both of P0's stores.  It is possible to handle mixed-size and
555 unaligned accesses in a memory model, but the LKMM currently does not
556 attempt to do so.  It requires all accesses to be properly aligned and
557 of the location's actual size.
558
559
560 CACHE COHERENCE AND THE COHERENCE ORDER RELATION: co, coi, and coe
561 ------------------------------------------------------------------
562
563 Cache coherence is a general principle requiring that in a
564 multi-processor system, the CPUs must share a consistent view of the
565 memory contents.  Specifically, it requires that for each location in
566 shared memory, the stores to that location must form a single global
567 ordering which all the CPUs agree on (the coherence order), and this
568 ordering must be consistent with the program order for accesses to
569 that location.
570
571 To put it another way, for any variable x, the coherence order (co) of
572 the stores to x is simply the order in which the stores overwrite one
573 another.  The imaginary store which establishes x's initial value
574 comes first in the coherence order; the store which directly
575 overwrites the initial value comes second; the store which overwrites
576 that value comes third, and so on.
577
578 You can think of the coherence order as being the order in which the
579 stores reach x's location in memory (or if you prefer a more
580 hardware-centric view, the order in which the stores get written to
581 x's cache line).  We write W ->co W' if W comes before W' in the
582 coherence order, that is, if the value stored by W gets overwritten,
583 directly or indirectly, by the value stored by W'.
584
585 Coherence order is required to be consistent with program order.  This
586 requirement takes the form of four coherency rules:
587
588         Write-write coherence: If W ->po-loc W' (i.e., W comes before
589         W' in program order and they access the same location), where W
590         and W' are two stores, then W ->co W'.
591
592         Write-read coherence: If W ->po-loc R, where W is a store and R
593         is a load, then R must read from W or from some other store
594         which comes after W in the coherence order.
595
596         Read-write coherence: If R ->po-loc W, where R is a load and W
597         is a store, then the store which R reads from must come before
598         W in the coherence order.
599
600         Read-read coherence: If R ->po-loc R', where R and R' are two
601         loads, then either they read from the same store or else the
602         store read by R comes before the store read by R' in the
603         coherence order.
604
605 This is sometimes referred to as sequential consistency per variable,
606 because it means that the accesses to any single memory location obey
607 the rules of the Sequential Consistency memory model.  (According to
608 Wikipedia, sequential consistency per variable and cache coherence
609 mean the same thing except that cache coherence includes an extra
610 requirement that every store eventually becomes visible to every CPU.)
611
612 Any reasonable memory model will include cache coherence.  Indeed, our
613 expectation of cache coherence is so deeply ingrained that violations
614 of its requirements look more like hardware bugs than programming
615 errors:
616
617         int x;
618
619         P0()
620         {
621                 WRITE_ONCE(x, 17);
622                 WRITE_ONCE(x, 23);
623         }
624
625 If the final value stored in x after this code ran was 17, you would
626 think your computer was broken.  It would be a violation of the
627 write-write coherence rule: Since the store of 23 comes later in
628 program order, it must also come later in x's coherence order and
629 thus must overwrite the store of 17.
630
631         int x = 0;
632
633         P0()
634         {
635                 int r1;
636
637                 r1 = READ_ONCE(x);
638                 WRITE_ONCE(x, 666);
639         }
640
641 If r1 = 666 at the end, this would violate the read-write coherence
642 rule: The READ_ONCE() load comes before the WRITE_ONCE() store in
643 program order, so it must not read from that store but rather from one
644 coming earlier in the coherence order (in this case, x's initial
645 value).
646
647         int x = 0;
648
649         P0()
650         {
651                 WRITE_ONCE(x, 5);
652         }
653
654         P1()
655         {
656                 int r1, r2;
657
658                 r1 = READ_ONCE(x);
659                 r2 = READ_ONCE(x);
660         }
661
662 If r1 = 5 (reading from P0's store) and r2 = 0 (reading from the
663 imaginary store which establishes x's initial value) at the end, this
664 would violate the read-read coherence rule: The r1 load comes before
665 the r2 load in program order, so it must not read from a store that
666 comes later in the coherence order.
667
668 (As a minor curiosity, if this code had used normal loads instead of
669 READ_ONCE() in P1, on Itanium it sometimes could end up with r1 = 5
670 and r2 = 0!  This results from parallel execution of the operations
671 encoded in Itanium's Very-Long-Instruction-Word format, and it is yet
672 another motivation for using READ_ONCE() when accessing shared memory
673 locations.)
674
675 Just like the po relation, co is inherently an ordering -- it is not
676 possible for a store to directly or indirectly overwrite itself!  And
677 just like with the rf relation, we distinguish between stores that
678 occur on the same CPU (internal coherence order, or coi) and stores
679 that occur on different CPUs (external coherence order, or coe).
680
681 On the other hand, stores to different memory locations are never
682 related by co, just as instructions on different CPUs are never
683 related by po.  Coherence order is strictly per-location, or if you
684 prefer, each location has its own independent coherence order.
685
686
687 THE FROM-READS RELATION: fr, fri, and fre
688 -----------------------------------------
689
690 The from-reads relation (fr) can be a little difficult for people to
691 grok.  It describes the situation where a load reads a value that gets
692 overwritten by a store.  In other words, we have R ->fr W when the
693 value that R reads is overwritten (directly or indirectly) by W, or
694 equivalently, when R reads from a store which comes earlier than W in
695 the coherence order.
696
697 For example:
698
699         int x = 0;
700
701         P0()
702         {
703                 int r1;
704
705                 r1 = READ_ONCE(x);
706                 WRITE_ONCE(x, 2);
707         }
708
709 The value loaded from x will be 0 (assuming cache coherence!), and it
710 gets overwritten by the value 2.  Thus there is an fr link from the
711 READ_ONCE() to the WRITE_ONCE().  If the code contained any later
712 stores to x, there would also be fr links from the READ_ONCE() to
713 them.
714
715 As with rf, rfi, and rfe, we subdivide the fr relation into fri (when
716 the load and the store are on the same CPU) and fre (when they are on
717 different CPUs).
718
719 Note that the fr relation is determined entirely by the rf and co
720 relations; it is not independent.  Given a read event R and a write
721 event W for the same location, we will have R ->fr W if and only if
722 the write which R reads from is co-before W.  In symbols,
723
724         (R ->fr W) := (there exists W' with W' ->rf R and W' ->co W).
725
726
727 AN OPERATIONAL MODEL
728 --------------------
729
730 The LKMM is based on various operational memory models, meaning that
731 the models arise from an abstract view of how a computer system
732 operates.  Here are the main ideas, as incorporated into the LKMM.
733
734 The system as a whole is divided into the CPUs and a memory subsystem.
735 The CPUs are responsible for executing instructions (not necessarily
736 in program order), and they communicate with the memory subsystem.
737 For the most part, executing an instruction requires a CPU to perform
738 only internal operations.  However, loads, stores, and fences involve
739 more.
740
741 When CPU C executes a store instruction, it tells the memory subsystem
742 to store a certain value at a certain location.  The memory subsystem
743 propagates the store to all the other CPUs as well as to RAM.  (As a
744 special case, we say that the store propagates to its own CPU at the
745 time it is executed.)  The memory subsystem also determines where the
746 store falls in the location's coherence order.  In particular, it must
747 arrange for the store to be co-later than (i.e., to overwrite) any
748 other store to the same location which has already propagated to CPU C.
749
750 When a CPU executes a load instruction R, it first checks to see
751 whether there are any as-yet unexecuted store instructions, for the
752 same location, that come before R in program order.  If there are, it
753 uses the value of the po-latest such store as the value obtained by R,
754 and we say that the store's value is forwarded to R.  Otherwise, the
755 CPU asks the memory subsystem for the value to load and we say that R
756 is satisfied from memory.  The memory subsystem hands back the value
757 of the co-latest store to the location in question which has already
758 propagated to that CPU.
759
760 (In fact, the picture needs to be a little more complicated than this.
761 CPUs have local caches, and propagating a store to a CPU really means
762 propagating it to the CPU's local cache.  A local cache can take some
763 time to process the stores that it receives, and a store can't be used
764 to satisfy one of the CPU's loads until it has been processed.  On
765 most architectures, the local caches process stores in
766 First-In-First-Out order, and consequently the processing delay
767 doesn't matter for the memory model.  But on Alpha, the local caches
768 have a partitioned design that results in non-FIFO behavior.  We will
769 discuss this in more detail later.)
770
771 Note that load instructions may be executed speculatively and may be
772 restarted under certain circumstances.  The memory model ignores these
773 premature executions; we simply say that the load executes at the
774 final time it is forwarded or satisfied.
775
776 Executing a fence (or memory barrier) instruction doesn't require a
777 CPU to do anything special other than informing the memory subsystem
778 about the fence.  However, fences do constrain the way CPUs and the
779 memory subsystem handle other instructions, in two respects.
780
781 First, a fence forces the CPU to execute various instructions in
782 program order.  Exactly which instructions are ordered depends on the
783 type of fence:
784
785         Strong fences, including smp_mb() and synchronize_rcu(), force
786         the CPU to execute all po-earlier instructions before any
787         po-later instructions;
788
789         smp_rmb() forces the CPU to execute all po-earlier loads
790         before any po-later loads;
791
792         smp_wmb() forces the CPU to execute all po-earlier stores
793         before any po-later stores;
794
795         Acquire fences, such as smp_load_acquire(), force the CPU to
796         execute the load associated with the fence (e.g., the load
797         part of an smp_load_acquire()) before any po-later
798         instructions;
799
800         Release fences, such as smp_store_release(), force the CPU to
801         execute all po-earlier instructions before the store
802         associated with the fence (e.g., the store part of an
803         smp_store_release()).
804
805 Second, some types of fence affect the way the memory subsystem
806 propagates stores.  When a fence instruction is executed on CPU C:
807
808         For each other CPU C', smp_wmb() forces all po-earlier stores
809         on C to propagate to C' before any po-later stores do.
810
811         For each other CPU C', any store which propagates to C before
812         a release fence is executed (including all po-earlier
813         stores executed on C) is forced to propagate to C' before the
814         store associated with the release fence does.
815
816         Any store which propagates to C before a strong fence is
817         executed (including all po-earlier stores on C) is forced to
818         propagate to all other CPUs before any instructions po-after
819         the strong fence are executed on C.
820
821 The propagation ordering enforced by release fences and strong fences
822 affects stores from other CPUs that propagate to CPU C before the
823 fence is executed, as well as stores that are executed on C before the
824 fence.  We describe this property by saying that release fences and
825 strong fences are A-cumulative.  By contrast, smp_wmb() fences are not
826 A-cumulative; they only affect the propagation of stores that are
827 executed on C before the fence (i.e., those which precede the fence in
828 program order).
829
830 rcu_read_lock(), rcu_read_unlock(), and synchronize_rcu() fences have
831 other properties which we discuss later.
832
833
834 PROPAGATION ORDER RELATION: cumul-fence
835 ---------------------------------------
836
837 The fences which affect propagation order (i.e., strong, release, and
838 smp_wmb() fences) are collectively referred to as cumul-fences, even
839 though smp_wmb() isn't A-cumulative.  The cumul-fence relation is
840 defined to link memory access events E and F whenever:
841
842         E and F are both stores on the same CPU and an smp_wmb() fence
843         event occurs between them in program order; or
844
845         F is a release fence and some X comes before F in program order,
846         where either X = E or else E ->rf X; or
847
848         A strong fence event occurs between some X and F in program
849         order, where either X = E or else E ->rf X.
850
851 The operational model requires that whenever W and W' are both stores
852 and W ->cumul-fence W', then W must propagate to any given CPU
853 before W' does.  However, for different CPUs C and C', it does not
854 require W to propagate to C before W' propagates to C'.
855
856
857 DERIVATION OF THE LKMM FROM THE OPERATIONAL MODEL
858 -------------------------------------------------
859
860 The LKMM is derived from the restrictions imposed by the design
861 outlined above.  These restrictions involve the necessity of
862 maintaining cache coherence and the fact that a CPU can't operate on a
863 value before it knows what that value is, among other things.
864
865 The formal version of the LKMM is defined by five requirements, or
866 axioms:
867
868         Sequential consistency per variable: This requires that the
869         system obey the four coherency rules.
870
871         Atomicity: This requires that atomic read-modify-write
872         operations really are atomic, that is, no other stores can
873         sneak into the middle of such an update.
874
875         Happens-before: This requires that certain instructions are
876         executed in a specific order.
877
878         Propagation: This requires that certain stores propagate to
879         CPUs and to RAM in a specific order.
880
881         Rcu: This requires that RCU read-side critical sections and
882         grace periods obey the rules of RCU, in particular, the
883         Grace-Period Guarantee.
884
885 The first and second are quite common; they can be found in many
886 memory models (such as those for C11/C++11).  The "happens-before" and
887 "propagation" axioms have analogs in other memory models as well.  The
888 "rcu" axiom is specific to the LKMM.
889
890 Each of these axioms is discussed below.
891
892
893 SEQUENTIAL CONSISTENCY PER VARIABLE
894 -----------------------------------
895
896 According to the principle of cache coherence, the stores to any fixed
897 shared location in memory form a global ordering.  We can imagine
898 inserting the loads from that location into this ordering, by placing
899 each load between the store that it reads from and the following
900 store.  This leaves the relative positions of loads that read from the
901 same store unspecified; let's say they are inserted in program order,
902 first for CPU 0, then CPU 1, etc.
903
904 You can check that the four coherency rules imply that the rf, co, fr,
905 and po-loc relations agree with this global ordering; in other words,
906 whenever we have X ->rf Y or X ->co Y or X ->fr Y or X ->po-loc Y, the
907 X event comes before the Y event in the global ordering.  The LKMM's
908 "coherence" axiom expresses this by requiring the union of these
909 relations not to have any cycles.  This means it must not be possible
910 to find events
911
912         X0 -> X1 -> X2 -> ... -> Xn -> X0,
913
914 where each of the links is either rf, co, fr, or po-loc.  This has to
915 hold if the accesses to the fixed memory location can be ordered as
916 cache coherence demands.
917
918 Although it is not obvious, it can be shown that the converse is also
919 true: This LKMM axiom implies that the four coherency rules are
920 obeyed.
921
922
923 ATOMIC UPDATES: rmw
924 -------------------
925
926 What does it mean to say that a read-modify-write (rmw) update, such
927 as atomic_inc(&x), is atomic?  It means that the memory location (x in
928 this case) does not get altered between the read and the write events
929 making up the atomic operation.  In particular, if two CPUs perform
930 atomic_inc(&x) concurrently, it must be guaranteed that the final
931 value of x will be the initial value plus two.  We should never have
932 the following sequence of events:
933
934         CPU 0 loads x obtaining 13;
935                                         CPU 1 loads x obtaining 13;
936         CPU 0 stores 14 to x;
937                                         CPU 1 stores 14 to x;
938
939 where the final value of x is wrong (14 rather than 15).
940
941 In this example, CPU 0's increment effectively gets lost because it
942 occurs in between CPU 1's load and store.  To put it another way, the
943 problem is that the position of CPU 0's store in x's coherence order
944 is between the store that CPU 1 reads from and the store that CPU 1
945 performs.
946
947 The same analysis applies to all atomic update operations.  Therefore,
948 to enforce atomicity the LKMM requires that atomic updates follow this
949 rule: Whenever R and W are the read and write events composing an
950 atomic read-modify-write and W' is the write event which R reads from,
951 there must not be any stores coming between W' and W in the coherence
952 order.  Equivalently,
953
954         (R ->rmw W) implies (there is no X with R ->fr X and X ->co W),
955
956 where the rmw relation links the read and write events making up each
957 atomic update.  This is what the LKMM's "atomic" axiom says.
958
959
960 THE PRESERVED PROGRAM ORDER RELATION: ppo
961 -----------------------------------------
962
963 There are many situations where a CPU is obligated to execute two
964 instructions in program order.  We amalgamate them into the ppo (for
965 "preserved program order") relation, which links the po-earlier
966 instruction to the po-later instruction and is thus a sub-relation of
967 po.
968
969 The operational model already includes a description of one such
970 situation: Fences are a source of ppo links.  Suppose X and Y are
971 memory accesses with X ->po Y; then the CPU must execute X before Y if
972 any of the following hold:
973
974         A strong (smp_mb() or synchronize_rcu()) fence occurs between
975         X and Y;
976
977         X and Y are both stores and an smp_wmb() fence occurs between
978         them;
979
980         X and Y are both loads and an smp_rmb() fence occurs between
981         them;
982
983         X is also an acquire fence, such as smp_load_acquire();
984
985         Y is also a release fence, such as smp_store_release().
986
987 Another possibility, not mentioned earlier but discussed in the next
988 section, is:
989
990         X and Y are both loads, X ->addr Y (i.e., there is an address
991         dependency from X to Y), and X is a READ_ONCE() or an atomic
992         access.
993
994 Dependencies can also cause instructions to be executed in program
995 order.  This is uncontroversial when the second instruction is a
996 store; either a data, address, or control dependency from a load R to
997 a store W will force the CPU to execute R before W.  This is very
998 simply because the CPU cannot tell the memory subsystem about W's
999 store before it knows what value should be stored (in the case of a
1000 data dependency), what location it should be stored into (in the case
1001 of an address dependency), or whether the store should actually take
1002 place (in the case of a control dependency).
1003
1004 Dependencies to load instructions are more problematic.  To begin with,
1005 there is no such thing as a data dependency to a load.  Next, a CPU
1006 has no reason to respect a control dependency to a load, because it
1007 can always satisfy the second load speculatively before the first, and
1008 then ignore the result if it turns out that the second load shouldn't
1009 be executed after all.  And lastly, the real difficulties begin when
1010 we consider address dependencies to loads.
1011
1012 To be fair about it, all Linux-supported architectures do execute
1013 loads in program order if there is an address dependency between them.
1014 After all, a CPU cannot ask the memory subsystem to load a value from
1015 a particular location before it knows what that location is.  However,
1016 the split-cache design used by Alpha can cause it to behave in a way
1017 that looks as if the loads were executed out of order (see the next
1018 section for more details).  The kernel includes a workaround for this
1019 problem when the loads come from READ_ONCE(), and therefore the LKMM
1020 includes address dependencies to loads in the ppo relation.
1021
1022 On the other hand, dependencies can indirectly affect the ordering of
1023 two loads.  This happens when there is a dependency from a load to a
1024 store and a second, po-later load reads from that store:
1025
1026         R ->dep W ->rfi R',
1027
1028 where the dep link can be either an address or a data dependency.  In
1029 this situation we know it is possible for the CPU to execute R' before
1030 W, because it can forward the value that W will store to R'.  But it
1031 cannot execute R' before R, because it cannot forward the value before
1032 it knows what that value is, or that W and R' do access the same
1033 location.  However, if there is merely a control dependency between R
1034 and W then the CPU can speculatively forward W to R' before executing
1035 R; if the speculation turns out to be wrong then the CPU merely has to
1036 restart or abandon R'.
1037
1038 (In theory, a CPU might forward a store to a load when it runs across
1039 an address dependency like this:
1040
1041         r1 = READ_ONCE(ptr);
1042         WRITE_ONCE(*r1, 17);
1043         r2 = READ_ONCE(*r1);
1044
1045 because it could tell that the store and the second load access the
1046 same location even before it knows what the location's address is.
1047 However, none of the architectures supported by the Linux kernel do
1048 this.)
1049
1050 Two memory accesses of the same location must always be executed in
1051 program order if the second access is a store.  Thus, if we have
1052
1053         R ->po-loc W
1054
1055 (the po-loc link says that R comes before W in program order and they
1056 access the same location), the CPU is obliged to execute W after R.
1057 If it executed W first then the memory subsystem would respond to R's
1058 read request with the value stored by W (or an even later store), in
1059 violation of the read-write coherence rule.  Similarly, if we had
1060
1061         W ->po-loc W'
1062
1063 and the CPU executed W' before W, then the memory subsystem would put
1064 W' before W in the coherence order.  It would effectively cause W to
1065 overwrite W', in violation of the write-write coherence rule.
1066 (Interestingly, an early ARMv8 memory model, now obsolete, proposed
1067 allowing out-of-order writes like this to occur.  The model avoided
1068 violating the write-write coherence rule by requiring the CPU not to
1069 send the W write to the memory subsystem at all!)
1070
1071
1072 AND THEN THERE WAS ALPHA
1073 ------------------------
1074
1075 As mentioned above, the Alpha architecture is unique in that it does
1076 not appear to respect address dependencies to loads.  This means that
1077 code such as the following:
1078
1079         int x = 0;
1080         int y = -1;
1081         int *ptr = &y;
1082
1083         P0()
1084         {
1085                 WRITE_ONCE(x, 1);
1086                 smp_wmb();
1087                 WRITE_ONCE(ptr, &x);
1088         }
1089
1090         P1()
1091         {
1092                 int *r1;
1093                 int r2;
1094
1095                 r1 = ptr;
1096                 r2 = READ_ONCE(*r1);
1097         }
1098
1099 can malfunction on Alpha systems (notice that P1 uses an ordinary load
1100 to read ptr instead of READ_ONCE()).  It is quite possible that r1 = &x
1101 and r2 = 0 at the end, in spite of the address dependency.
1102
1103 At first glance this doesn't seem to make sense.  We know that the
1104 smp_wmb() forces P0's store to x to propagate to P1 before the store
1105 to ptr does.  And since P1 can't execute its second load
1106 until it knows what location to load from, i.e., after executing its
1107 first load, the value x = 1 must have propagated to P1 before the
1108 second load executed.  So why doesn't r2 end up equal to 1?
1109
1110 The answer lies in the Alpha's split local caches.  Although the two
1111 stores do reach P1's local cache in the proper order, it can happen
1112 that the first store is processed by a busy part of the cache while
1113 the second store is processed by an idle part.  As a result, the x = 1
1114 value may not become available for P1's CPU to read until after the
1115 ptr = &x value does, leading to the undesirable result above.  The
1116 final effect is that even though the two loads really are executed in
1117 program order, it appears that they aren't.
1118
1119 This could not have happened if the local cache had processed the
1120 incoming stores in FIFO order.  By contrast, other architectures
1121 maintain at least the appearance of FIFO order.
1122
1123 In practice, this difficulty is solved by inserting a special fence
1124 between P1's two loads when the kernel is compiled for the Alpha
1125 architecture.  In fact, as of version 4.15, the kernel automatically
1126 adds this fence (called smp_read_barrier_depends() and defined as
1127 nothing at all on non-Alpha builds) after every READ_ONCE() and atomic
1128 load.  The effect of the fence is to cause the CPU not to execute any
1129 po-later instructions until after the local cache has finished
1130 processing all the stores it has already received.  Thus, if the code
1131 was changed to:
1132
1133         P1()
1134         {
1135                 int *r1;
1136                 int r2;
1137
1138                 r1 = READ_ONCE(ptr);
1139                 r2 = READ_ONCE(*r1);
1140         }
1141
1142 then we would never get r1 = &x and r2 = 0.  By the time P1 executed
1143 its second load, the x = 1 store would already be fully processed by
1144 the local cache and available for satisfying the read request.  Thus
1145 we have yet another reason why shared data should always be read with
1146 READ_ONCE() or another synchronization primitive rather than accessed
1147 directly.
1148
1149 The LKMM requires that smp_rmb(), acquire fences, and strong fences
1150 share this property with smp_read_barrier_depends(): They do not allow
1151 the CPU to execute any po-later instructions (or po-later loads in the
1152 case of smp_rmb()) until all outstanding stores have been processed by
1153 the local cache.  In the case of a strong fence, the CPU first has to
1154 wait for all of its po-earlier stores to propagate to every other CPU
1155 in the system; then it has to wait for the local cache to process all
1156 the stores received as of that time -- not just the stores received
1157 when the strong fence began.
1158
1159 And of course, none of this matters for any architecture other than
1160 Alpha.
1161
1162
1163 THE HAPPENS-BEFORE RELATION: hb
1164 -------------------------------
1165
1166 The happens-before relation (hb) links memory accesses that have to
1167 execute in a certain order.  hb includes the ppo relation and two
1168 others, one of which is rfe.
1169
1170 W ->rfe R implies that W and R are on different CPUs.  It also means
1171 that W's store must have propagated to R's CPU before R executed;
1172 otherwise R could not have read the value stored by W.  Therefore W
1173 must have executed before R, and so we have W ->hb R.
1174
1175 The equivalent fact need not hold if W ->rfi R (i.e., W and R are on
1176 the same CPU).  As we have already seen, the operational model allows
1177 W's value to be forwarded to R in such cases, meaning that R may well
1178 execute before W does.
1179
1180 It's important to understand that neither coe nor fre is included in
1181 hb, despite their similarities to rfe.  For example, suppose we have
1182 W ->coe W'.  This means that W and W' are stores to the same location,
1183 they execute on different CPUs, and W comes before W' in the coherence
1184 order (i.e., W' overwrites W).  Nevertheless, it is possible for W' to
1185 execute before W, because the decision as to which store overwrites
1186 the other is made later by the memory subsystem.  When the stores are
1187 nearly simultaneous, either one can come out on top.  Similarly,
1188 R ->fre W means that W overwrites the value which R reads, but it
1189 doesn't mean that W has to execute after R.  All that's necessary is
1190 for the memory subsystem not to propagate W to R's CPU until after R
1191 has executed, which is possible if W executes shortly before R.
1192
1193 The third relation included in hb is like ppo, in that it only links
1194 events that are on the same CPU.  However it is more difficult to
1195 explain, because it arises only indirectly from the requirement of
1196 cache coherence.  The relation is called prop, and it links two events
1197 on CPU C in situations where a store from some other CPU comes after
1198 the first event in the coherence order and propagates to C before the
1199 second event executes.
1200
1201 This is best explained with some examples.  The simplest case looks
1202 like this:
1203
1204         int x;
1205
1206         P0()
1207         {
1208                 int r1;
1209
1210                 WRITE_ONCE(x, 1);
1211                 r1 = READ_ONCE(x);
1212         }
1213
1214         P1()
1215         {
1216                 WRITE_ONCE(x, 8);
1217         }
1218
1219 If r1 = 8 at the end then P0's accesses must have executed in program
1220 order.  We can deduce this from the operational model; if P0's load
1221 had executed before its store then the value of the store would have
1222 been forwarded to the load, so r1 would have ended up equal to 1, not
1223 8.  In this case there is a prop link from P0's write event to its read
1224 event, because P1's store came after P0's store in x's coherence
1225 order, and P1's store propagated to P0 before P0's load executed.
1226
1227 An equally simple case involves two loads of the same location that
1228 read from different stores:
1229
1230         int x = 0;
1231
1232         P0()
1233         {
1234                 int r1, r2;
1235
1236                 r1 = READ_ONCE(x);
1237                 r2 = READ_ONCE(x);
1238         }
1239
1240         P1()
1241         {
1242                 WRITE_ONCE(x, 9);
1243         }
1244
1245 If r1 = 0 and r2 = 9 at the end then P0's accesses must have executed
1246 in program order.  If the second load had executed before the first
1247 then the x = 9 store must have been propagated to P0 before the first
1248 load executed, and so r1 would have been 9 rather than 0.  In this
1249 case there is a prop link from P0's first read event to its second,
1250 because P1's store overwrote the value read by P0's first load, and
1251 P1's store propagated to P0 before P0's second load executed.
1252
1253 Less trivial examples of prop all involve fences.  Unlike the simple
1254 examples above, they can require that some instructions are executed
1255 out of program order.  This next one should look familiar:
1256
1257         int buf = 0, flag = 0;
1258
1259         P0()
1260         {
1261                 WRITE_ONCE(buf, 1);
1262                 smp_wmb();
1263                 WRITE_ONCE(flag, 1);
1264         }
1265
1266         P1()
1267         {
1268                 int r1;
1269                 int r2;
1270
1271                 r1 = READ_ONCE(flag);
1272                 r2 = READ_ONCE(buf);
1273         }
1274
1275 This is the MP pattern again, with an smp_wmb() fence between the two
1276 stores.  If r1 = 1 and r2 = 0 at the end then there is a prop link
1277 from P1's second load to its first (backwards!).  The reason is
1278 similar to the previous examples: The value P1 loads from buf gets
1279 overwritten by P0's store to buf, the fence guarantees that the store
1280 to buf will propagate to P1 before the store to flag does, and the
1281 store to flag propagates to P1 before P1 reads flag.
1282
1283 The prop link says that in order to obtain the r1 = 1, r2 = 0 result,
1284 P1 must execute its second load before the first.  Indeed, if the load
1285 from flag were executed first, then the buf = 1 store would already
1286 have propagated to P1 by the time P1's load from buf executed, so r2
1287 would have been 1 at the end, not 0.  (The reasoning holds even for
1288 Alpha, although the details are more complicated and we will not go
1289 into them.)
1290
1291 But what if we put an smp_rmb() fence between P1's loads?  The fence
1292 would force the two loads to be executed in program order, and it
1293 would generate a cycle in the hb relation: The fence would create a ppo
1294 link (hence an hb link) from the first load to the second, and the
1295 prop relation would give an hb link from the second load to the first.
1296 Since an instruction can't execute before itself, we are forced to
1297 conclude that if an smp_rmb() fence is added, the r1 = 1, r2 = 0
1298 outcome is impossible -- as it should be.
1299
1300 The formal definition of the prop relation involves a coe or fre link,
1301 followed by an arbitrary number of cumul-fence links, ending with an
1302 rfe link.  You can concoct more exotic examples, containing more than
1303 one fence, although this quickly leads to diminishing returns in terms
1304 of complexity.  For instance, here's an example containing a coe link
1305 followed by two fences and an rfe link, utilizing the fact that
1306 release fences are A-cumulative:
1307
1308         int x, y, z;
1309
1310         P0()
1311         {
1312                 int r0;
1313
1314                 WRITE_ONCE(x, 1);
1315                 r0 = READ_ONCE(z);
1316         }
1317
1318         P1()
1319         {
1320                 WRITE_ONCE(x, 2);
1321                 smp_wmb();
1322                 WRITE_ONCE(y, 1);
1323         }
1324
1325         P2()
1326         {
1327                 int r2;
1328
1329                 r2 = READ_ONCE(y);
1330                 smp_store_release(&z, 1);
1331         }
1332
1333 If x = 2, r0 = 1, and r2 = 1 after this code runs then there is a prop
1334 link from P0's store to its load.  This is because P0's store gets
1335 overwritten by P1's store since x = 2 at the end (a coe link), the
1336 smp_wmb() ensures that P1's store to x propagates to P2 before the
1337 store to y does (the first fence), the store to y propagates to P2
1338 before P2's load and store execute, P2's smp_store_release()
1339 guarantees that the stores to x and y both propagate to P0 before the
1340 store to z does (the second fence), and P0's load executes after the
1341 store to z has propagated to P0 (an rfe link).
1342
1343 In summary, the fact that the hb relation links memory access events
1344 in the order they execute means that it must not have cycles.  This
1345 requirement is the content of the LKMM's "happens-before" axiom.
1346
1347 The LKMM defines yet another relation connected to times of
1348 instruction execution, but it is not included in hb.  It relies on the
1349 particular properties of strong fences, which we cover in the next
1350 section.
1351
1352
1353 THE PROPAGATES-BEFORE RELATION: pb
1354 ----------------------------------
1355
1356 The propagates-before (pb) relation capitalizes on the special
1357 features of strong fences.  It links two events E and F whenever some
1358 store is coherence-later than E and propagates to every CPU and to RAM
1359 before F executes.  The formal definition requires that E be linked to
1360 F via a coe or fre link, an arbitrary number of cumul-fences, an
1361 optional rfe link, a strong fence, and an arbitrary number of hb
1362 links.  Let's see how this definition works out.
1363
1364 Consider first the case where E is a store (implying that the sequence
1365 of links begins with coe).  Then there are events W, X, Y, and Z such
1366 that:
1367
1368         E ->coe W ->cumul-fence* X ->rfe? Y ->strong-fence Z ->hb* F,
1369
1370 where the * suffix indicates an arbitrary number of links of the
1371 specified type, and the ? suffix indicates the link is optional (Y may
1372 be equal to X).  Because of the cumul-fence links, we know that W will
1373 propagate to Y's CPU before X does, hence before Y executes and hence
1374 before the strong fence executes.  Because this fence is strong, we
1375 know that W will propagate to every CPU and to RAM before Z executes.
1376 And because of the hb links, we know that Z will execute before F.
1377 Thus W, which comes later than E in the coherence order, will
1378 propagate to every CPU and to RAM before F executes.
1379
1380 The case where E is a load is exactly the same, except that the first
1381 link in the sequence is fre instead of coe.
1382
1383 The existence of a pb link from E to F implies that E must execute
1384 before F.  To see why, suppose that F executed first.  Then W would
1385 have propagated to E's CPU before E executed.  If E was a store, the
1386 memory subsystem would then be forced to make E come after W in the
1387 coherence order, contradicting the fact that E ->coe W.  If E was a
1388 load, the memory subsystem would then be forced to satisfy E's read
1389 request with the value stored by W or an even later store,
1390 contradicting the fact that E ->fre W.
1391
1392 A good example illustrating how pb works is the SB pattern with strong
1393 fences:
1394
1395         int x = 0, y = 0;
1396
1397         P0()
1398         {
1399                 int r0;
1400
1401                 WRITE_ONCE(x, 1);
1402                 smp_mb();
1403                 r0 = READ_ONCE(y);
1404         }
1405
1406         P1()
1407         {
1408                 int r1;
1409
1410                 WRITE_ONCE(y, 1);
1411                 smp_mb();
1412                 r1 = READ_ONCE(x);
1413         }
1414
1415 If r0 = 0 at the end then there is a pb link from P0's load to P1's
1416 load: an fre link from P0's load to P1's store (which overwrites the
1417 value read by P0), and a strong fence between P1's store and its load.
1418 In this example, the sequences of cumul-fence and hb links are empty.
1419 Note that this pb link is not included in hb as an instance of prop,
1420 because it does not start and end on the same CPU.
1421
1422 Similarly, if r1 = 0 at the end then there is a pb link from P1's load
1423 to P0's.  This means that if both r1 and r2 were 0 there would be a
1424 cycle in pb, which is not possible since an instruction cannot execute
1425 before itself.  Thus, adding smp_mb() fences to the SB pattern
1426 prevents the r0 = 0, r1 = 0 outcome.
1427
1428 In summary, the fact that the pb relation links events in the order
1429 they execute means that it cannot have cycles.  This requirement is
1430 the content of the LKMM's "propagation" axiom.
1431
1432
1433 RCU RELATIONS: rcu-link, gp, rscs, rcu-fence, and rb
1434 ----------------------------------------------------
1435
1436 RCU (Read-Copy-Update) is a powerful synchronization mechanism.  It
1437 rests on two concepts: grace periods and read-side critical sections.
1438
1439 A grace period is the span of time occupied by a call to
1440 synchronize_rcu().  A read-side critical section (or just critical
1441 section, for short) is a region of code delimited by rcu_read_lock()
1442 at the start and rcu_read_unlock() at the end.  Critical sections can
1443 be nested, although we won't make use of this fact.
1444
1445 As far as memory models are concerned, RCU's main feature is its
1446 Grace-Period Guarantee, which states that a critical section can never
1447 span a full grace period.  In more detail, the Guarantee says:
1448
1449         If a critical section starts before a grace period then it
1450         must end before the grace period does.  In addition, every
1451         store that propagates to the critical section's CPU before the
1452         end of the critical section must propagate to every CPU before
1453         the end of the grace period.
1454
1455         If a critical section ends after a grace period ends then it
1456         must start after the grace period does.  In addition, every
1457         store that propagates to the grace period's CPU before the
1458         start of the grace period must propagate to every CPU before
1459         the start of the critical section.
1460
1461 Here is a simple example of RCU in action:
1462
1463         int x, y;
1464
1465         P0()
1466         {
1467                 rcu_read_lock();
1468                 WRITE_ONCE(x, 1);
1469                 WRITE_ONCE(y, 1);
1470                 rcu_read_unlock();
1471         }
1472
1473         P1()
1474         {
1475                 int r1, r2;
1476
1477                 r1 = READ_ONCE(x);
1478                 synchronize_rcu();
1479                 r2 = READ_ONCE(y);
1480         }
1481
1482 The Grace Period Guarantee tells us that when this code runs, it will
1483 never end with r1 = 1 and r2 = 0.  The reasoning is as follows.  r1 = 1
1484 means that P0's store to x propagated to P1 before P1 called
1485 synchronize_rcu(), so P0's critical section must have started before
1486 P1's grace period.  On the other hand, r2 = 0 means that P0's store to
1487 y, which occurs before the end of the critical section, did not
1488 propagate to P1 before the end of the grace period, violating the
1489 Guarantee.
1490
1491 In the kernel's implementations of RCU, the requirements for stores
1492 to propagate to every CPU are fulfilled by placing strong fences at
1493 suitable places in the RCU-related code.  Thus, if a critical section
1494 starts before a grace period does then the critical section's CPU will
1495 execute an smp_mb() fence after the end of the critical section and
1496 some time before the grace period's synchronize_rcu() call returns.
1497 And if a critical section ends after a grace period does then the
1498 synchronize_rcu() routine will execute an smp_mb() fence at its start
1499 and some time before the critical section's opening rcu_read_lock()
1500 executes.
1501
1502 What exactly do we mean by saying that a critical section "starts
1503 before" or "ends after" a grace period?  Some aspects of the meaning
1504 are pretty obvious, as in the example above, but the details aren't
1505 entirely clear.  The LKMM formalizes this notion by means of the
1506 rcu-link relation.  rcu-link encompasses a very general notion of
1507 "before": Among other things, X ->rcu-link Z includes cases where X
1508 happens-before or is equal to some event Y which is equal to or comes
1509 before Z in the coherence order.  When Y = Z this says that X ->rfe Z
1510 implies X ->rcu-link Z.  In addition, when Y = X it says that X ->fr Z
1511 and X ->co Z each imply X ->rcu-link Z.
1512
1513 The formal definition of the rcu-link relation is more than a little
1514 obscure, and we won't give it here.  It is closely related to the pb
1515 relation, and the details don't matter unless you want to comb through
1516 a somewhat lengthy formal proof.  Pretty much all you need to know
1517 about rcu-link is the information in the preceding paragraph.
1518
1519 The LKMM also defines the gp and rscs relations.  They bring grace
1520 periods and read-side critical sections into the picture, in the
1521 following way:
1522
1523         E ->gp F means there is a synchronize_rcu() fence event S such
1524         that E ->po S and either S ->po F or S = F.  In simple terms,
1525         there is a grace period po-between E and F.
1526
1527         E ->rscs F means there is a critical section delimited by an
1528         rcu_read_lock() fence L and an rcu_read_unlock() fence U, such
1529         that E ->po U and either L ->po F or L = F.  You can think of
1530         this as saying that E and F are in the same critical section
1531         (in fact, it also allows E to be po-before the start of the
1532         critical section and F to be po-after the end).
1533
1534 If we think of the rcu-link relation as standing for an extended
1535 "before", then X ->gp Y ->rcu-link Z says that X executes before a
1536 grace period which ends before Z executes.  (In fact it covers more
1537 than this, because it also includes cases where X executes before a
1538 grace period and some store propagates to Z's CPU before Z executes
1539 but doesn't propagate to some other CPU until after the grace period
1540 ends.)  Similarly, X ->rscs Y ->rcu-link Z says that X is part of (or
1541 before the start of) a critical section which starts before Z
1542 executes.
1543
1544 The LKMM goes on to define the rcu-fence relation as a sequence of gp
1545 and rscs links separated by rcu-link links, in which the number of gp
1546 links is >= the number of rscs links.  For example:
1547
1548         X ->gp Y ->rcu-link Z ->rscs T ->rcu-link U ->gp V
1549
1550 would imply that X ->rcu-fence V, because this sequence contains two
1551 gp links and only one rscs link.  (It also implies that X ->rcu-fence T
1552 and Z ->rcu-fence V.)  On the other hand:
1553
1554         X ->rscs Y ->rcu-link Z ->rscs T ->rcu-link U ->gp V
1555
1556 does not imply X ->rcu-fence V, because the sequence contains only
1557 one gp link but two rscs links.
1558
1559 The rcu-fence relation is important because the Grace Period Guarantee
1560 means that rcu-fence acts kind of like a strong fence.  In particular,
1561 if W is a write and we have W ->rcu-fence Z, the Guarantee says that W
1562 will propagate to every CPU before Z executes.
1563
1564 To prove this in full generality requires some intellectual effort.
1565 We'll consider just a very simple case:
1566
1567         W ->gp X ->rcu-link Y ->rscs Z.
1568
1569 This formula means that there is a grace period G and a critical
1570 section C such that:
1571
1572         1. W is po-before G;
1573
1574         2. X is equal to or po-after G;
1575
1576         3. X comes "before" Y in some sense;
1577
1578         4. Y is po-before the end of C;
1579
1580         5. Z is equal to or po-after the start of C.
1581
1582 From 2 - 4 we deduce that the grace period G ends before the critical
1583 section C.  Then the second part of the Grace Period Guarantee says
1584 not only that G starts before C does, but also that W (which executes
1585 on G's CPU before G starts) must propagate to every CPU before C
1586 starts.  In particular, W propagates to every CPU before Z executes
1587 (or finishes executing, in the case where Z is equal to the
1588 rcu_read_lock() fence event which starts C.)  This sort of reasoning
1589 can be expanded to handle all the situations covered by rcu-fence.
1590
1591 Finally, the LKMM defines the RCU-before (rb) relation in terms of
1592 rcu-fence.  This is done in essentially the same way as the pb
1593 relation was defined in terms of strong-fence.  We will omit the
1594 details; the end result is that E ->rb F implies E must execute before
1595 F, just as E ->pb F does (and for much the same reasons).
1596
1597 Putting this all together, the LKMM expresses the Grace Period
1598 Guarantee by requiring that the rb relation does not contain a cycle.
1599 Equivalently, this "rcu" axiom requires that there are no events E and
1600 F with E ->rcu-link F ->rcu-fence E.  Or to put it a third way, the
1601 axiom requires that there are no cycles consisting of gp and rscs
1602 alternating with rcu-link, where the number of gp links is >= the
1603 number of rscs links.
1604
1605 Justifying the axiom isn't easy, but it is in fact a valid
1606 formalization of the Grace Period Guarantee.  We won't attempt to go
1607 through the detailed argument, but the following analysis gives a
1608 taste of what is involved.  Suppose we have a violation of the first
1609 part of the Guarantee: A critical section starts before a grace
1610 period, and some store propagates to the critical section's CPU before
1611 the end of the critical section but doesn't propagate to some other
1612 CPU until after the end of the grace period.
1613
1614 Putting symbols to these ideas, let L and U be the rcu_read_lock() and
1615 rcu_read_unlock() fence events delimiting the critical section in
1616 question, and let S be the synchronize_rcu() fence event for the grace
1617 period.  Saying that the critical section starts before S means there
1618 are events E and F where E is po-after L (which marks the start of the
1619 critical section), E is "before" F in the sense of the rcu-link
1620 relation, and F is po-before the grace period S:
1621
1622         L ->po E ->rcu-link F ->po S.
1623
1624 Let W be the store mentioned above, let Z come before the end of the
1625 critical section and witness that W propagates to the critical
1626 section's CPU by reading from W, and let Y on some arbitrary CPU be a
1627 witness that W has not propagated to that CPU, where Y happens after
1628 some event X which is po-after S.  Symbolically, this amounts to:
1629
1630         S ->po X ->hb* Y ->fr W ->rf Z ->po U.
1631
1632 The fr link from Y to W indicates that W has not propagated to Y's CPU
1633 at the time that Y executes.  From this, it can be shown (see the
1634 discussion of the rcu-link relation earlier) that X and Z are related
1635 by rcu-link, yielding:
1636
1637         S ->po X ->rcu-link Z ->po U.
1638
1639 The formulas say that S is po-between F and X, hence F ->gp X.  They
1640 also say that Z comes before the end of the critical section and E
1641 comes after its start, hence Z ->rscs E.  From all this we obtain:
1642
1643         F ->gp X ->rcu-link Z ->rscs E ->rcu-link F,
1644
1645 a forbidden cycle.  Thus the "rcu" axiom rules out this violation of
1646 the Grace Period Guarantee.
1647
1648 For something a little more down-to-earth, let's see how the axiom
1649 works out in practice.  Consider the RCU code example from above, this
1650 time with statement labels added to the memory access instructions:
1651
1652         int x, y;
1653
1654         P0()
1655         {
1656                 rcu_read_lock();
1657                 W: WRITE_ONCE(x, 1);
1658                 X: WRITE_ONCE(y, 1);
1659                 rcu_read_unlock();
1660         }
1661
1662         P1()
1663         {
1664                 int r1, r2;
1665
1666                 Y: r1 = READ_ONCE(x);
1667                 synchronize_rcu();
1668                 Z: r2 = READ_ONCE(y);
1669         }
1670
1671
1672 If r2 = 0 at the end then P0's store at X overwrites the value that
1673 P1's load at Z reads from, so we have Z ->fre X and thus Z ->rcu-link X.
1674 In addition, there is a synchronize_rcu() between Y and Z, so therefore
1675 we have Y ->gp Z.
1676
1677 If r1 = 1 at the end then P1's load at Y reads from P0's store at W,
1678 so we have W ->rcu-link Y.  In addition, W and X are in the same critical
1679 section, so therefore we have X ->rscs W.
1680
1681 Then X ->rscs W ->rcu-link Y ->gp Z ->rcu-link X is a forbidden cycle,
1682 violating the "rcu" axiom.  Hence the outcome is not allowed by the
1683 LKMM, as we would expect.
1684
1685 For contrast, let's see what can happen in a more complicated example:
1686
1687         int x, y, z;
1688
1689         P0()
1690         {
1691                 int r0;
1692
1693                 rcu_read_lock();
1694                 W: r0 = READ_ONCE(x);
1695                 X: WRITE_ONCE(y, 1);
1696                 rcu_read_unlock();
1697         }
1698
1699         P1()
1700         {
1701                 int r1;
1702
1703                 Y: r1 = READ_ONCE(y);
1704                 synchronize_rcu();
1705                 Z: WRITE_ONCE(z, 1);
1706         }
1707
1708         P2()
1709         {
1710                 int r2;
1711
1712                 rcu_read_lock();
1713                 U: r2 = READ_ONCE(z);
1714                 V: WRITE_ONCE(x, 1);
1715                 rcu_read_unlock();
1716         }
1717
1718 If r0 = r1 = r2 = 1 at the end, then similar reasoning to before shows
1719 that W ->rscs X ->rcu-link Y ->gp Z ->rcu-link U ->rscs V ->rcu-link W.
1720 However this cycle is not forbidden, because the sequence of relations
1721 contains fewer instances of gp (one) than of rscs (two).  Consequently
1722 the outcome is allowed by the LKMM.  The following instruction timing
1723 diagram shows how it might actually occur:
1724
1725 P0                      P1                      P2
1726 --------------------    --------------------    --------------------
1727 rcu_read_lock()
1728 X: WRITE_ONCE(y, 1)
1729                         Y: r1 = READ_ONCE(y)
1730                         synchronize_rcu() starts
1731                         .                       rcu_read_lock()
1732                         .                       V: WRITE_ONCE(x, 1)
1733 W: r0 = READ_ONCE(x)    .
1734 rcu_read_unlock()       .
1735                         synchronize_rcu() ends
1736                         Z: WRITE_ONCE(z, 1)
1737                                                 U: r2 = READ_ONCE(z)
1738                                                 rcu_read_unlock()
1739
1740 This requires P0 and P2 to execute their loads and stores out of
1741 program order, but of course they are allowed to do so.  And as you
1742 can see, the Grace Period Guarantee is not violated: The critical
1743 section in P0 both starts before P1's grace period does and ends
1744 before it does, and the critical section in P2 both starts after P1's
1745 grace period does and ends after it does.
1746
1747
1748 LOCKING
1749 -------
1750
1751 The LKMM includes locking.  In fact, there is special code for locking
1752 in the formal model, added in order to make tools run faster.
1753 However, this special code is intended to be more or less equivalent
1754 to concepts we have already covered.  A spinlock_t variable is treated
1755 the same as an int, and spin_lock(&s) is treated almost the same as:
1756
1757         while (cmpxchg_acquire(&s, 0, 1) != 0)
1758                 cpu_relax();
1759
1760 This waits until s is equal to 0 and then atomically sets it to 1,
1761 and the read part of the cmpxchg operation acts as an acquire fence.
1762 An alternate way to express the same thing would be:
1763
1764         r = xchg_acquire(&s, 1);
1765
1766 along with a requirement that at the end, r = 0.  Similarly,
1767 spin_trylock(&s) is treated almost the same as:
1768
1769         return !cmpxchg_acquire(&s, 0, 1);
1770
1771 which atomically sets s to 1 if it is currently equal to 0 and returns
1772 true if it succeeds (the read part of the cmpxchg operation acts as an
1773 acquire fence only if the operation is successful).  spin_unlock(&s)
1774 is treated almost the same as:
1775
1776         smp_store_release(&s, 0);
1777
1778 The "almost" qualifiers above need some explanation.  In the LKMM, the
1779 store-release in a spin_unlock() and the load-acquire which forms the
1780 first half of the atomic rmw update in a spin_lock() or a successful
1781 spin_trylock() -- we can call these things lock-releases and
1782 lock-acquires -- have two properties beyond those of ordinary releases
1783 and acquires.
1784
1785 First, when a lock-acquire reads from a lock-release, the LKMM
1786 requires that every instruction po-before the lock-release must
1787 execute before any instruction po-after the lock-acquire.  This would
1788 naturally hold if the release and acquire operations were on different
1789 CPUs, but the LKMM says it holds even when they are on the same CPU.
1790 For example:
1791
1792         int x, y;
1793         spinlock_t s;
1794
1795         P0()
1796         {
1797                 int r1, r2;
1798
1799                 spin_lock(&s);
1800                 r1 = READ_ONCE(x);
1801                 spin_unlock(&s);
1802                 spin_lock(&s);
1803                 r2 = READ_ONCE(y);
1804                 spin_unlock(&s);
1805         }
1806
1807         P1()
1808         {
1809                 WRITE_ONCE(y, 1);
1810                 smp_wmb();
1811                 WRITE_ONCE(x, 1);
1812         }
1813
1814 Here the second spin_lock() reads from the first spin_unlock(), and
1815 therefore the load of x must execute before the load of y.  Thus we
1816 cannot have r1 = 1 and r2 = 0 at the end (this is an instance of the
1817 MP pattern).
1818
1819 This requirement does not apply to ordinary release and acquire
1820 fences, only to lock-related operations.  For instance, suppose P0()
1821 in the example had been written as:
1822
1823         P0()
1824         {
1825                 int r1, r2, r3;
1826
1827                 r1 = READ_ONCE(x);
1828                 smp_store_release(&s, 1);
1829                 r3 = smp_load_acquire(&s);
1830                 r2 = READ_ONCE(y);
1831         }
1832
1833 Then the CPU would be allowed to forward the s = 1 value from the
1834 smp_store_release() to the smp_load_acquire(), executing the
1835 instructions in the following order:
1836
1837                 r3 = smp_load_acquire(&s);      // Obtains r3 = 1
1838                 r2 = READ_ONCE(y);
1839                 r1 = READ_ONCE(x);
1840                 smp_store_release(&s, 1);       // Value is forwarded
1841
1842 and thus it could load y before x, obtaining r2 = 0 and r1 = 1.
1843
1844 Second, when a lock-acquire reads from a lock-release, and some other
1845 stores W and W' occur po-before the lock-release and po-after the
1846 lock-acquire respectively, the LKMM requires that W must propagate to
1847 each CPU before W' does.  For example, consider:
1848
1849         int x, y;
1850         spinlock_t x;
1851
1852         P0()
1853         {
1854                 spin_lock(&s);
1855                 WRITE_ONCE(x, 1);
1856                 spin_unlock(&s);
1857         }
1858
1859         P1()
1860         {
1861                 int r1;
1862
1863                 spin_lock(&s);
1864                 r1 = READ_ONCE(x);
1865                 WRITE_ONCE(y, 1);
1866                 spin_unlock(&s);
1867         }
1868
1869         P2()
1870         {
1871                 int r2, r3;
1872
1873                 r2 = READ_ONCE(y);
1874                 smp_rmb();
1875                 r3 = READ_ONCE(x);
1876         }
1877
1878 If r1 = 1 at the end then the spin_lock() in P1 must have read from
1879 the spin_unlock() in P0.  Hence the store to x must propagate to P2
1880 before the store to y does, so we cannot have r2 = 1 and r3 = 0.
1881
1882 These two special requirements for lock-release and lock-acquire do
1883 not arise from the operational model.  Nevertheless, kernel developers
1884 have come to expect and rely on them because they do hold on all
1885 architectures supported by the Linux kernel, albeit for various
1886 differing reasons.
1887
1888
1889 ODDS AND ENDS
1890 -------------
1891
1892 This section covers material that didn't quite fit anywhere in the
1893 earlier sections.
1894
1895 The descriptions in this document don't always match the formal
1896 version of the LKMM exactly.  For example, the actual formal
1897 definition of the prop relation makes the initial coe or fre part
1898 optional, and it doesn't require the events linked by the relation to
1899 be on the same CPU.  These differences are very unimportant; indeed,
1900 instances where the coe/fre part of prop is missing are of no interest
1901 because all the other parts (fences and rfe) are already included in
1902 hb anyway, and where the formal model adds prop into hb, it includes
1903 an explicit requirement that the events being linked are on the same
1904 CPU.
1905
1906 Another minor difference has to do with events that are both memory
1907 accesses and fences, such as those corresponding to smp_load_acquire()
1908 calls.  In the formal model, these events aren't actually both reads
1909 and fences; rather, they are read events with an annotation marking
1910 them as acquires.  (Or write events annotated as releases, in the case
1911 smp_store_release().)  The final effect is the same.
1912
1913 Although we didn't mention it above, the instruction execution
1914 ordering provided by the smp_rmb() fence doesn't apply to read events
1915 that are part of a non-value-returning atomic update.  For instance,
1916 given:
1917
1918         atomic_inc(&x);
1919         smp_rmb();
1920         r1 = READ_ONCE(y);
1921
1922 it is not guaranteed that the load from y will execute after the
1923 update to x.  This is because the ARMv8 architecture allows
1924 non-value-returning atomic operations effectively to be executed off
1925 the CPU.  Basically, the CPU tells the memory subsystem to increment
1926 x, and then the increment is carried out by the memory hardware with
1927 no further involvement from the CPU.  Since the CPU doesn't ever read
1928 the value of x, there is nothing for the smp_rmb() fence to act on.
1929
1930 The LKMM defines a few extra synchronization operations in terms of
1931 things we have already covered.  In particular, rcu_dereference() is
1932 treated as READ_ONCE() and rcu_assign_pointer() is treated as
1933 smp_store_release() -- which is basically how the Linux kernel treats
1934 them.
1935
1936 There are a few oddball fences which need special treatment:
1937 smp_mb__before_atomic(), smp_mb__after_atomic(), and
1938 smp_mb__after_spinlock().  The LKMM uses fence events with special
1939 annotations for them; they act as strong fences just like smp_mb()
1940 except for the sets of events that they order.  Instead of ordering
1941 all po-earlier events against all po-later events, as smp_mb() does,
1942 they behave as follows:
1943
1944         smp_mb__before_atomic() orders all po-earlier events against
1945         po-later atomic updates and the events following them;
1946
1947         smp_mb__after_atomic() orders po-earlier atomic updates and
1948         the events preceding them against all po-later events;
1949
1950         smp_mb_after_spinlock() orders po-earlier lock acquisition
1951         events and the events preceding them against all po-later
1952         events.
1953
1954 Interestingly, RCU and locking each introduce the possibility of
1955 deadlock.  When faced with code sequences such as:
1956
1957         spin_lock(&s);
1958         spin_lock(&s);
1959         spin_unlock(&s);
1960         spin_unlock(&s);
1961
1962 or:
1963
1964         rcu_read_lock();
1965         synchronize_rcu();
1966         rcu_read_unlock();
1967
1968 what does the LKMM have to say?  Answer: It says there are no allowed
1969 executions at all, which makes sense.  But this can also lead to
1970 misleading results, because if a piece of code has multiple possible
1971 executions, some of which deadlock, the model will report only on the
1972 non-deadlocking executions.  For example:
1973
1974         int x, y;
1975
1976         P0()
1977         {
1978                 int r0;
1979
1980                 WRITE_ONCE(x, 1);
1981                 r0 = READ_ONCE(y);
1982         }
1983
1984         P1()
1985         {
1986                 rcu_read_lock();
1987                 if (READ_ONCE(x) > 0) {
1988                         WRITE_ONCE(y, 36);
1989                         synchronize_rcu();
1990                 }
1991                 rcu_read_unlock();
1992         }
1993
1994 Is it possible to end up with r0 = 36 at the end?  The LKMM will tell
1995 you it is not, but the model won't mention that this is because P1
1996 will self-deadlock in the executions where it stores 36 in y.