Merge tag 'amd-drm-fixes-5.11-2020-12-16' of git://people.freedesktop.org/~agd5f...
[linux-2.6-microblaze.git] / sound / soc / codecs / sta350.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Codec driver for ST STA350 2.1-channel high-efficiency digital audio system
4  *
5  * Copyright: 2014 Raumfeld GmbH
6  * Author: Sven Brandau <info@brandau.biz>
7  *
8  * based on code from:
9  *      Raumfeld GmbH
10  *        Johannes Stezenbach <js@sig21.net>
11  *      Wolfson Microelectronics PLC.
12  *        Mark Brown <broonie@opensource.wolfsonmicro.com>
13  *      Freescale Semiconductor, Inc.
14  *        Timur Tabi <timur@freescale.com>
15  */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ":%s:%d: " fmt, __func__, __LINE__
18
19 #include <linux/module.h>
20 #include <linux/moduleparam.h>
21 #include <linux/init.h>
22 #include <linux/delay.h>
23 #include <linux/pm.h>
24 #include <linux/i2c.h>
25 #include <linux/of_device.h>
26 #include <linux/of_gpio.h>
27 #include <linux/regmap.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/gpio/consumer.h>
30 #include <linux/slab.h>
31 #include <sound/core.h>
32 #include <sound/pcm.h>
33 #include <sound/pcm_params.h>
34 #include <sound/soc.h>
35 #include <sound/soc-dapm.h>
36 #include <sound/initval.h>
37 #include <sound/tlv.h>
38
39 #include <sound/sta350.h>
40 #include "sta350.h"
41
42 #define STA350_RATES (SNDRV_PCM_RATE_32000 | \
43                       SNDRV_PCM_RATE_44100 | \
44                       SNDRV_PCM_RATE_48000 | \
45                       SNDRV_PCM_RATE_88200 | \
46                       SNDRV_PCM_RATE_96000 | \
47                       SNDRV_PCM_RATE_176400 | \
48                       SNDRV_PCM_RATE_192000)
49
50 #define STA350_FORMATS \
51         (SNDRV_PCM_FMTBIT_S16_LE  | SNDRV_PCM_FMTBIT_S16_BE  | \
52          SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE | \
53          SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE | \
54          SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_3BE | \
55          SNDRV_PCM_FMTBIT_S24_LE  | SNDRV_PCM_FMTBIT_S24_BE  | \
56          SNDRV_PCM_FMTBIT_S32_LE  | SNDRV_PCM_FMTBIT_S32_BE)
57
58 /* Power-up register defaults */
59 static const struct reg_default sta350_regs[] = {
60         {  0x0, 0x63 },
61         {  0x1, 0x80 },
62         {  0x2, 0xdf },
63         {  0x3, 0x40 },
64         {  0x4, 0xc2 },
65         {  0x5, 0x5c },
66         {  0x6, 0x00 },
67         {  0x7, 0xff },
68         {  0x8, 0x60 },
69         {  0x9, 0x60 },
70         {  0xa, 0x60 },
71         {  0xb, 0x00 },
72         {  0xc, 0x00 },
73         {  0xd, 0x00 },
74         {  0xe, 0x00 },
75         {  0xf, 0x40 },
76         { 0x10, 0x80 },
77         { 0x11, 0x77 },
78         { 0x12, 0x6a },
79         { 0x13, 0x69 },
80         { 0x14, 0x6a },
81         { 0x15, 0x69 },
82         { 0x16, 0x00 },
83         { 0x17, 0x00 },
84         { 0x18, 0x00 },
85         { 0x19, 0x00 },
86         { 0x1a, 0x00 },
87         { 0x1b, 0x00 },
88         { 0x1c, 0x00 },
89         { 0x1d, 0x00 },
90         { 0x1e, 0x00 },
91         { 0x1f, 0x00 },
92         { 0x20, 0x00 },
93         { 0x21, 0x00 },
94         { 0x22, 0x00 },
95         { 0x23, 0x00 },
96         { 0x24, 0x00 },
97         { 0x25, 0x00 },
98         { 0x26, 0x00 },
99         { 0x27, 0x2a },
100         { 0x28, 0xc0 },
101         { 0x29, 0xf3 },
102         { 0x2a, 0x33 },
103         { 0x2b, 0x00 },
104         { 0x2c, 0x0c },
105         { 0x31, 0x00 },
106         { 0x36, 0x00 },
107         { 0x37, 0x00 },
108         { 0x38, 0x00 },
109         { 0x39, 0x01 },
110         { 0x3a, 0xee },
111         { 0x3b, 0xff },
112         { 0x3c, 0x7e },
113         { 0x3d, 0xc0 },
114         { 0x3e, 0x26 },
115         { 0x3f, 0x00 },
116         { 0x48, 0x00 },
117         { 0x49, 0x00 },
118         { 0x4a, 0x00 },
119         { 0x4b, 0x04 },
120         { 0x4c, 0x00 },
121 };
122
123 static const struct regmap_range sta350_write_regs_range[] = {
124         regmap_reg_range(STA350_CONFA,  STA350_AUTO2),
125         regmap_reg_range(STA350_C1CFG,  STA350_FDRC2),
126         regmap_reg_range(STA350_EQCFG,  STA350_EVOLRES),
127         regmap_reg_range(STA350_NSHAPE, STA350_MISC2),
128 };
129
130 static const struct regmap_range sta350_read_regs_range[] = {
131         regmap_reg_range(STA350_CONFA,  STA350_AUTO2),
132         regmap_reg_range(STA350_C1CFG,  STA350_STATUS),
133         regmap_reg_range(STA350_EQCFG,  STA350_EVOLRES),
134         regmap_reg_range(STA350_NSHAPE, STA350_MISC2),
135 };
136
137 static const struct regmap_range sta350_volatile_regs_range[] = {
138         regmap_reg_range(STA350_CFADDR2, STA350_CFUD),
139         regmap_reg_range(STA350_STATUS,  STA350_STATUS),
140 };
141
142 static const struct regmap_access_table sta350_write_regs = {
143         .yes_ranges =   sta350_write_regs_range,
144         .n_yes_ranges = ARRAY_SIZE(sta350_write_regs_range),
145 };
146
147 static const struct regmap_access_table sta350_read_regs = {
148         .yes_ranges =   sta350_read_regs_range,
149         .n_yes_ranges = ARRAY_SIZE(sta350_read_regs_range),
150 };
151
152 static const struct regmap_access_table sta350_volatile_regs = {
153         .yes_ranges =   sta350_volatile_regs_range,
154         .n_yes_ranges = ARRAY_SIZE(sta350_volatile_regs_range),
155 };
156
157 /* regulator power supply names */
158 static const char * const sta350_supply_names[] = {
159         "vdd-dig",      /* digital supply, 3.3V */
160         "vdd-pll",      /* pll supply, 3.3V */
161         "vcc"           /* power amp supply, 5V - 26V */
162 };
163
164 /* codec private data */
165 struct sta350_priv {
166         struct regmap *regmap;
167         struct regulator_bulk_data supplies[ARRAY_SIZE(sta350_supply_names)];
168         struct sta350_platform_data *pdata;
169
170         unsigned int mclk;
171         unsigned int format;
172
173         u32 coef_shadow[STA350_COEF_COUNT];
174         int shutdown;
175
176         struct gpio_desc *gpiod_nreset;
177         struct gpio_desc *gpiod_power_down;
178
179         struct mutex coeff_lock;
180 };
181
182 static const DECLARE_TLV_DB_SCALE(mvol_tlv, -12750, 50, 1);
183 static const DECLARE_TLV_DB_SCALE(chvol_tlv, -7950, 50, 1);
184 static const DECLARE_TLV_DB_SCALE(tone_tlv, -1200, 200, 0);
185
186 static const char * const sta350_drc_ac[] = {
187         "Anti-Clipping", "Dynamic Range Compression"
188 };
189 static const char * const sta350_auto_gc_mode[] = {
190         "User", "AC no clipping", "AC limited clipping (10%)",
191         "DRC nighttime listening mode"
192 };
193 static const char * const sta350_auto_xo_mode[] = {
194         "User", "80Hz", "100Hz", "120Hz", "140Hz", "160Hz", "180Hz",
195         "200Hz", "220Hz", "240Hz", "260Hz", "280Hz", "300Hz", "320Hz",
196         "340Hz", "360Hz"
197 };
198 static const char * const sta350_binary_output[] = {
199         "FFX 3-state output - normal operation", "Binary output"
200 };
201 static const char * const sta350_limiter_select[] = {
202         "Limiter Disabled", "Limiter #1", "Limiter #2"
203 };
204 static const char * const sta350_limiter_attack_rate[] = {
205         "3.1584", "2.7072", "2.2560", "1.8048", "1.3536", "0.9024",
206         "0.4512", "0.2256", "0.1504", "0.1123", "0.0902", "0.0752",
207         "0.0645", "0.0564", "0.0501", "0.0451"
208 };
209 static const char * const sta350_limiter_release_rate[] = {
210         "0.5116", "0.1370", "0.0744", "0.0499", "0.0360", "0.0299",
211         "0.0264", "0.0208", "0.0198", "0.0172", "0.0147", "0.0137",
212         "0.0134", "0.0117", "0.0110", "0.0104"
213 };
214 static const char * const sta350_noise_shaper_type[] = {
215         "Third order", "Fourth order"
216 };
217
218 static DECLARE_TLV_DB_RANGE(sta350_limiter_ac_attack_tlv,
219         0, 7, TLV_DB_SCALE_ITEM(-1200, 200, 0),
220         8, 16, TLV_DB_SCALE_ITEM(300, 100, 0),
221 );
222
223 static DECLARE_TLV_DB_RANGE(sta350_limiter_ac_release_tlv,
224         0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
225         1, 1, TLV_DB_SCALE_ITEM(-2900, 0, 0),
226         2, 2, TLV_DB_SCALE_ITEM(-2000, 0, 0),
227         3, 8, TLV_DB_SCALE_ITEM(-1400, 200, 0),
228         8, 16, TLV_DB_SCALE_ITEM(-700, 100, 0),
229 );
230
231 static DECLARE_TLV_DB_RANGE(sta350_limiter_drc_attack_tlv,
232         0, 7, TLV_DB_SCALE_ITEM(-3100, 200, 0),
233         8, 13, TLV_DB_SCALE_ITEM(-1600, 100, 0),
234         14, 16, TLV_DB_SCALE_ITEM(-1000, 300, 0),
235 );
236
237 static DECLARE_TLV_DB_RANGE(sta350_limiter_drc_release_tlv,
238         0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
239         1, 2, TLV_DB_SCALE_ITEM(-3800, 200, 0),
240         3, 4, TLV_DB_SCALE_ITEM(-3300, 200, 0),
241         5, 12, TLV_DB_SCALE_ITEM(-3000, 200, 0),
242         13, 16, TLV_DB_SCALE_ITEM(-1500, 300, 0),
243 );
244
245 static SOC_ENUM_SINGLE_DECL(sta350_drc_ac_enum,
246                             STA350_CONFD, STA350_CONFD_DRC_SHIFT,
247                             sta350_drc_ac);
248 static SOC_ENUM_SINGLE_DECL(sta350_noise_shaper_enum,
249                             STA350_CONFE, STA350_CONFE_NSBW_SHIFT,
250                             sta350_noise_shaper_type);
251 static SOC_ENUM_SINGLE_DECL(sta350_auto_gc_enum,
252                             STA350_AUTO1, STA350_AUTO1_AMGC_SHIFT,
253                             sta350_auto_gc_mode);
254 static SOC_ENUM_SINGLE_DECL(sta350_auto_xo_enum,
255                             STA350_AUTO2, STA350_AUTO2_XO_SHIFT,
256                             sta350_auto_xo_mode);
257 static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch1_enum,
258                             STA350_C1CFG, STA350_CxCFG_BO_SHIFT,
259                             sta350_binary_output);
260 static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch2_enum,
261                             STA350_C2CFG, STA350_CxCFG_BO_SHIFT,
262                             sta350_binary_output);
263 static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch3_enum,
264                             STA350_C3CFG, STA350_CxCFG_BO_SHIFT,
265                             sta350_binary_output);
266 static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch1_enum,
267                             STA350_C1CFG, STA350_CxCFG_LS_SHIFT,
268                             sta350_limiter_select);
269 static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch2_enum,
270                             STA350_C2CFG, STA350_CxCFG_LS_SHIFT,
271                             sta350_limiter_select);
272 static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch3_enum,
273                             STA350_C3CFG, STA350_CxCFG_LS_SHIFT,
274                             sta350_limiter_select);
275 static SOC_ENUM_SINGLE_DECL(sta350_limiter1_attack_rate_enum,
276                             STA350_L1AR, STA350_LxA_SHIFT,
277                             sta350_limiter_attack_rate);
278 static SOC_ENUM_SINGLE_DECL(sta350_limiter2_attack_rate_enum,
279                             STA350_L2AR, STA350_LxA_SHIFT,
280                             sta350_limiter_attack_rate);
281 static SOC_ENUM_SINGLE_DECL(sta350_limiter1_release_rate_enum,
282                             STA350_L1AR, STA350_LxR_SHIFT,
283                             sta350_limiter_release_rate);
284 static SOC_ENUM_SINGLE_DECL(sta350_limiter2_release_rate_enum,
285                             STA350_L2AR, STA350_LxR_SHIFT,
286                             sta350_limiter_release_rate);
287
288 /*
289  * byte array controls for setting biquad, mixer, scaling coefficients;
290  * for biquads all five coefficients need to be set in one go,
291  * mixer and pre/postscale coefs can be set individually;
292  * each coef is 24bit, the bytes are ordered in the same way
293  * as given in the STA350 data sheet (big endian; b1, b2, a1, a2, b0)
294  */
295
296 static int sta350_coefficient_info(struct snd_kcontrol *kcontrol,
297                                    struct snd_ctl_elem_info *uinfo)
298 {
299         int numcoef = kcontrol->private_value >> 16;
300         uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
301         uinfo->count = 3 * numcoef;
302         return 0;
303 }
304
305 static int sta350_coefficient_get(struct snd_kcontrol *kcontrol,
306                                   struct snd_ctl_elem_value *ucontrol)
307 {
308         struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
309         struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
310         int numcoef = kcontrol->private_value >> 16;
311         int index = kcontrol->private_value & 0xffff;
312         unsigned int cfud, val;
313         int i, ret = 0;
314
315         mutex_lock(&sta350->coeff_lock);
316
317         /* preserve reserved bits in STA350_CFUD */
318         regmap_read(sta350->regmap, STA350_CFUD, &cfud);
319         cfud &= 0xf0;
320         /*
321          * chip documentation does not say if the bits are self clearing,
322          * so do it explicitly
323          */
324         regmap_write(sta350->regmap, STA350_CFUD, cfud);
325
326         regmap_write(sta350->regmap, STA350_CFADDR2, index);
327         if (numcoef == 1) {
328                 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x04);
329         } else if (numcoef == 5) {
330                 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x08);
331         } else {
332                 ret = -EINVAL;
333                 goto exit_unlock;
334         }
335
336         for (i = 0; i < 3 * numcoef; i++) {
337                 regmap_read(sta350->regmap, STA350_B1CF1 + i, &val);
338                 ucontrol->value.bytes.data[i] = val;
339         }
340
341 exit_unlock:
342         mutex_unlock(&sta350->coeff_lock);
343
344         return ret;
345 }
346
347 static int sta350_coefficient_put(struct snd_kcontrol *kcontrol,
348                                   struct snd_ctl_elem_value *ucontrol)
349 {
350         struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
351         struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
352         int numcoef = kcontrol->private_value >> 16;
353         int index = kcontrol->private_value & 0xffff;
354         unsigned int cfud;
355         int i;
356
357         /* preserve reserved bits in STA350_CFUD */
358         regmap_read(sta350->regmap, STA350_CFUD, &cfud);
359         cfud &= 0xf0;
360         /*
361          * chip documentation does not say if the bits are self clearing,
362          * so do it explicitly
363          */
364         regmap_write(sta350->regmap, STA350_CFUD, cfud);
365
366         regmap_write(sta350->regmap, STA350_CFADDR2, index);
367         for (i = 0; i < numcoef && (index + i < STA350_COEF_COUNT); i++)
368                 sta350->coef_shadow[index + i] =
369                           (ucontrol->value.bytes.data[3 * i] << 16)
370                         | (ucontrol->value.bytes.data[3 * i + 1] << 8)
371                         | (ucontrol->value.bytes.data[3 * i + 2]);
372         for (i = 0; i < 3 * numcoef; i++)
373                 regmap_write(sta350->regmap, STA350_B1CF1 + i,
374                              ucontrol->value.bytes.data[i]);
375         if (numcoef == 1)
376                 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x01);
377         else if (numcoef == 5)
378                 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x02);
379         else
380                 return -EINVAL;
381
382         return 0;
383 }
384
385 static int sta350_sync_coef_shadow(struct snd_soc_component *component)
386 {
387         struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
388         unsigned int cfud;
389         int i;
390
391         /* preserve reserved bits in STA350_CFUD */
392         regmap_read(sta350->regmap, STA350_CFUD, &cfud);
393         cfud &= 0xf0;
394
395         for (i = 0; i < STA350_COEF_COUNT; i++) {
396                 regmap_write(sta350->regmap, STA350_CFADDR2, i);
397                 regmap_write(sta350->regmap, STA350_B1CF1,
398                              (sta350->coef_shadow[i] >> 16) & 0xff);
399                 regmap_write(sta350->regmap, STA350_B1CF2,
400                              (sta350->coef_shadow[i] >> 8) & 0xff);
401                 regmap_write(sta350->regmap, STA350_B1CF3,
402                              (sta350->coef_shadow[i]) & 0xff);
403                 /*
404                  * chip documentation does not say if the bits are
405                  * self-clearing, so do it explicitly
406                  */
407                 regmap_write(sta350->regmap, STA350_CFUD, cfud);
408                 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x01);
409         }
410         return 0;
411 }
412
413 static int sta350_cache_sync(struct snd_soc_component *component)
414 {
415         struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
416         unsigned int mute;
417         int rc;
418
419         /* mute during register sync */
420         regmap_read(sta350->regmap, STA350_CFUD, &mute);
421         regmap_write(sta350->regmap, STA350_MMUTE, mute | STA350_MMUTE_MMUTE);
422         sta350_sync_coef_shadow(component);
423         rc = regcache_sync(sta350->regmap);
424         regmap_write(sta350->regmap, STA350_MMUTE, mute);
425         return rc;
426 }
427
428 #define SINGLE_COEF(xname, index) \
429 {       .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
430         .info = sta350_coefficient_info, \
431         .get = sta350_coefficient_get,\
432         .put = sta350_coefficient_put, \
433         .private_value = index | (1 << 16) }
434
435 #define BIQUAD_COEFS(xname, index) \
436 {       .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
437         .info = sta350_coefficient_info, \
438         .get = sta350_coefficient_get,\
439         .put = sta350_coefficient_put, \
440         .private_value = index | (5 << 16) }
441
442 static const struct snd_kcontrol_new sta350_snd_controls[] = {
443 SOC_SINGLE_TLV("Master Volume", STA350_MVOL, 0, 0xff, 1, mvol_tlv),
444 /* VOL */
445 SOC_SINGLE_TLV("Ch1 Volume", STA350_C1VOL, 0, 0xff, 1, chvol_tlv),
446 SOC_SINGLE_TLV("Ch2 Volume", STA350_C2VOL, 0, 0xff, 1, chvol_tlv),
447 SOC_SINGLE_TLV("Ch3 Volume", STA350_C3VOL, 0, 0xff, 1, chvol_tlv),
448 /* CONFD */
449 SOC_SINGLE("High Pass Filter Bypass Switch",
450            STA350_CONFD, STA350_CONFD_HPB_SHIFT, 1, 1),
451 SOC_SINGLE("De-emphasis Filter Switch",
452            STA350_CONFD, STA350_CONFD_DEMP_SHIFT, 1, 0),
453 SOC_SINGLE("DSP Bypass Switch",
454            STA350_CONFD, STA350_CONFD_DSPB_SHIFT, 1, 0),
455 SOC_SINGLE("Post-scale Link Switch",
456            STA350_CONFD, STA350_CONFD_PSL_SHIFT, 1, 0),
457 SOC_SINGLE("Biquad Coefficient Link Switch",
458            STA350_CONFD, STA350_CONFD_BQL_SHIFT, 1, 0),
459 SOC_ENUM("Compressor/Limiter Switch", sta350_drc_ac_enum),
460 SOC_ENUM("Noise Shaper Bandwidth", sta350_noise_shaper_enum),
461 SOC_SINGLE("Zero-detect Mute Enable Switch",
462            STA350_CONFD, STA350_CONFD_ZDE_SHIFT, 1, 0),
463 SOC_SINGLE("Submix Mode Switch",
464            STA350_CONFD, STA350_CONFD_SME_SHIFT, 1, 0),
465 /* CONFE */
466 SOC_SINGLE("Zero Cross Switch", STA350_CONFE, STA350_CONFE_ZCE_SHIFT, 1, 0),
467 SOC_SINGLE("Soft Ramp Switch", STA350_CONFE, STA350_CONFE_SVE_SHIFT, 1, 0),
468 /* MUTE */
469 SOC_SINGLE("Master Switch", STA350_MMUTE, STA350_MMUTE_MMUTE_SHIFT, 1, 1),
470 SOC_SINGLE("Ch1 Switch", STA350_MMUTE, STA350_MMUTE_C1M_SHIFT, 1, 1),
471 SOC_SINGLE("Ch2 Switch", STA350_MMUTE, STA350_MMUTE_C2M_SHIFT, 1, 1),
472 SOC_SINGLE("Ch3 Switch", STA350_MMUTE, STA350_MMUTE_C3M_SHIFT, 1, 1),
473 /* AUTOx */
474 SOC_ENUM("Automode GC", sta350_auto_gc_enum),
475 SOC_ENUM("Automode XO", sta350_auto_xo_enum),
476 /* CxCFG */
477 SOC_SINGLE("Ch1 Tone Control Bypass Switch",
478            STA350_C1CFG, STA350_CxCFG_TCB_SHIFT, 1, 0),
479 SOC_SINGLE("Ch2 Tone Control Bypass Switch",
480            STA350_C2CFG, STA350_CxCFG_TCB_SHIFT, 1, 0),
481 SOC_SINGLE("Ch1 EQ Bypass Switch",
482            STA350_C1CFG, STA350_CxCFG_EQBP_SHIFT, 1, 0),
483 SOC_SINGLE("Ch2 EQ Bypass Switch",
484            STA350_C2CFG, STA350_CxCFG_EQBP_SHIFT, 1, 0),
485 SOC_SINGLE("Ch1 Master Volume Bypass Switch",
486            STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
487 SOC_SINGLE("Ch2 Master Volume Bypass Switch",
488            STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
489 SOC_SINGLE("Ch3 Master Volume Bypass Switch",
490            STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
491 SOC_ENUM("Ch1 Binary Output Select", sta350_binary_output_ch1_enum),
492 SOC_ENUM("Ch2 Binary Output Select", sta350_binary_output_ch2_enum),
493 SOC_ENUM("Ch3 Binary Output Select", sta350_binary_output_ch3_enum),
494 SOC_ENUM("Ch1 Limiter Select", sta350_limiter_ch1_enum),
495 SOC_ENUM("Ch2 Limiter Select", sta350_limiter_ch2_enum),
496 SOC_ENUM("Ch3 Limiter Select", sta350_limiter_ch3_enum),
497 /* TONE */
498 SOC_SINGLE_RANGE_TLV("Bass Tone Control Volume",
499                      STA350_TONE, STA350_TONE_BTC_SHIFT, 1, 13, 0, tone_tlv),
500 SOC_SINGLE_RANGE_TLV("Treble Tone Control Volume",
501                      STA350_TONE, STA350_TONE_TTC_SHIFT, 1, 13, 0, tone_tlv),
502 SOC_ENUM("Limiter1 Attack Rate (dB/ms)", sta350_limiter1_attack_rate_enum),
503 SOC_ENUM("Limiter2 Attack Rate (dB/ms)", sta350_limiter2_attack_rate_enum),
504 SOC_ENUM("Limiter1 Release Rate (dB/ms)", sta350_limiter1_release_rate_enum),
505 SOC_ENUM("Limiter2 Release Rate (dB/ms)", sta350_limiter2_release_rate_enum),
506
507 /*
508  * depending on mode, the attack/release thresholds have
509  * two different enum definitions; provide both
510  */
511 SOC_SINGLE_TLV("Limiter1 Attack Threshold (AC Mode)",
512                STA350_L1ATRT, STA350_LxA_SHIFT,
513                16, 0, sta350_limiter_ac_attack_tlv),
514 SOC_SINGLE_TLV("Limiter2 Attack Threshold (AC Mode)",
515                STA350_L2ATRT, STA350_LxA_SHIFT,
516                16, 0, sta350_limiter_ac_attack_tlv),
517 SOC_SINGLE_TLV("Limiter1 Release Threshold (AC Mode)",
518                STA350_L1ATRT, STA350_LxR_SHIFT,
519                16, 0, sta350_limiter_ac_release_tlv),
520 SOC_SINGLE_TLV("Limiter2 Release Threshold (AC Mode)",
521                STA350_L2ATRT, STA350_LxR_SHIFT,
522                16, 0, sta350_limiter_ac_release_tlv),
523 SOC_SINGLE_TLV("Limiter1 Attack Threshold (DRC Mode)",
524                STA350_L1ATRT, STA350_LxA_SHIFT,
525                16, 0, sta350_limiter_drc_attack_tlv),
526 SOC_SINGLE_TLV("Limiter2 Attack Threshold (DRC Mode)",
527                STA350_L2ATRT, STA350_LxA_SHIFT,
528                16, 0, sta350_limiter_drc_attack_tlv),
529 SOC_SINGLE_TLV("Limiter1 Release Threshold (DRC Mode)",
530                STA350_L1ATRT, STA350_LxR_SHIFT,
531                16, 0, sta350_limiter_drc_release_tlv),
532 SOC_SINGLE_TLV("Limiter2 Release Threshold (DRC Mode)",
533                STA350_L2ATRT, STA350_LxR_SHIFT,
534                16, 0, sta350_limiter_drc_release_tlv),
535
536 BIQUAD_COEFS("Ch1 - Biquad 1", 0),
537 BIQUAD_COEFS("Ch1 - Biquad 2", 5),
538 BIQUAD_COEFS("Ch1 - Biquad 3", 10),
539 BIQUAD_COEFS("Ch1 - Biquad 4", 15),
540 BIQUAD_COEFS("Ch2 - Biquad 1", 20),
541 BIQUAD_COEFS("Ch2 - Biquad 2", 25),
542 BIQUAD_COEFS("Ch2 - Biquad 3", 30),
543 BIQUAD_COEFS("Ch2 - Biquad 4", 35),
544 BIQUAD_COEFS("High-pass", 40),
545 BIQUAD_COEFS("Low-pass", 45),
546 SINGLE_COEF("Ch1 - Prescale", 50),
547 SINGLE_COEF("Ch2 - Prescale", 51),
548 SINGLE_COEF("Ch1 - Postscale", 52),
549 SINGLE_COEF("Ch2 - Postscale", 53),
550 SINGLE_COEF("Ch3 - Postscale", 54),
551 SINGLE_COEF("Thermal warning - Postscale", 55),
552 SINGLE_COEF("Ch1 - Mix 1", 56),
553 SINGLE_COEF("Ch1 - Mix 2", 57),
554 SINGLE_COEF("Ch2 - Mix 1", 58),
555 SINGLE_COEF("Ch2 - Mix 2", 59),
556 SINGLE_COEF("Ch3 - Mix 1", 60),
557 SINGLE_COEF("Ch3 - Mix 2", 61),
558 };
559
560 static const struct snd_soc_dapm_widget sta350_dapm_widgets[] = {
561 SND_SOC_DAPM_DAC("DAC", NULL, SND_SOC_NOPM, 0, 0),
562 SND_SOC_DAPM_OUTPUT("LEFT"),
563 SND_SOC_DAPM_OUTPUT("RIGHT"),
564 SND_SOC_DAPM_OUTPUT("SUB"),
565 };
566
567 static const struct snd_soc_dapm_route sta350_dapm_routes[] = {
568         { "LEFT", NULL, "DAC" },
569         { "RIGHT", NULL, "DAC" },
570         { "SUB", NULL, "DAC" },
571         { "DAC", NULL, "Playback" },
572 };
573
574 /* MCLK interpolation ratio per fs */
575 static struct {
576         int fs;
577         int ir;
578 } interpolation_ratios[] = {
579         { 32000, 0 },
580         { 44100, 0 },
581         { 48000, 0 },
582         { 88200, 1 },
583         { 96000, 1 },
584         { 176400, 2 },
585         { 192000, 2 },
586 };
587
588 /* MCLK to fs clock ratios */
589 static int mcs_ratio_table[3][6] = {
590         { 768, 512, 384, 256, 128, 576 },
591         { 384, 256, 192, 128,  64,   0 },
592         { 192, 128,  96,  64,  32,   0 },
593 };
594
595 /**
596  * sta350_set_dai_sysclk - configure MCLK
597  * @codec_dai: the codec DAI
598  * @clk_id: the clock ID (ignored)
599  * @freq: the MCLK input frequency
600  * @dir: the clock direction (ignored)
601  *
602  * The value of MCLK is used to determine which sample rates are supported
603  * by the STA350, based on the mcs_ratio_table.
604  *
605  * This function must be called by the machine driver's 'startup' function,
606  * otherwise the list of supported sample rates will not be available in
607  * time for ALSA.
608  */
609 static int sta350_set_dai_sysclk(struct snd_soc_dai *codec_dai,
610                                  int clk_id, unsigned int freq, int dir)
611 {
612         struct snd_soc_component *component = codec_dai->component;
613         struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
614
615         dev_dbg(component->dev, "mclk=%u\n", freq);
616         sta350->mclk = freq;
617
618         return 0;
619 }
620
621 /**
622  * sta350_set_dai_fmt - configure the codec for the selected audio format
623  * @codec_dai: the codec DAI
624  * @fmt: a SND_SOC_DAIFMT_x value indicating the data format
625  *
626  * This function takes a bitmask of SND_SOC_DAIFMT_x bits and programs the
627  * codec accordingly.
628  */
629 static int sta350_set_dai_fmt(struct snd_soc_dai *codec_dai,
630                               unsigned int fmt)
631 {
632         struct snd_soc_component *component = codec_dai->component;
633         struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
634         unsigned int confb = 0;
635
636         switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
637         case SND_SOC_DAIFMT_CBS_CFS:
638                 break;
639         default:
640                 return -EINVAL;
641         }
642
643         switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
644         case SND_SOC_DAIFMT_I2S:
645         case SND_SOC_DAIFMT_RIGHT_J:
646         case SND_SOC_DAIFMT_LEFT_J:
647                 sta350->format = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
648                 break;
649         default:
650                 return -EINVAL;
651         }
652
653         switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
654         case SND_SOC_DAIFMT_NB_NF:
655                 confb |= STA350_CONFB_C2IM;
656                 break;
657         case SND_SOC_DAIFMT_NB_IF:
658                 confb |= STA350_CONFB_C1IM;
659                 break;
660         default:
661                 return -EINVAL;
662         }
663
664         return regmap_update_bits(sta350->regmap, STA350_CONFB,
665                                   STA350_CONFB_C1IM | STA350_CONFB_C2IM, confb);
666 }
667
668 /**
669  * sta350_hw_params - program the STA350 with the given hardware parameters.
670  * @substream: the audio stream
671  * @params: the hardware parameters to set
672  * @dai: the SOC DAI (ignored)
673  *
674  * This function programs the hardware with the values provided.
675  * Specifically, the sample rate and the data format.
676  */
677 static int sta350_hw_params(struct snd_pcm_substream *substream,
678                             struct snd_pcm_hw_params *params,
679                             struct snd_soc_dai *dai)
680 {
681         struct snd_soc_component *component = dai->component;
682         struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
683         int i, mcs = -EINVAL, ir = -EINVAL;
684         unsigned int confa, confb;
685         unsigned int rate, ratio;
686         int ret;
687
688         if (!sta350->mclk) {
689                 dev_err(component->dev,
690                         "sta350->mclk is unset. Unable to determine ratio\n");
691                 return -EIO;
692         }
693
694         rate = params_rate(params);
695         ratio = sta350->mclk / rate;
696         dev_dbg(component->dev, "rate: %u, ratio: %u\n", rate, ratio);
697
698         for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++) {
699                 if (interpolation_ratios[i].fs == rate) {
700                         ir = interpolation_ratios[i].ir;
701                         break;
702                 }
703         }
704
705         if (ir < 0) {
706                 dev_err(component->dev, "Unsupported samplerate: %u\n", rate);
707                 return -EINVAL;
708         }
709
710         for (i = 0; i < 6; i++) {
711                 if (mcs_ratio_table[ir][i] == ratio) {
712                         mcs = i;
713                         break;
714                 }
715         }
716
717         if (mcs < 0) {
718                 dev_err(component->dev, "Unresolvable ratio: %u\n", ratio);
719                 return -EINVAL;
720         }
721
722         confa = (ir << STA350_CONFA_IR_SHIFT) |
723                 (mcs << STA350_CONFA_MCS_SHIFT);
724         confb = 0;
725
726         switch (params_width(params)) {
727         case 24:
728                 dev_dbg(component->dev, "24bit\n");
729                 fallthrough;
730         case 32:
731                 dev_dbg(component->dev, "24bit or 32bit\n");
732                 switch (sta350->format) {
733                 case SND_SOC_DAIFMT_I2S:
734                         confb |= 0x0;
735                         break;
736                 case SND_SOC_DAIFMT_LEFT_J:
737                         confb |= 0x1;
738                         break;
739                 case SND_SOC_DAIFMT_RIGHT_J:
740                         confb |= 0x2;
741                         break;
742                 }
743
744                 break;
745         case 20:
746                 dev_dbg(component->dev, "20bit\n");
747                 switch (sta350->format) {
748                 case SND_SOC_DAIFMT_I2S:
749                         confb |= 0x4;
750                         break;
751                 case SND_SOC_DAIFMT_LEFT_J:
752                         confb |= 0x5;
753                         break;
754                 case SND_SOC_DAIFMT_RIGHT_J:
755                         confb |= 0x6;
756                         break;
757                 }
758
759                 break;
760         case 18:
761                 dev_dbg(component->dev, "18bit\n");
762                 switch (sta350->format) {
763                 case SND_SOC_DAIFMT_I2S:
764                         confb |= 0x8;
765                         break;
766                 case SND_SOC_DAIFMT_LEFT_J:
767                         confb |= 0x9;
768                         break;
769                 case SND_SOC_DAIFMT_RIGHT_J:
770                         confb |= 0xa;
771                         break;
772                 }
773
774                 break;
775         case 16:
776                 dev_dbg(component->dev, "16bit\n");
777                 switch (sta350->format) {
778                 case SND_SOC_DAIFMT_I2S:
779                         confb |= 0x0;
780                         break;
781                 case SND_SOC_DAIFMT_LEFT_J:
782                         confb |= 0xd;
783                         break;
784                 case SND_SOC_DAIFMT_RIGHT_J:
785                         confb |= 0xe;
786                         break;
787                 }
788
789                 break;
790         default:
791                 return -EINVAL;
792         }
793
794         ret = regmap_update_bits(sta350->regmap, STA350_CONFA,
795                                  STA350_CONFA_MCS_MASK | STA350_CONFA_IR_MASK,
796                                  confa);
797         if (ret < 0)
798                 return ret;
799
800         ret = regmap_update_bits(sta350->regmap, STA350_CONFB,
801                                  STA350_CONFB_SAI_MASK | STA350_CONFB_SAIFB,
802                                  confb);
803         if (ret < 0)
804                 return ret;
805
806         return 0;
807 }
808
809 static int sta350_startup_sequence(struct sta350_priv *sta350)
810 {
811         if (sta350->gpiod_power_down)
812                 gpiod_set_value(sta350->gpiod_power_down, 1);
813
814         if (sta350->gpiod_nreset) {
815                 gpiod_set_value(sta350->gpiod_nreset, 0);
816                 mdelay(1);
817                 gpiod_set_value(sta350->gpiod_nreset, 1);
818                 mdelay(1);
819         }
820
821         return 0;
822 }
823
824 /**
825  * sta350_set_bias_level - DAPM callback
826  * @component: the component device
827  * @level: DAPM power level
828  *
829  * This is called by ALSA to put the component into low power mode
830  * or to wake it up.  If the component is powered off completely
831  * all registers must be restored after power on.
832  */
833 static int sta350_set_bias_level(struct snd_soc_component *component,
834                                  enum snd_soc_bias_level level)
835 {
836         struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
837         int ret;
838
839         dev_dbg(component->dev, "level = %d\n", level);
840         switch (level) {
841         case SND_SOC_BIAS_ON:
842                 break;
843
844         case SND_SOC_BIAS_PREPARE:
845                 /* Full power on */
846                 regmap_update_bits(sta350->regmap, STA350_CONFF,
847                                    STA350_CONFF_PWDN | STA350_CONFF_EAPD,
848                                    STA350_CONFF_PWDN | STA350_CONFF_EAPD);
849                 break;
850
851         case SND_SOC_BIAS_STANDBY:
852                 if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) {
853                         ret = regulator_bulk_enable(
854                                 ARRAY_SIZE(sta350->supplies),
855                                 sta350->supplies);
856                         if (ret < 0) {
857                                 dev_err(component->dev,
858                                         "Failed to enable supplies: %d\n",
859                                         ret);
860                                 return ret;
861                         }
862                         sta350_startup_sequence(sta350);
863                         sta350_cache_sync(component);
864                 }
865
866                 /* Power down */
867                 regmap_update_bits(sta350->regmap, STA350_CONFF,
868                                    STA350_CONFF_PWDN | STA350_CONFF_EAPD,
869                                    0);
870
871                 break;
872
873         case SND_SOC_BIAS_OFF:
874                 /* The chip runs through the power down sequence for us */
875                 regmap_update_bits(sta350->regmap, STA350_CONFF,
876                                    STA350_CONFF_PWDN | STA350_CONFF_EAPD, 0);
877
878                 /* power down: low */
879                 if (sta350->gpiod_power_down)
880                         gpiod_set_value(sta350->gpiod_power_down, 0);
881
882                 if (sta350->gpiod_nreset)
883                         gpiod_set_value(sta350->gpiod_nreset, 0);
884
885                 regulator_bulk_disable(ARRAY_SIZE(sta350->supplies),
886                                        sta350->supplies);
887                 break;
888         }
889         return 0;
890 }
891
892 static const struct snd_soc_dai_ops sta350_dai_ops = {
893         .hw_params      = sta350_hw_params,
894         .set_sysclk     = sta350_set_dai_sysclk,
895         .set_fmt        = sta350_set_dai_fmt,
896 };
897
898 static struct snd_soc_dai_driver sta350_dai = {
899         .name = "sta350-hifi",
900         .playback = {
901                 .stream_name = "Playback",
902                 .channels_min = 2,
903                 .channels_max = 2,
904                 .rates = STA350_RATES,
905                 .formats = STA350_FORMATS,
906         },
907         .ops = &sta350_dai_ops,
908 };
909
910 static int sta350_probe(struct snd_soc_component *component)
911 {
912         struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
913         struct sta350_platform_data *pdata = sta350->pdata;
914         int i, ret = 0, thermal = 0;
915
916         ret = regulator_bulk_enable(ARRAY_SIZE(sta350->supplies),
917                                     sta350->supplies);
918         if (ret < 0) {
919                 dev_err(component->dev, "Failed to enable supplies: %d\n", ret);
920                 return ret;
921         }
922
923         ret = sta350_startup_sequence(sta350);
924         if (ret < 0) {
925                 dev_err(component->dev, "Failed to startup device\n");
926                 return ret;
927         }
928
929         /* CONFA */
930         if (!pdata->thermal_warning_recovery)
931                 thermal |= STA350_CONFA_TWAB;
932         if (!pdata->thermal_warning_adjustment)
933                 thermal |= STA350_CONFA_TWRB;
934         if (!pdata->fault_detect_recovery)
935                 thermal |= STA350_CONFA_FDRB;
936         regmap_update_bits(sta350->regmap, STA350_CONFA,
937                            STA350_CONFA_TWAB | STA350_CONFA_TWRB |
938                            STA350_CONFA_FDRB,
939                            thermal);
940
941         /* CONFC */
942         regmap_update_bits(sta350->regmap, STA350_CONFC,
943                            STA350_CONFC_OM_MASK,
944                            pdata->ffx_power_output_mode
945                                 << STA350_CONFC_OM_SHIFT);
946         regmap_update_bits(sta350->regmap, STA350_CONFC,
947                            STA350_CONFC_CSZ_MASK,
948                            pdata->drop_compensation_ns
949                                 << STA350_CONFC_CSZ_SHIFT);
950         regmap_update_bits(sta350->regmap,
951                            STA350_CONFC,
952                            STA350_CONFC_OCRB,
953                            pdata->oc_warning_adjustment ?
954                                 STA350_CONFC_OCRB : 0);
955
956         /* CONFE */
957         regmap_update_bits(sta350->regmap, STA350_CONFE,
958                            STA350_CONFE_MPCV,
959                            pdata->max_power_use_mpcc ?
960                                 STA350_CONFE_MPCV : 0);
961         regmap_update_bits(sta350->regmap, STA350_CONFE,
962                            STA350_CONFE_MPC,
963                            pdata->max_power_correction ?
964                                 STA350_CONFE_MPC : 0);
965         regmap_update_bits(sta350->regmap, STA350_CONFE,
966                            STA350_CONFE_AME,
967                            pdata->am_reduction_mode ?
968                                 STA350_CONFE_AME : 0);
969         regmap_update_bits(sta350->regmap, STA350_CONFE,
970                            STA350_CONFE_PWMS,
971                            pdata->odd_pwm_speed_mode ?
972                                 STA350_CONFE_PWMS : 0);
973         regmap_update_bits(sta350->regmap, STA350_CONFE,
974                            STA350_CONFE_DCCV,
975                            pdata->distortion_compensation ?
976                                 STA350_CONFE_DCCV : 0);
977         /*  CONFF */
978         regmap_update_bits(sta350->regmap, STA350_CONFF,
979                            STA350_CONFF_IDE,
980                            pdata->invalid_input_detect_mute ?
981                                 STA350_CONFF_IDE : 0);
982         regmap_update_bits(sta350->regmap, STA350_CONFF,
983                            STA350_CONFF_OCFG_MASK,
984                            pdata->output_conf
985                                 << STA350_CONFF_OCFG_SHIFT);
986
987         /* channel to output mapping */
988         regmap_update_bits(sta350->regmap, STA350_C1CFG,
989                            STA350_CxCFG_OM_MASK,
990                            pdata->ch1_output_mapping
991                                 << STA350_CxCFG_OM_SHIFT);
992         regmap_update_bits(sta350->regmap, STA350_C2CFG,
993                            STA350_CxCFG_OM_MASK,
994                            pdata->ch2_output_mapping
995                                 << STA350_CxCFG_OM_SHIFT);
996         regmap_update_bits(sta350->regmap, STA350_C3CFG,
997                            STA350_CxCFG_OM_MASK,
998                            pdata->ch3_output_mapping
999                                 << STA350_CxCFG_OM_SHIFT);
1000
1001         /* miscellaneous registers */
1002         regmap_update_bits(sta350->regmap, STA350_MISC1,
1003                            STA350_MISC1_CPWMEN,
1004                            pdata->activate_mute_output ?
1005                                 STA350_MISC1_CPWMEN : 0);
1006         regmap_update_bits(sta350->regmap, STA350_MISC1,
1007                            STA350_MISC1_BRIDGOFF,
1008                            pdata->bridge_immediate_off ?
1009                                 STA350_MISC1_BRIDGOFF : 0);
1010         regmap_update_bits(sta350->regmap, STA350_MISC1,
1011                            STA350_MISC1_NSHHPEN,
1012                            pdata->noise_shape_dc_cut ?
1013                                 STA350_MISC1_NSHHPEN : 0);
1014         regmap_update_bits(sta350->regmap, STA350_MISC1,
1015                            STA350_MISC1_RPDNEN,
1016                            pdata->powerdown_master_vol ?
1017                                 STA350_MISC1_RPDNEN: 0);
1018
1019         regmap_update_bits(sta350->regmap, STA350_MISC2,
1020                            STA350_MISC2_PNDLSL_MASK,
1021                            pdata->powerdown_delay_divider
1022                                 << STA350_MISC2_PNDLSL_SHIFT);
1023
1024         /* initialize coefficient shadow RAM with reset values */
1025         for (i = 4; i <= 49; i += 5)
1026                 sta350->coef_shadow[i] = 0x400000;
1027         for (i = 50; i <= 54; i++)
1028                 sta350->coef_shadow[i] = 0x7fffff;
1029         sta350->coef_shadow[55] = 0x5a9df7;
1030         sta350->coef_shadow[56] = 0x7fffff;
1031         sta350->coef_shadow[59] = 0x7fffff;
1032         sta350->coef_shadow[60] = 0x400000;
1033         sta350->coef_shadow[61] = 0x400000;
1034
1035         snd_soc_component_force_bias_level(component, SND_SOC_BIAS_STANDBY);
1036         /* Bias level configuration will have done an extra enable */
1037         regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), sta350->supplies);
1038
1039         return 0;
1040 }
1041
1042 static void sta350_remove(struct snd_soc_component *component)
1043 {
1044         struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
1045
1046         regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), sta350->supplies);
1047 }
1048
1049 static const struct snd_soc_component_driver sta350_component = {
1050         .probe                  = sta350_probe,
1051         .remove                 = sta350_remove,
1052         .set_bias_level         = sta350_set_bias_level,
1053         .controls               = sta350_snd_controls,
1054         .num_controls           = ARRAY_SIZE(sta350_snd_controls),
1055         .dapm_widgets           = sta350_dapm_widgets,
1056         .num_dapm_widgets       = ARRAY_SIZE(sta350_dapm_widgets),
1057         .dapm_routes            = sta350_dapm_routes,
1058         .num_dapm_routes        = ARRAY_SIZE(sta350_dapm_routes),
1059         .suspend_bias_off       = 1,
1060         .idle_bias_on           = 1,
1061         .use_pmdown_time        = 1,
1062         .endianness             = 1,
1063         .non_legacy_dai_naming  = 1,
1064 };
1065
1066 static const struct regmap_config sta350_regmap = {
1067         .reg_bits =             8,
1068         .val_bits =             8,
1069         .max_register =         STA350_MISC2,
1070         .reg_defaults =         sta350_regs,
1071         .num_reg_defaults =     ARRAY_SIZE(sta350_regs),
1072         .cache_type =           REGCACHE_RBTREE,
1073         .wr_table =             &sta350_write_regs,
1074         .rd_table =             &sta350_read_regs,
1075         .volatile_table =       &sta350_volatile_regs,
1076 };
1077
1078 #ifdef CONFIG_OF
1079 static const struct of_device_id st350_dt_ids[] = {
1080         { .compatible = "st,sta350", },
1081         { }
1082 };
1083 MODULE_DEVICE_TABLE(of, st350_dt_ids);
1084
1085 static const char * const sta350_ffx_modes[] = {
1086         [STA350_FFX_PM_DROP_COMP]               = "drop-compensation",
1087         [STA350_FFX_PM_TAPERED_COMP]            = "tapered-compensation",
1088         [STA350_FFX_PM_FULL_POWER]              = "full-power-mode",
1089         [STA350_FFX_PM_VARIABLE_DROP_COMP]      = "variable-drop-compensation",
1090 };
1091
1092 static int sta350_probe_dt(struct device *dev, struct sta350_priv *sta350)
1093 {
1094         struct device_node *np = dev->of_node;
1095         struct sta350_platform_data *pdata;
1096         const char *ffx_power_mode;
1097         u16 tmp;
1098         u8 tmp8;
1099
1100         pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1101         if (!pdata)
1102                 return -ENOMEM;
1103
1104         of_property_read_u8(np, "st,output-conf",
1105                             &pdata->output_conf);
1106         of_property_read_u8(np, "st,ch1-output-mapping",
1107                             &pdata->ch1_output_mapping);
1108         of_property_read_u8(np, "st,ch2-output-mapping",
1109                             &pdata->ch2_output_mapping);
1110         of_property_read_u8(np, "st,ch3-output-mapping",
1111                             &pdata->ch3_output_mapping);
1112
1113         if (of_get_property(np, "st,thermal-warning-recovery", NULL))
1114                 pdata->thermal_warning_recovery = 1;
1115         if (of_get_property(np, "st,thermal-warning-adjustment", NULL))
1116                 pdata->thermal_warning_adjustment = 1;
1117         if (of_get_property(np, "st,fault-detect-recovery", NULL))
1118                 pdata->fault_detect_recovery = 1;
1119
1120         pdata->ffx_power_output_mode = STA350_FFX_PM_VARIABLE_DROP_COMP;
1121         if (!of_property_read_string(np, "st,ffx-power-output-mode",
1122                                      &ffx_power_mode)) {
1123                 int i, mode = -EINVAL;
1124
1125                 for (i = 0; i < ARRAY_SIZE(sta350_ffx_modes); i++)
1126                         if (!strcasecmp(ffx_power_mode, sta350_ffx_modes[i]))
1127                                 mode = i;
1128
1129                 if (mode < 0)
1130                         dev_warn(dev, "Unsupported ffx output mode: %s\n",
1131                                  ffx_power_mode);
1132                 else
1133                         pdata->ffx_power_output_mode = mode;
1134         }
1135
1136         tmp = 140;
1137         of_property_read_u16(np, "st,drop-compensation-ns", &tmp);
1138         pdata->drop_compensation_ns = clamp_t(u16, tmp, 0, 300) / 20;
1139
1140         if (of_get_property(np, "st,overcurrent-warning-adjustment", NULL))
1141                 pdata->oc_warning_adjustment = 1;
1142
1143         /* CONFE */
1144         if (of_get_property(np, "st,max-power-use-mpcc", NULL))
1145                 pdata->max_power_use_mpcc = 1;
1146
1147         if (of_get_property(np, "st,max-power-correction", NULL))
1148                 pdata->max_power_correction = 1;
1149
1150         if (of_get_property(np, "st,am-reduction-mode", NULL))
1151                 pdata->am_reduction_mode = 1;
1152
1153         if (of_get_property(np, "st,odd-pwm-speed-mode", NULL))
1154                 pdata->odd_pwm_speed_mode = 1;
1155
1156         if (of_get_property(np, "st,distortion-compensation", NULL))
1157                 pdata->distortion_compensation = 1;
1158
1159         /* CONFF */
1160         if (of_get_property(np, "st,invalid-input-detect-mute", NULL))
1161                 pdata->invalid_input_detect_mute = 1;
1162
1163         /* MISC */
1164         if (of_get_property(np, "st,activate-mute-output", NULL))
1165                 pdata->activate_mute_output = 1;
1166
1167         if (of_get_property(np, "st,bridge-immediate-off", NULL))
1168                 pdata->bridge_immediate_off = 1;
1169
1170         if (of_get_property(np, "st,noise-shape-dc-cut", NULL))
1171                 pdata->noise_shape_dc_cut = 1;
1172
1173         if (of_get_property(np, "st,powerdown-master-volume", NULL))
1174                 pdata->powerdown_master_vol = 1;
1175
1176         if (!of_property_read_u8(np, "st,powerdown-delay-divider", &tmp8)) {
1177                 if (is_power_of_2(tmp8) && tmp8 >= 1 && tmp8 <= 128)
1178                         pdata->powerdown_delay_divider = ilog2(tmp8);
1179                 else
1180                         dev_warn(dev, "Unsupported powerdown delay divider %d\n",
1181                                  tmp8);
1182         }
1183
1184         sta350->pdata = pdata;
1185
1186         return 0;
1187 }
1188 #endif
1189
1190 static int sta350_i2c_probe(struct i2c_client *i2c,
1191                             const struct i2c_device_id *id)
1192 {
1193         struct device *dev = &i2c->dev;
1194         struct sta350_priv *sta350;
1195         int ret, i;
1196
1197         sta350 = devm_kzalloc(dev, sizeof(struct sta350_priv), GFP_KERNEL);
1198         if (!sta350)
1199                 return -ENOMEM;
1200
1201         mutex_init(&sta350->coeff_lock);
1202         sta350->pdata = dev_get_platdata(dev);
1203
1204 #ifdef CONFIG_OF
1205         if (dev->of_node) {
1206                 ret = sta350_probe_dt(dev, sta350);
1207                 if (ret < 0)
1208                         return ret;
1209         }
1210 #endif
1211
1212         /* GPIOs */
1213         sta350->gpiod_nreset = devm_gpiod_get_optional(dev, "reset",
1214                                                        GPIOD_OUT_LOW);
1215         if (IS_ERR(sta350->gpiod_nreset))
1216                 return PTR_ERR(sta350->gpiod_nreset);
1217
1218         sta350->gpiod_power_down = devm_gpiod_get_optional(dev, "power-down",
1219                                                            GPIOD_OUT_LOW);
1220         if (IS_ERR(sta350->gpiod_power_down))
1221                 return PTR_ERR(sta350->gpiod_power_down);
1222
1223         /* regulators */
1224         for (i = 0; i < ARRAY_SIZE(sta350->supplies); i++)
1225                 sta350->supplies[i].supply = sta350_supply_names[i];
1226
1227         ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(sta350->supplies),
1228                                       sta350->supplies);
1229         if (ret < 0) {
1230                 dev_err(dev, "Failed to request supplies: %d\n", ret);
1231                 return ret;
1232         }
1233
1234         sta350->regmap = devm_regmap_init_i2c(i2c, &sta350_regmap);
1235         if (IS_ERR(sta350->regmap)) {
1236                 ret = PTR_ERR(sta350->regmap);
1237                 dev_err(dev, "Failed to init regmap: %d\n", ret);
1238                 return ret;
1239         }
1240
1241         i2c_set_clientdata(i2c, sta350);
1242
1243         ret = devm_snd_soc_register_component(dev, &sta350_component, &sta350_dai, 1);
1244         if (ret < 0)
1245                 dev_err(dev, "Failed to register component (%d)\n", ret);
1246
1247         return ret;
1248 }
1249
1250 static int sta350_i2c_remove(struct i2c_client *client)
1251 {
1252         return 0;
1253 }
1254
1255 static const struct i2c_device_id sta350_i2c_id[] = {
1256         { "sta350", 0 },
1257         { }
1258 };
1259 MODULE_DEVICE_TABLE(i2c, sta350_i2c_id);
1260
1261 static struct i2c_driver sta350_i2c_driver = {
1262         .driver = {
1263                 .name = "sta350",
1264                 .of_match_table = of_match_ptr(st350_dt_ids),
1265         },
1266         .probe =    sta350_i2c_probe,
1267         .remove =   sta350_i2c_remove,
1268         .id_table = sta350_i2c_id,
1269 };
1270
1271 module_i2c_driver(sta350_i2c_driver);
1272
1273 MODULE_DESCRIPTION("ASoC STA350 driver");
1274 MODULE_AUTHOR("Sven Brandau <info@brandau.biz>");
1275 MODULE_LICENSE("GPL");