serial: 8250_exar: Avoid NULL pointer dereference at ->exit()
[linux-2.6-microblaze.git] / sound / pci / ctxfi / ctvmem.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved.
4  *
5  * @File    ctvmem.c
6  *
7  * @Brief
8  * This file contains the implementation of virtual memory management object
9  * for card device.
10  *
11  * @Author Liu Chun
12  * @Date Apr 1 2008
13  */
14
15 #include "ctvmem.h"
16 #include "ctatc.h"
17 #include <linux/slab.h>
18 #include <linux/mm.h>
19 #include <linux/io.h>
20 #include <sound/pcm.h>
21
22 #define CT_PTES_PER_PAGE (CT_PAGE_SIZE / sizeof(void *))
23 #define CT_ADDRS_PER_PAGE (CT_PTES_PER_PAGE * CT_PAGE_SIZE)
24
25 /* *
26  * Find or create vm block based on requested @size.
27  * @size must be page aligned.
28  * */
29 static struct ct_vm_block *
30 get_vm_block(struct ct_vm *vm, unsigned int size, struct ct_atc *atc)
31 {
32         struct ct_vm_block *block = NULL, *entry;
33         struct list_head *pos;
34
35         size = CT_PAGE_ALIGN(size);
36         if (size > vm->size) {
37                 dev_err(atc->card->dev,
38                         "Fail! No sufficient device virtual memory space available!\n");
39                 return NULL;
40         }
41
42         mutex_lock(&vm->lock);
43         list_for_each(pos, &vm->unused) {
44                 entry = list_entry(pos, struct ct_vm_block, list);
45                 if (entry->size >= size)
46                         break; /* found a block that is big enough */
47         }
48         if (pos == &vm->unused)
49                 goto out;
50
51         if (entry->size == size) {
52                 /* Move the vm node from unused list to used list directly */
53                 list_move(&entry->list, &vm->used);
54                 vm->size -= size;
55                 block = entry;
56                 goto out;
57         }
58
59         block = kzalloc(sizeof(*block), GFP_KERNEL);
60         if (!block)
61                 goto out;
62
63         block->addr = entry->addr;
64         block->size = size;
65         list_add(&block->list, &vm->used);
66         entry->addr += size;
67         entry->size -= size;
68         vm->size -= size;
69
70  out:
71         mutex_unlock(&vm->lock);
72         return block;
73 }
74
75 static void put_vm_block(struct ct_vm *vm, struct ct_vm_block *block)
76 {
77         struct ct_vm_block *entry, *pre_ent;
78         struct list_head *pos, *pre;
79
80         block->size = CT_PAGE_ALIGN(block->size);
81
82         mutex_lock(&vm->lock);
83         list_del(&block->list);
84         vm->size += block->size;
85
86         list_for_each(pos, &vm->unused) {
87                 entry = list_entry(pos, struct ct_vm_block, list);
88                 if (entry->addr >= (block->addr + block->size))
89                         break; /* found a position */
90         }
91         if (pos == &vm->unused) {
92                 list_add_tail(&block->list, &vm->unused);
93                 entry = block;
94         } else {
95                 if ((block->addr + block->size) == entry->addr) {
96                         entry->addr = block->addr;
97                         entry->size += block->size;
98                         kfree(block);
99                 } else {
100                         __list_add(&block->list, pos->prev, pos);
101                         entry = block;
102                 }
103         }
104
105         pos = &entry->list;
106         pre = pos->prev;
107         while (pre != &vm->unused) {
108                 entry = list_entry(pos, struct ct_vm_block, list);
109                 pre_ent = list_entry(pre, struct ct_vm_block, list);
110                 if ((pre_ent->addr + pre_ent->size) > entry->addr)
111                         break;
112
113                 pre_ent->size += entry->size;
114                 list_del(pos);
115                 kfree(entry);
116                 pos = pre;
117                 pre = pos->prev;
118         }
119         mutex_unlock(&vm->lock);
120 }
121
122 /* Map host addr (kmalloced/vmalloced) to device logical addr. */
123 static struct ct_vm_block *
124 ct_vm_map(struct ct_vm *vm, struct snd_pcm_substream *substream, int size)
125 {
126         struct ct_vm_block *block;
127         unsigned int pte_start;
128         unsigned i, pages;
129         unsigned long *ptp;
130         struct ct_atc *atc = snd_pcm_substream_chip(substream);
131
132         block = get_vm_block(vm, size, atc);
133         if (block == NULL) {
134                 dev_err(atc->card->dev,
135                         "No virtual memory block that is big enough to allocate!\n");
136                 return NULL;
137         }
138
139         ptp = (unsigned long *)vm->ptp[0].area;
140         pte_start = (block->addr >> CT_PAGE_SHIFT);
141         pages = block->size >> CT_PAGE_SHIFT;
142         for (i = 0; i < pages; i++) {
143                 unsigned long addr;
144                 addr = snd_pcm_sgbuf_get_addr(substream, i << CT_PAGE_SHIFT);
145                 ptp[pte_start + i] = addr;
146         }
147
148         block->size = size;
149         return block;
150 }
151
152 static void ct_vm_unmap(struct ct_vm *vm, struct ct_vm_block *block)
153 {
154         /* do unmapping */
155         put_vm_block(vm, block);
156 }
157
158 /* *
159  * return the host physical addr of the @index-th device
160  * page table page on success, or ~0UL on failure.
161  * The first returned ~0UL indicates the termination.
162  * */
163 static dma_addr_t
164 ct_get_ptp_phys(struct ct_vm *vm, int index)
165 {
166         return (index >= CT_PTP_NUM) ? ~0UL : vm->ptp[index].addr;
167 }
168
169 int ct_vm_create(struct ct_vm **rvm, struct pci_dev *pci)
170 {
171         struct ct_vm *vm;
172         struct ct_vm_block *block;
173         int i, err = 0;
174
175         *rvm = NULL;
176
177         vm = kzalloc(sizeof(*vm), GFP_KERNEL);
178         if (!vm)
179                 return -ENOMEM;
180
181         mutex_init(&vm->lock);
182
183         /* Allocate page table pages */
184         for (i = 0; i < CT_PTP_NUM; i++) {
185                 err = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV,
186                                           &pci->dev,
187                                           PAGE_SIZE, &vm->ptp[i]);
188                 if (err < 0)
189                         break;
190         }
191         if (err < 0) {
192                 /* no page table pages are allocated */
193                 ct_vm_destroy(vm);
194                 return -ENOMEM;
195         }
196         vm->size = CT_ADDRS_PER_PAGE * i;
197         vm->map = ct_vm_map;
198         vm->unmap = ct_vm_unmap;
199         vm->get_ptp_phys = ct_get_ptp_phys;
200         INIT_LIST_HEAD(&vm->unused);
201         INIT_LIST_HEAD(&vm->used);
202         block = kzalloc(sizeof(*block), GFP_KERNEL);
203         if (NULL != block) {
204                 block->addr = 0;
205                 block->size = vm->size;
206                 list_add(&block->list, &vm->unused);
207         }
208
209         *rvm = vm;
210         return 0;
211 }
212
213 /* The caller must ensure no mapping pages are being used
214  * by hardware before calling this function */
215 void ct_vm_destroy(struct ct_vm *vm)
216 {
217         int i;
218         struct list_head *pos;
219         struct ct_vm_block *entry;
220
221         /* free used and unused list nodes */
222         while (!list_empty(&vm->used)) {
223                 pos = vm->used.next;
224                 list_del(pos);
225                 entry = list_entry(pos, struct ct_vm_block, list);
226                 kfree(entry);
227         }
228         while (!list_empty(&vm->unused)) {
229                 pos = vm->unused.next;
230                 list_del(pos);
231                 entry = list_entry(pos, struct ct_vm_block, list);
232                 kfree(entry);
233         }
234
235         /* free allocated page table pages */
236         for (i = 0; i < CT_PTP_NUM; i++)
237                 snd_dma_free_pages(&vm->ptp[i]);
238
239         vm->size = 0;
240
241         kfree(vm);
242 }