net: ethtool: add missing string for NETIF_F_GSO_TUNNEL_REMCSUM
[linux-2.6-microblaze.git] / sound / mips / hal2.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Driver for A2 audio system used in SGI machines
4  *  Copyright (c) 2008 Thomas Bogendoerfer <tsbogend@alpha.fanken.de>
5  *
6  *  Based on OSS code from Ladislav Michl <ladis@linux-mips.org>, which
7  *  was based on code from Ulf Carlsson
8  */
9 #include <linux/kernel.h>
10 #include <linux/init.h>
11 #include <linux/interrupt.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/platform_device.h>
14 #include <linux/io.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17
18 #include <asm/sgi/hpc3.h>
19 #include <asm/sgi/ip22.h>
20
21 #include <sound/core.h>
22 #include <sound/control.h>
23 #include <sound/pcm.h>
24 #include <sound/pcm-indirect.h>
25 #include <sound/initval.h>
26
27 #include "hal2.h"
28
29 static int index = SNDRV_DEFAULT_IDX1;  /* Index 0-MAX */
30 static char *id = SNDRV_DEFAULT_STR1;   /* ID for this card */
31
32 module_param(index, int, 0444);
33 MODULE_PARM_DESC(index, "Index value for SGI HAL2 soundcard.");
34 module_param(id, charp, 0444);
35 MODULE_PARM_DESC(id, "ID string for SGI HAL2 soundcard.");
36 MODULE_DESCRIPTION("ALSA driver for SGI HAL2 audio");
37 MODULE_AUTHOR("Thomas Bogendoerfer");
38 MODULE_LICENSE("GPL");
39
40
41 #define H2_BLOCK_SIZE   1024
42 #define H2_BUF_SIZE     16384
43
44 struct hal2_pbus {
45         struct hpc3_pbus_dmacregs *pbus;
46         int pbusnr;
47         unsigned int ctrl;              /* Current state of pbus->pbdma_ctrl */
48 };
49
50 struct hal2_desc {
51         struct hpc_dma_desc desc;
52         u32 pad;                        /* padding */
53 };
54
55 struct hal2_codec {
56         struct snd_pcm_indirect pcm_indirect;
57         struct snd_pcm_substream *substream;
58
59         unsigned char *buffer;
60         dma_addr_t buffer_dma;
61         struct hal2_desc *desc;
62         dma_addr_t desc_dma;
63         int desc_count;
64         struct hal2_pbus pbus;
65         int voices;                     /* mono/stereo */
66         unsigned int sample_rate;
67         unsigned int master;            /* Master frequency */
68         unsigned short mod;             /* MOD value */
69         unsigned short inc;             /* INC value */
70 };
71
72 #define H2_MIX_OUTPUT_ATT       0
73 #define H2_MIX_INPUT_GAIN       1
74
75 struct snd_hal2 {
76         struct snd_card *card;
77
78         struct hal2_ctl_regs *ctl_regs; /* HAL2 ctl registers */
79         struct hal2_aes_regs *aes_regs; /* HAL2 aes registers */
80         struct hal2_vol_regs *vol_regs; /* HAL2 vol registers */
81         struct hal2_syn_regs *syn_regs; /* HAL2 syn registers */
82
83         struct hal2_codec dac;
84         struct hal2_codec adc;
85 };
86
87 #define H2_INDIRECT_WAIT(regs)  while (hal2_read(&regs->isr) & H2_ISR_TSTATUS);
88
89 #define H2_READ_ADDR(addr)      (addr | (1<<7))
90 #define H2_WRITE_ADDR(addr)     (addr)
91
92 static inline u32 hal2_read(u32 *reg)
93 {
94         return __raw_readl(reg);
95 }
96
97 static inline void hal2_write(u32 val, u32 *reg)
98 {
99         __raw_writel(val, reg);
100 }
101
102
103 static u32 hal2_i_read32(struct snd_hal2 *hal2, u16 addr)
104 {
105         u32 ret;
106         struct hal2_ctl_regs *regs = hal2->ctl_regs;
107
108         hal2_write(H2_READ_ADDR(addr), &regs->iar);
109         H2_INDIRECT_WAIT(regs);
110         ret = hal2_read(&regs->idr0) & 0xffff;
111         hal2_write(H2_READ_ADDR(addr) | 0x1, &regs->iar);
112         H2_INDIRECT_WAIT(regs);
113         ret |= (hal2_read(&regs->idr0) & 0xffff) << 16;
114         return ret;
115 }
116
117 static void hal2_i_write16(struct snd_hal2 *hal2, u16 addr, u16 val)
118 {
119         struct hal2_ctl_regs *regs = hal2->ctl_regs;
120
121         hal2_write(val, &regs->idr0);
122         hal2_write(0, &regs->idr1);
123         hal2_write(0, &regs->idr2);
124         hal2_write(0, &regs->idr3);
125         hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
126         H2_INDIRECT_WAIT(regs);
127 }
128
129 static void hal2_i_write32(struct snd_hal2 *hal2, u16 addr, u32 val)
130 {
131         struct hal2_ctl_regs *regs = hal2->ctl_regs;
132
133         hal2_write(val & 0xffff, &regs->idr0);
134         hal2_write(val >> 16, &regs->idr1);
135         hal2_write(0, &regs->idr2);
136         hal2_write(0, &regs->idr3);
137         hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
138         H2_INDIRECT_WAIT(regs);
139 }
140
141 static void hal2_i_setbit16(struct snd_hal2 *hal2, u16 addr, u16 bit)
142 {
143         struct hal2_ctl_regs *regs = hal2->ctl_regs;
144
145         hal2_write(H2_READ_ADDR(addr), &regs->iar);
146         H2_INDIRECT_WAIT(regs);
147         hal2_write((hal2_read(&regs->idr0) & 0xffff) | bit, &regs->idr0);
148         hal2_write(0, &regs->idr1);
149         hal2_write(0, &regs->idr2);
150         hal2_write(0, &regs->idr3);
151         hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
152         H2_INDIRECT_WAIT(regs);
153 }
154
155 static void hal2_i_clearbit16(struct snd_hal2 *hal2, u16 addr, u16 bit)
156 {
157         struct hal2_ctl_regs *regs = hal2->ctl_regs;
158
159         hal2_write(H2_READ_ADDR(addr), &regs->iar);
160         H2_INDIRECT_WAIT(regs);
161         hal2_write((hal2_read(&regs->idr0) & 0xffff) & ~bit, &regs->idr0);
162         hal2_write(0, &regs->idr1);
163         hal2_write(0, &regs->idr2);
164         hal2_write(0, &regs->idr3);
165         hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
166         H2_INDIRECT_WAIT(regs);
167 }
168
169 static int hal2_gain_info(struct snd_kcontrol *kcontrol,
170                                struct snd_ctl_elem_info *uinfo)
171 {
172         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
173         uinfo->count = 2;
174         uinfo->value.integer.min = 0;
175         switch ((int)kcontrol->private_value) {
176         case H2_MIX_OUTPUT_ATT:
177                 uinfo->value.integer.max = 31;
178                 break;
179         case H2_MIX_INPUT_GAIN:
180                 uinfo->value.integer.max = 15;
181                 break;
182         }
183         return 0;
184 }
185
186 static int hal2_gain_get(struct snd_kcontrol *kcontrol,
187                                struct snd_ctl_elem_value *ucontrol)
188 {
189         struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol);
190         u32 tmp;
191         int l, r;
192
193         switch ((int)kcontrol->private_value) {
194         case H2_MIX_OUTPUT_ATT:
195                 tmp = hal2_i_read32(hal2, H2I_DAC_C2);
196                 if (tmp & H2I_C2_MUTE) {
197                         l = 0;
198                         r = 0;
199                 } else {
200                         l = 31 - ((tmp >> H2I_C2_L_ATT_SHIFT) & 31);
201                         r = 31 - ((tmp >> H2I_C2_R_ATT_SHIFT) & 31);
202                 }
203                 break;
204         case H2_MIX_INPUT_GAIN:
205                 tmp = hal2_i_read32(hal2, H2I_ADC_C2);
206                 l = (tmp >> H2I_C2_L_GAIN_SHIFT) & 15;
207                 r = (tmp >> H2I_C2_R_GAIN_SHIFT) & 15;
208                 break;
209         default:
210                 return -EINVAL;
211         }
212         ucontrol->value.integer.value[0] = l;
213         ucontrol->value.integer.value[1] = r;
214
215         return 0;
216 }
217
218 static int hal2_gain_put(struct snd_kcontrol *kcontrol,
219                          struct snd_ctl_elem_value *ucontrol)
220 {
221         struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol);
222         u32 old, new;
223         int l, r;
224
225         l = ucontrol->value.integer.value[0];
226         r = ucontrol->value.integer.value[1];
227
228         switch ((int)kcontrol->private_value) {
229         case H2_MIX_OUTPUT_ATT:
230                 old = hal2_i_read32(hal2, H2I_DAC_C2);
231                 new = old & ~(H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
232                 if (l | r) {
233                         l = 31 - l;
234                         r = 31 - r;
235                         new |= (l << H2I_C2_L_ATT_SHIFT);
236                         new |= (r << H2I_C2_R_ATT_SHIFT);
237                 } else
238                         new |= H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE;
239                 hal2_i_write32(hal2, H2I_DAC_C2, new);
240                 break;
241         case H2_MIX_INPUT_GAIN:
242                 old = hal2_i_read32(hal2, H2I_ADC_C2);
243                 new = old & ~(H2I_C2_L_GAIN_M | H2I_C2_R_GAIN_M);
244                 new |= (l << H2I_C2_L_GAIN_SHIFT);
245                 new |= (r << H2I_C2_R_GAIN_SHIFT);
246                 hal2_i_write32(hal2, H2I_ADC_C2, new);
247                 break;
248         default:
249                 return -EINVAL;
250         }
251         return old != new;
252 }
253
254 static const struct snd_kcontrol_new hal2_ctrl_headphone = {
255         .iface          = SNDRV_CTL_ELEM_IFACE_MIXER,
256         .name           = "Headphone Playback Volume",
257         .access         = SNDRV_CTL_ELEM_ACCESS_READWRITE,
258         .private_value  = H2_MIX_OUTPUT_ATT,
259         .info           = hal2_gain_info,
260         .get            = hal2_gain_get,
261         .put            = hal2_gain_put,
262 };
263
264 static const struct snd_kcontrol_new hal2_ctrl_mic = {
265         .iface          = SNDRV_CTL_ELEM_IFACE_MIXER,
266         .name           = "Mic Capture Volume",
267         .access         = SNDRV_CTL_ELEM_ACCESS_READWRITE,
268         .private_value  = H2_MIX_INPUT_GAIN,
269         .info           = hal2_gain_info,
270         .get            = hal2_gain_get,
271         .put            = hal2_gain_put,
272 };
273
274 static int hal2_mixer_create(struct snd_hal2 *hal2)
275 {
276         int err;
277
278         /* mute DAC */
279         hal2_i_write32(hal2, H2I_DAC_C2,
280                        H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
281         /* mute ADC */
282         hal2_i_write32(hal2, H2I_ADC_C2, 0);
283
284         err = snd_ctl_add(hal2->card,
285                           snd_ctl_new1(&hal2_ctrl_headphone, hal2));
286         if (err < 0)
287                 return err;
288
289         err = snd_ctl_add(hal2->card,
290                           snd_ctl_new1(&hal2_ctrl_mic, hal2));
291         if (err < 0)
292                 return err;
293
294         return 0;
295 }
296
297 static irqreturn_t hal2_interrupt(int irq, void *dev_id)
298 {
299         struct snd_hal2 *hal2 = dev_id;
300         irqreturn_t ret = IRQ_NONE;
301
302         /* decide what caused this interrupt */
303         if (hal2->dac.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
304                 snd_pcm_period_elapsed(hal2->dac.substream);
305                 ret = IRQ_HANDLED;
306         }
307         if (hal2->adc.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
308                 snd_pcm_period_elapsed(hal2->adc.substream);
309                 ret = IRQ_HANDLED;
310         }
311         return ret;
312 }
313
314 static int hal2_compute_rate(struct hal2_codec *codec, unsigned int rate)
315 {
316         unsigned short mod;
317
318         if (44100 % rate < 48000 % rate) {
319                 mod = 4 * 44100 / rate;
320                 codec->master = 44100;
321         } else {
322                 mod = 4 * 48000 / rate;
323                 codec->master = 48000;
324         }
325
326         codec->inc = 4;
327         codec->mod = mod;
328         rate = 4 * codec->master / mod;
329
330         return rate;
331 }
332
333 static void hal2_set_dac_rate(struct snd_hal2 *hal2)
334 {
335         unsigned int master = hal2->dac.master;
336         int inc = hal2->dac.inc;
337         int mod = hal2->dac.mod;
338
339         hal2_i_write16(hal2, H2I_BRES1_C1, (master == 44100) ? 1 : 0);
340         hal2_i_write32(hal2, H2I_BRES1_C2,
341                        ((0xffff & (inc - mod - 1)) << 16) | inc);
342 }
343
344 static void hal2_set_adc_rate(struct snd_hal2 *hal2)
345 {
346         unsigned int master = hal2->adc.master;
347         int inc = hal2->adc.inc;
348         int mod = hal2->adc.mod;
349
350         hal2_i_write16(hal2, H2I_BRES2_C1, (master == 44100) ? 1 : 0);
351         hal2_i_write32(hal2, H2I_BRES2_C2,
352                        ((0xffff & (inc - mod - 1)) << 16) | inc);
353 }
354
355 static void hal2_setup_dac(struct snd_hal2 *hal2)
356 {
357         unsigned int fifobeg, fifoend, highwater, sample_size;
358         struct hal2_pbus *pbus = &hal2->dac.pbus;
359
360         /* Now we set up some PBUS information. The PBUS needs information about
361          * what portion of the fifo it will use. If it's receiving or
362          * transmitting, and finally whether the stream is little endian or big
363          * endian. The information is written later, on the start call.
364          */
365         sample_size = 2 * hal2->dac.voices;
366         /* Fifo should be set to hold exactly four samples. Highwater mark
367          * should be set to two samples. */
368         highwater = (sample_size * 2) >> 1;     /* halfwords */
369         fifobeg = 0;                            /* playback is first */
370         fifoend = (sample_size * 4) >> 3;       /* doublewords */
371         pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_LD |
372                      (highwater << 8) | (fifobeg << 16) | (fifoend << 24);
373         /* We disable everything before we do anything at all */
374         pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
375         hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
376         /* Setup the HAL2 for playback */
377         hal2_set_dac_rate(hal2);
378         /* Set endianess */
379         hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECTX);
380         /* Set DMA bus */
381         hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
382         /* We are using 1st Bresenham clock generator for playback */
383         hal2_i_write16(hal2, H2I_DAC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
384                         | (1 << H2I_C1_CLKID_SHIFT)
385                         | (hal2->dac.voices << H2I_C1_DATAT_SHIFT));
386 }
387
388 static void hal2_setup_adc(struct snd_hal2 *hal2)
389 {
390         unsigned int fifobeg, fifoend, highwater, sample_size;
391         struct hal2_pbus *pbus = &hal2->adc.pbus;
392
393         sample_size = 2 * hal2->adc.voices;
394         highwater = (sample_size * 2) >> 1;             /* halfwords */
395         fifobeg = (4 * 4) >> 3;                         /* record is second */
396         fifoend = (4 * 4 + sample_size * 4) >> 3;       /* doublewords */
397         pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_RCV | HPC3_PDMACTRL_LD |
398                      (highwater << 8) | (fifobeg << 16) | (fifoend << 24);
399         pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
400         hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
401         /* Setup the HAL2 for record */
402         hal2_set_adc_rate(hal2);
403         /* Set endianess */
404         hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECR);
405         /* Set DMA bus */
406         hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
407         /* We are using 2nd Bresenham clock generator for record */
408         hal2_i_write16(hal2, H2I_ADC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
409                         | (2 << H2I_C1_CLKID_SHIFT)
410                         | (hal2->adc.voices << H2I_C1_DATAT_SHIFT));
411 }
412
413 static void hal2_start_dac(struct snd_hal2 *hal2)
414 {
415         struct hal2_pbus *pbus = &hal2->dac.pbus;
416
417         pbus->pbus->pbdma_dptr = hal2->dac.desc_dma;
418         pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
419         /* enable DAC */
420         hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
421 }
422
423 static void hal2_start_adc(struct snd_hal2 *hal2)
424 {
425         struct hal2_pbus *pbus = &hal2->adc.pbus;
426
427         pbus->pbus->pbdma_dptr = hal2->adc.desc_dma;
428         pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
429         /* enable ADC */
430         hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
431 }
432
433 static inline void hal2_stop_dac(struct snd_hal2 *hal2)
434 {
435         hal2->dac.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
436         /* The HAL2 itself may remain enabled safely */
437 }
438
439 static inline void hal2_stop_adc(struct snd_hal2 *hal2)
440 {
441         hal2->adc.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
442 }
443
444 static int hal2_alloc_dmabuf(struct snd_hal2 *hal2, struct hal2_codec *codec)
445 {
446         struct device *dev = hal2->card->dev;
447         struct hal2_desc *desc;
448         dma_addr_t desc_dma, buffer_dma;
449         int count = H2_BUF_SIZE / H2_BLOCK_SIZE;
450         int i;
451
452         codec->buffer = dma_alloc_attrs(dev, H2_BUF_SIZE, &buffer_dma,
453                                         GFP_KERNEL, DMA_ATTR_NON_CONSISTENT);
454         if (!codec->buffer)
455                 return -ENOMEM;
456         desc = dma_alloc_attrs(dev, count * sizeof(struct hal2_desc),
457                                &desc_dma, GFP_KERNEL, DMA_ATTR_NON_CONSISTENT);
458         if (!desc) {
459                 dma_free_attrs(dev, H2_BUF_SIZE, codec->buffer, buffer_dma,
460                                DMA_ATTR_NON_CONSISTENT);
461                 return -ENOMEM;
462         }
463         codec->buffer_dma = buffer_dma;
464         codec->desc_dma = desc_dma;
465         codec->desc = desc;
466         for (i = 0; i < count; i++) {
467                 desc->desc.pbuf = buffer_dma + i * H2_BLOCK_SIZE;
468                 desc->desc.cntinfo = HPCDMA_XIE | H2_BLOCK_SIZE;
469                 desc->desc.pnext = (i == count - 1) ?
470                       desc_dma : desc_dma + (i + 1) * sizeof(struct hal2_desc);
471                 desc++;
472         }
473         dma_cache_sync(dev, codec->desc, count * sizeof(struct hal2_desc),
474                        DMA_TO_DEVICE);
475         codec->desc_count = count;
476         return 0;
477 }
478
479 static void hal2_free_dmabuf(struct snd_hal2 *hal2, struct hal2_codec *codec)
480 {
481         struct device *dev = hal2->card->dev;
482
483         dma_free_attrs(dev, codec->desc_count * sizeof(struct hal2_desc),
484                        codec->desc, codec->desc_dma, DMA_ATTR_NON_CONSISTENT);
485         dma_free_attrs(dev, H2_BUF_SIZE, codec->buffer, codec->buffer_dma,
486                        DMA_ATTR_NON_CONSISTENT);
487 }
488
489 static const struct snd_pcm_hardware hal2_pcm_hw = {
490         .info = (SNDRV_PCM_INFO_MMAP |
491                  SNDRV_PCM_INFO_MMAP_VALID |
492                  SNDRV_PCM_INFO_INTERLEAVED |
493                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
494                  SNDRV_PCM_INFO_SYNC_APPLPTR),
495         .formats =          SNDRV_PCM_FMTBIT_S16_BE,
496         .rates =            SNDRV_PCM_RATE_8000_48000,
497         .rate_min =         8000,
498         .rate_max =         48000,
499         .channels_min =     2,
500         .channels_max =     2,
501         .buffer_bytes_max = 65536,
502         .period_bytes_min = 1024,
503         .period_bytes_max = 65536,
504         .periods_min =      2,
505         .periods_max =      1024,
506 };
507
508 static int hal2_playback_open(struct snd_pcm_substream *substream)
509 {
510         struct snd_pcm_runtime *runtime = substream->runtime;
511         struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
512         int err;
513
514         runtime->hw = hal2_pcm_hw;
515
516         err = hal2_alloc_dmabuf(hal2, &hal2->dac);
517         if (err)
518                 return err;
519         return 0;
520 }
521
522 static int hal2_playback_close(struct snd_pcm_substream *substream)
523 {
524         struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
525
526         hal2_free_dmabuf(hal2, &hal2->dac);
527         return 0;
528 }
529
530 static int hal2_playback_prepare(struct snd_pcm_substream *substream)
531 {
532         struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
533         struct snd_pcm_runtime *runtime = substream->runtime;
534         struct hal2_codec *dac = &hal2->dac;
535
536         dac->voices = runtime->channels;
537         dac->sample_rate = hal2_compute_rate(dac, runtime->rate);
538         memset(&dac->pcm_indirect, 0, sizeof(dac->pcm_indirect));
539         dac->pcm_indirect.hw_buffer_size = H2_BUF_SIZE;
540         dac->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2;
541         dac->pcm_indirect.hw_io = dac->buffer_dma;
542         dac->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
543         dac->substream = substream;
544         hal2_setup_dac(hal2);
545         return 0;
546 }
547
548 static int hal2_playback_trigger(struct snd_pcm_substream *substream, int cmd)
549 {
550         struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
551
552         switch (cmd) {
553         case SNDRV_PCM_TRIGGER_START:
554                 hal2_start_dac(hal2);
555                 break;
556         case SNDRV_PCM_TRIGGER_STOP:
557                 hal2_stop_dac(hal2);
558                 break;
559         default:
560                 return -EINVAL;
561         }
562         return 0;
563 }
564
565 static snd_pcm_uframes_t
566 hal2_playback_pointer(struct snd_pcm_substream *substream)
567 {
568         struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
569         struct hal2_codec *dac = &hal2->dac;
570
571         return snd_pcm_indirect_playback_pointer(substream, &dac->pcm_indirect,
572                                                  dac->pbus.pbus->pbdma_bptr);
573 }
574
575 static void hal2_playback_transfer(struct snd_pcm_substream *substream,
576                                    struct snd_pcm_indirect *rec, size_t bytes)
577 {
578         struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
579         unsigned char *buf = hal2->dac.buffer + rec->hw_data;
580
581         memcpy(buf, substream->runtime->dma_area + rec->sw_data, bytes);
582         dma_cache_sync(hal2->card->dev, buf, bytes, DMA_TO_DEVICE);
583
584 }
585
586 static int hal2_playback_ack(struct snd_pcm_substream *substream)
587 {
588         struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
589         struct hal2_codec *dac = &hal2->dac;
590
591         return snd_pcm_indirect_playback_transfer(substream,
592                                                   &dac->pcm_indirect,
593                                                   hal2_playback_transfer);
594 }
595
596 static int hal2_capture_open(struct snd_pcm_substream *substream)
597 {
598         struct snd_pcm_runtime *runtime = substream->runtime;
599         struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
600         struct hal2_codec *adc = &hal2->adc;
601         int err;
602
603         runtime->hw = hal2_pcm_hw;
604
605         err = hal2_alloc_dmabuf(hal2, adc);
606         if (err)
607                 return err;
608         return 0;
609 }
610
611 static int hal2_capture_close(struct snd_pcm_substream *substream)
612 {
613         struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
614
615         hal2_free_dmabuf(hal2, &hal2->adc);
616         return 0;
617 }
618
619 static int hal2_capture_prepare(struct snd_pcm_substream *substream)
620 {
621         struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
622         struct snd_pcm_runtime *runtime = substream->runtime;
623         struct hal2_codec *adc = &hal2->adc;
624
625         adc->voices = runtime->channels;
626         adc->sample_rate = hal2_compute_rate(adc, runtime->rate);
627         memset(&adc->pcm_indirect, 0, sizeof(adc->pcm_indirect));
628         adc->pcm_indirect.hw_buffer_size = H2_BUF_SIZE;
629         adc->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2;
630         adc->pcm_indirect.hw_io = adc->buffer_dma;
631         adc->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
632         adc->substream = substream;
633         hal2_setup_adc(hal2);
634         return 0;
635 }
636
637 static int hal2_capture_trigger(struct snd_pcm_substream *substream, int cmd)
638 {
639         struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
640
641         switch (cmd) {
642         case SNDRV_PCM_TRIGGER_START:
643                 hal2_start_adc(hal2);
644                 break;
645         case SNDRV_PCM_TRIGGER_STOP:
646                 hal2_stop_adc(hal2);
647                 break;
648         default:
649                 return -EINVAL;
650         }
651         return 0;
652 }
653
654 static snd_pcm_uframes_t
655 hal2_capture_pointer(struct snd_pcm_substream *substream)
656 {
657         struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
658         struct hal2_codec *adc = &hal2->adc;
659
660         return snd_pcm_indirect_capture_pointer(substream, &adc->pcm_indirect,
661                                                 adc->pbus.pbus->pbdma_bptr);
662 }
663
664 static void hal2_capture_transfer(struct snd_pcm_substream *substream,
665                                   struct snd_pcm_indirect *rec, size_t bytes)
666 {
667         struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
668         unsigned char *buf = hal2->adc.buffer + rec->hw_data;
669
670         dma_cache_sync(hal2->card->dev, buf, bytes, DMA_FROM_DEVICE);
671         memcpy(substream->runtime->dma_area + rec->sw_data, buf, bytes);
672 }
673
674 static int hal2_capture_ack(struct snd_pcm_substream *substream)
675 {
676         struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
677         struct hal2_codec *adc = &hal2->adc;
678
679         return snd_pcm_indirect_capture_transfer(substream,
680                                                  &adc->pcm_indirect,
681                                                  hal2_capture_transfer);
682 }
683
684 static const struct snd_pcm_ops hal2_playback_ops = {
685         .open =        hal2_playback_open,
686         .close =       hal2_playback_close,
687         .prepare =     hal2_playback_prepare,
688         .trigger =     hal2_playback_trigger,
689         .pointer =     hal2_playback_pointer,
690         .ack =         hal2_playback_ack,
691 };
692
693 static const struct snd_pcm_ops hal2_capture_ops = {
694         .open =        hal2_capture_open,
695         .close =       hal2_capture_close,
696         .prepare =     hal2_capture_prepare,
697         .trigger =     hal2_capture_trigger,
698         .pointer =     hal2_capture_pointer,
699         .ack =         hal2_capture_ack,
700 };
701
702 static int hal2_pcm_create(struct snd_hal2 *hal2)
703 {
704         struct snd_pcm *pcm;
705         int err;
706
707         /* create first pcm device with one outputs and one input */
708         err = snd_pcm_new(hal2->card, "SGI HAL2 Audio", 0, 1, 1, &pcm);
709         if (err < 0)
710                 return err;
711
712         pcm->private_data = hal2;
713         strcpy(pcm->name, "SGI HAL2");
714
715         /* set operators */
716         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
717                         &hal2_playback_ops);
718         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
719                         &hal2_capture_ops);
720         snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
721                                        NULL, 0, 1024 * 1024);
722
723         return 0;
724 }
725
726 static int hal2_dev_free(struct snd_device *device)
727 {
728         struct snd_hal2 *hal2 = device->device_data;
729
730         free_irq(SGI_HPCDMA_IRQ, hal2);
731         kfree(hal2);
732         return 0;
733 }
734
735 static const struct snd_device_ops hal2_ops = {
736         .dev_free = hal2_dev_free,
737 };
738
739 static void hal2_init_codec(struct hal2_codec *codec, struct hpc3_regs *hpc3,
740                             int index)
741 {
742         codec->pbus.pbusnr = index;
743         codec->pbus.pbus = &hpc3->pbdma[index];
744 }
745
746 static int hal2_detect(struct snd_hal2 *hal2)
747 {
748         unsigned short board, major, minor;
749         unsigned short rev;
750
751         /* reset HAL2 */
752         hal2_write(0, &hal2->ctl_regs->isr);
753
754         /* release reset */
755         hal2_write(H2_ISR_GLOBAL_RESET_N | H2_ISR_CODEC_RESET_N,
756                    &hal2->ctl_regs->isr);
757
758
759         hal2_i_write16(hal2, H2I_RELAY_C, H2I_RELAY_C_STATE);
760         rev = hal2_read(&hal2->ctl_regs->rev);
761         if (rev & H2_REV_AUDIO_PRESENT)
762                 return -ENODEV;
763
764         board = (rev & H2_REV_BOARD_M) >> 12;
765         major = (rev & H2_REV_MAJOR_CHIP_M) >> 4;
766         minor = (rev & H2_REV_MINOR_CHIP_M);
767
768         printk(KERN_INFO "SGI HAL2 revision %i.%i.%i\n",
769                board, major, minor);
770
771         return 0;
772 }
773
774 static int hal2_create(struct snd_card *card, struct snd_hal2 **rchip)
775 {
776         struct snd_hal2 *hal2;
777         struct hpc3_regs *hpc3 = hpc3c0;
778         int err;
779
780         hal2 = kzalloc(sizeof(*hal2), GFP_KERNEL);
781         if (!hal2)
782                 return -ENOMEM;
783
784         hal2->card = card;
785
786         if (request_irq(SGI_HPCDMA_IRQ, hal2_interrupt, IRQF_SHARED,
787                         "SGI HAL2", hal2)) {
788                 printk(KERN_ERR "HAL2: Can't get irq %d\n", SGI_HPCDMA_IRQ);
789                 kfree(hal2);
790                 return -EAGAIN;
791         }
792
793         hal2->ctl_regs = (struct hal2_ctl_regs *)hpc3->pbus_extregs[0];
794         hal2->aes_regs = (struct hal2_aes_regs *)hpc3->pbus_extregs[1];
795         hal2->vol_regs = (struct hal2_vol_regs *)hpc3->pbus_extregs[2];
796         hal2->syn_regs = (struct hal2_syn_regs *)hpc3->pbus_extregs[3];
797
798         if (hal2_detect(hal2) < 0) {
799                 kfree(hal2);
800                 return -ENODEV;
801         }
802
803         hal2_init_codec(&hal2->dac, hpc3, 0);
804         hal2_init_codec(&hal2->adc, hpc3, 1);
805
806         /*
807          * All DMA channel interfaces in HAL2 are designed to operate with
808          * PBUS programmed for 2 cycles in D3, 2 cycles in D4 and 2 cycles
809          * in D5. HAL2 is a 16-bit device which can accept both big and little
810          * endian format. It assumes that even address bytes are on high
811          * portion of PBUS (15:8) and assumes that HPC3 is programmed to
812          * accept a live (unsynchronized) version of P_DREQ_N from HAL2.
813          */
814 #define HAL2_PBUS_DMACFG ((0 << HPC3_DMACFG_D3R_SHIFT) | \
815                           (2 << HPC3_DMACFG_D4R_SHIFT) | \
816                           (2 << HPC3_DMACFG_D5R_SHIFT) | \
817                           (0 << HPC3_DMACFG_D3W_SHIFT) | \
818                           (2 << HPC3_DMACFG_D4W_SHIFT) | \
819                           (2 << HPC3_DMACFG_D5W_SHIFT) | \
820                                 HPC3_DMACFG_DS16 | \
821                                 HPC3_DMACFG_EVENHI | \
822                                 HPC3_DMACFG_RTIME | \
823                           (8 << HPC3_DMACFG_BURST_SHIFT) | \
824                                 HPC3_DMACFG_DRQLIVE)
825         /*
826          * Ignore what's mentioned in the specification and write value which
827          * works in The Real World (TM)
828          */
829         hpc3->pbus_dmacfg[hal2->dac.pbus.pbusnr][0] = 0x8208844;
830         hpc3->pbus_dmacfg[hal2->adc.pbus.pbusnr][0] = 0x8208844;
831
832         err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, hal2, &hal2_ops);
833         if (err < 0) {
834                 free_irq(SGI_HPCDMA_IRQ, hal2);
835                 kfree(hal2);
836                 return err;
837         }
838         *rchip = hal2;
839         return 0;
840 }
841
842 static int hal2_probe(struct platform_device *pdev)
843 {
844         struct snd_card *card;
845         struct snd_hal2 *chip;
846         int err;
847
848         err = snd_card_new(&pdev->dev, index, id, THIS_MODULE, 0, &card);
849         if (err < 0)
850                 return err;
851
852         err = hal2_create(card, &chip);
853         if (err < 0) {
854                 snd_card_free(card);
855                 return err;
856         }
857
858         err = hal2_pcm_create(chip);
859         if (err < 0) {
860                 snd_card_free(card);
861                 return err;
862         }
863         err = hal2_mixer_create(chip);
864         if (err < 0) {
865                 snd_card_free(card);
866                 return err;
867         }
868
869         strcpy(card->driver, "SGI HAL2 Audio");
870         strcpy(card->shortname, "SGI HAL2 Audio");
871         sprintf(card->longname, "%s irq %i",
872                 card->shortname,
873                 SGI_HPCDMA_IRQ);
874
875         err = snd_card_register(card);
876         if (err < 0) {
877                 snd_card_free(card);
878                 return err;
879         }
880         platform_set_drvdata(pdev, card);
881         return 0;
882 }
883
884 static int hal2_remove(struct platform_device *pdev)
885 {
886         struct snd_card *card = platform_get_drvdata(pdev);
887
888         snd_card_free(card);
889         return 0;
890 }
891
892 static struct platform_driver hal2_driver = {
893         .probe  = hal2_probe,
894         .remove = hal2_remove,
895         .driver = {
896                 .name   = "sgihal2",
897         }
898 };
899
900 module_platform_driver(hal2_driver);