Merge tag 'asoc-v5.3' of https://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[linux-2.6-microblaze.git] / sound / firewire / fireworks / fireworks_pcm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fireworks_pcm.c - a part of driver for Fireworks based devices
4  *
5  * Copyright (c) 2009-2010 Clemens Ladisch
6  * Copyright (c) 2013-2014 Takashi Sakamoto
7  */
8 #include "./fireworks.h"
9
10 /*
11  * NOTE:
12  * Fireworks changes its AMDTP channels for PCM data according to its sampling
13  * rate. There are three modes. Here _XX is either _rx or _tx.
14  *  0:  32.0- 48.0 kHz then snd_efw_hwinfo.amdtp_XX_pcm_channels applied
15  *  1:  88.2- 96.0 kHz then snd_efw_hwinfo.amdtp_XX_pcm_channels_2x applied
16  *  2: 176.4-192.0 kHz then snd_efw_hwinfo.amdtp_XX_pcm_channels_4x applied
17  *
18  * The number of PCM channels for analog input and output are always fixed but
19  * the number of PCM channels for digital input and output are differed.
20  *
21  * Additionally, according to "AudioFire Owner's Manual Version 2.2", in some
22  * model, the number of PCM channels for digital input has more restriction
23  * depending on which digital interface is selected.
24  *  - S/PDIF coaxial and optical        : use input 1-2
25  *  - ADAT optical at 32.0-48.0 kHz     : use input 1-8
26  *  - ADAT optical at 88.2-96.0 kHz     : use input 1-4 (S/MUX format)
27  *
28  * The data in AMDTP channels for blank PCM channels are zero.
29  */
30 static const unsigned int freq_table[] = {
31         /* multiplier mode 0 */
32         [0] = 32000,
33         [1] = 44100,
34         [2] = 48000,
35         /* multiplier mode 1 */
36         [3] = 88200,
37         [4] = 96000,
38         /* multiplier mode 2 */
39         [5] = 176400,
40         [6] = 192000,
41 };
42
43 static inline unsigned int
44 get_multiplier_mode_with_index(unsigned int index)
45 {
46         return ((int)index - 1) / 2;
47 }
48
49 int snd_efw_get_multiplier_mode(unsigned int sampling_rate, unsigned int *mode)
50 {
51         unsigned int i;
52
53         for (i = 0; i < ARRAY_SIZE(freq_table); i++) {
54                 if (freq_table[i] == sampling_rate) {
55                         *mode = get_multiplier_mode_with_index(i);
56                         return 0;
57                 }
58         }
59
60         return -EINVAL;
61 }
62
63 static int
64 hw_rule_rate(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
65 {
66         unsigned int *pcm_channels = rule->private;
67         struct snd_interval *r =
68                 hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
69         const struct snd_interval *c =
70                 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_CHANNELS);
71         struct snd_interval t = {
72                 .min = UINT_MAX, .max = 0, .integer = 1
73         };
74         unsigned int i, mode;
75
76         for (i = 0; i < ARRAY_SIZE(freq_table); i++) {
77                 mode = get_multiplier_mode_with_index(i);
78                 if (!snd_interval_test(c, pcm_channels[mode]))
79                         continue;
80
81                 t.min = min(t.min, freq_table[i]);
82                 t.max = max(t.max, freq_table[i]);
83         }
84
85         return snd_interval_refine(r, &t);
86 }
87
88 static int
89 hw_rule_channels(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
90 {
91         unsigned int *pcm_channels = rule->private;
92         struct snd_interval *c =
93                 hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
94         const struct snd_interval *r =
95                 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE);
96         struct snd_interval t = {
97                 .min = UINT_MAX, .max = 0, .integer = 1
98         };
99         unsigned int i, mode;
100
101         for (i = 0; i < ARRAY_SIZE(freq_table); i++) {
102                 mode = get_multiplier_mode_with_index(i);
103                 if (!snd_interval_test(r, freq_table[i]))
104                         continue;
105
106                 t.min = min(t.min, pcm_channels[mode]);
107                 t.max = max(t.max, pcm_channels[mode]);
108         }
109
110         return snd_interval_refine(c, &t);
111 }
112
113 static void
114 limit_channels(struct snd_pcm_hardware *hw, unsigned int *pcm_channels)
115 {
116         unsigned int i, mode;
117
118         hw->channels_min = UINT_MAX;
119         hw->channels_max = 0;
120
121         for (i = 0; i < ARRAY_SIZE(freq_table); i++) {
122                 mode = get_multiplier_mode_with_index(i);
123                 if (pcm_channels[mode] == 0)
124                         continue;
125
126                 hw->channels_min = min(hw->channels_min, pcm_channels[mode]);
127                 hw->channels_max = max(hw->channels_max, pcm_channels[mode]);
128         }
129 }
130
131 static int
132 pcm_init_hw_params(struct snd_efw *efw,
133                    struct snd_pcm_substream *substream)
134 {
135         struct snd_pcm_runtime *runtime = substream->runtime;
136         struct amdtp_stream *s;
137         unsigned int *pcm_channels;
138         int err;
139
140         if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) {
141                 runtime->hw.formats = AM824_IN_PCM_FORMAT_BITS;
142                 s = &efw->tx_stream;
143                 pcm_channels = efw->pcm_capture_channels;
144         } else {
145                 runtime->hw.formats = AM824_OUT_PCM_FORMAT_BITS;
146                 s = &efw->rx_stream;
147                 pcm_channels = efw->pcm_playback_channels;
148         }
149
150         /* limit rates */
151         runtime->hw.rates = efw->supported_sampling_rate,
152         snd_pcm_limit_hw_rates(runtime);
153
154         limit_channels(&runtime->hw, pcm_channels);
155
156         err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
157                                   hw_rule_channels, pcm_channels,
158                                   SNDRV_PCM_HW_PARAM_RATE, -1);
159         if (err < 0)
160                 goto end;
161
162         err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
163                                   hw_rule_rate, pcm_channels,
164                                   SNDRV_PCM_HW_PARAM_CHANNELS, -1);
165         if (err < 0)
166                 goto end;
167
168         err = amdtp_am824_add_pcm_hw_constraints(s, runtime);
169 end:
170         return err;
171 }
172
173 static int pcm_open(struct snd_pcm_substream *substream)
174 {
175         struct snd_efw *efw = substream->private_data;
176         unsigned int sampling_rate;
177         enum snd_efw_clock_source clock_source;
178         int err;
179
180         err = snd_efw_stream_lock_try(efw);
181         if (err < 0)
182                 goto end;
183
184         err = pcm_init_hw_params(efw, substream);
185         if (err < 0)
186                 goto err_locked;
187
188         err = snd_efw_command_get_clock_source(efw, &clock_source);
189         if (err < 0)
190                 goto err_locked;
191
192         /*
193          * When source of clock is not internal or any PCM streams are running,
194          * available sampling rate is limited at current sampling rate.
195          */
196         if ((clock_source != SND_EFW_CLOCK_SOURCE_INTERNAL) ||
197             amdtp_stream_pcm_running(&efw->tx_stream) ||
198             amdtp_stream_pcm_running(&efw->rx_stream)) {
199                 err = snd_efw_command_get_sampling_rate(efw, &sampling_rate);
200                 if (err < 0)
201                         goto err_locked;
202                 substream->runtime->hw.rate_min = sampling_rate;
203                 substream->runtime->hw.rate_max = sampling_rate;
204         }
205
206         snd_pcm_set_sync(substream);
207 end:
208         return err;
209 err_locked:
210         snd_efw_stream_lock_release(efw);
211         return err;
212 }
213
214 static int pcm_close(struct snd_pcm_substream *substream)
215 {
216         struct snd_efw *efw = substream->private_data;
217         snd_efw_stream_lock_release(efw);
218         return 0;
219 }
220
221 static int pcm_hw_params(struct snd_pcm_substream *substream,
222                                  struct snd_pcm_hw_params *hw_params)
223 {
224         struct snd_efw *efw = substream->private_data;
225         int err;
226
227         err = snd_pcm_lib_alloc_vmalloc_buffer(substream,
228                                                params_buffer_bytes(hw_params));
229         if (err < 0)
230                 return err;
231
232         if (substream->runtime->status->state == SNDRV_PCM_STATE_OPEN) {
233                 unsigned int rate = params_rate(hw_params);
234
235                 mutex_lock(&efw->mutex);
236                 err = snd_efw_stream_reserve_duplex(efw, rate);
237                 if (err >= 0)
238                         ++efw->substreams_counter;
239                 mutex_unlock(&efw->mutex);
240         }
241
242         return err;
243 }
244
245 static int pcm_hw_free(struct snd_pcm_substream *substream)
246 {
247         struct snd_efw *efw = substream->private_data;
248
249         mutex_lock(&efw->mutex);
250
251         if (substream->runtime->status->state != SNDRV_PCM_STATE_OPEN)
252                 --efw->substreams_counter;
253
254         snd_efw_stream_stop_duplex(efw);
255
256         mutex_unlock(&efw->mutex);
257
258         return snd_pcm_lib_free_vmalloc_buffer(substream);
259 }
260
261 static int pcm_capture_prepare(struct snd_pcm_substream *substream)
262 {
263         struct snd_efw *efw = substream->private_data;
264         int err;
265
266         err = snd_efw_stream_start_duplex(efw);
267         if (err >= 0)
268                 amdtp_stream_pcm_prepare(&efw->tx_stream);
269
270         return err;
271 }
272 static int pcm_playback_prepare(struct snd_pcm_substream *substream)
273 {
274         struct snd_efw *efw = substream->private_data;
275         int err;
276
277         err = snd_efw_stream_start_duplex(efw);
278         if (err >= 0)
279                 amdtp_stream_pcm_prepare(&efw->rx_stream);
280
281         return err;
282 }
283
284 static int pcm_capture_trigger(struct snd_pcm_substream *substream, int cmd)
285 {
286         struct snd_efw *efw = substream->private_data;
287
288         switch (cmd) {
289         case SNDRV_PCM_TRIGGER_START:
290                 amdtp_stream_pcm_trigger(&efw->tx_stream, substream);
291                 break;
292         case SNDRV_PCM_TRIGGER_STOP:
293                 amdtp_stream_pcm_trigger(&efw->tx_stream, NULL);
294                 break;
295         default:
296                 return -EINVAL;
297         }
298
299         return 0;
300 }
301 static int pcm_playback_trigger(struct snd_pcm_substream *substream, int cmd)
302 {
303         struct snd_efw *efw = substream->private_data;
304
305         switch (cmd) {
306         case SNDRV_PCM_TRIGGER_START:
307                 amdtp_stream_pcm_trigger(&efw->rx_stream, substream);
308                 break;
309         case SNDRV_PCM_TRIGGER_STOP:
310                 amdtp_stream_pcm_trigger(&efw->rx_stream, NULL);
311                 break;
312         default:
313                 return -EINVAL;
314         }
315
316         return 0;
317 }
318
319 static snd_pcm_uframes_t pcm_capture_pointer(struct snd_pcm_substream *sbstrm)
320 {
321         struct snd_efw *efw = sbstrm->private_data;
322         return amdtp_stream_pcm_pointer(&efw->tx_stream);
323 }
324 static snd_pcm_uframes_t pcm_playback_pointer(struct snd_pcm_substream *sbstrm)
325 {
326         struct snd_efw *efw = sbstrm->private_data;
327         return amdtp_stream_pcm_pointer(&efw->rx_stream);
328 }
329
330 static int pcm_capture_ack(struct snd_pcm_substream *substream)
331 {
332         struct snd_efw *efw = substream->private_data;
333
334         return amdtp_stream_pcm_ack(&efw->tx_stream);
335 }
336
337 static int pcm_playback_ack(struct snd_pcm_substream *substream)
338 {
339         struct snd_efw *efw = substream->private_data;
340
341         return amdtp_stream_pcm_ack(&efw->rx_stream);
342 }
343
344 int snd_efw_create_pcm_devices(struct snd_efw *efw)
345 {
346         static const struct snd_pcm_ops capture_ops = {
347                 .open           = pcm_open,
348                 .close          = pcm_close,
349                 .ioctl          = snd_pcm_lib_ioctl,
350                 .hw_params      = pcm_hw_params,
351                 .hw_free        = pcm_hw_free,
352                 .prepare        = pcm_capture_prepare,
353                 .trigger        = pcm_capture_trigger,
354                 .pointer        = pcm_capture_pointer,
355                 .ack            = pcm_capture_ack,
356                 .page           = snd_pcm_lib_get_vmalloc_page,
357         };
358         static const struct snd_pcm_ops playback_ops = {
359                 .open           = pcm_open,
360                 .close          = pcm_close,
361                 .ioctl          = snd_pcm_lib_ioctl,
362                 .hw_params      = pcm_hw_params,
363                 .hw_free        = pcm_hw_free,
364                 .prepare        = pcm_playback_prepare,
365                 .trigger        = pcm_playback_trigger,
366                 .pointer        = pcm_playback_pointer,
367                 .ack            = pcm_playback_ack,
368                 .page           = snd_pcm_lib_get_vmalloc_page,
369         };
370         struct snd_pcm *pcm;
371         int err;
372
373         err = snd_pcm_new(efw->card, efw->card->driver, 0, 1, 1, &pcm);
374         if (err < 0)
375                 goto end;
376
377         pcm->private_data = efw;
378         snprintf(pcm->name, sizeof(pcm->name), "%s PCM", efw->card->shortname);
379         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &playback_ops);
380         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &capture_ops);
381 end:
382         return err;
383 }
384