Merge remote-tracking branch 'spi/for-5.9' into spi-linus
[linux-2.6-microblaze.git] / sound / firewire / amdtp-stream.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Audio and Music Data Transmission Protocol (IEC 61883-6) streams
4  * with Common Isochronous Packet (IEC 61883-1) headers
5  *
6  * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
7  */
8
9 #include <linux/device.h>
10 #include <linux/err.h>
11 #include <linux/firewire.h>
12 #include <linux/firewire-constants.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <sound/pcm.h>
16 #include <sound/pcm_params.h>
17 #include "amdtp-stream.h"
18
19 #define TICKS_PER_CYCLE         3072
20 #define CYCLES_PER_SECOND       8000
21 #define TICKS_PER_SECOND        (TICKS_PER_CYCLE * CYCLES_PER_SECOND)
22
23 #define OHCI_MAX_SECOND         8
24
25 /* Always support Linux tracing subsystem. */
26 #define CREATE_TRACE_POINTS
27 #include "amdtp-stream-trace.h"
28
29 #define TRANSFER_DELAY_TICKS    0x2e00 /* 479.17 microseconds */
30
31 /* isochronous header parameters */
32 #define ISO_DATA_LENGTH_SHIFT   16
33 #define TAG_NO_CIP_HEADER       0
34 #define TAG_CIP                 1
35
36 /* common isochronous packet header parameters */
37 #define CIP_EOH_SHIFT           31
38 #define CIP_EOH                 (1u << CIP_EOH_SHIFT)
39 #define CIP_EOH_MASK            0x80000000
40 #define CIP_SID_SHIFT           24
41 #define CIP_SID_MASK            0x3f000000
42 #define CIP_DBS_MASK            0x00ff0000
43 #define CIP_DBS_SHIFT           16
44 #define CIP_SPH_MASK            0x00000400
45 #define CIP_SPH_SHIFT           10
46 #define CIP_DBC_MASK            0x000000ff
47 #define CIP_FMT_SHIFT           24
48 #define CIP_FMT_MASK            0x3f000000
49 #define CIP_FDF_MASK            0x00ff0000
50 #define CIP_FDF_SHIFT           16
51 #define CIP_SYT_MASK            0x0000ffff
52 #define CIP_SYT_NO_INFO         0xffff
53
54 /* Audio and Music transfer protocol specific parameters */
55 #define CIP_FMT_AM              0x10
56 #define AMDTP_FDF_NO_DATA       0xff
57
58 // For iso header, tstamp and 2 CIP header.
59 #define IR_CTX_HEADER_SIZE_CIP          16
60 // For iso header and tstamp.
61 #define IR_CTX_HEADER_SIZE_NO_CIP       8
62 #define HEADER_TSTAMP_MASK      0x0000ffff
63
64 #define IT_PKT_HEADER_SIZE_CIP          8 // For 2 CIP header.
65 #define IT_PKT_HEADER_SIZE_NO_CIP       0 // Nothing.
66
67 static void pcm_period_tasklet(struct tasklet_struct *t);
68
69 /**
70  * amdtp_stream_init - initialize an AMDTP stream structure
71  * @s: the AMDTP stream to initialize
72  * @unit: the target of the stream
73  * @dir: the direction of stream
74  * @flags: the packet transmission method to use
75  * @fmt: the value of fmt field in CIP header
76  * @process_ctx_payloads: callback handler to process payloads of isoc context
77  * @protocol_size: the size to allocate newly for protocol
78  */
79 int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit,
80                       enum amdtp_stream_direction dir, enum cip_flags flags,
81                       unsigned int fmt,
82                       amdtp_stream_process_ctx_payloads_t process_ctx_payloads,
83                       unsigned int protocol_size)
84 {
85         if (process_ctx_payloads == NULL)
86                 return -EINVAL;
87
88         s->protocol = kzalloc(protocol_size, GFP_KERNEL);
89         if (!s->protocol)
90                 return -ENOMEM;
91
92         s->unit = unit;
93         s->direction = dir;
94         s->flags = flags;
95         s->context = ERR_PTR(-1);
96         mutex_init(&s->mutex);
97         tasklet_setup(&s->period_tasklet, pcm_period_tasklet);
98         s->packet_index = 0;
99
100         init_waitqueue_head(&s->callback_wait);
101         s->callbacked = false;
102
103         s->fmt = fmt;
104         s->process_ctx_payloads = process_ctx_payloads;
105
106         if (dir == AMDTP_OUT_STREAM)
107                 s->ctx_data.rx.syt_override = -1;
108
109         return 0;
110 }
111 EXPORT_SYMBOL(amdtp_stream_init);
112
113 /**
114  * amdtp_stream_destroy - free stream resources
115  * @s: the AMDTP stream to destroy
116  */
117 void amdtp_stream_destroy(struct amdtp_stream *s)
118 {
119         /* Not initialized. */
120         if (s->protocol == NULL)
121                 return;
122
123         WARN_ON(amdtp_stream_running(s));
124         kfree(s->protocol);
125         mutex_destroy(&s->mutex);
126 }
127 EXPORT_SYMBOL(amdtp_stream_destroy);
128
129 const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = {
130         [CIP_SFC_32000]  =  8,
131         [CIP_SFC_44100]  =  8,
132         [CIP_SFC_48000]  =  8,
133         [CIP_SFC_88200]  = 16,
134         [CIP_SFC_96000]  = 16,
135         [CIP_SFC_176400] = 32,
136         [CIP_SFC_192000] = 32,
137 };
138 EXPORT_SYMBOL(amdtp_syt_intervals);
139
140 const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = {
141         [CIP_SFC_32000]  =  32000,
142         [CIP_SFC_44100]  =  44100,
143         [CIP_SFC_48000]  =  48000,
144         [CIP_SFC_88200]  =  88200,
145         [CIP_SFC_96000]  =  96000,
146         [CIP_SFC_176400] = 176400,
147         [CIP_SFC_192000] = 192000,
148 };
149 EXPORT_SYMBOL(amdtp_rate_table);
150
151 static int apply_constraint_to_size(struct snd_pcm_hw_params *params,
152                                     struct snd_pcm_hw_rule *rule)
153 {
154         struct snd_interval *s = hw_param_interval(params, rule->var);
155         const struct snd_interval *r =
156                 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE);
157         struct snd_interval t = {0};
158         unsigned int step = 0;
159         int i;
160
161         for (i = 0; i < CIP_SFC_COUNT; ++i) {
162                 if (snd_interval_test(r, amdtp_rate_table[i]))
163                         step = max(step, amdtp_syt_intervals[i]);
164         }
165
166         t.min = roundup(s->min, step);
167         t.max = rounddown(s->max, step);
168         t.integer = 1;
169
170         return snd_interval_refine(s, &t);
171 }
172
173 /**
174  * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream
175  * @s:          the AMDTP stream, which must be initialized.
176  * @runtime:    the PCM substream runtime
177  */
178 int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s,
179                                         struct snd_pcm_runtime *runtime)
180 {
181         struct snd_pcm_hardware *hw = &runtime->hw;
182         unsigned int ctx_header_size;
183         unsigned int maximum_usec_per_period;
184         int err;
185
186         hw->info = SNDRV_PCM_INFO_BATCH |
187                    SNDRV_PCM_INFO_BLOCK_TRANSFER |
188                    SNDRV_PCM_INFO_INTERLEAVED |
189                    SNDRV_PCM_INFO_JOINT_DUPLEX |
190                    SNDRV_PCM_INFO_MMAP |
191                    SNDRV_PCM_INFO_MMAP_VALID;
192
193         /* SNDRV_PCM_INFO_BATCH */
194         hw->periods_min = 2;
195         hw->periods_max = UINT_MAX;
196
197         /* bytes for a frame */
198         hw->period_bytes_min = 4 * hw->channels_max;
199
200         /* Just to prevent from allocating much pages. */
201         hw->period_bytes_max = hw->period_bytes_min * 2048;
202         hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min;
203
204         // Linux driver for 1394 OHCI controller voluntarily flushes isoc
205         // context when total size of accumulated context header reaches
206         // PAGE_SIZE. This kicks tasklet for the isoc context and brings
207         // callback in the middle of scheduled interrupts.
208         // Although AMDTP streams in the same domain use the same events per
209         // IRQ, use the largest size of context header between IT/IR contexts.
210         // Here, use the value of context header in IR context is for both
211         // contexts.
212         if (!(s->flags & CIP_NO_HEADER))
213                 ctx_header_size = IR_CTX_HEADER_SIZE_CIP;
214         else
215                 ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP;
216         maximum_usec_per_period = USEC_PER_SEC * PAGE_SIZE /
217                                   CYCLES_PER_SECOND / ctx_header_size;
218
219         // In IEC 61883-6, one isoc packet can transfer events up to the value
220         // of syt interval. This comes from the interval of isoc cycle. As 1394
221         // OHCI controller can generate hardware IRQ per isoc packet, the
222         // interval is 125 usec.
223         // However, there are two ways of transmission in IEC 61883-6; blocking
224         // and non-blocking modes. In blocking mode, the sequence of isoc packet
225         // includes 'empty' or 'NODATA' packets which include no event. In
226         // non-blocking mode, the number of events per packet is variable up to
227         // the syt interval.
228         // Due to the above protocol design, the minimum PCM frames per
229         // interrupt should be double of the value of syt interval, thus it is
230         // 250 usec.
231         err = snd_pcm_hw_constraint_minmax(runtime,
232                                            SNDRV_PCM_HW_PARAM_PERIOD_TIME,
233                                            250, maximum_usec_per_period);
234         if (err < 0)
235                 goto end;
236
237         /* Non-Blocking stream has no more constraints */
238         if (!(s->flags & CIP_BLOCKING))
239                 goto end;
240
241         /*
242          * One AMDTP packet can include some frames. In blocking mode, the
243          * number equals to SYT_INTERVAL. So the number is 8, 16 or 32,
244          * depending on its sampling rate. For accurate period interrupt, it's
245          * preferrable to align period/buffer sizes to current SYT_INTERVAL.
246          */
247         err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
248                                   apply_constraint_to_size, NULL,
249                                   SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
250                                   SNDRV_PCM_HW_PARAM_RATE, -1);
251         if (err < 0)
252                 goto end;
253         err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
254                                   apply_constraint_to_size, NULL,
255                                   SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
256                                   SNDRV_PCM_HW_PARAM_RATE, -1);
257         if (err < 0)
258                 goto end;
259 end:
260         return err;
261 }
262 EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints);
263
264 /**
265  * amdtp_stream_set_parameters - set stream parameters
266  * @s: the AMDTP stream to configure
267  * @rate: the sample rate
268  * @data_block_quadlets: the size of a data block in quadlet unit
269  *
270  * The parameters must be set before the stream is started, and must not be
271  * changed while the stream is running.
272  */
273 int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate,
274                                 unsigned int data_block_quadlets)
275 {
276         unsigned int sfc;
277
278         for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) {
279                 if (amdtp_rate_table[sfc] == rate)
280                         break;
281         }
282         if (sfc == ARRAY_SIZE(amdtp_rate_table))
283                 return -EINVAL;
284
285         s->sfc = sfc;
286         s->data_block_quadlets = data_block_quadlets;
287         s->syt_interval = amdtp_syt_intervals[sfc];
288
289         // default buffering in the device.
290         if (s->direction == AMDTP_OUT_STREAM) {
291                 s->ctx_data.rx.transfer_delay =
292                                         TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
293
294                 if (s->flags & CIP_BLOCKING) {
295                         // additional buffering needed to adjust for no-data
296                         // packets.
297                         s->ctx_data.rx.transfer_delay +=
298                                 TICKS_PER_SECOND * s->syt_interval / rate;
299                 }
300         }
301
302         return 0;
303 }
304 EXPORT_SYMBOL(amdtp_stream_set_parameters);
305
306 /**
307  * amdtp_stream_get_max_payload - get the stream's packet size
308  * @s: the AMDTP stream
309  *
310  * This function must not be called before the stream has been configured
311  * with amdtp_stream_set_parameters().
312  */
313 unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s)
314 {
315         unsigned int multiplier = 1;
316         unsigned int cip_header_size = 0;
317
318         if (s->flags & CIP_JUMBO_PAYLOAD)
319                 multiplier = 5;
320         if (!(s->flags & CIP_NO_HEADER))
321                 cip_header_size = sizeof(__be32) * 2;
322
323         return cip_header_size +
324                 s->syt_interval * s->data_block_quadlets * sizeof(__be32) * multiplier;
325 }
326 EXPORT_SYMBOL(amdtp_stream_get_max_payload);
327
328 /**
329  * amdtp_stream_pcm_prepare - prepare PCM device for running
330  * @s: the AMDTP stream
331  *
332  * This function should be called from the PCM device's .prepare callback.
333  */
334 void amdtp_stream_pcm_prepare(struct amdtp_stream *s)
335 {
336         tasklet_kill(&s->period_tasklet);
337         s->pcm_buffer_pointer = 0;
338         s->pcm_period_pointer = 0;
339 }
340 EXPORT_SYMBOL(amdtp_stream_pcm_prepare);
341
342 static unsigned int calculate_data_blocks(unsigned int *data_block_state,
343                                 bool is_blocking, bool is_no_info,
344                                 unsigned int syt_interval, enum cip_sfc sfc)
345 {
346         unsigned int data_blocks;
347
348         /* Blocking mode. */
349         if (is_blocking) {
350                 /* This module generate empty packet for 'no data'. */
351                 if (is_no_info)
352                         data_blocks = 0;
353                 else
354                         data_blocks = syt_interval;
355         /* Non-blocking mode. */
356         } else {
357                 if (!cip_sfc_is_base_44100(sfc)) {
358                         // Sample_rate / 8000 is an integer, and precomputed.
359                         data_blocks = *data_block_state;
360                 } else {
361                         unsigned int phase = *data_block_state;
362
363                 /*
364                  * This calculates the number of data blocks per packet so that
365                  * 1) the overall rate is correct and exactly synchronized to
366                  *    the bus clock, and
367                  * 2) packets with a rounded-up number of blocks occur as early
368                  *    as possible in the sequence (to prevent underruns of the
369                  *    device's buffer).
370                  */
371                         if (sfc == CIP_SFC_44100)
372                                 /* 6 6 5 6 5 6 5 ... */
373                                 data_blocks = 5 + ((phase & 1) ^
374                                                    (phase == 0 || phase >= 40));
375                         else
376                                 /* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
377                                 data_blocks = 11 * (sfc >> 1) + (phase == 0);
378                         if (++phase >= (80 >> (sfc >> 1)))
379                                 phase = 0;
380                         *data_block_state = phase;
381                 }
382         }
383
384         return data_blocks;
385 }
386
387 static unsigned int calculate_syt_offset(unsigned int *last_syt_offset,
388                         unsigned int *syt_offset_state, enum cip_sfc sfc)
389 {
390         unsigned int syt_offset;
391
392         if (*last_syt_offset < TICKS_PER_CYCLE) {
393                 if (!cip_sfc_is_base_44100(sfc))
394                         syt_offset = *last_syt_offset + *syt_offset_state;
395                 else {
396                 /*
397                  * The time, in ticks, of the n'th SYT_INTERVAL sample is:
398                  *   n * SYT_INTERVAL * 24576000 / sample_rate
399                  * Modulo TICKS_PER_CYCLE, the difference between successive
400                  * elements is about 1386.23.  Rounding the results of this
401                  * formula to the SYT precision results in a sequence of
402                  * differences that begins with:
403                  *   1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
404                  * This code generates _exactly_ the same sequence.
405                  */
406                         unsigned int phase = *syt_offset_state;
407                         unsigned int index = phase % 13;
408
409                         syt_offset = *last_syt_offset;
410                         syt_offset += 1386 + ((index && !(index & 3)) ||
411                                               phase == 146);
412                         if (++phase >= 147)
413                                 phase = 0;
414                         *syt_offset_state = phase;
415                 }
416         } else
417                 syt_offset = *last_syt_offset - TICKS_PER_CYCLE;
418         *last_syt_offset = syt_offset;
419
420         if (syt_offset >= TICKS_PER_CYCLE)
421                 syt_offset = CIP_SYT_NO_INFO;
422
423         return syt_offset;
424 }
425
426 static void update_pcm_pointers(struct amdtp_stream *s,
427                                 struct snd_pcm_substream *pcm,
428                                 unsigned int frames)
429 {
430         unsigned int ptr;
431
432         ptr = s->pcm_buffer_pointer + frames;
433         if (ptr >= pcm->runtime->buffer_size)
434                 ptr -= pcm->runtime->buffer_size;
435         WRITE_ONCE(s->pcm_buffer_pointer, ptr);
436
437         s->pcm_period_pointer += frames;
438         if (s->pcm_period_pointer >= pcm->runtime->period_size) {
439                 s->pcm_period_pointer -= pcm->runtime->period_size;
440                 tasklet_hi_schedule(&s->period_tasklet);
441         }
442 }
443
444 static void pcm_period_tasklet(struct tasklet_struct *t)
445 {
446         struct amdtp_stream *s = from_tasklet(s, t, period_tasklet);
447         struct snd_pcm_substream *pcm = READ_ONCE(s->pcm);
448
449         if (pcm)
450                 snd_pcm_period_elapsed(pcm);
451 }
452
453 static int queue_packet(struct amdtp_stream *s, struct fw_iso_packet *params,
454                         bool sched_irq)
455 {
456         int err;
457
458         params->interrupt = sched_irq;
459         params->tag = s->tag;
460         params->sy = 0;
461
462         err = fw_iso_context_queue(s->context, params, &s->buffer.iso_buffer,
463                                    s->buffer.packets[s->packet_index].offset);
464         if (err < 0) {
465                 dev_err(&s->unit->device, "queueing error: %d\n", err);
466                 goto end;
467         }
468
469         if (++s->packet_index >= s->queue_size)
470                 s->packet_index = 0;
471 end:
472         return err;
473 }
474
475 static inline int queue_out_packet(struct amdtp_stream *s,
476                                    struct fw_iso_packet *params, bool sched_irq)
477 {
478         params->skip =
479                 !!(params->header_length == 0 && params->payload_length == 0);
480         return queue_packet(s, params, sched_irq);
481 }
482
483 static inline int queue_in_packet(struct amdtp_stream *s,
484                                   struct fw_iso_packet *params)
485 {
486         // Queue one packet for IR context.
487         params->header_length = s->ctx_data.tx.ctx_header_size;
488         params->payload_length = s->ctx_data.tx.max_ctx_payload_length;
489         params->skip = false;
490         return queue_packet(s, params, false);
491 }
492
493 static void generate_cip_header(struct amdtp_stream *s, __be32 cip_header[2],
494                         unsigned int data_block_counter, unsigned int syt)
495 {
496         cip_header[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) |
497                                 (s->data_block_quadlets << CIP_DBS_SHIFT) |
498                                 ((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) |
499                                 data_block_counter);
500         cip_header[1] = cpu_to_be32(CIP_EOH |
501                         ((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) |
502                         ((s->ctx_data.rx.fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) |
503                         (syt & CIP_SYT_MASK));
504 }
505
506 static void build_it_pkt_header(struct amdtp_stream *s, unsigned int cycle,
507                                 struct fw_iso_packet *params,
508                                 unsigned int data_blocks,
509                                 unsigned int data_block_counter,
510                                 unsigned int syt, unsigned int index)
511 {
512         unsigned int payload_length;
513         __be32 *cip_header;
514
515         payload_length = data_blocks * sizeof(__be32) * s->data_block_quadlets;
516         params->payload_length = payload_length;
517
518         if (!(s->flags & CIP_NO_HEADER)) {
519                 cip_header = (__be32 *)params->header;
520                 generate_cip_header(s, cip_header, data_block_counter, syt);
521                 params->header_length = 2 * sizeof(__be32);
522                 payload_length += params->header_length;
523         } else {
524                 cip_header = NULL;
525         }
526
527         trace_amdtp_packet(s, cycle, cip_header, payload_length, data_blocks,
528                            data_block_counter, index);
529 }
530
531 static int check_cip_header(struct amdtp_stream *s, const __be32 *buf,
532                             unsigned int payload_length,
533                             unsigned int *data_blocks,
534                             unsigned int *data_block_counter, unsigned int *syt)
535 {
536         u32 cip_header[2];
537         unsigned int sph;
538         unsigned int fmt;
539         unsigned int fdf;
540         unsigned int dbc;
541         bool lost;
542
543         cip_header[0] = be32_to_cpu(buf[0]);
544         cip_header[1] = be32_to_cpu(buf[1]);
545
546         /*
547          * This module supports 'Two-quadlet CIP header with SYT field'.
548          * For convenience, also check FMT field is AM824 or not.
549          */
550         if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) ||
551              ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) &&
552             (!(s->flags & CIP_HEADER_WITHOUT_EOH))) {
553                 dev_info_ratelimited(&s->unit->device,
554                                 "Invalid CIP header for AMDTP: %08X:%08X\n",
555                                 cip_header[0], cip_header[1]);
556                 return -EAGAIN;
557         }
558
559         /* Check valid protocol or not. */
560         sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT;
561         fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT;
562         if (sph != s->sph || fmt != s->fmt) {
563                 dev_info_ratelimited(&s->unit->device,
564                                      "Detect unexpected protocol: %08x %08x\n",
565                                      cip_header[0], cip_header[1]);
566                 return -EAGAIN;
567         }
568
569         /* Calculate data blocks */
570         fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT;
571         if (payload_length < sizeof(__be32) * 2 ||
572             (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) {
573                 *data_blocks = 0;
574         } else {
575                 unsigned int data_block_quadlets =
576                                 (cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT;
577                 /* avoid division by zero */
578                 if (data_block_quadlets == 0) {
579                         dev_err(&s->unit->device,
580                                 "Detect invalid value in dbs field: %08X\n",
581                                 cip_header[0]);
582                         return -EPROTO;
583                 }
584                 if (s->flags & CIP_WRONG_DBS)
585                         data_block_quadlets = s->data_block_quadlets;
586
587                 *data_blocks = (payload_length / sizeof(__be32) - 2) /
588                                                         data_block_quadlets;
589         }
590
591         /* Check data block counter continuity */
592         dbc = cip_header[0] & CIP_DBC_MASK;
593         if (*data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) &&
594             *data_block_counter != UINT_MAX)
595                 dbc = *data_block_counter;
596
597         if ((dbc == 0x00 && (s->flags & CIP_SKIP_DBC_ZERO_CHECK)) ||
598             *data_block_counter == UINT_MAX) {
599                 lost = false;
600         } else if (!(s->flags & CIP_DBC_IS_END_EVENT)) {
601                 lost = dbc != *data_block_counter;
602         } else {
603                 unsigned int dbc_interval;
604
605                 if (*data_blocks > 0 && s->ctx_data.tx.dbc_interval > 0)
606                         dbc_interval = s->ctx_data.tx.dbc_interval;
607                 else
608                         dbc_interval = *data_blocks;
609
610                 lost = dbc != ((*data_block_counter + dbc_interval) & 0xff);
611         }
612
613         if (lost) {
614                 dev_err(&s->unit->device,
615                         "Detect discontinuity of CIP: %02X %02X\n",
616                         *data_block_counter, dbc);
617                 return -EIO;
618         }
619
620         *data_block_counter = dbc;
621
622         *syt = cip_header[1] & CIP_SYT_MASK;
623
624         return 0;
625 }
626
627 static int parse_ir_ctx_header(struct amdtp_stream *s, unsigned int cycle,
628                                const __be32 *ctx_header,
629                                unsigned int *payload_length,
630                                unsigned int *data_blocks,
631                                unsigned int *data_block_counter,
632                                unsigned int *syt, unsigned int index)
633 {
634         const __be32 *cip_header;
635         int err;
636
637         *payload_length = be32_to_cpu(ctx_header[0]) >> ISO_DATA_LENGTH_SHIFT;
638         if (*payload_length > s->ctx_data.tx.ctx_header_size +
639                                         s->ctx_data.tx.max_ctx_payload_length) {
640                 dev_err(&s->unit->device,
641                         "Detect jumbo payload: %04x %04x\n",
642                         *payload_length, s->ctx_data.tx.max_ctx_payload_length);
643                 return -EIO;
644         }
645
646         if (!(s->flags & CIP_NO_HEADER)) {
647                 cip_header = ctx_header + 2;
648                 err = check_cip_header(s, cip_header, *payload_length,
649                                        data_blocks, data_block_counter, syt);
650                 if (err < 0)
651                         return err;
652         } else {
653                 cip_header = NULL;
654                 err = 0;
655                 *data_blocks = *payload_length / sizeof(__be32) /
656                                s->data_block_quadlets;
657                 *syt = 0;
658
659                 if (*data_block_counter == UINT_MAX)
660                         *data_block_counter = 0;
661         }
662
663         trace_amdtp_packet(s, cycle, cip_header, *payload_length, *data_blocks,
664                            *data_block_counter, index);
665
666         return err;
667 }
668
669 // In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On
670 // the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent
671 // it. Thus, via Linux firewire subsystem, we can get the 3 bits for second.
672 static inline u32 compute_cycle_count(__be32 ctx_header_tstamp)
673 {
674         u32 tstamp = be32_to_cpu(ctx_header_tstamp) & HEADER_TSTAMP_MASK;
675         return (((tstamp >> 13) & 0x07) * 8000) + (tstamp & 0x1fff);
676 }
677
678 static inline u32 increment_cycle_count(u32 cycle, unsigned int addend)
679 {
680         cycle += addend;
681         if (cycle >= OHCI_MAX_SECOND * CYCLES_PER_SECOND)
682                 cycle -= OHCI_MAX_SECOND * CYCLES_PER_SECOND;
683         return cycle;
684 }
685
686 // Align to actual cycle count for the packet which is going to be scheduled.
687 // This module queued the same number of isochronous cycle as the size of queue
688 // to kip isochronous cycle, therefore it's OK to just increment the cycle by
689 // the size of queue for scheduled cycle.
690 static inline u32 compute_it_cycle(const __be32 ctx_header_tstamp,
691                                    unsigned int queue_size)
692 {
693         u32 cycle = compute_cycle_count(ctx_header_tstamp);
694         return increment_cycle_count(cycle, queue_size);
695 }
696
697 static int generate_device_pkt_descs(struct amdtp_stream *s,
698                                      struct pkt_desc *descs,
699                                      const __be32 *ctx_header,
700                                      unsigned int packets)
701 {
702         unsigned int dbc = s->data_block_counter;
703         int i;
704         int err;
705
706         for (i = 0; i < packets; ++i) {
707                 struct pkt_desc *desc = descs + i;
708                 unsigned int index = (s->packet_index + i) % s->queue_size;
709                 unsigned int cycle;
710                 unsigned int payload_length;
711                 unsigned int data_blocks;
712                 unsigned int syt;
713
714                 cycle = compute_cycle_count(ctx_header[1]);
715
716                 err = parse_ir_ctx_header(s, cycle, ctx_header, &payload_length,
717                                           &data_blocks, &dbc, &syt, i);
718                 if (err < 0)
719                         return err;
720
721                 desc->cycle = cycle;
722                 desc->syt = syt;
723                 desc->data_blocks = data_blocks;
724                 desc->data_block_counter = dbc;
725                 desc->ctx_payload = s->buffer.packets[index].buffer;
726
727                 if (!(s->flags & CIP_DBC_IS_END_EVENT))
728                         dbc = (dbc + desc->data_blocks) & 0xff;
729
730                 ctx_header +=
731                         s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header);
732         }
733
734         s->data_block_counter = dbc;
735
736         return 0;
737 }
738
739 static unsigned int compute_syt(unsigned int syt_offset, unsigned int cycle,
740                                 unsigned int transfer_delay)
741 {
742         unsigned int syt;
743
744         syt_offset += transfer_delay;
745         syt = ((cycle + syt_offset / TICKS_PER_CYCLE) << 12) |
746               (syt_offset % TICKS_PER_CYCLE);
747         return syt & CIP_SYT_MASK;
748 }
749
750 static void generate_pkt_descs(struct amdtp_stream *s, struct pkt_desc *descs,
751                                const __be32 *ctx_header, unsigned int packets,
752                                const struct seq_desc *seq_descs,
753                                unsigned int seq_size)
754 {
755         unsigned int dbc = s->data_block_counter;
756         unsigned int seq_index = s->ctx_data.rx.seq_index;
757         int i;
758
759         for (i = 0; i < packets; ++i) {
760                 struct pkt_desc *desc = descs + i;
761                 unsigned int index = (s->packet_index + i) % s->queue_size;
762                 const struct seq_desc *seq = seq_descs + seq_index;
763                 unsigned int syt;
764
765                 desc->cycle = compute_it_cycle(*ctx_header, s->queue_size);
766
767                 syt = seq->syt_offset;
768                 if (syt != CIP_SYT_NO_INFO) {
769                         syt = compute_syt(syt, desc->cycle,
770                                           s->ctx_data.rx.transfer_delay);
771                 }
772                 desc->syt = syt;
773                 desc->data_blocks = seq->data_blocks;
774
775                 if (s->flags & CIP_DBC_IS_END_EVENT)
776                         dbc = (dbc + desc->data_blocks) & 0xff;
777
778                 desc->data_block_counter = dbc;
779
780                 if (!(s->flags & CIP_DBC_IS_END_EVENT))
781                         dbc = (dbc + desc->data_blocks) & 0xff;
782
783                 desc->ctx_payload = s->buffer.packets[index].buffer;
784
785                 seq_index = (seq_index + 1) % seq_size;
786
787                 ++ctx_header;
788         }
789
790         s->data_block_counter = dbc;
791         s->ctx_data.rx.seq_index = seq_index;
792 }
793
794 static inline void cancel_stream(struct amdtp_stream *s)
795 {
796         s->packet_index = -1;
797         if (in_interrupt())
798                 amdtp_stream_pcm_abort(s);
799         WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN);
800 }
801
802 static void process_ctx_payloads(struct amdtp_stream *s,
803                                  const struct pkt_desc *descs,
804                                  unsigned int packets)
805 {
806         struct snd_pcm_substream *pcm;
807         unsigned int pcm_frames;
808
809         pcm = READ_ONCE(s->pcm);
810         pcm_frames = s->process_ctx_payloads(s, descs, packets, pcm);
811         if (pcm)
812                 update_pcm_pointers(s, pcm, pcm_frames);
813 }
814
815 static void out_stream_callback(struct fw_iso_context *context, u32 tstamp,
816                                 size_t header_length, void *header,
817                                 void *private_data)
818 {
819         struct amdtp_stream *s = private_data;
820         const struct amdtp_domain *d = s->domain;
821         const __be32 *ctx_header = header;
822         unsigned int events_per_period = s->ctx_data.rx.events_per_period;
823         unsigned int event_count = s->ctx_data.rx.event_count;
824         unsigned int packets;
825         int i;
826
827         if (s->packet_index < 0)
828                 return;
829
830         // Calculate the number of packets in buffer and check XRUN.
831         packets = header_length / sizeof(*ctx_header);
832
833         generate_pkt_descs(s, s->pkt_descs, ctx_header, packets, d->seq_descs,
834                            d->seq_size);
835
836         process_ctx_payloads(s, s->pkt_descs, packets);
837
838         for (i = 0; i < packets; ++i) {
839                 const struct pkt_desc *desc = s->pkt_descs + i;
840                 unsigned int syt;
841                 struct {
842                         struct fw_iso_packet params;
843                         __be32 header[IT_PKT_HEADER_SIZE_CIP / sizeof(__be32)];
844                 } template = { {0}, {0} };
845                 bool sched_irq = false;
846
847                 if (s->ctx_data.rx.syt_override < 0)
848                         syt = desc->syt;
849                 else
850                         syt = s->ctx_data.rx.syt_override;
851
852                 build_it_pkt_header(s, desc->cycle, &template.params,
853                                     desc->data_blocks, desc->data_block_counter,
854                                     syt, i);
855
856                 if (s == s->domain->irq_target) {
857                         event_count += desc->data_blocks;
858                         if (event_count >= events_per_period) {
859                                 event_count -= events_per_period;
860                                 sched_irq = true;
861                         }
862                 }
863
864                 if (queue_out_packet(s, &template.params, sched_irq) < 0) {
865                         cancel_stream(s);
866                         return;
867                 }
868         }
869
870         s->ctx_data.rx.event_count = event_count;
871 }
872
873 static void in_stream_callback(struct fw_iso_context *context, u32 tstamp,
874                                size_t header_length, void *header,
875                                void *private_data)
876 {
877         struct amdtp_stream *s = private_data;
878         __be32 *ctx_header = header;
879         unsigned int packets;
880         int i;
881         int err;
882
883         if (s->packet_index < 0)
884                 return;
885
886         // Calculate the number of packets in buffer and check XRUN.
887         packets = header_length / s->ctx_data.tx.ctx_header_size;
888
889         err = generate_device_pkt_descs(s, s->pkt_descs, ctx_header, packets);
890         if (err < 0) {
891                 if (err != -EAGAIN) {
892                         cancel_stream(s);
893                         return;
894                 }
895         } else {
896                 process_ctx_payloads(s, s->pkt_descs, packets);
897         }
898
899         for (i = 0; i < packets; ++i) {
900                 struct fw_iso_packet params = {0};
901
902                 if (queue_in_packet(s, &params) < 0) {
903                         cancel_stream(s);
904                         return;
905                 }
906         }
907 }
908
909 static void pool_ideal_seq_descs(struct amdtp_domain *d, unsigned int packets)
910 {
911         struct amdtp_stream *irq_target = d->irq_target;
912         unsigned int seq_tail = d->seq_tail;
913         unsigned int seq_size = d->seq_size;
914         unsigned int min_avail;
915         struct amdtp_stream *s;
916
917         min_avail = d->seq_size;
918         list_for_each_entry(s, &d->streams, list) {
919                 unsigned int seq_index;
920                 unsigned int avail;
921
922                 if (s->direction == AMDTP_IN_STREAM)
923                         continue;
924
925                 seq_index = s->ctx_data.rx.seq_index;
926                 avail = d->seq_tail;
927                 if (seq_index > avail)
928                         avail += d->seq_size;
929                 avail -= seq_index;
930
931                 if (avail < min_avail)
932                         min_avail = avail;
933         }
934
935         while (min_avail < packets) {
936                 struct seq_desc *desc = d->seq_descs + seq_tail;
937
938                 desc->syt_offset = calculate_syt_offset(&d->last_syt_offset,
939                                         &d->syt_offset_state, irq_target->sfc);
940                 desc->data_blocks = calculate_data_blocks(&d->data_block_state,
941                                 !!(irq_target->flags & CIP_BLOCKING),
942                                 desc->syt_offset == CIP_SYT_NO_INFO,
943                                 irq_target->syt_interval, irq_target->sfc);
944
945                 ++seq_tail;
946                 seq_tail %= seq_size;
947
948                 ++min_avail;
949         }
950
951         d->seq_tail = seq_tail;
952 }
953
954 static void irq_target_callback(struct fw_iso_context *context, u32 tstamp,
955                                 size_t header_length, void *header,
956                                 void *private_data)
957 {
958         struct amdtp_stream *irq_target = private_data;
959         struct amdtp_domain *d = irq_target->domain;
960         unsigned int packets = header_length / sizeof(__be32);
961         struct amdtp_stream *s;
962
963         // Record enough entries with extra 3 cycles at least.
964         pool_ideal_seq_descs(d, packets + 3);
965
966         out_stream_callback(context, tstamp, header_length, header, irq_target);
967         if (amdtp_streaming_error(irq_target))
968                 goto error;
969
970         list_for_each_entry(s, &d->streams, list) {
971                 if (s != irq_target && amdtp_stream_running(s)) {
972                         fw_iso_context_flush_completions(s->context);
973                         if (amdtp_streaming_error(s))
974                                 goto error;
975                 }
976         }
977
978         return;
979 error:
980         if (amdtp_stream_running(irq_target))
981                 cancel_stream(irq_target);
982
983         list_for_each_entry(s, &d->streams, list) {
984                 if (amdtp_stream_running(s))
985                         cancel_stream(s);
986         }
987 }
988
989 // this is executed one time.
990 static void amdtp_stream_first_callback(struct fw_iso_context *context,
991                                         u32 tstamp, size_t header_length,
992                                         void *header, void *private_data)
993 {
994         struct amdtp_stream *s = private_data;
995         const __be32 *ctx_header = header;
996         u32 cycle;
997
998         /*
999          * For in-stream, first packet has come.
1000          * For out-stream, prepared to transmit first packet
1001          */
1002         s->callbacked = true;
1003         wake_up(&s->callback_wait);
1004
1005         if (s->direction == AMDTP_IN_STREAM) {
1006                 cycle = compute_cycle_count(ctx_header[1]);
1007
1008                 context->callback.sc = in_stream_callback;
1009         } else {
1010                 cycle = compute_it_cycle(*ctx_header, s->queue_size);
1011
1012                 if (s == s->domain->irq_target)
1013                         context->callback.sc = irq_target_callback;
1014                 else
1015                         context->callback.sc = out_stream_callback;
1016         }
1017
1018         s->start_cycle = cycle;
1019
1020         context->callback.sc(context, tstamp, header_length, header, s);
1021 }
1022
1023 /**
1024  * amdtp_stream_start - start transferring packets
1025  * @s: the AMDTP stream to start
1026  * @channel: the isochronous channel on the bus
1027  * @speed: firewire speed code
1028  * @start_cycle: the isochronous cycle to start the context. Start immediately
1029  *               if negative value is given.
1030  * @queue_size: The number of packets in the queue.
1031  * @idle_irq_interval: the interval to queue packet during initial state.
1032  *
1033  * The stream cannot be started until it has been configured with
1034  * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI
1035  * device can be started.
1036  */
1037 static int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed,
1038                               int start_cycle, unsigned int queue_size,
1039                               unsigned int idle_irq_interval)
1040 {
1041         bool is_irq_target = (s == s->domain->irq_target);
1042         unsigned int ctx_header_size;
1043         unsigned int max_ctx_payload_size;
1044         enum dma_data_direction dir;
1045         int type, tag, err;
1046
1047         mutex_lock(&s->mutex);
1048
1049         if (WARN_ON(amdtp_stream_running(s) ||
1050                     (s->data_block_quadlets < 1))) {
1051                 err = -EBADFD;
1052                 goto err_unlock;
1053         }
1054
1055         if (s->direction == AMDTP_IN_STREAM) {
1056                 // NOTE: IT context should be used for constant IRQ.
1057                 if (is_irq_target) {
1058                         err = -EINVAL;
1059                         goto err_unlock;
1060                 }
1061
1062                 s->data_block_counter = UINT_MAX;
1063         } else {
1064                 s->data_block_counter = 0;
1065         }
1066
1067         /* initialize packet buffer */
1068         if (s->direction == AMDTP_IN_STREAM) {
1069                 dir = DMA_FROM_DEVICE;
1070                 type = FW_ISO_CONTEXT_RECEIVE;
1071                 if (!(s->flags & CIP_NO_HEADER))
1072                         ctx_header_size = IR_CTX_HEADER_SIZE_CIP;
1073                 else
1074                         ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP;
1075
1076                 max_ctx_payload_size = amdtp_stream_get_max_payload(s) -
1077                                        ctx_header_size;
1078         } else {
1079                 dir = DMA_TO_DEVICE;
1080                 type = FW_ISO_CONTEXT_TRANSMIT;
1081                 ctx_header_size = 0;    // No effect for IT context.
1082
1083                 max_ctx_payload_size = amdtp_stream_get_max_payload(s);
1084                 if (!(s->flags & CIP_NO_HEADER))
1085                         max_ctx_payload_size -= IT_PKT_HEADER_SIZE_CIP;
1086         }
1087
1088         err = iso_packets_buffer_init(&s->buffer, s->unit, queue_size,
1089                                       max_ctx_payload_size, dir);
1090         if (err < 0)
1091                 goto err_unlock;
1092         s->queue_size = queue_size;
1093
1094         s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
1095                                           type, channel, speed, ctx_header_size,
1096                                           amdtp_stream_first_callback, s);
1097         if (IS_ERR(s->context)) {
1098                 err = PTR_ERR(s->context);
1099                 if (err == -EBUSY)
1100                         dev_err(&s->unit->device,
1101                                 "no free stream on this controller\n");
1102                 goto err_buffer;
1103         }
1104
1105         amdtp_stream_update(s);
1106
1107         if (s->direction == AMDTP_IN_STREAM) {
1108                 s->ctx_data.tx.max_ctx_payload_length = max_ctx_payload_size;
1109                 s->ctx_data.tx.ctx_header_size = ctx_header_size;
1110         }
1111
1112         if (s->flags & CIP_NO_HEADER)
1113                 s->tag = TAG_NO_CIP_HEADER;
1114         else
1115                 s->tag = TAG_CIP;
1116
1117         s->pkt_descs = kcalloc(s->queue_size, sizeof(*s->pkt_descs),
1118                                GFP_KERNEL);
1119         if (!s->pkt_descs) {
1120                 err = -ENOMEM;
1121                 goto err_context;
1122         }
1123
1124         s->packet_index = 0;
1125         do {
1126                 struct fw_iso_packet params;
1127
1128                 if (s->direction == AMDTP_IN_STREAM) {
1129                         err = queue_in_packet(s, &params);
1130                 } else {
1131                         bool sched_irq = false;
1132
1133                         params.header_length = 0;
1134                         params.payload_length = 0;
1135
1136                         if (is_irq_target) {
1137                                 sched_irq = !((s->packet_index + 1) %
1138                                               idle_irq_interval);
1139                         }
1140
1141                         err = queue_out_packet(s, &params, sched_irq);
1142                 }
1143                 if (err < 0)
1144                         goto err_pkt_descs;
1145         } while (s->packet_index > 0);
1146
1147         /* NOTE: TAG1 matches CIP. This just affects in stream. */
1148         tag = FW_ISO_CONTEXT_MATCH_TAG1;
1149         if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER))
1150                 tag |= FW_ISO_CONTEXT_MATCH_TAG0;
1151
1152         s->callbacked = false;
1153         err = fw_iso_context_start(s->context, start_cycle, 0, tag);
1154         if (err < 0)
1155                 goto err_pkt_descs;
1156
1157         mutex_unlock(&s->mutex);
1158
1159         return 0;
1160 err_pkt_descs:
1161         kfree(s->pkt_descs);
1162 err_context:
1163         fw_iso_context_destroy(s->context);
1164         s->context = ERR_PTR(-1);
1165 err_buffer:
1166         iso_packets_buffer_destroy(&s->buffer, s->unit);
1167 err_unlock:
1168         mutex_unlock(&s->mutex);
1169
1170         return err;
1171 }
1172
1173 /**
1174  * amdtp_domain_stream_pcm_pointer - get the PCM buffer position
1175  * @d: the AMDTP domain.
1176  * @s: the AMDTP stream that transports the PCM data
1177  *
1178  * Returns the current buffer position, in frames.
1179  */
1180 unsigned long amdtp_domain_stream_pcm_pointer(struct amdtp_domain *d,
1181                                               struct amdtp_stream *s)
1182 {
1183         struct amdtp_stream *irq_target = d->irq_target;
1184
1185         if (irq_target && amdtp_stream_running(irq_target)) {
1186                 // This function is called in software IRQ context of
1187                 // period_tasklet or process context.
1188                 //
1189                 // When the software IRQ context was scheduled by software IRQ
1190                 // context of IT contexts, queued packets were already handled.
1191                 // Therefore, no need to flush the queue in buffer furthermore.
1192                 //
1193                 // When the process context reach here, some packets will be
1194                 // already queued in the buffer. These packets should be handled
1195                 // immediately to keep better granularity of PCM pointer.
1196                 //
1197                 // Later, the process context will sometimes schedules software
1198                 // IRQ context of the period_tasklet. Then, no need to flush the
1199                 // queue by the same reason as described in the above
1200                 if (!in_interrupt()) {
1201                         // Queued packet should be processed without any kernel
1202                         // preemption to keep latency against bus cycle.
1203                         preempt_disable();
1204                         fw_iso_context_flush_completions(irq_target->context);
1205                         preempt_enable();
1206                 }
1207         }
1208
1209         return READ_ONCE(s->pcm_buffer_pointer);
1210 }
1211 EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_pointer);
1212
1213 /**
1214  * amdtp_domain_stream_pcm_ack - acknowledge queued PCM frames
1215  * @d: the AMDTP domain.
1216  * @s: the AMDTP stream that transfers the PCM frames
1217  *
1218  * Returns zero always.
1219  */
1220 int amdtp_domain_stream_pcm_ack(struct amdtp_domain *d, struct amdtp_stream *s)
1221 {
1222         struct amdtp_stream *irq_target = d->irq_target;
1223
1224         // Process isochronous packets for recent isochronous cycle to handle
1225         // queued PCM frames.
1226         if (irq_target && amdtp_stream_running(irq_target)) {
1227                 // Queued packet should be processed without any kernel
1228                 // preemption to keep latency against bus cycle.
1229                 preempt_disable();
1230                 fw_iso_context_flush_completions(irq_target->context);
1231                 preempt_enable();
1232         }
1233
1234         return 0;
1235 }
1236 EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_ack);
1237
1238 /**
1239  * amdtp_stream_update - update the stream after a bus reset
1240  * @s: the AMDTP stream
1241  */
1242 void amdtp_stream_update(struct amdtp_stream *s)
1243 {
1244         /* Precomputing. */
1245         WRITE_ONCE(s->source_node_id_field,
1246                    (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK);
1247 }
1248 EXPORT_SYMBOL(amdtp_stream_update);
1249
1250 /**
1251  * amdtp_stream_stop - stop sending packets
1252  * @s: the AMDTP stream to stop
1253  *
1254  * All PCM and MIDI devices of the stream must be stopped before the stream
1255  * itself can be stopped.
1256  */
1257 static void amdtp_stream_stop(struct amdtp_stream *s)
1258 {
1259         mutex_lock(&s->mutex);
1260
1261         if (!amdtp_stream_running(s)) {
1262                 mutex_unlock(&s->mutex);
1263                 return;
1264         }
1265
1266         tasklet_kill(&s->period_tasklet);
1267         fw_iso_context_stop(s->context);
1268         fw_iso_context_destroy(s->context);
1269         s->context = ERR_PTR(-1);
1270         iso_packets_buffer_destroy(&s->buffer, s->unit);
1271         kfree(s->pkt_descs);
1272
1273         s->callbacked = false;
1274
1275         mutex_unlock(&s->mutex);
1276 }
1277
1278 /**
1279  * amdtp_stream_pcm_abort - abort the running PCM device
1280  * @s: the AMDTP stream about to be stopped
1281  *
1282  * If the isochronous stream needs to be stopped asynchronously, call this
1283  * function first to stop the PCM device.
1284  */
1285 void amdtp_stream_pcm_abort(struct amdtp_stream *s)
1286 {
1287         struct snd_pcm_substream *pcm;
1288
1289         pcm = READ_ONCE(s->pcm);
1290         if (pcm)
1291                 snd_pcm_stop_xrun(pcm);
1292 }
1293 EXPORT_SYMBOL(amdtp_stream_pcm_abort);
1294
1295 /**
1296  * amdtp_domain_init - initialize an AMDTP domain structure
1297  * @d: the AMDTP domain to initialize.
1298  */
1299 int amdtp_domain_init(struct amdtp_domain *d)
1300 {
1301         INIT_LIST_HEAD(&d->streams);
1302
1303         d->events_per_period = 0;
1304
1305         d->seq_descs = NULL;
1306
1307         return 0;
1308 }
1309 EXPORT_SYMBOL_GPL(amdtp_domain_init);
1310
1311 /**
1312  * amdtp_domain_destroy - destroy an AMDTP domain structure
1313  * @d: the AMDTP domain to destroy.
1314  */
1315 void amdtp_domain_destroy(struct amdtp_domain *d)
1316 {
1317         // At present nothing to do.
1318         return;
1319 }
1320 EXPORT_SYMBOL_GPL(amdtp_domain_destroy);
1321
1322 /**
1323  * amdtp_domain_add_stream - register isoc context into the domain.
1324  * @d: the AMDTP domain.
1325  * @s: the AMDTP stream.
1326  * @channel: the isochronous channel on the bus.
1327  * @speed: firewire speed code.
1328  */
1329 int amdtp_domain_add_stream(struct amdtp_domain *d, struct amdtp_stream *s,
1330                             int channel, int speed)
1331 {
1332         struct amdtp_stream *tmp;
1333
1334         list_for_each_entry(tmp, &d->streams, list) {
1335                 if (s == tmp)
1336                         return -EBUSY;
1337         }
1338
1339         list_add(&s->list, &d->streams);
1340
1341         s->channel = channel;
1342         s->speed = speed;
1343         s->domain = d;
1344
1345         return 0;
1346 }
1347 EXPORT_SYMBOL_GPL(amdtp_domain_add_stream);
1348
1349 static int get_current_cycle_time(struct fw_card *fw_card, int *cur_cycle)
1350 {
1351         int generation;
1352         int rcode;
1353         __be32 reg;
1354         u32 data;
1355
1356         // This is a request to local 1394 OHCI controller and expected to
1357         // complete without any event waiting.
1358         generation = fw_card->generation;
1359         smp_rmb();      // node_id vs. generation.
1360         rcode = fw_run_transaction(fw_card, TCODE_READ_QUADLET_REQUEST,
1361                                    fw_card->node_id, generation, SCODE_100,
1362                                    CSR_REGISTER_BASE + CSR_CYCLE_TIME,
1363                                    &reg, sizeof(reg));
1364         if (rcode != RCODE_COMPLETE)
1365                 return -EIO;
1366
1367         data = be32_to_cpu(reg);
1368         *cur_cycle = data >> 12;
1369
1370         return 0;
1371 }
1372
1373 /**
1374  * amdtp_domain_start - start sending packets for isoc context in the domain.
1375  * @d: the AMDTP domain.
1376  * @ir_delay_cycle: the cycle delay to start all IR contexts.
1377  */
1378 int amdtp_domain_start(struct amdtp_domain *d, unsigned int ir_delay_cycle)
1379 {
1380         static const struct {
1381                 unsigned int data_block;
1382                 unsigned int syt_offset;
1383         } *entry, initial_state[] = {
1384                 [CIP_SFC_32000]  = {  4, 3072 },
1385                 [CIP_SFC_48000]  = {  6, 1024 },
1386                 [CIP_SFC_96000]  = { 12, 1024 },
1387                 [CIP_SFC_192000] = { 24, 1024 },
1388                 [CIP_SFC_44100]  = {  0,   67 },
1389                 [CIP_SFC_88200]  = {  0,   67 },
1390                 [CIP_SFC_176400] = {  0,   67 },
1391         };
1392         unsigned int events_per_buffer = d->events_per_buffer;
1393         unsigned int events_per_period = d->events_per_period;
1394         unsigned int idle_irq_interval;
1395         unsigned int queue_size;
1396         struct amdtp_stream *s;
1397         int cycle;
1398         int err;
1399
1400         // Select an IT context as IRQ target.
1401         list_for_each_entry(s, &d->streams, list) {
1402                 if (s->direction == AMDTP_OUT_STREAM)
1403                         break;
1404         }
1405         if (!s)
1406                 return -ENXIO;
1407         d->irq_target = s;
1408
1409         // This is a case that AMDTP streams in domain run just for MIDI
1410         // substream. Use the number of events equivalent to 10 msec as
1411         // interval of hardware IRQ.
1412         if (events_per_period == 0)
1413                 events_per_period = amdtp_rate_table[d->irq_target->sfc] / 100;
1414         if (events_per_buffer == 0)
1415                 events_per_buffer = events_per_period * 3;
1416
1417         queue_size = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_buffer,
1418                                   amdtp_rate_table[d->irq_target->sfc]);
1419
1420         d->seq_descs = kcalloc(queue_size, sizeof(*d->seq_descs), GFP_KERNEL);
1421         if (!d->seq_descs)
1422                 return -ENOMEM;
1423         d->seq_size = queue_size;
1424         d->seq_tail = 0;
1425
1426         entry = &initial_state[s->sfc];
1427         d->data_block_state = entry->data_block;
1428         d->syt_offset_state = entry->syt_offset;
1429         d->last_syt_offset = TICKS_PER_CYCLE;
1430
1431         if (ir_delay_cycle > 0) {
1432                 struct fw_card *fw_card = fw_parent_device(s->unit)->card;
1433
1434                 err = get_current_cycle_time(fw_card, &cycle);
1435                 if (err < 0)
1436                         goto error;
1437
1438                 // No need to care overflow in cycle field because of enough
1439                 // width.
1440                 cycle += ir_delay_cycle;
1441
1442                 // Round up to sec field.
1443                 if ((cycle & 0x00001fff) >= CYCLES_PER_SECOND) {
1444                         unsigned int sec;
1445
1446                         // The sec field can overflow.
1447                         sec = (cycle & 0xffffe000) >> 13;
1448                         cycle = (++sec << 13) |
1449                                 ((cycle & 0x00001fff) / CYCLES_PER_SECOND);
1450                 }
1451
1452                 // In OHCI 1394 specification, lower 2 bits are available for
1453                 // sec field.
1454                 cycle &= 0x00007fff;
1455         } else {
1456                 cycle = -1;
1457         }
1458
1459         list_for_each_entry(s, &d->streams, list) {
1460                 int cycle_match;
1461
1462                 if (s->direction == AMDTP_IN_STREAM) {
1463                         cycle_match = cycle;
1464                 } else {
1465                         // IT context starts immediately.
1466                         cycle_match = -1;
1467                         s->ctx_data.rx.seq_index = 0;
1468                 }
1469
1470                 if (s != d->irq_target) {
1471                         err = amdtp_stream_start(s, s->channel, s->speed,
1472                                                  cycle_match, queue_size, 0);
1473                         if (err < 0)
1474                                 goto error;
1475                 }
1476         }
1477
1478         s = d->irq_target;
1479         s->ctx_data.rx.events_per_period = events_per_period;
1480         s->ctx_data.rx.event_count = 0;
1481         s->ctx_data.rx.seq_index = 0;
1482
1483         idle_irq_interval = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_period,
1484                                          amdtp_rate_table[d->irq_target->sfc]);
1485         err = amdtp_stream_start(s, s->channel, s->speed, -1, queue_size,
1486                                  idle_irq_interval);
1487         if (err < 0)
1488                 goto error;
1489
1490         return 0;
1491 error:
1492         list_for_each_entry(s, &d->streams, list)
1493                 amdtp_stream_stop(s);
1494         kfree(d->seq_descs);
1495         d->seq_descs = NULL;
1496         return err;
1497 }
1498 EXPORT_SYMBOL_GPL(amdtp_domain_start);
1499
1500 /**
1501  * amdtp_domain_stop - stop sending packets for isoc context in the same domain.
1502  * @d: the AMDTP domain to which the isoc contexts belong.
1503  */
1504 void amdtp_domain_stop(struct amdtp_domain *d)
1505 {
1506         struct amdtp_stream *s, *next;
1507
1508         if (d->irq_target)
1509                 amdtp_stream_stop(d->irq_target);
1510
1511         list_for_each_entry_safe(s, next, &d->streams, list) {
1512                 list_del(&s->list);
1513
1514                 if (s != d->irq_target)
1515                         amdtp_stream_stop(s);
1516         }
1517
1518         d->events_per_period = 0;
1519         d->irq_target = NULL;
1520
1521         kfree(d->seq_descs);
1522         d->seq_descs = NULL;
1523 }
1524 EXPORT_SYMBOL_GPL(amdtp_domain_stop);