1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Digital Audio (PCM) abstract layer
4 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
5 * Abramo Bagnara <abramo@alsa-project.org>
8 #include <linux/slab.h>
9 #include <linux/sched/signal.h>
10 #include <linux/time.h>
11 #include <linux/math64.h>
12 #include <linux/export.h>
13 #include <sound/core.h>
14 #include <sound/control.h>
15 #include <sound/tlv.h>
16 #include <sound/info.h>
17 #include <sound/pcm.h>
18 #include <sound/pcm_params.h>
19 #include <sound/timer.h>
21 #include "pcm_local.h"
23 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
24 #define CREATE_TRACE_POINTS
25 #include "pcm_trace.h"
27 #define trace_hwptr(substream, pos, in_interrupt)
28 #define trace_xrun(substream)
29 #define trace_hw_ptr_error(substream, reason)
30 #define trace_applptr(substream, prev, curr)
33 static int fill_silence_frames(struct snd_pcm_substream *substream,
34 snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
37 * fill ring buffer with silence
38 * runtime->silence_start: starting pointer to silence area
39 * runtime->silence_filled: size filled with silence
40 * runtime->silence_threshold: threshold from application
41 * runtime->silence_size: maximal size from application
43 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
45 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
47 struct snd_pcm_runtime *runtime = substream->runtime;
48 snd_pcm_uframes_t frames, ofs, transfer;
51 if (runtime->silence_size < runtime->boundary) {
52 snd_pcm_sframes_t noise_dist, n;
53 snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
54 if (runtime->silence_start != appl_ptr) {
55 n = appl_ptr - runtime->silence_start;
57 n += runtime->boundary;
58 if ((snd_pcm_uframes_t)n < runtime->silence_filled)
59 runtime->silence_filled -= n;
61 runtime->silence_filled = 0;
62 runtime->silence_start = appl_ptr;
64 if (runtime->silence_filled >= runtime->buffer_size)
66 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
67 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
69 frames = runtime->silence_threshold - noise_dist;
70 if (frames > runtime->silence_size)
71 frames = runtime->silence_size;
73 if (new_hw_ptr == ULONG_MAX) { /* initialization */
74 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
75 if (avail > runtime->buffer_size)
76 avail = runtime->buffer_size;
77 runtime->silence_filled = avail > 0 ? avail : 0;
78 runtime->silence_start = (runtime->status->hw_ptr +
79 runtime->silence_filled) %
82 ofs = runtime->status->hw_ptr;
83 frames = new_hw_ptr - ofs;
84 if ((snd_pcm_sframes_t)frames < 0)
85 frames += runtime->boundary;
86 runtime->silence_filled -= frames;
87 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
88 runtime->silence_filled = 0;
89 runtime->silence_start = new_hw_ptr;
91 runtime->silence_start = ofs;
94 frames = runtime->buffer_size - runtime->silence_filled;
96 if (snd_BUG_ON(frames > runtime->buffer_size))
100 ofs = runtime->silence_start % runtime->buffer_size;
102 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
103 err = fill_silence_frames(substream, ofs, transfer);
105 runtime->silence_filled += transfer;
111 #ifdef CONFIG_SND_DEBUG
112 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
113 char *name, size_t len)
115 snprintf(name, len, "pcmC%dD%d%c:%d",
116 substream->pcm->card->number,
117 substream->pcm->device,
118 substream->stream ? 'c' : 'p',
121 EXPORT_SYMBOL(snd_pcm_debug_name);
124 #define XRUN_DEBUG_BASIC (1<<0)
125 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
126 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
128 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
130 #define xrun_debug(substream, mask) \
131 ((substream)->pstr->xrun_debug & (mask))
133 #define xrun_debug(substream, mask) 0
136 #define dump_stack_on_xrun(substream) do { \
137 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
141 /* call with stream lock held */
142 void __snd_pcm_xrun(struct snd_pcm_substream *substream)
144 struct snd_pcm_runtime *runtime = substream->runtime;
146 trace_xrun(substream);
147 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
148 struct timespec64 tstamp;
150 snd_pcm_gettime(runtime, &tstamp);
151 runtime->status->tstamp.tv_sec = tstamp.tv_sec;
152 runtime->status->tstamp.tv_nsec = tstamp.tv_nsec;
154 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
155 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
157 snd_pcm_debug_name(substream, name, sizeof(name));
158 pcm_warn(substream->pcm, "XRUN: %s\n", name);
159 dump_stack_on_xrun(substream);
163 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
164 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \
166 trace_hw_ptr_error(substream, reason); \
167 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
168 pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
169 (in_interrupt) ? 'Q' : 'P', ##args); \
170 dump_stack_on_xrun(substream); \
174 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
176 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
180 int snd_pcm_update_state(struct snd_pcm_substream *substream,
181 struct snd_pcm_runtime *runtime)
183 snd_pcm_uframes_t avail;
185 avail = snd_pcm_avail(substream);
186 if (avail > runtime->avail_max)
187 runtime->avail_max = avail;
188 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
189 if (avail >= runtime->buffer_size) {
190 snd_pcm_drain_done(substream);
194 if (avail >= runtime->stop_threshold) {
195 __snd_pcm_xrun(substream);
199 if (runtime->twake) {
200 if (avail >= runtime->twake)
201 wake_up(&runtime->tsleep);
202 } else if (avail >= runtime->control->avail_min)
203 wake_up(&runtime->sleep);
207 static void update_audio_tstamp(struct snd_pcm_substream *substream,
208 struct timespec64 *curr_tstamp,
209 struct timespec64 *audio_tstamp)
211 struct snd_pcm_runtime *runtime = substream->runtime;
212 u64 audio_frames, audio_nsecs;
213 struct timespec64 driver_tstamp;
215 if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
218 if (!(substream->ops->get_time_info) ||
219 (runtime->audio_tstamp_report.actual_type ==
220 SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
223 * provide audio timestamp derived from pointer position
224 * add delay only if requested
227 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
229 if (runtime->audio_tstamp_config.report_delay) {
230 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
231 audio_frames -= runtime->delay;
233 audio_frames += runtime->delay;
235 audio_nsecs = div_u64(audio_frames * 1000000000LL,
237 *audio_tstamp = ns_to_timespec64(audio_nsecs);
240 if (runtime->status->audio_tstamp.tv_sec != audio_tstamp->tv_sec ||
241 runtime->status->audio_tstamp.tv_nsec != audio_tstamp->tv_nsec) {
242 runtime->status->audio_tstamp.tv_sec = audio_tstamp->tv_sec;
243 runtime->status->audio_tstamp.tv_nsec = audio_tstamp->tv_nsec;
244 runtime->status->tstamp.tv_sec = curr_tstamp->tv_sec;
245 runtime->status->tstamp.tv_nsec = curr_tstamp->tv_nsec;
250 * re-take a driver timestamp to let apps detect if the reference tstamp
251 * read by low-level hardware was provided with a delay
253 snd_pcm_gettime(substream->runtime, &driver_tstamp);
254 runtime->driver_tstamp = driver_tstamp;
257 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
258 unsigned int in_interrupt)
260 struct snd_pcm_runtime *runtime = substream->runtime;
261 snd_pcm_uframes_t pos;
262 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
263 snd_pcm_sframes_t hdelta, delta;
264 unsigned long jdelta;
265 unsigned long curr_jiffies;
266 struct timespec64 curr_tstamp;
267 struct timespec64 audio_tstamp;
268 int crossed_boundary = 0;
270 old_hw_ptr = runtime->status->hw_ptr;
273 * group pointer, time and jiffies reads to allow for more
274 * accurate correlations/corrections.
275 * The values are stored at the end of this routine after
276 * corrections for hw_ptr position
278 pos = substream->ops->pointer(substream);
279 curr_jiffies = jiffies;
280 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
281 if ((substream->ops->get_time_info) &&
282 (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
283 substream->ops->get_time_info(substream, &curr_tstamp,
285 &runtime->audio_tstamp_config,
286 &runtime->audio_tstamp_report);
288 /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
289 if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
290 snd_pcm_gettime(runtime, &curr_tstamp);
292 snd_pcm_gettime(runtime, &curr_tstamp);
295 if (pos == SNDRV_PCM_POS_XRUN) {
296 __snd_pcm_xrun(substream);
299 if (pos >= runtime->buffer_size) {
300 if (printk_ratelimit()) {
302 snd_pcm_debug_name(substream, name, sizeof(name));
303 pcm_err(substream->pcm,
304 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
305 name, pos, runtime->buffer_size,
306 runtime->period_size);
310 pos -= pos % runtime->min_align;
311 trace_hwptr(substream, pos, in_interrupt);
312 hw_base = runtime->hw_ptr_base;
313 new_hw_ptr = hw_base + pos;
315 /* we know that one period was processed */
316 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
317 delta = runtime->hw_ptr_interrupt + runtime->period_size;
318 if (delta > new_hw_ptr) {
319 /* check for double acknowledged interrupts */
320 hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
321 if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
322 hw_base += runtime->buffer_size;
323 if (hw_base >= runtime->boundary) {
327 new_hw_ptr = hw_base + pos;
332 /* new_hw_ptr might be lower than old_hw_ptr in case when */
333 /* pointer crosses the end of the ring buffer */
334 if (new_hw_ptr < old_hw_ptr) {
335 hw_base += runtime->buffer_size;
336 if (hw_base >= runtime->boundary) {
340 new_hw_ptr = hw_base + pos;
343 delta = new_hw_ptr - old_hw_ptr;
345 delta += runtime->boundary;
347 if (runtime->no_period_wakeup) {
348 snd_pcm_sframes_t xrun_threshold;
350 * Without regular period interrupts, we have to check
351 * the elapsed time to detect xruns.
353 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
354 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
356 hdelta = jdelta - delta * HZ / runtime->rate;
357 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
358 while (hdelta > xrun_threshold) {
359 delta += runtime->buffer_size;
360 hw_base += runtime->buffer_size;
361 if (hw_base >= runtime->boundary) {
365 new_hw_ptr = hw_base + pos;
366 hdelta -= runtime->hw_ptr_buffer_jiffies;
371 /* something must be really wrong */
372 if (delta >= runtime->buffer_size + runtime->period_size) {
373 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
374 "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
375 substream->stream, (long)pos,
376 (long)new_hw_ptr, (long)old_hw_ptr);
380 /* Do jiffies check only in xrun_debug mode */
381 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
382 goto no_jiffies_check;
384 /* Skip the jiffies check for hardwares with BATCH flag.
385 * Such hardware usually just increases the position at each IRQ,
386 * thus it can't give any strange position.
388 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
389 goto no_jiffies_check;
391 if (hdelta < runtime->delay)
392 goto no_jiffies_check;
393 hdelta -= runtime->delay;
394 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
395 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
397 (((runtime->period_size * HZ) / runtime->rate)
399 /* move new_hw_ptr according jiffies not pos variable */
400 new_hw_ptr = old_hw_ptr;
402 /* use loop to avoid checks for delta overflows */
403 /* the delta value is small or zero in most cases */
405 new_hw_ptr += runtime->period_size;
406 if (new_hw_ptr >= runtime->boundary) {
407 new_hw_ptr -= runtime->boundary;
412 /* align hw_base to buffer_size */
413 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
414 "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
415 (long)pos, (long)hdelta,
416 (long)runtime->period_size, jdelta,
417 ((hdelta * HZ) / runtime->rate), hw_base,
418 (unsigned long)old_hw_ptr,
419 (unsigned long)new_hw_ptr);
420 /* reset values to proper state */
422 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
425 if (delta > runtime->period_size + runtime->period_size / 2) {
426 hw_ptr_error(substream, in_interrupt,
428 "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
429 substream->stream, (long)delta,
435 if (runtime->status->hw_ptr == new_hw_ptr) {
436 runtime->hw_ptr_jiffies = curr_jiffies;
437 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
441 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
442 runtime->silence_size > 0)
443 snd_pcm_playback_silence(substream, new_hw_ptr);
446 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
448 delta += runtime->boundary;
449 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
450 runtime->hw_ptr_interrupt += delta;
451 if (runtime->hw_ptr_interrupt >= runtime->boundary)
452 runtime->hw_ptr_interrupt -= runtime->boundary;
454 runtime->hw_ptr_base = hw_base;
455 runtime->status->hw_ptr = new_hw_ptr;
456 runtime->hw_ptr_jiffies = curr_jiffies;
457 if (crossed_boundary) {
458 snd_BUG_ON(crossed_boundary != 1);
459 runtime->hw_ptr_wrap += runtime->boundary;
462 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
464 return snd_pcm_update_state(substream, runtime);
467 /* CAUTION: call it with irq disabled */
468 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
470 return snd_pcm_update_hw_ptr0(substream, 0);
474 * snd_pcm_set_ops - set the PCM operators
475 * @pcm: the pcm instance
476 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
477 * @ops: the operator table
479 * Sets the given PCM operators to the pcm instance.
481 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
482 const struct snd_pcm_ops *ops)
484 struct snd_pcm_str *stream = &pcm->streams[direction];
485 struct snd_pcm_substream *substream;
487 for (substream = stream->substream; substream != NULL; substream = substream->next)
488 substream->ops = ops;
490 EXPORT_SYMBOL(snd_pcm_set_ops);
493 * snd_pcm_set_sync - set the PCM sync id
494 * @substream: the pcm substream
496 * Sets the PCM sync identifier for the card.
498 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
500 struct snd_pcm_runtime *runtime = substream->runtime;
502 runtime->sync.id32[0] = substream->pcm->card->number;
503 runtime->sync.id32[1] = -1;
504 runtime->sync.id32[2] = -1;
505 runtime->sync.id32[3] = -1;
507 EXPORT_SYMBOL(snd_pcm_set_sync);
510 * Standard ioctl routine
513 static inline unsigned int div32(unsigned int a, unsigned int b,
524 static inline unsigned int div_down(unsigned int a, unsigned int b)
531 static inline unsigned int div_up(unsigned int a, unsigned int b)
543 static inline unsigned int mul(unsigned int a, unsigned int b)
547 if (div_down(UINT_MAX, a) < b)
552 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
553 unsigned int c, unsigned int *r)
555 u_int64_t n = (u_int64_t) a * b;
560 n = div_u64_rem(n, c, r);
569 * snd_interval_refine - refine the interval value of configurator
570 * @i: the interval value to refine
571 * @v: the interval value to refer to
573 * Refines the interval value with the reference value.
574 * The interval is changed to the range satisfying both intervals.
575 * The interval status (min, max, integer, etc.) are evaluated.
577 * Return: Positive if the value is changed, zero if it's not changed, or a
578 * negative error code.
580 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
583 if (snd_BUG_ON(snd_interval_empty(i)))
585 if (i->min < v->min) {
587 i->openmin = v->openmin;
589 } else if (i->min == v->min && !i->openmin && v->openmin) {
593 if (i->max > v->max) {
595 i->openmax = v->openmax;
597 } else if (i->max == v->max && !i->openmax && v->openmax) {
601 if (!i->integer && v->integer) {
614 } else if (!i->openmin && !i->openmax && i->min == i->max)
616 if (snd_interval_checkempty(i)) {
617 snd_interval_none(i);
622 EXPORT_SYMBOL(snd_interval_refine);
624 static int snd_interval_refine_first(struct snd_interval *i)
626 const unsigned int last_max = i->max;
628 if (snd_BUG_ON(snd_interval_empty(i)))
630 if (snd_interval_single(i))
635 /* only exclude max value if also excluded before refine */
636 i->openmax = (i->openmax && i->max >= last_max);
640 static int snd_interval_refine_last(struct snd_interval *i)
642 const unsigned int last_min = i->min;
644 if (snd_BUG_ON(snd_interval_empty(i)))
646 if (snd_interval_single(i))
651 /* only exclude min value if also excluded before refine */
652 i->openmin = (i->openmin && i->min <= last_min);
656 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
658 if (a->empty || b->empty) {
659 snd_interval_none(c);
663 c->min = mul(a->min, b->min);
664 c->openmin = (a->openmin || b->openmin);
665 c->max = mul(a->max, b->max);
666 c->openmax = (a->openmax || b->openmax);
667 c->integer = (a->integer && b->integer);
671 * snd_interval_div - refine the interval value with division
678 * Returns non-zero if the value is changed, zero if not changed.
680 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
683 if (a->empty || b->empty) {
684 snd_interval_none(c);
688 c->min = div32(a->min, b->max, &r);
689 c->openmin = (r || a->openmin || b->openmax);
691 c->max = div32(a->max, b->min, &r);
696 c->openmax = (a->openmax || b->openmin);
705 * snd_interval_muldivk - refine the interval value
708 * @k: divisor (as integer)
713 * Returns non-zero if the value is changed, zero if not changed.
715 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
716 unsigned int k, struct snd_interval *c)
719 if (a->empty || b->empty) {
720 snd_interval_none(c);
724 c->min = muldiv32(a->min, b->min, k, &r);
725 c->openmin = (r || a->openmin || b->openmin);
726 c->max = muldiv32(a->max, b->max, k, &r);
731 c->openmax = (a->openmax || b->openmax);
736 * snd_interval_mulkdiv - refine the interval value
738 * @k: dividend 2 (as integer)
744 * Returns non-zero if the value is changed, zero if not changed.
746 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
747 const struct snd_interval *b, struct snd_interval *c)
750 if (a->empty || b->empty) {
751 snd_interval_none(c);
755 c->min = muldiv32(a->min, k, b->max, &r);
756 c->openmin = (r || a->openmin || b->openmax);
758 c->max = muldiv32(a->max, k, b->min, &r);
763 c->openmax = (a->openmax || b->openmin);
775 * snd_interval_ratnum - refine the interval value
776 * @i: interval to refine
777 * @rats_count: number of ratnum_t
778 * @rats: ratnum_t array
779 * @nump: pointer to store the resultant numerator
780 * @denp: pointer to store the resultant denominator
782 * Return: Positive if the value is changed, zero if it's not changed, or a
783 * negative error code.
785 int snd_interval_ratnum(struct snd_interval *i,
786 unsigned int rats_count, const struct snd_ratnum *rats,
787 unsigned int *nump, unsigned int *denp)
789 unsigned int best_num, best_den;
792 struct snd_interval t;
794 unsigned int result_num, result_den;
797 best_num = best_den = best_diff = 0;
798 for (k = 0; k < rats_count; ++k) {
799 unsigned int num = rats[k].num;
801 unsigned int q = i->min;
805 den = div_up(num, q);
806 if (den < rats[k].den_min)
808 if (den > rats[k].den_max)
809 den = rats[k].den_max;
812 r = (den - rats[k].den_min) % rats[k].den_step;
816 diff = num - q * den;
820 diff * best_den < best_diff * den) {
830 t.min = div_down(best_num, best_den);
831 t.openmin = !!(best_num % best_den);
833 result_num = best_num;
834 result_diff = best_diff;
835 result_den = best_den;
836 best_num = best_den = best_diff = 0;
837 for (k = 0; k < rats_count; ++k) {
838 unsigned int num = rats[k].num;
840 unsigned int q = i->max;
846 den = div_down(num, q);
847 if (den > rats[k].den_max)
849 if (den < rats[k].den_min)
850 den = rats[k].den_min;
853 r = (den - rats[k].den_min) % rats[k].den_step;
855 den += rats[k].den_step - r;
857 diff = q * den - num;
861 diff * best_den < best_diff * den) {
871 t.max = div_up(best_num, best_den);
872 t.openmax = !!(best_num % best_den);
874 err = snd_interval_refine(i, &t);
878 if (snd_interval_single(i)) {
879 if (best_diff * result_den < result_diff * best_den) {
880 result_num = best_num;
881 result_den = best_den;
890 EXPORT_SYMBOL(snd_interval_ratnum);
893 * snd_interval_ratden - refine the interval value
894 * @i: interval to refine
895 * @rats_count: number of struct ratden
896 * @rats: struct ratden array
897 * @nump: pointer to store the resultant numerator
898 * @denp: pointer to store the resultant denominator
900 * Return: Positive if the value is changed, zero if it's not changed, or a
901 * negative error code.
903 static int snd_interval_ratden(struct snd_interval *i,
904 unsigned int rats_count,
905 const struct snd_ratden *rats,
906 unsigned int *nump, unsigned int *denp)
908 unsigned int best_num, best_diff, best_den;
910 struct snd_interval t;
913 best_num = best_den = best_diff = 0;
914 for (k = 0; k < rats_count; ++k) {
916 unsigned int den = rats[k].den;
917 unsigned int q = i->min;
920 if (num > rats[k].num_max)
922 if (num < rats[k].num_min)
923 num = rats[k].num_max;
926 r = (num - rats[k].num_min) % rats[k].num_step;
928 num += rats[k].num_step - r;
930 diff = num - q * den;
932 diff * best_den < best_diff * den) {
942 t.min = div_down(best_num, best_den);
943 t.openmin = !!(best_num % best_den);
945 best_num = best_den = best_diff = 0;
946 for (k = 0; k < rats_count; ++k) {
948 unsigned int den = rats[k].den;
949 unsigned int q = i->max;
952 if (num < rats[k].num_min)
954 if (num > rats[k].num_max)
955 num = rats[k].num_max;
958 r = (num - rats[k].num_min) % rats[k].num_step;
962 diff = q * den - num;
964 diff * best_den < best_diff * den) {
974 t.max = div_up(best_num, best_den);
975 t.openmax = !!(best_num % best_den);
977 err = snd_interval_refine(i, &t);
981 if (snd_interval_single(i)) {
991 * snd_interval_list - refine the interval value from the list
992 * @i: the interval value to refine
993 * @count: the number of elements in the list
994 * @list: the value list
995 * @mask: the bit-mask to evaluate
997 * Refines the interval value from the list.
998 * When mask is non-zero, only the elements corresponding to bit 1 are
1001 * Return: Positive if the value is changed, zero if it's not changed, or a
1002 * negative error code.
1004 int snd_interval_list(struct snd_interval *i, unsigned int count,
1005 const unsigned int *list, unsigned int mask)
1008 struct snd_interval list_range;
1014 snd_interval_any(&list_range);
1015 list_range.min = UINT_MAX;
1017 for (k = 0; k < count; k++) {
1018 if (mask && !(mask & (1 << k)))
1020 if (!snd_interval_test(i, list[k]))
1022 list_range.min = min(list_range.min, list[k]);
1023 list_range.max = max(list_range.max, list[k]);
1025 return snd_interval_refine(i, &list_range);
1027 EXPORT_SYMBOL(snd_interval_list);
1030 * snd_interval_ranges - refine the interval value from the list of ranges
1031 * @i: the interval value to refine
1032 * @count: the number of elements in the list of ranges
1033 * @ranges: the ranges list
1034 * @mask: the bit-mask to evaluate
1036 * Refines the interval value from the list of ranges.
1037 * When mask is non-zero, only the elements corresponding to bit 1 are
1040 * Return: Positive if the value is changed, zero if it's not changed, or a
1041 * negative error code.
1043 int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1044 const struct snd_interval *ranges, unsigned int mask)
1047 struct snd_interval range_union;
1048 struct snd_interval range;
1051 snd_interval_none(i);
1054 snd_interval_any(&range_union);
1055 range_union.min = UINT_MAX;
1056 range_union.max = 0;
1057 for (k = 0; k < count; k++) {
1058 if (mask && !(mask & (1 << k)))
1060 snd_interval_copy(&range, &ranges[k]);
1061 if (snd_interval_refine(&range, i) < 0)
1063 if (snd_interval_empty(&range))
1066 if (range.min < range_union.min) {
1067 range_union.min = range.min;
1068 range_union.openmin = 1;
1070 if (range.min == range_union.min && !range.openmin)
1071 range_union.openmin = 0;
1072 if (range.max > range_union.max) {
1073 range_union.max = range.max;
1074 range_union.openmax = 1;
1076 if (range.max == range_union.max && !range.openmax)
1077 range_union.openmax = 0;
1079 return snd_interval_refine(i, &range_union);
1081 EXPORT_SYMBOL(snd_interval_ranges);
1083 static int snd_interval_step(struct snd_interval *i, unsigned int step)
1088 if (n != 0 || i->openmin) {
1094 if (n != 0 || i->openmax) {
1099 if (snd_interval_checkempty(i)) {
1106 /* Info constraints helpers */
1109 * snd_pcm_hw_rule_add - add the hw-constraint rule
1110 * @runtime: the pcm runtime instance
1111 * @cond: condition bits
1112 * @var: the variable to evaluate
1113 * @func: the evaluation function
1114 * @private: the private data pointer passed to function
1115 * @dep: the dependent variables
1117 * Return: Zero if successful, or a negative error code on failure.
1119 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1121 snd_pcm_hw_rule_func_t func, void *private,
1124 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1125 struct snd_pcm_hw_rule *c;
1128 va_start(args, dep);
1129 if (constrs->rules_num >= constrs->rules_all) {
1130 struct snd_pcm_hw_rule *new;
1131 unsigned int new_rules = constrs->rules_all + 16;
1132 new = krealloc_array(constrs->rules, new_rules,
1133 sizeof(*c), GFP_KERNEL);
1138 constrs->rules = new;
1139 constrs->rules_all = new_rules;
1141 c = &constrs->rules[constrs->rules_num];
1145 c->private = private;
1148 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1155 dep = va_arg(args, int);
1157 constrs->rules_num++;
1161 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1164 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1165 * @runtime: PCM runtime instance
1166 * @var: hw_params variable to apply the mask
1167 * @mask: the bitmap mask
1169 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1171 * Return: Zero if successful, or a negative error code on failure.
1173 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1176 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1177 struct snd_mask *maskp = constrs_mask(constrs, var);
1178 *maskp->bits &= mask;
1179 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1180 if (*maskp->bits == 0)
1186 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1187 * @runtime: PCM runtime instance
1188 * @var: hw_params variable to apply the mask
1189 * @mask: the 64bit bitmap mask
1191 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1193 * Return: Zero if successful, or a negative error code on failure.
1195 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1198 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1199 struct snd_mask *maskp = constrs_mask(constrs, var);
1200 maskp->bits[0] &= (u_int32_t)mask;
1201 maskp->bits[1] &= (u_int32_t)(mask >> 32);
1202 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1203 if (! maskp->bits[0] && ! maskp->bits[1])
1207 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1210 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1211 * @runtime: PCM runtime instance
1212 * @var: hw_params variable to apply the integer constraint
1214 * Apply the constraint of integer to an interval parameter.
1216 * Return: Positive if the value is changed, zero if it's not changed, or a
1217 * negative error code.
1219 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1221 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1222 return snd_interval_setinteger(constrs_interval(constrs, var));
1224 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1227 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1228 * @runtime: PCM runtime instance
1229 * @var: hw_params variable to apply the range
1230 * @min: the minimal value
1231 * @max: the maximal value
1233 * Apply the min/max range constraint to an interval parameter.
1235 * Return: Positive if the value is changed, zero if it's not changed, or a
1236 * negative error code.
1238 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1239 unsigned int min, unsigned int max)
1241 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1242 struct snd_interval t;
1245 t.openmin = t.openmax = 0;
1247 return snd_interval_refine(constrs_interval(constrs, var), &t);
1249 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1251 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1252 struct snd_pcm_hw_rule *rule)
1254 struct snd_pcm_hw_constraint_list *list = rule->private;
1255 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1260 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1261 * @runtime: PCM runtime instance
1262 * @cond: condition bits
1263 * @var: hw_params variable to apply the list constraint
1266 * Apply the list of constraints to an interval parameter.
1268 * Return: Zero if successful, or a negative error code on failure.
1270 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1272 snd_pcm_hw_param_t var,
1273 const struct snd_pcm_hw_constraint_list *l)
1275 return snd_pcm_hw_rule_add(runtime, cond, var,
1276 snd_pcm_hw_rule_list, (void *)l,
1279 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1281 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1282 struct snd_pcm_hw_rule *rule)
1284 struct snd_pcm_hw_constraint_ranges *r = rule->private;
1285 return snd_interval_ranges(hw_param_interval(params, rule->var),
1286 r->count, r->ranges, r->mask);
1291 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1292 * @runtime: PCM runtime instance
1293 * @cond: condition bits
1294 * @var: hw_params variable to apply the list of range constraints
1297 * Apply the list of range constraints to an interval parameter.
1299 * Return: Zero if successful, or a negative error code on failure.
1301 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1303 snd_pcm_hw_param_t var,
1304 const struct snd_pcm_hw_constraint_ranges *r)
1306 return snd_pcm_hw_rule_add(runtime, cond, var,
1307 snd_pcm_hw_rule_ranges, (void *)r,
1310 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1312 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1313 struct snd_pcm_hw_rule *rule)
1315 const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1316 unsigned int num = 0, den = 0;
1318 err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1319 r->nrats, r->rats, &num, &den);
1320 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1321 params->rate_num = num;
1322 params->rate_den = den;
1328 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1329 * @runtime: PCM runtime instance
1330 * @cond: condition bits
1331 * @var: hw_params variable to apply the ratnums constraint
1332 * @r: struct snd_ratnums constriants
1334 * Return: Zero if successful, or a negative error code on failure.
1336 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1338 snd_pcm_hw_param_t var,
1339 const struct snd_pcm_hw_constraint_ratnums *r)
1341 return snd_pcm_hw_rule_add(runtime, cond, var,
1342 snd_pcm_hw_rule_ratnums, (void *)r,
1345 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1347 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1348 struct snd_pcm_hw_rule *rule)
1350 const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1351 unsigned int num = 0, den = 0;
1352 int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1353 r->nrats, r->rats, &num, &den);
1354 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1355 params->rate_num = num;
1356 params->rate_den = den;
1362 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1363 * @runtime: PCM runtime instance
1364 * @cond: condition bits
1365 * @var: hw_params variable to apply the ratdens constraint
1366 * @r: struct snd_ratdens constriants
1368 * Return: Zero if successful, or a negative error code on failure.
1370 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1372 snd_pcm_hw_param_t var,
1373 const struct snd_pcm_hw_constraint_ratdens *r)
1375 return snd_pcm_hw_rule_add(runtime, cond, var,
1376 snd_pcm_hw_rule_ratdens, (void *)r,
1379 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1381 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1382 struct snd_pcm_hw_rule *rule)
1384 unsigned int l = (unsigned long) rule->private;
1385 int width = l & 0xffff;
1386 unsigned int msbits = l >> 16;
1387 const struct snd_interval *i =
1388 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1390 if (!snd_interval_single(i))
1393 if ((snd_interval_value(i) == width) ||
1394 (width == 0 && snd_interval_value(i) > msbits))
1395 params->msbits = min_not_zero(params->msbits, msbits);
1401 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1402 * @runtime: PCM runtime instance
1403 * @cond: condition bits
1404 * @width: sample bits width
1405 * @msbits: msbits width
1407 * This constraint will set the number of most significant bits (msbits) if a
1408 * sample format with the specified width has been select. If width is set to 0
1409 * the msbits will be set for any sample format with a width larger than the
1412 * Return: Zero if successful, or a negative error code on failure.
1414 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1417 unsigned int msbits)
1419 unsigned long l = (msbits << 16) | width;
1420 return snd_pcm_hw_rule_add(runtime, cond, -1,
1421 snd_pcm_hw_rule_msbits,
1423 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1425 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1427 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1428 struct snd_pcm_hw_rule *rule)
1430 unsigned long step = (unsigned long) rule->private;
1431 return snd_interval_step(hw_param_interval(params, rule->var), step);
1435 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1436 * @runtime: PCM runtime instance
1437 * @cond: condition bits
1438 * @var: hw_params variable to apply the step constraint
1441 * Return: Zero if successful, or a negative error code on failure.
1443 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1445 snd_pcm_hw_param_t var,
1448 return snd_pcm_hw_rule_add(runtime, cond, var,
1449 snd_pcm_hw_rule_step, (void *) step,
1452 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1454 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1456 static const unsigned int pow2_sizes[] = {
1457 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1458 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1459 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1460 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1462 return snd_interval_list(hw_param_interval(params, rule->var),
1463 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1467 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1468 * @runtime: PCM runtime instance
1469 * @cond: condition bits
1470 * @var: hw_params variable to apply the power-of-2 constraint
1472 * Return: Zero if successful, or a negative error code on failure.
1474 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1476 snd_pcm_hw_param_t var)
1478 return snd_pcm_hw_rule_add(runtime, cond, var,
1479 snd_pcm_hw_rule_pow2, NULL,
1482 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1484 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1485 struct snd_pcm_hw_rule *rule)
1487 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1488 struct snd_interval *rate;
1490 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1491 return snd_interval_list(rate, 1, &base_rate, 0);
1495 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1496 * @runtime: PCM runtime instance
1497 * @base_rate: the rate at which the hardware does not resample
1499 * Return: Zero if successful, or a negative error code on failure.
1501 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1502 unsigned int base_rate)
1504 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1505 SNDRV_PCM_HW_PARAM_RATE,
1506 snd_pcm_hw_rule_noresample_func,
1507 (void *)(uintptr_t)base_rate,
1508 SNDRV_PCM_HW_PARAM_RATE, -1);
1510 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1512 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1513 snd_pcm_hw_param_t var)
1515 if (hw_is_mask(var)) {
1516 snd_mask_any(hw_param_mask(params, var));
1517 params->cmask |= 1 << var;
1518 params->rmask |= 1 << var;
1521 if (hw_is_interval(var)) {
1522 snd_interval_any(hw_param_interval(params, var));
1523 params->cmask |= 1 << var;
1524 params->rmask |= 1 << var;
1530 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1533 memset(params, 0, sizeof(*params));
1534 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1535 _snd_pcm_hw_param_any(params, k);
1536 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1537 _snd_pcm_hw_param_any(params, k);
1540 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1543 * snd_pcm_hw_param_value - return @params field @var value
1544 * @params: the hw_params instance
1545 * @var: parameter to retrieve
1546 * @dir: pointer to the direction (-1,0,1) or %NULL
1548 * Return: The value for field @var if it's fixed in configuration space
1549 * defined by @params. -%EINVAL otherwise.
1551 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1552 snd_pcm_hw_param_t var, int *dir)
1554 if (hw_is_mask(var)) {
1555 const struct snd_mask *mask = hw_param_mask_c(params, var);
1556 if (!snd_mask_single(mask))
1560 return snd_mask_value(mask);
1562 if (hw_is_interval(var)) {
1563 const struct snd_interval *i = hw_param_interval_c(params, var);
1564 if (!snd_interval_single(i))
1568 return snd_interval_value(i);
1572 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1574 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1575 snd_pcm_hw_param_t var)
1577 if (hw_is_mask(var)) {
1578 snd_mask_none(hw_param_mask(params, var));
1579 params->cmask |= 1 << var;
1580 params->rmask |= 1 << var;
1581 } else if (hw_is_interval(var)) {
1582 snd_interval_none(hw_param_interval(params, var));
1583 params->cmask |= 1 << var;
1584 params->rmask |= 1 << var;
1589 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1591 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1592 snd_pcm_hw_param_t var)
1595 if (hw_is_mask(var))
1596 changed = snd_mask_refine_first(hw_param_mask(params, var));
1597 else if (hw_is_interval(var))
1598 changed = snd_interval_refine_first(hw_param_interval(params, var));
1602 params->cmask |= 1 << var;
1603 params->rmask |= 1 << var;
1610 * snd_pcm_hw_param_first - refine config space and return minimum value
1611 * @pcm: PCM instance
1612 * @params: the hw_params instance
1613 * @var: parameter to retrieve
1614 * @dir: pointer to the direction (-1,0,1) or %NULL
1616 * Inside configuration space defined by @params remove from @var all
1617 * values > minimum. Reduce configuration space accordingly.
1619 * Return: The minimum, or a negative error code on failure.
1621 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1622 struct snd_pcm_hw_params *params,
1623 snd_pcm_hw_param_t var, int *dir)
1625 int changed = _snd_pcm_hw_param_first(params, var);
1628 if (params->rmask) {
1629 int err = snd_pcm_hw_refine(pcm, params);
1633 return snd_pcm_hw_param_value(params, var, dir);
1635 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1637 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1638 snd_pcm_hw_param_t var)
1641 if (hw_is_mask(var))
1642 changed = snd_mask_refine_last(hw_param_mask(params, var));
1643 else if (hw_is_interval(var))
1644 changed = snd_interval_refine_last(hw_param_interval(params, var));
1648 params->cmask |= 1 << var;
1649 params->rmask |= 1 << var;
1656 * snd_pcm_hw_param_last - refine config space and return maximum value
1657 * @pcm: PCM instance
1658 * @params: the hw_params instance
1659 * @var: parameter to retrieve
1660 * @dir: pointer to the direction (-1,0,1) or %NULL
1662 * Inside configuration space defined by @params remove from @var all
1663 * values < maximum. Reduce configuration space accordingly.
1665 * Return: The maximum, or a negative error code on failure.
1667 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1668 struct snd_pcm_hw_params *params,
1669 snd_pcm_hw_param_t var, int *dir)
1671 int changed = _snd_pcm_hw_param_last(params, var);
1674 if (params->rmask) {
1675 int err = snd_pcm_hw_refine(pcm, params);
1679 return snd_pcm_hw_param_value(params, var, dir);
1681 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1683 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1686 struct snd_pcm_runtime *runtime = substream->runtime;
1687 unsigned long flags;
1688 snd_pcm_stream_lock_irqsave(substream, flags);
1689 if (snd_pcm_running(substream) &&
1690 snd_pcm_update_hw_ptr(substream) >= 0)
1691 runtime->status->hw_ptr %= runtime->buffer_size;
1693 runtime->status->hw_ptr = 0;
1694 runtime->hw_ptr_wrap = 0;
1696 snd_pcm_stream_unlock_irqrestore(substream, flags);
1700 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1703 struct snd_pcm_channel_info *info = arg;
1704 struct snd_pcm_runtime *runtime = substream->runtime;
1706 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1710 width = snd_pcm_format_physical_width(runtime->format);
1714 switch (runtime->access) {
1715 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1716 case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1717 info->first = info->channel * width;
1718 info->step = runtime->channels * width;
1720 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1721 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1723 size_t size = runtime->dma_bytes / runtime->channels;
1724 info->first = info->channel * size * 8;
1735 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1738 struct snd_pcm_hw_params *params = arg;
1739 snd_pcm_format_t format;
1743 params->fifo_size = substream->runtime->hw.fifo_size;
1744 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1745 format = params_format(params);
1746 channels = params_channels(params);
1747 frame_size = snd_pcm_format_size(format, channels);
1749 params->fifo_size /= (unsigned)frame_size;
1755 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1756 * @substream: the pcm substream instance
1757 * @cmd: ioctl command
1758 * @arg: ioctl argument
1760 * Processes the generic ioctl commands for PCM.
1761 * Can be passed as the ioctl callback for PCM ops.
1763 * Return: Zero if successful, or a negative error code on failure.
1765 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1766 unsigned int cmd, void *arg)
1769 case SNDRV_PCM_IOCTL1_RESET:
1770 return snd_pcm_lib_ioctl_reset(substream, arg);
1771 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1772 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1773 case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1774 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1778 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1781 * snd_pcm_period_elapsed_under_stream_lock() - update the status of runtime for the next period
1782 * under acquired lock of PCM substream.
1783 * @substream: the instance of pcm substream.
1785 * This function is called when the batch of audio data frames as the same size as the period of
1786 * buffer is already processed in audio data transmission.
1788 * The call of function updates the status of runtime with the latest position of audio data
1789 * transmission, checks overrun and underrun over buffer, awaken user processes from waiting for
1790 * available audio data frames, sampling audio timestamp, and performs stop or drain the PCM
1791 * substream according to configured threshold.
1793 * The function is intended to use for the case that PCM driver operates audio data frames under
1794 * acquired lock of PCM substream; e.g. in callback of any operation of &snd_pcm_ops in process
1795 * context. In any interrupt context, it's preferrable to use ``snd_pcm_period_elapsed()`` instead
1796 * since lock of PCM substream should be acquired in advance.
1798 * Developer should pay enough attention that some callbacks in &snd_pcm_ops are done by the call of
1801 * - .pointer - to retrieve current position of audio data transmission by frame count or XRUN state.
1802 * - .trigger - with SNDRV_PCM_TRIGGER_STOP at XRUN or DRAINING state.
1803 * - .get_time_info - to retrieve audio time stamp if needed.
1805 * Even if more than one periods have elapsed since the last call, you have to call this only once.
1807 void snd_pcm_period_elapsed_under_stream_lock(struct snd_pcm_substream *substream)
1809 struct snd_pcm_runtime *runtime;
1811 if (PCM_RUNTIME_CHECK(substream))
1813 runtime = substream->runtime;
1815 if (!snd_pcm_running(substream) ||
1816 snd_pcm_update_hw_ptr0(substream, 1) < 0)
1819 #ifdef CONFIG_SND_PCM_TIMER
1820 if (substream->timer_running)
1821 snd_timer_interrupt(substream->timer, 1);
1824 kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1826 EXPORT_SYMBOL(snd_pcm_period_elapsed_under_stream_lock);
1829 * snd_pcm_period_elapsed() - update the status of runtime for the next period by acquiring lock of
1831 * @substream: the instance of PCM substream.
1833 * This function is mostly similar to ``snd_pcm_period_elapsed_under_stream_lock()`` except for
1834 * acquiring lock of PCM substream voluntarily.
1836 * It's typically called by any type of IRQ handler when hardware IRQ occurs to notify event that
1837 * the batch of audio data frames as the same size as the period of buffer is already processed in
1838 * audio data transmission.
1840 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1842 unsigned long flags;
1844 if (snd_BUG_ON(!substream))
1847 snd_pcm_stream_lock_irqsave(substream, flags);
1848 snd_pcm_period_elapsed_under_stream_lock(substream);
1849 snd_pcm_stream_unlock_irqrestore(substream, flags);
1851 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1854 * Wait until avail_min data becomes available
1855 * Returns a negative error code if any error occurs during operation.
1856 * The available space is stored on availp. When err = 0 and avail = 0
1857 * on the capture stream, it indicates the stream is in DRAINING state.
1859 static int wait_for_avail(struct snd_pcm_substream *substream,
1860 snd_pcm_uframes_t *availp)
1862 struct snd_pcm_runtime *runtime = substream->runtime;
1863 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1864 wait_queue_entry_t wait;
1866 snd_pcm_uframes_t avail = 0;
1867 long wait_time, tout;
1869 init_waitqueue_entry(&wait, current);
1870 set_current_state(TASK_INTERRUPTIBLE);
1871 add_wait_queue(&runtime->tsleep, &wait);
1873 if (runtime->no_period_wakeup)
1874 wait_time = MAX_SCHEDULE_TIMEOUT;
1876 /* use wait time from substream if available */
1877 if (substream->wait_time) {
1878 wait_time = substream->wait_time;
1882 if (runtime->rate) {
1883 long t = runtime->period_size * 2 /
1885 wait_time = max(t, wait_time);
1887 wait_time = msecs_to_jiffies(wait_time * 1000);
1892 if (signal_pending(current)) {
1898 * We need to check if space became available already
1899 * (and thus the wakeup happened already) first to close
1900 * the race of space already having become available.
1901 * This check must happen after been added to the waitqueue
1902 * and having current state be INTERRUPTIBLE.
1904 avail = snd_pcm_avail(substream);
1905 if (avail >= runtime->twake)
1907 snd_pcm_stream_unlock_irq(substream);
1909 tout = schedule_timeout(wait_time);
1911 snd_pcm_stream_lock_irq(substream);
1912 set_current_state(TASK_INTERRUPTIBLE);
1913 switch (runtime->status->state) {
1914 case SNDRV_PCM_STATE_SUSPENDED:
1917 case SNDRV_PCM_STATE_XRUN:
1920 case SNDRV_PCM_STATE_DRAINING:
1924 avail = 0; /* indicate draining */
1926 case SNDRV_PCM_STATE_OPEN:
1927 case SNDRV_PCM_STATE_SETUP:
1928 case SNDRV_PCM_STATE_DISCONNECTED:
1931 case SNDRV_PCM_STATE_PAUSED:
1935 pcm_dbg(substream->pcm,
1936 "%s write error (DMA or IRQ trouble?)\n",
1937 is_playback ? "playback" : "capture");
1943 set_current_state(TASK_RUNNING);
1944 remove_wait_queue(&runtime->tsleep, &wait);
1949 typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
1950 int channel, unsigned long hwoff,
1951 void *buf, unsigned long bytes);
1953 typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
1954 snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f);
1956 /* calculate the target DMA-buffer position to be written/read */
1957 static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
1958 int channel, unsigned long hwoff)
1960 return runtime->dma_area + hwoff +
1961 channel * (runtime->dma_bytes / runtime->channels);
1964 /* default copy_user ops for write; used for both interleaved and non- modes */
1965 static int default_write_copy(struct snd_pcm_substream *substream,
1966 int channel, unsigned long hwoff,
1967 void *buf, unsigned long bytes)
1969 if (copy_from_user(get_dma_ptr(substream->runtime, channel, hwoff),
1970 (void __user *)buf, bytes))
1975 /* default copy_kernel ops for write */
1976 static int default_write_copy_kernel(struct snd_pcm_substream *substream,
1977 int channel, unsigned long hwoff,
1978 void *buf, unsigned long bytes)
1980 memcpy(get_dma_ptr(substream->runtime, channel, hwoff), buf, bytes);
1984 /* fill silence instead of copy data; called as a transfer helper
1985 * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
1986 * a NULL buffer is passed
1988 static int fill_silence(struct snd_pcm_substream *substream, int channel,
1989 unsigned long hwoff, void *buf, unsigned long bytes)
1991 struct snd_pcm_runtime *runtime = substream->runtime;
1993 if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
1995 if (substream->ops->fill_silence)
1996 return substream->ops->fill_silence(substream, channel,
1999 snd_pcm_format_set_silence(runtime->format,
2000 get_dma_ptr(runtime, channel, hwoff),
2001 bytes_to_samples(runtime, bytes));
2005 /* default copy_user ops for read; used for both interleaved and non- modes */
2006 static int default_read_copy(struct snd_pcm_substream *substream,
2007 int channel, unsigned long hwoff,
2008 void *buf, unsigned long bytes)
2010 if (copy_to_user((void __user *)buf,
2011 get_dma_ptr(substream->runtime, channel, hwoff),
2017 /* default copy_kernel ops for read */
2018 static int default_read_copy_kernel(struct snd_pcm_substream *substream,
2019 int channel, unsigned long hwoff,
2020 void *buf, unsigned long bytes)
2022 memcpy(buf, get_dma_ptr(substream->runtime, channel, hwoff), bytes);
2026 /* call transfer function with the converted pointers and sizes;
2027 * for interleaved mode, it's one shot for all samples
2029 static int interleaved_copy(struct snd_pcm_substream *substream,
2030 snd_pcm_uframes_t hwoff, void *data,
2031 snd_pcm_uframes_t off,
2032 snd_pcm_uframes_t frames,
2033 pcm_transfer_f transfer)
2035 struct snd_pcm_runtime *runtime = substream->runtime;
2037 /* convert to bytes */
2038 hwoff = frames_to_bytes(runtime, hwoff);
2039 off = frames_to_bytes(runtime, off);
2040 frames = frames_to_bytes(runtime, frames);
2041 return transfer(substream, 0, hwoff, data + off, frames);
2044 /* call transfer function with the converted pointers and sizes for each
2045 * non-interleaved channel; when buffer is NULL, silencing instead of copying
2047 static int noninterleaved_copy(struct snd_pcm_substream *substream,
2048 snd_pcm_uframes_t hwoff, void *data,
2049 snd_pcm_uframes_t off,
2050 snd_pcm_uframes_t frames,
2051 pcm_transfer_f transfer)
2053 struct snd_pcm_runtime *runtime = substream->runtime;
2054 int channels = runtime->channels;
2058 /* convert to bytes; note that it's not frames_to_bytes() here.
2059 * in non-interleaved mode, we copy for each channel, thus
2060 * each copy is n_samples bytes x channels = whole frames.
2062 off = samples_to_bytes(runtime, off);
2063 frames = samples_to_bytes(runtime, frames);
2064 hwoff = samples_to_bytes(runtime, hwoff);
2065 for (c = 0; c < channels; ++c, ++bufs) {
2066 if (!data || !*bufs)
2067 err = fill_silence(substream, c, hwoff, NULL, frames);
2069 err = transfer(substream, c, hwoff, *bufs + off,
2077 /* fill silence on the given buffer position;
2078 * called from snd_pcm_playback_silence()
2080 static int fill_silence_frames(struct snd_pcm_substream *substream,
2081 snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2083 if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2084 substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2085 return interleaved_copy(substream, off, NULL, 0, frames,
2088 return noninterleaved_copy(substream, off, NULL, 0, frames,
2092 /* sanity-check for read/write methods */
2093 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2095 struct snd_pcm_runtime *runtime;
2096 if (PCM_RUNTIME_CHECK(substream))
2098 runtime = substream->runtime;
2099 if (snd_BUG_ON(!substream->ops->copy_user && !runtime->dma_area))
2101 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2106 static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2108 switch (runtime->status->state) {
2109 case SNDRV_PCM_STATE_PREPARED:
2110 case SNDRV_PCM_STATE_RUNNING:
2111 case SNDRV_PCM_STATE_PAUSED:
2113 case SNDRV_PCM_STATE_XRUN:
2115 case SNDRV_PCM_STATE_SUSPENDED:
2122 /* update to the given appl_ptr and call ack callback if needed;
2123 * when an error is returned, take back to the original value
2125 int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
2126 snd_pcm_uframes_t appl_ptr)
2128 struct snd_pcm_runtime *runtime = substream->runtime;
2129 snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
2132 if (old_appl_ptr == appl_ptr)
2135 runtime->control->appl_ptr = appl_ptr;
2136 if (substream->ops->ack) {
2137 ret = substream->ops->ack(substream);
2139 runtime->control->appl_ptr = old_appl_ptr;
2144 trace_applptr(substream, old_appl_ptr, appl_ptr);
2149 /* the common loop for read/write data */
2150 snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2151 void *data, bool interleaved,
2152 snd_pcm_uframes_t size, bool in_kernel)
2154 struct snd_pcm_runtime *runtime = substream->runtime;
2155 snd_pcm_uframes_t xfer = 0;
2156 snd_pcm_uframes_t offset = 0;
2157 snd_pcm_uframes_t avail;
2159 pcm_transfer_f transfer;
2164 err = pcm_sanity_check(substream);
2168 is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2170 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2171 runtime->channels > 1)
2173 writer = interleaved_copy;
2175 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2177 writer = noninterleaved_copy;
2182 transfer = fill_silence;
2185 } else if (in_kernel) {
2186 if (substream->ops->copy_kernel)
2187 transfer = substream->ops->copy_kernel;
2189 transfer = is_playback ?
2190 default_write_copy_kernel : default_read_copy_kernel;
2192 if (substream->ops->copy_user)
2193 transfer = (pcm_transfer_f)substream->ops->copy_user;
2195 transfer = is_playback ?
2196 default_write_copy : default_read_copy;
2202 nonblock = !!(substream->f_flags & O_NONBLOCK);
2204 snd_pcm_stream_lock_irq(substream);
2205 err = pcm_accessible_state(runtime);
2209 runtime->twake = runtime->control->avail_min ? : 1;
2210 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2211 snd_pcm_update_hw_ptr(substream);
2214 * If size < start_threshold, wait indefinitely. Another
2215 * thread may start capture
2218 runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2219 size >= runtime->start_threshold) {
2220 err = snd_pcm_start(substream);
2225 avail = snd_pcm_avail(substream);
2228 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2229 snd_pcm_uframes_t cont;
2232 runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
2233 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2240 runtime->twake = min_t(snd_pcm_uframes_t, size,
2241 runtime->control->avail_min ? : 1);
2242 err = wait_for_avail(substream, &avail);
2246 continue; /* draining */
2248 frames = size > avail ? avail : size;
2249 appl_ptr = READ_ONCE(runtime->control->appl_ptr);
2250 appl_ofs = appl_ptr % runtime->buffer_size;
2251 cont = runtime->buffer_size - appl_ofs;
2254 if (snd_BUG_ON(!frames)) {
2258 snd_pcm_stream_unlock_irq(substream);
2259 err = writer(substream, appl_ofs, data, offset, frames,
2261 snd_pcm_stream_lock_irq(substream);
2264 err = pcm_accessible_state(runtime);
2268 if (appl_ptr >= runtime->boundary)
2269 appl_ptr -= runtime->boundary;
2270 err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
2279 runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2280 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2281 err = snd_pcm_start(substream);
2288 if (xfer > 0 && err >= 0)
2289 snd_pcm_update_state(substream, runtime);
2290 snd_pcm_stream_unlock_irq(substream);
2291 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2293 EXPORT_SYMBOL(__snd_pcm_lib_xfer);
2296 * standard channel mapping helpers
2299 /* default channel maps for multi-channel playbacks, up to 8 channels */
2300 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2302 .map = { SNDRV_CHMAP_MONO } },
2304 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2306 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2307 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2309 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2310 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2311 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2313 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2314 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2315 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2316 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2319 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2321 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2322 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2324 .map = { SNDRV_CHMAP_MONO } },
2326 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2328 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2329 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2331 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2332 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2333 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2335 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2336 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2337 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2338 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2341 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2343 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2345 if (ch > info->max_channels)
2347 return !info->channel_mask || (info->channel_mask & (1U << ch));
2350 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2351 struct snd_ctl_elem_info *uinfo)
2353 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2355 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2356 uinfo->count = info->max_channels;
2357 uinfo->value.integer.min = 0;
2358 uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2362 /* get callback for channel map ctl element
2363 * stores the channel position firstly matching with the current channels
2365 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2366 struct snd_ctl_elem_value *ucontrol)
2368 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2369 unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2370 struct snd_pcm_substream *substream;
2371 const struct snd_pcm_chmap_elem *map;
2375 substream = snd_pcm_chmap_substream(info, idx);
2378 memset(ucontrol->value.integer.value, 0,
2379 sizeof(long) * info->max_channels);
2380 if (!substream->runtime)
2381 return 0; /* no channels set */
2382 for (map = info->chmap; map->channels; map++) {
2384 if (map->channels == substream->runtime->channels &&
2385 valid_chmap_channels(info, map->channels)) {
2386 for (i = 0; i < map->channels; i++)
2387 ucontrol->value.integer.value[i] = map->map[i];
2394 /* tlv callback for channel map ctl element
2395 * expands the pre-defined channel maps in a form of TLV
2397 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2398 unsigned int size, unsigned int __user *tlv)
2400 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2401 const struct snd_pcm_chmap_elem *map;
2402 unsigned int __user *dst;
2409 if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2413 for (map = info->chmap; map->channels; map++) {
2414 int chs_bytes = map->channels * 4;
2415 if (!valid_chmap_channels(info, map->channels))
2419 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2420 put_user(chs_bytes, dst + 1))
2425 if (size < chs_bytes)
2429 for (c = 0; c < map->channels; c++) {
2430 if (put_user(map->map[c], dst))
2435 if (put_user(count, tlv + 1))
2440 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2442 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2443 info->pcm->streams[info->stream].chmap_kctl = NULL;
2448 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2449 * @pcm: the assigned PCM instance
2450 * @stream: stream direction
2451 * @chmap: channel map elements (for query)
2452 * @max_channels: the max number of channels for the stream
2453 * @private_value: the value passed to each kcontrol's private_value field
2454 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2456 * Create channel-mapping control elements assigned to the given PCM stream(s).
2457 * Return: Zero if successful, or a negative error value.
2459 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2460 const struct snd_pcm_chmap_elem *chmap,
2462 unsigned long private_value,
2463 struct snd_pcm_chmap **info_ret)
2465 struct snd_pcm_chmap *info;
2466 struct snd_kcontrol_new knew = {
2467 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2468 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2469 SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2470 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2471 .info = pcm_chmap_ctl_info,
2472 .get = pcm_chmap_ctl_get,
2473 .tlv.c = pcm_chmap_ctl_tlv,
2477 if (WARN_ON(pcm->streams[stream].chmap_kctl))
2479 info = kzalloc(sizeof(*info), GFP_KERNEL);
2483 info->stream = stream;
2484 info->chmap = chmap;
2485 info->max_channels = max_channels;
2486 if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2487 knew.name = "Playback Channel Map";
2489 knew.name = "Capture Channel Map";
2490 knew.device = pcm->device;
2491 knew.count = pcm->streams[stream].substream_count;
2492 knew.private_value = private_value;
2493 info->kctl = snd_ctl_new1(&knew, info);
2498 info->kctl->private_free = pcm_chmap_ctl_private_free;
2499 err = snd_ctl_add(pcm->card, info->kctl);
2502 pcm->streams[stream].chmap_kctl = info->kctl;
2507 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);