Merge tag 'gfs2-v5.17-rc4-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / sound / core / pcm_lib.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Digital Audio (PCM) abstract layer
4  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
5  *                   Abramo Bagnara <abramo@alsa-project.org>
6  */
7
8 #include <linux/slab.h>
9 #include <linux/sched/signal.h>
10 #include <linux/time.h>
11 #include <linux/math64.h>
12 #include <linux/export.h>
13 #include <sound/core.h>
14 #include <sound/control.h>
15 #include <sound/tlv.h>
16 #include <sound/info.h>
17 #include <sound/pcm.h>
18 #include <sound/pcm_params.h>
19 #include <sound/timer.h>
20
21 #include "pcm_local.h"
22
23 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
24 #define CREATE_TRACE_POINTS
25 #include "pcm_trace.h"
26 #else
27 #define trace_hwptr(substream, pos, in_interrupt)
28 #define trace_xrun(substream)
29 #define trace_hw_ptr_error(substream, reason)
30 #define trace_applptr(substream, prev, curr)
31 #endif
32
33 static int fill_silence_frames(struct snd_pcm_substream *substream,
34                                snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
35
36 /*
37  * fill ring buffer with silence
38  * runtime->silence_start: starting pointer to silence area
39  * runtime->silence_filled: size filled with silence
40  * runtime->silence_threshold: threshold from application
41  * runtime->silence_size: maximal size from application
42  *
43  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
44  */
45 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
46 {
47         struct snd_pcm_runtime *runtime = substream->runtime;
48         snd_pcm_uframes_t frames, ofs, transfer;
49         int err;
50
51         if (runtime->silence_size < runtime->boundary) {
52                 snd_pcm_sframes_t noise_dist, n;
53                 snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
54                 if (runtime->silence_start != appl_ptr) {
55                         n = appl_ptr - runtime->silence_start;
56                         if (n < 0)
57                                 n += runtime->boundary;
58                         if ((snd_pcm_uframes_t)n < runtime->silence_filled)
59                                 runtime->silence_filled -= n;
60                         else
61                                 runtime->silence_filled = 0;
62                         runtime->silence_start = appl_ptr;
63                 }
64                 if (runtime->silence_filled >= runtime->buffer_size)
65                         return;
66                 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
67                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
68                         return;
69                 frames = runtime->silence_threshold - noise_dist;
70                 if (frames > runtime->silence_size)
71                         frames = runtime->silence_size;
72         } else {
73                 if (new_hw_ptr == ULONG_MAX) {  /* initialization */
74                         snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
75                         if (avail > runtime->buffer_size)
76                                 avail = runtime->buffer_size;
77                         runtime->silence_filled = avail > 0 ? avail : 0;
78                         runtime->silence_start = (runtime->status->hw_ptr +
79                                                   runtime->silence_filled) %
80                                                  runtime->boundary;
81                 } else {
82                         ofs = runtime->status->hw_ptr;
83                         frames = new_hw_ptr - ofs;
84                         if ((snd_pcm_sframes_t)frames < 0)
85                                 frames += runtime->boundary;
86                         runtime->silence_filled -= frames;
87                         if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
88                                 runtime->silence_filled = 0;
89                                 runtime->silence_start = new_hw_ptr;
90                         } else {
91                                 runtime->silence_start = ofs;
92                         }
93                 }
94                 frames = runtime->buffer_size - runtime->silence_filled;
95         }
96         if (snd_BUG_ON(frames > runtime->buffer_size))
97                 return;
98         if (frames == 0)
99                 return;
100         ofs = runtime->silence_start % runtime->buffer_size;
101         while (frames > 0) {
102                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
103                 err = fill_silence_frames(substream, ofs, transfer);
104                 snd_BUG_ON(err < 0);
105                 runtime->silence_filled += transfer;
106                 frames -= transfer;
107                 ofs = 0;
108         }
109         snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_DEVICE);
110 }
111
112 #ifdef CONFIG_SND_DEBUG
113 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
114                            char *name, size_t len)
115 {
116         snprintf(name, len, "pcmC%dD%d%c:%d",
117                  substream->pcm->card->number,
118                  substream->pcm->device,
119                  substream->stream ? 'c' : 'p',
120                  substream->number);
121 }
122 EXPORT_SYMBOL(snd_pcm_debug_name);
123 #endif
124
125 #define XRUN_DEBUG_BASIC        (1<<0)
126 #define XRUN_DEBUG_STACK        (1<<1)  /* dump also stack */
127 #define XRUN_DEBUG_JIFFIESCHECK (1<<2)  /* do jiffies check */
128
129 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
130
131 #define xrun_debug(substream, mask) \
132                         ((substream)->pstr->xrun_debug & (mask))
133 #else
134 #define xrun_debug(substream, mask)     0
135 #endif
136
137 #define dump_stack_on_xrun(substream) do {                      \
138                 if (xrun_debug(substream, XRUN_DEBUG_STACK))    \
139                         dump_stack();                           \
140         } while (0)
141
142 /* call with stream lock held */
143 void __snd_pcm_xrun(struct snd_pcm_substream *substream)
144 {
145         struct snd_pcm_runtime *runtime = substream->runtime;
146
147         trace_xrun(substream);
148         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
149                 struct timespec64 tstamp;
150
151                 snd_pcm_gettime(runtime, &tstamp);
152                 runtime->status->tstamp.tv_sec = tstamp.tv_sec;
153                 runtime->status->tstamp.tv_nsec = tstamp.tv_nsec;
154         }
155         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
156         if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
157                 char name[16];
158                 snd_pcm_debug_name(substream, name, sizeof(name));
159                 pcm_warn(substream->pcm, "XRUN: %s\n", name);
160                 dump_stack_on_xrun(substream);
161         }
162 }
163
164 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
165 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...)     \
166         do {                                                            \
167                 trace_hw_ptr_error(substream, reason);  \
168                 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {          \
169                         pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
170                                            (in_interrupt) ? 'Q' : 'P', ##args); \
171                         dump_stack_on_xrun(substream);                  \
172                 }                                                       \
173         } while (0)
174
175 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
176
177 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
178
179 #endif
180
181 int snd_pcm_update_state(struct snd_pcm_substream *substream,
182                          struct snd_pcm_runtime *runtime)
183 {
184         snd_pcm_uframes_t avail;
185
186         avail = snd_pcm_avail(substream);
187         if (avail > runtime->avail_max)
188                 runtime->avail_max = avail;
189         if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
190                 if (avail >= runtime->buffer_size) {
191                         snd_pcm_drain_done(substream);
192                         return -EPIPE;
193                 }
194         } else {
195                 if (avail >= runtime->stop_threshold) {
196                         __snd_pcm_xrun(substream);
197                         return -EPIPE;
198                 }
199         }
200         if (runtime->twake) {
201                 if (avail >= runtime->twake)
202                         wake_up(&runtime->tsleep);
203         } else if (avail >= runtime->control->avail_min)
204                 wake_up(&runtime->sleep);
205         return 0;
206 }
207
208 static void update_audio_tstamp(struct snd_pcm_substream *substream,
209                                 struct timespec64 *curr_tstamp,
210                                 struct timespec64 *audio_tstamp)
211 {
212         struct snd_pcm_runtime *runtime = substream->runtime;
213         u64 audio_frames, audio_nsecs;
214         struct timespec64 driver_tstamp;
215
216         if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
217                 return;
218
219         if (!(substream->ops->get_time_info) ||
220                 (runtime->audio_tstamp_report.actual_type ==
221                         SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
222
223                 /*
224                  * provide audio timestamp derived from pointer position
225                  * add delay only if requested
226                  */
227
228                 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
229
230                 if (runtime->audio_tstamp_config.report_delay) {
231                         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
232                                 audio_frames -=  runtime->delay;
233                         else
234                                 audio_frames +=  runtime->delay;
235                 }
236                 audio_nsecs = div_u64(audio_frames * 1000000000LL,
237                                 runtime->rate);
238                 *audio_tstamp = ns_to_timespec64(audio_nsecs);
239         }
240
241         if (runtime->status->audio_tstamp.tv_sec != audio_tstamp->tv_sec ||
242             runtime->status->audio_tstamp.tv_nsec != audio_tstamp->tv_nsec) {
243                 runtime->status->audio_tstamp.tv_sec = audio_tstamp->tv_sec;
244                 runtime->status->audio_tstamp.tv_nsec = audio_tstamp->tv_nsec;
245                 runtime->status->tstamp.tv_sec = curr_tstamp->tv_sec;
246                 runtime->status->tstamp.tv_nsec = curr_tstamp->tv_nsec;
247         }
248
249
250         /*
251          * re-take a driver timestamp to let apps detect if the reference tstamp
252          * read by low-level hardware was provided with a delay
253          */
254         snd_pcm_gettime(substream->runtime, &driver_tstamp);
255         runtime->driver_tstamp = driver_tstamp;
256 }
257
258 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
259                                   unsigned int in_interrupt)
260 {
261         struct snd_pcm_runtime *runtime = substream->runtime;
262         snd_pcm_uframes_t pos;
263         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
264         snd_pcm_sframes_t hdelta, delta;
265         unsigned long jdelta;
266         unsigned long curr_jiffies;
267         struct timespec64 curr_tstamp;
268         struct timespec64 audio_tstamp;
269         int crossed_boundary = 0;
270
271         old_hw_ptr = runtime->status->hw_ptr;
272
273         /*
274          * group pointer, time and jiffies reads to allow for more
275          * accurate correlations/corrections.
276          * The values are stored at the end of this routine after
277          * corrections for hw_ptr position
278          */
279         pos = substream->ops->pointer(substream);
280         curr_jiffies = jiffies;
281         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
282                 if ((substream->ops->get_time_info) &&
283                         (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
284                         substream->ops->get_time_info(substream, &curr_tstamp,
285                                                 &audio_tstamp,
286                                                 &runtime->audio_tstamp_config,
287                                                 &runtime->audio_tstamp_report);
288
289                         /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
290                         if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
291                                 snd_pcm_gettime(runtime, &curr_tstamp);
292                 } else
293                         snd_pcm_gettime(runtime, &curr_tstamp);
294         }
295
296         if (pos == SNDRV_PCM_POS_XRUN) {
297                 __snd_pcm_xrun(substream);
298                 return -EPIPE;
299         }
300         if (pos >= runtime->buffer_size) {
301                 if (printk_ratelimit()) {
302                         char name[16];
303                         snd_pcm_debug_name(substream, name, sizeof(name));
304                         pcm_err(substream->pcm,
305                                 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
306                                 name, pos, runtime->buffer_size,
307                                 runtime->period_size);
308                 }
309                 pos = 0;
310         }
311         pos -= pos % runtime->min_align;
312         trace_hwptr(substream, pos, in_interrupt);
313         hw_base = runtime->hw_ptr_base;
314         new_hw_ptr = hw_base + pos;
315         if (in_interrupt) {
316                 /* we know that one period was processed */
317                 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
318                 delta = runtime->hw_ptr_interrupt + runtime->period_size;
319                 if (delta > new_hw_ptr) {
320                         /* check for double acknowledged interrupts */
321                         hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
322                         if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
323                                 hw_base += runtime->buffer_size;
324                                 if (hw_base >= runtime->boundary) {
325                                         hw_base = 0;
326                                         crossed_boundary++;
327                                 }
328                                 new_hw_ptr = hw_base + pos;
329                                 goto __delta;
330                         }
331                 }
332         }
333         /* new_hw_ptr might be lower than old_hw_ptr in case when */
334         /* pointer crosses the end of the ring buffer */
335         if (new_hw_ptr < old_hw_ptr) {
336                 hw_base += runtime->buffer_size;
337                 if (hw_base >= runtime->boundary) {
338                         hw_base = 0;
339                         crossed_boundary++;
340                 }
341                 new_hw_ptr = hw_base + pos;
342         }
343       __delta:
344         delta = new_hw_ptr - old_hw_ptr;
345         if (delta < 0)
346                 delta += runtime->boundary;
347
348         if (runtime->no_period_wakeup) {
349                 snd_pcm_sframes_t xrun_threshold;
350                 /*
351                  * Without regular period interrupts, we have to check
352                  * the elapsed time to detect xruns.
353                  */
354                 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
355                 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
356                         goto no_delta_check;
357                 hdelta = jdelta - delta * HZ / runtime->rate;
358                 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
359                 while (hdelta > xrun_threshold) {
360                         delta += runtime->buffer_size;
361                         hw_base += runtime->buffer_size;
362                         if (hw_base >= runtime->boundary) {
363                                 hw_base = 0;
364                                 crossed_boundary++;
365                         }
366                         new_hw_ptr = hw_base + pos;
367                         hdelta -= runtime->hw_ptr_buffer_jiffies;
368                 }
369                 goto no_delta_check;
370         }
371
372         /* something must be really wrong */
373         if (delta >= runtime->buffer_size + runtime->period_size) {
374                 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
375                              "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
376                              substream->stream, (long)pos,
377                              (long)new_hw_ptr, (long)old_hw_ptr);
378                 return 0;
379         }
380
381         /* Do jiffies check only in xrun_debug mode */
382         if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
383                 goto no_jiffies_check;
384
385         /* Skip the jiffies check for hardwares with BATCH flag.
386          * Such hardware usually just increases the position at each IRQ,
387          * thus it can't give any strange position.
388          */
389         if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
390                 goto no_jiffies_check;
391         hdelta = delta;
392         if (hdelta < runtime->delay)
393                 goto no_jiffies_check;
394         hdelta -= runtime->delay;
395         jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
396         if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
397                 delta = jdelta /
398                         (((runtime->period_size * HZ) / runtime->rate)
399                                                                 + HZ/100);
400                 /* move new_hw_ptr according jiffies not pos variable */
401                 new_hw_ptr = old_hw_ptr;
402                 hw_base = delta;
403                 /* use loop to avoid checks for delta overflows */
404                 /* the delta value is small or zero in most cases */
405                 while (delta > 0) {
406                         new_hw_ptr += runtime->period_size;
407                         if (new_hw_ptr >= runtime->boundary) {
408                                 new_hw_ptr -= runtime->boundary;
409                                 crossed_boundary--;
410                         }
411                         delta--;
412                 }
413                 /* align hw_base to buffer_size */
414                 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
415                              "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
416                              (long)pos, (long)hdelta,
417                              (long)runtime->period_size, jdelta,
418                              ((hdelta * HZ) / runtime->rate), hw_base,
419                              (unsigned long)old_hw_ptr,
420                              (unsigned long)new_hw_ptr);
421                 /* reset values to proper state */
422                 delta = 0;
423                 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
424         }
425  no_jiffies_check:
426         if (delta > runtime->period_size + runtime->period_size / 2) {
427                 hw_ptr_error(substream, in_interrupt,
428                              "Lost interrupts?",
429                              "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
430                              substream->stream, (long)delta,
431                              (long)new_hw_ptr,
432                              (long)old_hw_ptr);
433         }
434
435  no_delta_check:
436         if (runtime->status->hw_ptr == new_hw_ptr) {
437                 runtime->hw_ptr_jiffies = curr_jiffies;
438                 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
439                 return 0;
440         }
441
442         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
443             runtime->silence_size > 0)
444                 snd_pcm_playback_silence(substream, new_hw_ptr);
445
446         if (in_interrupt) {
447                 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
448                 if (delta < 0)
449                         delta += runtime->boundary;
450                 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
451                 runtime->hw_ptr_interrupt += delta;
452                 if (runtime->hw_ptr_interrupt >= runtime->boundary)
453                         runtime->hw_ptr_interrupt -= runtime->boundary;
454         }
455         runtime->hw_ptr_base = hw_base;
456         runtime->status->hw_ptr = new_hw_ptr;
457         runtime->hw_ptr_jiffies = curr_jiffies;
458         if (crossed_boundary) {
459                 snd_BUG_ON(crossed_boundary != 1);
460                 runtime->hw_ptr_wrap += runtime->boundary;
461         }
462
463         update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
464
465         return snd_pcm_update_state(substream, runtime);
466 }
467
468 /* CAUTION: call it with irq disabled */
469 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
470 {
471         return snd_pcm_update_hw_ptr0(substream, 0);
472 }
473
474 /**
475  * snd_pcm_set_ops - set the PCM operators
476  * @pcm: the pcm instance
477  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
478  * @ops: the operator table
479  *
480  * Sets the given PCM operators to the pcm instance.
481  */
482 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
483                      const struct snd_pcm_ops *ops)
484 {
485         struct snd_pcm_str *stream = &pcm->streams[direction];
486         struct snd_pcm_substream *substream;
487         
488         for (substream = stream->substream; substream != NULL; substream = substream->next)
489                 substream->ops = ops;
490 }
491 EXPORT_SYMBOL(snd_pcm_set_ops);
492
493 /**
494  * snd_pcm_set_sync - set the PCM sync id
495  * @substream: the pcm substream
496  *
497  * Sets the PCM sync identifier for the card.
498  */
499 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
500 {
501         struct snd_pcm_runtime *runtime = substream->runtime;
502         
503         runtime->sync.id32[0] = substream->pcm->card->number;
504         runtime->sync.id32[1] = -1;
505         runtime->sync.id32[2] = -1;
506         runtime->sync.id32[3] = -1;
507 }
508 EXPORT_SYMBOL(snd_pcm_set_sync);
509
510 /*
511  *  Standard ioctl routine
512  */
513
514 static inline unsigned int div32(unsigned int a, unsigned int b, 
515                                  unsigned int *r)
516 {
517         if (b == 0) {
518                 *r = 0;
519                 return UINT_MAX;
520         }
521         *r = a % b;
522         return a / b;
523 }
524
525 static inline unsigned int div_down(unsigned int a, unsigned int b)
526 {
527         if (b == 0)
528                 return UINT_MAX;
529         return a / b;
530 }
531
532 static inline unsigned int div_up(unsigned int a, unsigned int b)
533 {
534         unsigned int r;
535         unsigned int q;
536         if (b == 0)
537                 return UINT_MAX;
538         q = div32(a, b, &r);
539         if (r)
540                 ++q;
541         return q;
542 }
543
544 static inline unsigned int mul(unsigned int a, unsigned int b)
545 {
546         if (a == 0)
547                 return 0;
548         if (div_down(UINT_MAX, a) < b)
549                 return UINT_MAX;
550         return a * b;
551 }
552
553 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
554                                     unsigned int c, unsigned int *r)
555 {
556         u_int64_t n = (u_int64_t) a * b;
557         if (c == 0) {
558                 *r = 0;
559                 return UINT_MAX;
560         }
561         n = div_u64_rem(n, c, r);
562         if (n >= UINT_MAX) {
563                 *r = 0;
564                 return UINT_MAX;
565         }
566         return n;
567 }
568
569 /**
570  * snd_interval_refine - refine the interval value of configurator
571  * @i: the interval value to refine
572  * @v: the interval value to refer to
573  *
574  * Refines the interval value with the reference value.
575  * The interval is changed to the range satisfying both intervals.
576  * The interval status (min, max, integer, etc.) are evaluated.
577  *
578  * Return: Positive if the value is changed, zero if it's not changed, or a
579  * negative error code.
580  */
581 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
582 {
583         int changed = 0;
584         if (snd_BUG_ON(snd_interval_empty(i)))
585                 return -EINVAL;
586         if (i->min < v->min) {
587                 i->min = v->min;
588                 i->openmin = v->openmin;
589                 changed = 1;
590         } else if (i->min == v->min && !i->openmin && v->openmin) {
591                 i->openmin = 1;
592                 changed = 1;
593         }
594         if (i->max > v->max) {
595                 i->max = v->max;
596                 i->openmax = v->openmax;
597                 changed = 1;
598         } else if (i->max == v->max && !i->openmax && v->openmax) {
599                 i->openmax = 1;
600                 changed = 1;
601         }
602         if (!i->integer && v->integer) {
603                 i->integer = 1;
604                 changed = 1;
605         }
606         if (i->integer) {
607                 if (i->openmin) {
608                         i->min++;
609                         i->openmin = 0;
610                 }
611                 if (i->openmax) {
612                         i->max--;
613                         i->openmax = 0;
614                 }
615         } else if (!i->openmin && !i->openmax && i->min == i->max)
616                 i->integer = 1;
617         if (snd_interval_checkempty(i)) {
618                 snd_interval_none(i);
619                 return -EINVAL;
620         }
621         return changed;
622 }
623 EXPORT_SYMBOL(snd_interval_refine);
624
625 static int snd_interval_refine_first(struct snd_interval *i)
626 {
627         const unsigned int last_max = i->max;
628
629         if (snd_BUG_ON(snd_interval_empty(i)))
630                 return -EINVAL;
631         if (snd_interval_single(i))
632                 return 0;
633         i->max = i->min;
634         if (i->openmin)
635                 i->max++;
636         /* only exclude max value if also excluded before refine */
637         i->openmax = (i->openmax && i->max >= last_max);
638         return 1;
639 }
640
641 static int snd_interval_refine_last(struct snd_interval *i)
642 {
643         const unsigned int last_min = i->min;
644
645         if (snd_BUG_ON(snd_interval_empty(i)))
646                 return -EINVAL;
647         if (snd_interval_single(i))
648                 return 0;
649         i->min = i->max;
650         if (i->openmax)
651                 i->min--;
652         /* only exclude min value if also excluded before refine */
653         i->openmin = (i->openmin && i->min <= last_min);
654         return 1;
655 }
656
657 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
658 {
659         if (a->empty || b->empty) {
660                 snd_interval_none(c);
661                 return;
662         }
663         c->empty = 0;
664         c->min = mul(a->min, b->min);
665         c->openmin = (a->openmin || b->openmin);
666         c->max = mul(a->max,  b->max);
667         c->openmax = (a->openmax || b->openmax);
668         c->integer = (a->integer && b->integer);
669 }
670
671 /**
672  * snd_interval_div - refine the interval value with division
673  * @a: dividend
674  * @b: divisor
675  * @c: quotient
676  *
677  * c = a / b
678  *
679  * Returns non-zero if the value is changed, zero if not changed.
680  */
681 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
682 {
683         unsigned int r;
684         if (a->empty || b->empty) {
685                 snd_interval_none(c);
686                 return;
687         }
688         c->empty = 0;
689         c->min = div32(a->min, b->max, &r);
690         c->openmin = (r || a->openmin || b->openmax);
691         if (b->min > 0) {
692                 c->max = div32(a->max, b->min, &r);
693                 if (r) {
694                         c->max++;
695                         c->openmax = 1;
696                 } else
697                         c->openmax = (a->openmax || b->openmin);
698         } else {
699                 c->max = UINT_MAX;
700                 c->openmax = 0;
701         }
702         c->integer = 0;
703 }
704
705 /**
706  * snd_interval_muldivk - refine the interval value
707  * @a: dividend 1
708  * @b: dividend 2
709  * @k: divisor (as integer)
710  * @c: result
711   *
712  * c = a * b / k
713  *
714  * Returns non-zero if the value is changed, zero if not changed.
715  */
716 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
717                       unsigned int k, struct snd_interval *c)
718 {
719         unsigned int r;
720         if (a->empty || b->empty) {
721                 snd_interval_none(c);
722                 return;
723         }
724         c->empty = 0;
725         c->min = muldiv32(a->min, b->min, k, &r);
726         c->openmin = (r || a->openmin || b->openmin);
727         c->max = muldiv32(a->max, b->max, k, &r);
728         if (r) {
729                 c->max++;
730                 c->openmax = 1;
731         } else
732                 c->openmax = (a->openmax || b->openmax);
733         c->integer = 0;
734 }
735
736 /**
737  * snd_interval_mulkdiv - refine the interval value
738  * @a: dividend 1
739  * @k: dividend 2 (as integer)
740  * @b: divisor
741  * @c: result
742  *
743  * c = a * k / b
744  *
745  * Returns non-zero if the value is changed, zero if not changed.
746  */
747 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
748                       const struct snd_interval *b, struct snd_interval *c)
749 {
750         unsigned int r;
751         if (a->empty || b->empty) {
752                 snd_interval_none(c);
753                 return;
754         }
755         c->empty = 0;
756         c->min = muldiv32(a->min, k, b->max, &r);
757         c->openmin = (r || a->openmin || b->openmax);
758         if (b->min > 0) {
759                 c->max = muldiv32(a->max, k, b->min, &r);
760                 if (r) {
761                         c->max++;
762                         c->openmax = 1;
763                 } else
764                         c->openmax = (a->openmax || b->openmin);
765         } else {
766                 c->max = UINT_MAX;
767                 c->openmax = 0;
768         }
769         c->integer = 0;
770 }
771
772 /* ---- */
773
774
775 /**
776  * snd_interval_ratnum - refine the interval value
777  * @i: interval to refine
778  * @rats_count: number of ratnum_t 
779  * @rats: ratnum_t array
780  * @nump: pointer to store the resultant numerator
781  * @denp: pointer to store the resultant denominator
782  *
783  * Return: Positive if the value is changed, zero if it's not changed, or a
784  * negative error code.
785  */
786 int snd_interval_ratnum(struct snd_interval *i,
787                         unsigned int rats_count, const struct snd_ratnum *rats,
788                         unsigned int *nump, unsigned int *denp)
789 {
790         unsigned int best_num, best_den;
791         int best_diff;
792         unsigned int k;
793         struct snd_interval t;
794         int err;
795         unsigned int result_num, result_den;
796         int result_diff;
797
798         best_num = best_den = best_diff = 0;
799         for (k = 0; k < rats_count; ++k) {
800                 unsigned int num = rats[k].num;
801                 unsigned int den;
802                 unsigned int q = i->min;
803                 int diff;
804                 if (q == 0)
805                         q = 1;
806                 den = div_up(num, q);
807                 if (den < rats[k].den_min)
808                         continue;
809                 if (den > rats[k].den_max)
810                         den = rats[k].den_max;
811                 else {
812                         unsigned int r;
813                         r = (den - rats[k].den_min) % rats[k].den_step;
814                         if (r != 0)
815                                 den -= r;
816                 }
817                 diff = num - q * den;
818                 if (diff < 0)
819                         diff = -diff;
820                 if (best_num == 0 ||
821                     diff * best_den < best_diff * den) {
822                         best_diff = diff;
823                         best_den = den;
824                         best_num = num;
825                 }
826         }
827         if (best_den == 0) {
828                 i->empty = 1;
829                 return -EINVAL;
830         }
831         t.min = div_down(best_num, best_den);
832         t.openmin = !!(best_num % best_den);
833         
834         result_num = best_num;
835         result_diff = best_diff;
836         result_den = best_den;
837         best_num = best_den = best_diff = 0;
838         for (k = 0; k < rats_count; ++k) {
839                 unsigned int num = rats[k].num;
840                 unsigned int den;
841                 unsigned int q = i->max;
842                 int diff;
843                 if (q == 0) {
844                         i->empty = 1;
845                         return -EINVAL;
846                 }
847                 den = div_down(num, q);
848                 if (den > rats[k].den_max)
849                         continue;
850                 if (den < rats[k].den_min)
851                         den = rats[k].den_min;
852                 else {
853                         unsigned int r;
854                         r = (den - rats[k].den_min) % rats[k].den_step;
855                         if (r != 0)
856                                 den += rats[k].den_step - r;
857                 }
858                 diff = q * den - num;
859                 if (diff < 0)
860                         diff = -diff;
861                 if (best_num == 0 ||
862                     diff * best_den < best_diff * den) {
863                         best_diff = diff;
864                         best_den = den;
865                         best_num = num;
866                 }
867         }
868         if (best_den == 0) {
869                 i->empty = 1;
870                 return -EINVAL;
871         }
872         t.max = div_up(best_num, best_den);
873         t.openmax = !!(best_num % best_den);
874         t.integer = 0;
875         err = snd_interval_refine(i, &t);
876         if (err < 0)
877                 return err;
878
879         if (snd_interval_single(i)) {
880                 if (best_diff * result_den < result_diff * best_den) {
881                         result_num = best_num;
882                         result_den = best_den;
883                 }
884                 if (nump)
885                         *nump = result_num;
886                 if (denp)
887                         *denp = result_den;
888         }
889         return err;
890 }
891 EXPORT_SYMBOL(snd_interval_ratnum);
892
893 /**
894  * snd_interval_ratden - refine the interval value
895  * @i: interval to refine
896  * @rats_count: number of struct ratden
897  * @rats: struct ratden array
898  * @nump: pointer to store the resultant numerator
899  * @denp: pointer to store the resultant denominator
900  *
901  * Return: Positive if the value is changed, zero if it's not changed, or a
902  * negative error code.
903  */
904 static int snd_interval_ratden(struct snd_interval *i,
905                                unsigned int rats_count,
906                                const struct snd_ratden *rats,
907                                unsigned int *nump, unsigned int *denp)
908 {
909         unsigned int best_num, best_diff, best_den;
910         unsigned int k;
911         struct snd_interval t;
912         int err;
913
914         best_num = best_den = best_diff = 0;
915         for (k = 0; k < rats_count; ++k) {
916                 unsigned int num;
917                 unsigned int den = rats[k].den;
918                 unsigned int q = i->min;
919                 int diff;
920                 num = mul(q, den);
921                 if (num > rats[k].num_max)
922                         continue;
923                 if (num < rats[k].num_min)
924                         num = rats[k].num_max;
925                 else {
926                         unsigned int r;
927                         r = (num - rats[k].num_min) % rats[k].num_step;
928                         if (r != 0)
929                                 num += rats[k].num_step - r;
930                 }
931                 diff = num - q * den;
932                 if (best_num == 0 ||
933                     diff * best_den < best_diff * den) {
934                         best_diff = diff;
935                         best_den = den;
936                         best_num = num;
937                 }
938         }
939         if (best_den == 0) {
940                 i->empty = 1;
941                 return -EINVAL;
942         }
943         t.min = div_down(best_num, best_den);
944         t.openmin = !!(best_num % best_den);
945         
946         best_num = best_den = best_diff = 0;
947         for (k = 0; k < rats_count; ++k) {
948                 unsigned int num;
949                 unsigned int den = rats[k].den;
950                 unsigned int q = i->max;
951                 int diff;
952                 num = mul(q, den);
953                 if (num < rats[k].num_min)
954                         continue;
955                 if (num > rats[k].num_max)
956                         num = rats[k].num_max;
957                 else {
958                         unsigned int r;
959                         r = (num - rats[k].num_min) % rats[k].num_step;
960                         if (r != 0)
961                                 num -= r;
962                 }
963                 diff = q * den - num;
964                 if (best_num == 0 ||
965                     diff * best_den < best_diff * den) {
966                         best_diff = diff;
967                         best_den = den;
968                         best_num = num;
969                 }
970         }
971         if (best_den == 0) {
972                 i->empty = 1;
973                 return -EINVAL;
974         }
975         t.max = div_up(best_num, best_den);
976         t.openmax = !!(best_num % best_den);
977         t.integer = 0;
978         err = snd_interval_refine(i, &t);
979         if (err < 0)
980                 return err;
981
982         if (snd_interval_single(i)) {
983                 if (nump)
984                         *nump = best_num;
985                 if (denp)
986                         *denp = best_den;
987         }
988         return err;
989 }
990
991 /**
992  * snd_interval_list - refine the interval value from the list
993  * @i: the interval value to refine
994  * @count: the number of elements in the list
995  * @list: the value list
996  * @mask: the bit-mask to evaluate
997  *
998  * Refines the interval value from the list.
999  * When mask is non-zero, only the elements corresponding to bit 1 are
1000  * evaluated.
1001  *
1002  * Return: Positive if the value is changed, zero if it's not changed, or a
1003  * negative error code.
1004  */
1005 int snd_interval_list(struct snd_interval *i, unsigned int count,
1006                       const unsigned int *list, unsigned int mask)
1007 {
1008         unsigned int k;
1009         struct snd_interval list_range;
1010
1011         if (!count) {
1012                 i->empty = 1;
1013                 return -EINVAL;
1014         }
1015         snd_interval_any(&list_range);
1016         list_range.min = UINT_MAX;
1017         list_range.max = 0;
1018         for (k = 0; k < count; k++) {
1019                 if (mask && !(mask & (1 << k)))
1020                         continue;
1021                 if (!snd_interval_test(i, list[k]))
1022                         continue;
1023                 list_range.min = min(list_range.min, list[k]);
1024                 list_range.max = max(list_range.max, list[k]);
1025         }
1026         return snd_interval_refine(i, &list_range);
1027 }
1028 EXPORT_SYMBOL(snd_interval_list);
1029
1030 /**
1031  * snd_interval_ranges - refine the interval value from the list of ranges
1032  * @i: the interval value to refine
1033  * @count: the number of elements in the list of ranges
1034  * @ranges: the ranges list
1035  * @mask: the bit-mask to evaluate
1036  *
1037  * Refines the interval value from the list of ranges.
1038  * When mask is non-zero, only the elements corresponding to bit 1 are
1039  * evaluated.
1040  *
1041  * Return: Positive if the value is changed, zero if it's not changed, or a
1042  * negative error code.
1043  */
1044 int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1045                         const struct snd_interval *ranges, unsigned int mask)
1046 {
1047         unsigned int k;
1048         struct snd_interval range_union;
1049         struct snd_interval range;
1050
1051         if (!count) {
1052                 snd_interval_none(i);
1053                 return -EINVAL;
1054         }
1055         snd_interval_any(&range_union);
1056         range_union.min = UINT_MAX;
1057         range_union.max = 0;
1058         for (k = 0; k < count; k++) {
1059                 if (mask && !(mask & (1 << k)))
1060                         continue;
1061                 snd_interval_copy(&range, &ranges[k]);
1062                 if (snd_interval_refine(&range, i) < 0)
1063                         continue;
1064                 if (snd_interval_empty(&range))
1065                         continue;
1066
1067                 if (range.min < range_union.min) {
1068                         range_union.min = range.min;
1069                         range_union.openmin = 1;
1070                 }
1071                 if (range.min == range_union.min && !range.openmin)
1072                         range_union.openmin = 0;
1073                 if (range.max > range_union.max) {
1074                         range_union.max = range.max;
1075                         range_union.openmax = 1;
1076                 }
1077                 if (range.max == range_union.max && !range.openmax)
1078                         range_union.openmax = 0;
1079         }
1080         return snd_interval_refine(i, &range_union);
1081 }
1082 EXPORT_SYMBOL(snd_interval_ranges);
1083
1084 static int snd_interval_step(struct snd_interval *i, unsigned int step)
1085 {
1086         unsigned int n;
1087         int changed = 0;
1088         n = i->min % step;
1089         if (n != 0 || i->openmin) {
1090                 i->min += step - n;
1091                 i->openmin = 0;
1092                 changed = 1;
1093         }
1094         n = i->max % step;
1095         if (n != 0 || i->openmax) {
1096                 i->max -= n;
1097                 i->openmax = 0;
1098                 changed = 1;
1099         }
1100         if (snd_interval_checkempty(i)) {
1101                 i->empty = 1;
1102                 return -EINVAL;
1103         }
1104         return changed;
1105 }
1106
1107 /* Info constraints helpers */
1108
1109 /**
1110  * snd_pcm_hw_rule_add - add the hw-constraint rule
1111  * @runtime: the pcm runtime instance
1112  * @cond: condition bits
1113  * @var: the variable to evaluate
1114  * @func: the evaluation function
1115  * @private: the private data pointer passed to function
1116  * @dep: the dependent variables
1117  *
1118  * Return: Zero if successful, or a negative error code on failure.
1119  */
1120 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1121                         int var,
1122                         snd_pcm_hw_rule_func_t func, void *private,
1123                         int dep, ...)
1124 {
1125         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1126         struct snd_pcm_hw_rule *c;
1127         unsigned int k;
1128         va_list args;
1129         va_start(args, dep);
1130         if (constrs->rules_num >= constrs->rules_all) {
1131                 struct snd_pcm_hw_rule *new;
1132                 unsigned int new_rules = constrs->rules_all + 16;
1133                 new = krealloc_array(constrs->rules, new_rules,
1134                                      sizeof(*c), GFP_KERNEL);
1135                 if (!new) {
1136                         va_end(args);
1137                         return -ENOMEM;
1138                 }
1139                 constrs->rules = new;
1140                 constrs->rules_all = new_rules;
1141         }
1142         c = &constrs->rules[constrs->rules_num];
1143         c->cond = cond;
1144         c->func = func;
1145         c->var = var;
1146         c->private = private;
1147         k = 0;
1148         while (1) {
1149                 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1150                         va_end(args);
1151                         return -EINVAL;
1152                 }
1153                 c->deps[k++] = dep;
1154                 if (dep < 0)
1155                         break;
1156                 dep = va_arg(args, int);
1157         }
1158         constrs->rules_num++;
1159         va_end(args);
1160         return 0;
1161 }
1162 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1163
1164 /**
1165  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1166  * @runtime: PCM runtime instance
1167  * @var: hw_params variable to apply the mask
1168  * @mask: the bitmap mask
1169  *
1170  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1171  *
1172  * Return: Zero if successful, or a negative error code on failure.
1173  */
1174 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1175                                u_int32_t mask)
1176 {
1177         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1178         struct snd_mask *maskp = constrs_mask(constrs, var);
1179         *maskp->bits &= mask;
1180         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1181         if (*maskp->bits == 0)
1182                 return -EINVAL;
1183         return 0;
1184 }
1185
1186 /**
1187  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1188  * @runtime: PCM runtime instance
1189  * @var: hw_params variable to apply the mask
1190  * @mask: the 64bit bitmap mask
1191  *
1192  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1193  *
1194  * Return: Zero if successful, or a negative error code on failure.
1195  */
1196 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1197                                  u_int64_t mask)
1198 {
1199         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1200         struct snd_mask *maskp = constrs_mask(constrs, var);
1201         maskp->bits[0] &= (u_int32_t)mask;
1202         maskp->bits[1] &= (u_int32_t)(mask >> 32);
1203         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1204         if (! maskp->bits[0] && ! maskp->bits[1])
1205                 return -EINVAL;
1206         return 0;
1207 }
1208 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1209
1210 /**
1211  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1212  * @runtime: PCM runtime instance
1213  * @var: hw_params variable to apply the integer constraint
1214  *
1215  * Apply the constraint of integer to an interval parameter.
1216  *
1217  * Return: Positive if the value is changed, zero if it's not changed, or a
1218  * negative error code.
1219  */
1220 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1221 {
1222         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1223         return snd_interval_setinteger(constrs_interval(constrs, var));
1224 }
1225 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1226
1227 /**
1228  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1229  * @runtime: PCM runtime instance
1230  * @var: hw_params variable to apply the range
1231  * @min: the minimal value
1232  * @max: the maximal value
1233  * 
1234  * Apply the min/max range constraint to an interval parameter.
1235  *
1236  * Return: Positive if the value is changed, zero if it's not changed, or a
1237  * negative error code.
1238  */
1239 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1240                                  unsigned int min, unsigned int max)
1241 {
1242         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1243         struct snd_interval t;
1244         t.min = min;
1245         t.max = max;
1246         t.openmin = t.openmax = 0;
1247         t.integer = 0;
1248         return snd_interval_refine(constrs_interval(constrs, var), &t);
1249 }
1250 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1251
1252 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1253                                 struct snd_pcm_hw_rule *rule)
1254 {
1255         struct snd_pcm_hw_constraint_list *list = rule->private;
1256         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1257 }               
1258
1259
1260 /**
1261  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1262  * @runtime: PCM runtime instance
1263  * @cond: condition bits
1264  * @var: hw_params variable to apply the list constraint
1265  * @l: list
1266  * 
1267  * Apply the list of constraints to an interval parameter.
1268  *
1269  * Return: Zero if successful, or a negative error code on failure.
1270  */
1271 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1272                                unsigned int cond,
1273                                snd_pcm_hw_param_t var,
1274                                const struct snd_pcm_hw_constraint_list *l)
1275 {
1276         return snd_pcm_hw_rule_add(runtime, cond, var,
1277                                    snd_pcm_hw_rule_list, (void *)l,
1278                                    var, -1);
1279 }
1280 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1281
1282 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1283                                   struct snd_pcm_hw_rule *rule)
1284 {
1285         struct snd_pcm_hw_constraint_ranges *r = rule->private;
1286         return snd_interval_ranges(hw_param_interval(params, rule->var),
1287                                    r->count, r->ranges, r->mask);
1288 }
1289
1290
1291 /**
1292  * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1293  * @runtime: PCM runtime instance
1294  * @cond: condition bits
1295  * @var: hw_params variable to apply the list of range constraints
1296  * @r: ranges
1297  *
1298  * Apply the list of range constraints to an interval parameter.
1299  *
1300  * Return: Zero if successful, or a negative error code on failure.
1301  */
1302 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1303                                  unsigned int cond,
1304                                  snd_pcm_hw_param_t var,
1305                                  const struct snd_pcm_hw_constraint_ranges *r)
1306 {
1307         return snd_pcm_hw_rule_add(runtime, cond, var,
1308                                    snd_pcm_hw_rule_ranges, (void *)r,
1309                                    var, -1);
1310 }
1311 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1312
1313 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1314                                    struct snd_pcm_hw_rule *rule)
1315 {
1316         const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1317         unsigned int num = 0, den = 0;
1318         int err;
1319         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1320                                   r->nrats, r->rats, &num, &den);
1321         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1322                 params->rate_num = num;
1323                 params->rate_den = den;
1324         }
1325         return err;
1326 }
1327
1328 /**
1329  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1330  * @runtime: PCM runtime instance
1331  * @cond: condition bits
1332  * @var: hw_params variable to apply the ratnums constraint
1333  * @r: struct snd_ratnums constriants
1334  *
1335  * Return: Zero if successful, or a negative error code on failure.
1336  */
1337 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1338                                   unsigned int cond,
1339                                   snd_pcm_hw_param_t var,
1340                                   const struct snd_pcm_hw_constraint_ratnums *r)
1341 {
1342         return snd_pcm_hw_rule_add(runtime, cond, var,
1343                                    snd_pcm_hw_rule_ratnums, (void *)r,
1344                                    var, -1);
1345 }
1346 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1347
1348 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1349                                    struct snd_pcm_hw_rule *rule)
1350 {
1351         const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1352         unsigned int num = 0, den = 0;
1353         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1354                                   r->nrats, r->rats, &num, &den);
1355         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1356                 params->rate_num = num;
1357                 params->rate_den = den;
1358         }
1359         return err;
1360 }
1361
1362 /**
1363  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1364  * @runtime: PCM runtime instance
1365  * @cond: condition bits
1366  * @var: hw_params variable to apply the ratdens constraint
1367  * @r: struct snd_ratdens constriants
1368  *
1369  * Return: Zero if successful, or a negative error code on failure.
1370  */
1371 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1372                                   unsigned int cond,
1373                                   snd_pcm_hw_param_t var,
1374                                   const struct snd_pcm_hw_constraint_ratdens *r)
1375 {
1376         return snd_pcm_hw_rule_add(runtime, cond, var,
1377                                    snd_pcm_hw_rule_ratdens, (void *)r,
1378                                    var, -1);
1379 }
1380 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1381
1382 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1383                                   struct snd_pcm_hw_rule *rule)
1384 {
1385         unsigned int l = (unsigned long) rule->private;
1386         int width = l & 0xffff;
1387         unsigned int msbits = l >> 16;
1388         const struct snd_interval *i =
1389                 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1390
1391         if (!snd_interval_single(i))
1392                 return 0;
1393
1394         if ((snd_interval_value(i) == width) ||
1395             (width == 0 && snd_interval_value(i) > msbits))
1396                 params->msbits = min_not_zero(params->msbits, msbits);
1397
1398         return 0;
1399 }
1400
1401 /**
1402  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1403  * @runtime: PCM runtime instance
1404  * @cond: condition bits
1405  * @width: sample bits width
1406  * @msbits: msbits width
1407  *
1408  * This constraint will set the number of most significant bits (msbits) if a
1409  * sample format with the specified width has been select. If width is set to 0
1410  * the msbits will be set for any sample format with a width larger than the
1411  * specified msbits.
1412  *
1413  * Return: Zero if successful, or a negative error code on failure.
1414  */
1415 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1416                                  unsigned int cond,
1417                                  unsigned int width,
1418                                  unsigned int msbits)
1419 {
1420         unsigned long l = (msbits << 16) | width;
1421         return snd_pcm_hw_rule_add(runtime, cond, -1,
1422                                     snd_pcm_hw_rule_msbits,
1423                                     (void*) l,
1424                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1425 }
1426 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1427
1428 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1429                                 struct snd_pcm_hw_rule *rule)
1430 {
1431         unsigned long step = (unsigned long) rule->private;
1432         return snd_interval_step(hw_param_interval(params, rule->var), step);
1433 }
1434
1435 /**
1436  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1437  * @runtime: PCM runtime instance
1438  * @cond: condition bits
1439  * @var: hw_params variable to apply the step constraint
1440  * @step: step size
1441  *
1442  * Return: Zero if successful, or a negative error code on failure.
1443  */
1444 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1445                                unsigned int cond,
1446                                snd_pcm_hw_param_t var,
1447                                unsigned long step)
1448 {
1449         return snd_pcm_hw_rule_add(runtime, cond, var, 
1450                                    snd_pcm_hw_rule_step, (void *) step,
1451                                    var, -1);
1452 }
1453 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1454
1455 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1456 {
1457         static const unsigned int pow2_sizes[] = {
1458                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1459                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1460                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1461                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1462         };
1463         return snd_interval_list(hw_param_interval(params, rule->var),
1464                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1465 }               
1466
1467 /**
1468  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1469  * @runtime: PCM runtime instance
1470  * @cond: condition bits
1471  * @var: hw_params variable to apply the power-of-2 constraint
1472  *
1473  * Return: Zero if successful, or a negative error code on failure.
1474  */
1475 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1476                                unsigned int cond,
1477                                snd_pcm_hw_param_t var)
1478 {
1479         return snd_pcm_hw_rule_add(runtime, cond, var, 
1480                                    snd_pcm_hw_rule_pow2, NULL,
1481                                    var, -1);
1482 }
1483 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1484
1485 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1486                                            struct snd_pcm_hw_rule *rule)
1487 {
1488         unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1489         struct snd_interval *rate;
1490
1491         rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1492         return snd_interval_list(rate, 1, &base_rate, 0);
1493 }
1494
1495 /**
1496  * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1497  * @runtime: PCM runtime instance
1498  * @base_rate: the rate at which the hardware does not resample
1499  *
1500  * Return: Zero if successful, or a negative error code on failure.
1501  */
1502 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1503                                unsigned int base_rate)
1504 {
1505         return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1506                                    SNDRV_PCM_HW_PARAM_RATE,
1507                                    snd_pcm_hw_rule_noresample_func,
1508                                    (void *)(uintptr_t)base_rate,
1509                                    SNDRV_PCM_HW_PARAM_RATE, -1);
1510 }
1511 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1512
1513 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1514                                   snd_pcm_hw_param_t var)
1515 {
1516         if (hw_is_mask(var)) {
1517                 snd_mask_any(hw_param_mask(params, var));
1518                 params->cmask |= 1 << var;
1519                 params->rmask |= 1 << var;
1520                 return;
1521         }
1522         if (hw_is_interval(var)) {
1523                 snd_interval_any(hw_param_interval(params, var));
1524                 params->cmask |= 1 << var;
1525                 params->rmask |= 1 << var;
1526                 return;
1527         }
1528         snd_BUG();
1529 }
1530
1531 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1532 {
1533         unsigned int k;
1534         memset(params, 0, sizeof(*params));
1535         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1536                 _snd_pcm_hw_param_any(params, k);
1537         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1538                 _snd_pcm_hw_param_any(params, k);
1539         params->info = ~0U;
1540 }
1541 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1542
1543 /**
1544  * snd_pcm_hw_param_value - return @params field @var value
1545  * @params: the hw_params instance
1546  * @var: parameter to retrieve
1547  * @dir: pointer to the direction (-1,0,1) or %NULL
1548  *
1549  * Return: The value for field @var if it's fixed in configuration space
1550  * defined by @params. -%EINVAL otherwise.
1551  */
1552 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1553                            snd_pcm_hw_param_t var, int *dir)
1554 {
1555         if (hw_is_mask(var)) {
1556                 const struct snd_mask *mask = hw_param_mask_c(params, var);
1557                 if (!snd_mask_single(mask))
1558                         return -EINVAL;
1559                 if (dir)
1560                         *dir = 0;
1561                 return snd_mask_value(mask);
1562         }
1563         if (hw_is_interval(var)) {
1564                 const struct snd_interval *i = hw_param_interval_c(params, var);
1565                 if (!snd_interval_single(i))
1566                         return -EINVAL;
1567                 if (dir)
1568                         *dir = i->openmin;
1569                 return snd_interval_value(i);
1570         }
1571         return -EINVAL;
1572 }
1573 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1574
1575 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1576                                 snd_pcm_hw_param_t var)
1577 {
1578         if (hw_is_mask(var)) {
1579                 snd_mask_none(hw_param_mask(params, var));
1580                 params->cmask |= 1 << var;
1581                 params->rmask |= 1 << var;
1582         } else if (hw_is_interval(var)) {
1583                 snd_interval_none(hw_param_interval(params, var));
1584                 params->cmask |= 1 << var;
1585                 params->rmask |= 1 << var;
1586         } else {
1587                 snd_BUG();
1588         }
1589 }
1590 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1591
1592 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1593                                    snd_pcm_hw_param_t var)
1594 {
1595         int changed;
1596         if (hw_is_mask(var))
1597                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1598         else if (hw_is_interval(var))
1599                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1600         else
1601                 return -EINVAL;
1602         if (changed > 0) {
1603                 params->cmask |= 1 << var;
1604                 params->rmask |= 1 << var;
1605         }
1606         return changed;
1607 }
1608
1609
1610 /**
1611  * snd_pcm_hw_param_first - refine config space and return minimum value
1612  * @pcm: PCM instance
1613  * @params: the hw_params instance
1614  * @var: parameter to retrieve
1615  * @dir: pointer to the direction (-1,0,1) or %NULL
1616  *
1617  * Inside configuration space defined by @params remove from @var all
1618  * values > minimum. Reduce configuration space accordingly.
1619  *
1620  * Return: The minimum, or a negative error code on failure.
1621  */
1622 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1623                            struct snd_pcm_hw_params *params, 
1624                            snd_pcm_hw_param_t var, int *dir)
1625 {
1626         int changed = _snd_pcm_hw_param_first(params, var);
1627         if (changed < 0)
1628                 return changed;
1629         if (params->rmask) {
1630                 int err = snd_pcm_hw_refine(pcm, params);
1631                 if (err < 0)
1632                         return err;
1633         }
1634         return snd_pcm_hw_param_value(params, var, dir);
1635 }
1636 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1637
1638 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1639                                   snd_pcm_hw_param_t var)
1640 {
1641         int changed;
1642         if (hw_is_mask(var))
1643                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1644         else if (hw_is_interval(var))
1645                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1646         else
1647                 return -EINVAL;
1648         if (changed > 0) {
1649                 params->cmask |= 1 << var;
1650                 params->rmask |= 1 << var;
1651         }
1652         return changed;
1653 }
1654
1655
1656 /**
1657  * snd_pcm_hw_param_last - refine config space and return maximum value
1658  * @pcm: PCM instance
1659  * @params: the hw_params instance
1660  * @var: parameter to retrieve
1661  * @dir: pointer to the direction (-1,0,1) or %NULL
1662  *
1663  * Inside configuration space defined by @params remove from @var all
1664  * values < maximum. Reduce configuration space accordingly.
1665  *
1666  * Return: The maximum, or a negative error code on failure.
1667  */
1668 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1669                           struct snd_pcm_hw_params *params,
1670                           snd_pcm_hw_param_t var, int *dir)
1671 {
1672         int changed = _snd_pcm_hw_param_last(params, var);
1673         if (changed < 0)
1674                 return changed;
1675         if (params->rmask) {
1676                 int err = snd_pcm_hw_refine(pcm, params);
1677                 if (err < 0)
1678                         return err;
1679         }
1680         return snd_pcm_hw_param_value(params, var, dir);
1681 }
1682 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1683
1684 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1685                                    void *arg)
1686 {
1687         struct snd_pcm_runtime *runtime = substream->runtime;
1688         unsigned long flags;
1689         snd_pcm_stream_lock_irqsave(substream, flags);
1690         if (snd_pcm_running(substream) &&
1691             snd_pcm_update_hw_ptr(substream) >= 0)
1692                 runtime->status->hw_ptr %= runtime->buffer_size;
1693         else {
1694                 runtime->status->hw_ptr = 0;
1695                 runtime->hw_ptr_wrap = 0;
1696         }
1697         snd_pcm_stream_unlock_irqrestore(substream, flags);
1698         return 0;
1699 }
1700
1701 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1702                                           void *arg)
1703 {
1704         struct snd_pcm_channel_info *info = arg;
1705         struct snd_pcm_runtime *runtime = substream->runtime;
1706         int width;
1707         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1708                 info->offset = -1;
1709                 return 0;
1710         }
1711         width = snd_pcm_format_physical_width(runtime->format);
1712         if (width < 0)
1713                 return width;
1714         info->offset = 0;
1715         switch (runtime->access) {
1716         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1717         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1718                 info->first = info->channel * width;
1719                 info->step = runtime->channels * width;
1720                 break;
1721         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1722         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1723         {
1724                 size_t size = runtime->dma_bytes / runtime->channels;
1725                 info->first = info->channel * size * 8;
1726                 info->step = width;
1727                 break;
1728         }
1729         default:
1730                 snd_BUG();
1731                 break;
1732         }
1733         return 0;
1734 }
1735
1736 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1737                                        void *arg)
1738 {
1739         struct snd_pcm_hw_params *params = arg;
1740         snd_pcm_format_t format;
1741         int channels;
1742         ssize_t frame_size;
1743
1744         params->fifo_size = substream->runtime->hw.fifo_size;
1745         if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1746                 format = params_format(params);
1747                 channels = params_channels(params);
1748                 frame_size = snd_pcm_format_size(format, channels);
1749                 if (frame_size > 0)
1750                         params->fifo_size /= frame_size;
1751         }
1752         return 0;
1753 }
1754
1755 /**
1756  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1757  * @substream: the pcm substream instance
1758  * @cmd: ioctl command
1759  * @arg: ioctl argument
1760  *
1761  * Processes the generic ioctl commands for PCM.
1762  * Can be passed as the ioctl callback for PCM ops.
1763  *
1764  * Return: Zero if successful, or a negative error code on failure.
1765  */
1766 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1767                       unsigned int cmd, void *arg)
1768 {
1769         switch (cmd) {
1770         case SNDRV_PCM_IOCTL1_RESET:
1771                 return snd_pcm_lib_ioctl_reset(substream, arg);
1772         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1773                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1774         case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1775                 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1776         }
1777         return -ENXIO;
1778 }
1779 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1780
1781 /**
1782  * snd_pcm_period_elapsed_under_stream_lock() - update the status of runtime for the next period
1783  *                                              under acquired lock of PCM substream.
1784  * @substream: the instance of pcm substream.
1785  *
1786  * This function is called when the batch of audio data frames as the same size as the period of
1787  * buffer is already processed in audio data transmission.
1788  *
1789  * The call of function updates the status of runtime with the latest position of audio data
1790  * transmission, checks overrun and underrun over buffer, awaken user processes from waiting for
1791  * available audio data frames, sampling audio timestamp, and performs stop or drain the PCM
1792  * substream according to configured threshold.
1793  *
1794  * The function is intended to use for the case that PCM driver operates audio data frames under
1795  * acquired lock of PCM substream; e.g. in callback of any operation of &snd_pcm_ops in process
1796  * context. In any interrupt context, it's preferrable to use ``snd_pcm_period_elapsed()`` instead
1797  * since lock of PCM substream should be acquired in advance.
1798  *
1799  * Developer should pay enough attention that some callbacks in &snd_pcm_ops are done by the call of
1800  * function:
1801  *
1802  * - .pointer - to retrieve current position of audio data transmission by frame count or XRUN state.
1803  * - .trigger - with SNDRV_PCM_TRIGGER_STOP at XRUN or DRAINING state.
1804  * - .get_time_info - to retrieve audio time stamp if needed.
1805  *
1806  * Even if more than one periods have elapsed since the last call, you have to call this only once.
1807  */
1808 void snd_pcm_period_elapsed_under_stream_lock(struct snd_pcm_substream *substream)
1809 {
1810         struct snd_pcm_runtime *runtime;
1811
1812         if (PCM_RUNTIME_CHECK(substream))
1813                 return;
1814         runtime = substream->runtime;
1815
1816         if (!snd_pcm_running(substream) ||
1817             snd_pcm_update_hw_ptr0(substream, 1) < 0)
1818                 goto _end;
1819
1820 #ifdef CONFIG_SND_PCM_TIMER
1821         if (substream->timer_running)
1822                 snd_timer_interrupt(substream->timer, 1);
1823 #endif
1824  _end:
1825         kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1826 }
1827 EXPORT_SYMBOL(snd_pcm_period_elapsed_under_stream_lock);
1828
1829 /**
1830  * snd_pcm_period_elapsed() - update the status of runtime for the next period by acquiring lock of
1831  *                            PCM substream.
1832  * @substream: the instance of PCM substream.
1833  *
1834  * This function is mostly similar to ``snd_pcm_period_elapsed_under_stream_lock()`` except for
1835  * acquiring lock of PCM substream voluntarily.
1836  *
1837  * It's typically called by any type of IRQ handler when hardware IRQ occurs to notify event that
1838  * the batch of audio data frames as the same size as the period of buffer is already processed in
1839  * audio data transmission.
1840  */
1841 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1842 {
1843         unsigned long flags;
1844
1845         if (snd_BUG_ON(!substream))
1846                 return;
1847
1848         snd_pcm_stream_lock_irqsave(substream, flags);
1849         snd_pcm_period_elapsed_under_stream_lock(substream);
1850         snd_pcm_stream_unlock_irqrestore(substream, flags);
1851 }
1852 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1853
1854 /*
1855  * Wait until avail_min data becomes available
1856  * Returns a negative error code if any error occurs during operation.
1857  * The available space is stored on availp.  When err = 0 and avail = 0
1858  * on the capture stream, it indicates the stream is in DRAINING state.
1859  */
1860 static int wait_for_avail(struct snd_pcm_substream *substream,
1861                               snd_pcm_uframes_t *availp)
1862 {
1863         struct snd_pcm_runtime *runtime = substream->runtime;
1864         int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1865         wait_queue_entry_t wait;
1866         int err = 0;
1867         snd_pcm_uframes_t avail = 0;
1868         long wait_time, tout;
1869
1870         init_waitqueue_entry(&wait, current);
1871         set_current_state(TASK_INTERRUPTIBLE);
1872         add_wait_queue(&runtime->tsleep, &wait);
1873
1874         if (runtime->no_period_wakeup)
1875                 wait_time = MAX_SCHEDULE_TIMEOUT;
1876         else {
1877                 /* use wait time from substream if available */
1878                 if (substream->wait_time) {
1879                         wait_time = substream->wait_time;
1880                 } else {
1881                         wait_time = 10;
1882
1883                         if (runtime->rate) {
1884                                 long t = runtime->period_size * 2 /
1885                                          runtime->rate;
1886                                 wait_time = max(t, wait_time);
1887                         }
1888                         wait_time = msecs_to_jiffies(wait_time * 1000);
1889                 }
1890         }
1891
1892         for (;;) {
1893                 if (signal_pending(current)) {
1894                         err = -ERESTARTSYS;
1895                         break;
1896                 }
1897
1898                 /*
1899                  * We need to check if space became available already
1900                  * (and thus the wakeup happened already) first to close
1901                  * the race of space already having become available.
1902                  * This check must happen after been added to the waitqueue
1903                  * and having current state be INTERRUPTIBLE.
1904                  */
1905                 avail = snd_pcm_avail(substream);
1906                 if (avail >= runtime->twake)
1907                         break;
1908                 snd_pcm_stream_unlock_irq(substream);
1909                 mutex_unlock(&runtime->buffer_mutex);
1910
1911                 tout = schedule_timeout(wait_time);
1912
1913                 mutex_lock(&runtime->buffer_mutex);
1914                 snd_pcm_stream_lock_irq(substream);
1915                 set_current_state(TASK_INTERRUPTIBLE);
1916                 switch (runtime->status->state) {
1917                 case SNDRV_PCM_STATE_SUSPENDED:
1918                         err = -ESTRPIPE;
1919                         goto _endloop;
1920                 case SNDRV_PCM_STATE_XRUN:
1921                         err = -EPIPE;
1922                         goto _endloop;
1923                 case SNDRV_PCM_STATE_DRAINING:
1924                         if (is_playback)
1925                                 err = -EPIPE;
1926                         else 
1927                                 avail = 0; /* indicate draining */
1928                         goto _endloop;
1929                 case SNDRV_PCM_STATE_OPEN:
1930                 case SNDRV_PCM_STATE_SETUP:
1931                 case SNDRV_PCM_STATE_DISCONNECTED:
1932                         err = -EBADFD;
1933                         goto _endloop;
1934                 case SNDRV_PCM_STATE_PAUSED:
1935                         continue;
1936                 }
1937                 if (!tout) {
1938                         pcm_dbg(substream->pcm,
1939                                 "%s write error (DMA or IRQ trouble?)\n",
1940                                 is_playback ? "playback" : "capture");
1941                         err = -EIO;
1942                         break;
1943                 }
1944         }
1945  _endloop:
1946         set_current_state(TASK_RUNNING);
1947         remove_wait_queue(&runtime->tsleep, &wait);
1948         *availp = avail;
1949         return err;
1950 }
1951         
1952 typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
1953                               int channel, unsigned long hwoff,
1954                               void *buf, unsigned long bytes);
1955
1956 typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
1957                           snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f);
1958
1959 /* calculate the target DMA-buffer position to be written/read */
1960 static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
1961                            int channel, unsigned long hwoff)
1962 {
1963         return runtime->dma_area + hwoff +
1964                 channel * (runtime->dma_bytes / runtime->channels);
1965 }
1966
1967 /* default copy_user ops for write; used for both interleaved and non- modes */
1968 static int default_write_copy(struct snd_pcm_substream *substream,
1969                               int channel, unsigned long hwoff,
1970                               void *buf, unsigned long bytes)
1971 {
1972         if (copy_from_user(get_dma_ptr(substream->runtime, channel, hwoff),
1973                            (void __user *)buf, bytes))
1974                 return -EFAULT;
1975         return 0;
1976 }
1977
1978 /* default copy_kernel ops for write */
1979 static int default_write_copy_kernel(struct snd_pcm_substream *substream,
1980                                      int channel, unsigned long hwoff,
1981                                      void *buf, unsigned long bytes)
1982 {
1983         memcpy(get_dma_ptr(substream->runtime, channel, hwoff), buf, bytes);
1984         return 0;
1985 }
1986
1987 /* fill silence instead of copy data; called as a transfer helper
1988  * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
1989  * a NULL buffer is passed
1990  */
1991 static int fill_silence(struct snd_pcm_substream *substream, int channel,
1992                         unsigned long hwoff, void *buf, unsigned long bytes)
1993 {
1994         struct snd_pcm_runtime *runtime = substream->runtime;
1995
1996         if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
1997                 return 0;
1998         if (substream->ops->fill_silence)
1999                 return substream->ops->fill_silence(substream, channel,
2000                                                     hwoff, bytes);
2001
2002         snd_pcm_format_set_silence(runtime->format,
2003                                    get_dma_ptr(runtime, channel, hwoff),
2004                                    bytes_to_samples(runtime, bytes));
2005         return 0;
2006 }
2007
2008 /* default copy_user ops for read; used for both interleaved and non- modes */
2009 static int default_read_copy(struct snd_pcm_substream *substream,
2010                              int channel, unsigned long hwoff,
2011                              void *buf, unsigned long bytes)
2012 {
2013         if (copy_to_user((void __user *)buf,
2014                          get_dma_ptr(substream->runtime, channel, hwoff),
2015                          bytes))
2016                 return -EFAULT;
2017         return 0;
2018 }
2019
2020 /* default copy_kernel ops for read */
2021 static int default_read_copy_kernel(struct snd_pcm_substream *substream,
2022                                     int channel, unsigned long hwoff,
2023                                     void *buf, unsigned long bytes)
2024 {
2025         memcpy(buf, get_dma_ptr(substream->runtime, channel, hwoff), bytes);
2026         return 0;
2027 }
2028
2029 /* call transfer function with the converted pointers and sizes;
2030  * for interleaved mode, it's one shot for all samples
2031  */
2032 static int interleaved_copy(struct snd_pcm_substream *substream,
2033                             snd_pcm_uframes_t hwoff, void *data,
2034                             snd_pcm_uframes_t off,
2035                             snd_pcm_uframes_t frames,
2036                             pcm_transfer_f transfer)
2037 {
2038         struct snd_pcm_runtime *runtime = substream->runtime;
2039
2040         /* convert to bytes */
2041         hwoff = frames_to_bytes(runtime, hwoff);
2042         off = frames_to_bytes(runtime, off);
2043         frames = frames_to_bytes(runtime, frames);
2044         return transfer(substream, 0, hwoff, data + off, frames);
2045 }
2046
2047 /* call transfer function with the converted pointers and sizes for each
2048  * non-interleaved channel; when buffer is NULL, silencing instead of copying
2049  */
2050 static int noninterleaved_copy(struct snd_pcm_substream *substream,
2051                                snd_pcm_uframes_t hwoff, void *data,
2052                                snd_pcm_uframes_t off,
2053                                snd_pcm_uframes_t frames,
2054                                pcm_transfer_f transfer)
2055 {
2056         struct snd_pcm_runtime *runtime = substream->runtime;
2057         int channels = runtime->channels;
2058         void **bufs = data;
2059         int c, err;
2060
2061         /* convert to bytes; note that it's not frames_to_bytes() here.
2062          * in non-interleaved mode, we copy for each channel, thus
2063          * each copy is n_samples bytes x channels = whole frames.
2064          */
2065         off = samples_to_bytes(runtime, off);
2066         frames = samples_to_bytes(runtime, frames);
2067         hwoff = samples_to_bytes(runtime, hwoff);
2068         for (c = 0; c < channels; ++c, ++bufs) {
2069                 if (!data || !*bufs)
2070                         err = fill_silence(substream, c, hwoff, NULL, frames);
2071                 else
2072                         err = transfer(substream, c, hwoff, *bufs + off,
2073                                        frames);
2074                 if (err < 0)
2075                         return err;
2076         }
2077         return 0;
2078 }
2079
2080 /* fill silence on the given buffer position;
2081  * called from snd_pcm_playback_silence()
2082  */
2083 static int fill_silence_frames(struct snd_pcm_substream *substream,
2084                                snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2085 {
2086         if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2087             substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2088                 return interleaved_copy(substream, off, NULL, 0, frames,
2089                                         fill_silence);
2090         else
2091                 return noninterleaved_copy(substream, off, NULL, 0, frames,
2092                                            fill_silence);
2093 }
2094
2095 /* sanity-check for read/write methods */
2096 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2097 {
2098         struct snd_pcm_runtime *runtime;
2099         if (PCM_RUNTIME_CHECK(substream))
2100                 return -ENXIO;
2101         runtime = substream->runtime;
2102         if (snd_BUG_ON(!substream->ops->copy_user && !runtime->dma_area))
2103                 return -EINVAL;
2104         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2105                 return -EBADFD;
2106         return 0;
2107 }
2108
2109 static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2110 {
2111         switch (runtime->status->state) {
2112         case SNDRV_PCM_STATE_PREPARED:
2113         case SNDRV_PCM_STATE_RUNNING:
2114         case SNDRV_PCM_STATE_PAUSED:
2115                 return 0;
2116         case SNDRV_PCM_STATE_XRUN:
2117                 return -EPIPE;
2118         case SNDRV_PCM_STATE_SUSPENDED:
2119                 return -ESTRPIPE;
2120         default:
2121                 return -EBADFD;
2122         }
2123 }
2124
2125 /* update to the given appl_ptr and call ack callback if needed;
2126  * when an error is returned, take back to the original value
2127  */
2128 int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
2129                            snd_pcm_uframes_t appl_ptr)
2130 {
2131         struct snd_pcm_runtime *runtime = substream->runtime;
2132         snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
2133         snd_pcm_sframes_t diff;
2134         int ret;
2135
2136         if (old_appl_ptr == appl_ptr)
2137                 return 0;
2138
2139         if (appl_ptr >= runtime->boundary)
2140                 return -EINVAL;
2141         /*
2142          * check if a rewind is requested by the application
2143          */
2144         if (substream->runtime->info & SNDRV_PCM_INFO_NO_REWINDS) {
2145                 diff = appl_ptr - old_appl_ptr;
2146                 if (diff >= 0) {
2147                         if (diff > runtime->buffer_size)
2148                                 return -EINVAL;
2149                 } else {
2150                         if (runtime->boundary + diff > runtime->buffer_size)
2151                                 return -EINVAL;
2152                 }
2153         }
2154
2155         runtime->control->appl_ptr = appl_ptr;
2156         if (substream->ops->ack) {
2157                 ret = substream->ops->ack(substream);
2158                 if (ret < 0) {
2159                         runtime->control->appl_ptr = old_appl_ptr;
2160                         return ret;
2161                 }
2162         }
2163
2164         trace_applptr(substream, old_appl_ptr, appl_ptr);
2165
2166         return 0;
2167 }
2168
2169 /* the common loop for read/write data */
2170 snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2171                                      void *data, bool interleaved,
2172                                      snd_pcm_uframes_t size, bool in_kernel)
2173 {
2174         struct snd_pcm_runtime *runtime = substream->runtime;
2175         snd_pcm_uframes_t xfer = 0;
2176         snd_pcm_uframes_t offset = 0;
2177         snd_pcm_uframes_t avail;
2178         pcm_copy_f writer;
2179         pcm_transfer_f transfer;
2180         bool nonblock;
2181         bool is_playback;
2182         int err;
2183
2184         err = pcm_sanity_check(substream);
2185         if (err < 0)
2186                 return err;
2187
2188         is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2189         if (interleaved) {
2190                 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2191                     runtime->channels > 1)
2192                         return -EINVAL;
2193                 writer = interleaved_copy;
2194         } else {
2195                 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2196                         return -EINVAL;
2197                 writer = noninterleaved_copy;
2198         }
2199
2200         if (!data) {
2201                 if (is_playback)
2202                         transfer = fill_silence;
2203                 else
2204                         return -EINVAL;
2205         } else if (in_kernel) {
2206                 if (substream->ops->copy_kernel)
2207                         transfer = substream->ops->copy_kernel;
2208                 else
2209                         transfer = is_playback ?
2210                                 default_write_copy_kernel : default_read_copy_kernel;
2211         } else {
2212                 if (substream->ops->copy_user)
2213                         transfer = (pcm_transfer_f)substream->ops->copy_user;
2214                 else
2215                         transfer = is_playback ?
2216                                 default_write_copy : default_read_copy;
2217         }
2218
2219         if (size == 0)
2220                 return 0;
2221
2222         nonblock = !!(substream->f_flags & O_NONBLOCK);
2223
2224         mutex_lock(&runtime->buffer_mutex);
2225         snd_pcm_stream_lock_irq(substream);
2226         err = pcm_accessible_state(runtime);
2227         if (err < 0)
2228                 goto _end_unlock;
2229
2230         runtime->twake = runtime->control->avail_min ? : 1;
2231         if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2232                 snd_pcm_update_hw_ptr(substream);
2233
2234         /*
2235          * If size < start_threshold, wait indefinitely. Another
2236          * thread may start capture
2237          */
2238         if (!is_playback &&
2239             runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2240             size >= runtime->start_threshold) {
2241                 err = snd_pcm_start(substream);
2242                 if (err < 0)
2243                         goto _end_unlock;
2244         }
2245
2246         avail = snd_pcm_avail(substream);
2247
2248         while (size > 0) {
2249                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2250                 snd_pcm_uframes_t cont;
2251                 if (!avail) {
2252                         if (!is_playback &&
2253                             runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
2254                                 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2255                                 goto _end_unlock;
2256                         }
2257                         if (nonblock) {
2258                                 err = -EAGAIN;
2259                                 goto _end_unlock;
2260                         }
2261                         runtime->twake = min_t(snd_pcm_uframes_t, size,
2262                                         runtime->control->avail_min ? : 1);
2263                         err = wait_for_avail(substream, &avail);
2264                         if (err < 0)
2265                                 goto _end_unlock;
2266                         if (!avail)
2267                                 continue; /* draining */
2268                 }
2269                 frames = size > avail ? avail : size;
2270                 appl_ptr = READ_ONCE(runtime->control->appl_ptr);
2271                 appl_ofs = appl_ptr % runtime->buffer_size;
2272                 cont = runtime->buffer_size - appl_ofs;
2273                 if (frames > cont)
2274                         frames = cont;
2275                 if (snd_BUG_ON(!frames)) {
2276                         err = -EINVAL;
2277                         goto _end_unlock;
2278                 }
2279                 snd_pcm_stream_unlock_irq(substream);
2280                 if (!is_playback)
2281                         snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_CPU);
2282                 err = writer(substream, appl_ofs, data, offset, frames,
2283                              transfer);
2284                 if (is_playback)
2285                         snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_DEVICE);
2286                 snd_pcm_stream_lock_irq(substream);
2287                 if (err < 0)
2288                         goto _end_unlock;
2289                 err = pcm_accessible_state(runtime);
2290                 if (err < 0)
2291                         goto _end_unlock;
2292                 appl_ptr += frames;
2293                 if (appl_ptr >= runtime->boundary)
2294                         appl_ptr -= runtime->boundary;
2295                 err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
2296                 if (err < 0)
2297                         goto _end_unlock;
2298
2299                 offset += frames;
2300                 size -= frames;
2301                 xfer += frames;
2302                 avail -= frames;
2303                 if (is_playback &&
2304                     runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2305                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2306                         err = snd_pcm_start(substream);
2307                         if (err < 0)
2308                                 goto _end_unlock;
2309                 }
2310         }
2311  _end_unlock:
2312         runtime->twake = 0;
2313         if (xfer > 0 && err >= 0)
2314                 snd_pcm_update_state(substream, runtime);
2315         snd_pcm_stream_unlock_irq(substream);
2316         mutex_unlock(&runtime->buffer_mutex);
2317         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2318 }
2319 EXPORT_SYMBOL(__snd_pcm_lib_xfer);
2320
2321 /*
2322  * standard channel mapping helpers
2323  */
2324
2325 /* default channel maps for multi-channel playbacks, up to 8 channels */
2326 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2327         { .channels = 1,
2328           .map = { SNDRV_CHMAP_MONO } },
2329         { .channels = 2,
2330           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2331         { .channels = 4,
2332           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2333                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2334         { .channels = 6,
2335           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2336                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2337                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2338         { .channels = 8,
2339           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2340                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2341                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2342                    SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2343         { }
2344 };
2345 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2346
2347 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2348 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2349         { .channels = 1,
2350           .map = { SNDRV_CHMAP_MONO } },
2351         { .channels = 2,
2352           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2353         { .channels = 4,
2354           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2355                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2356         { .channels = 6,
2357           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2358                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2359                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2360         { .channels = 8,
2361           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2362                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2363                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2364                    SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2365         { }
2366 };
2367 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2368
2369 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2370 {
2371         if (ch > info->max_channels)
2372                 return false;
2373         return !info->channel_mask || (info->channel_mask & (1U << ch));
2374 }
2375
2376 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2377                               struct snd_ctl_elem_info *uinfo)
2378 {
2379         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2380
2381         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2382         uinfo->count = info->max_channels;
2383         uinfo->value.integer.min = 0;
2384         uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2385         return 0;
2386 }
2387
2388 /* get callback for channel map ctl element
2389  * stores the channel position firstly matching with the current channels
2390  */
2391 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2392                              struct snd_ctl_elem_value *ucontrol)
2393 {
2394         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2395         unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2396         struct snd_pcm_substream *substream;
2397         const struct snd_pcm_chmap_elem *map;
2398
2399         if (!info->chmap)
2400                 return -EINVAL;
2401         substream = snd_pcm_chmap_substream(info, idx);
2402         if (!substream)
2403                 return -ENODEV;
2404         memset(ucontrol->value.integer.value, 0,
2405                sizeof(long) * info->max_channels);
2406         if (!substream->runtime)
2407                 return 0; /* no channels set */
2408         for (map = info->chmap; map->channels; map++) {
2409                 int i;
2410                 if (map->channels == substream->runtime->channels &&
2411                     valid_chmap_channels(info, map->channels)) {
2412                         for (i = 0; i < map->channels; i++)
2413                                 ucontrol->value.integer.value[i] = map->map[i];
2414                         return 0;
2415                 }
2416         }
2417         return -EINVAL;
2418 }
2419
2420 /* tlv callback for channel map ctl element
2421  * expands the pre-defined channel maps in a form of TLV
2422  */
2423 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2424                              unsigned int size, unsigned int __user *tlv)
2425 {
2426         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2427         const struct snd_pcm_chmap_elem *map;
2428         unsigned int __user *dst;
2429         int c, count = 0;
2430
2431         if (!info->chmap)
2432                 return -EINVAL;
2433         if (size < 8)
2434                 return -ENOMEM;
2435         if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2436                 return -EFAULT;
2437         size -= 8;
2438         dst = tlv + 2;
2439         for (map = info->chmap; map->channels; map++) {
2440                 int chs_bytes = map->channels * 4;
2441                 if (!valid_chmap_channels(info, map->channels))
2442                         continue;
2443                 if (size < 8)
2444                         return -ENOMEM;
2445                 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2446                     put_user(chs_bytes, dst + 1))
2447                         return -EFAULT;
2448                 dst += 2;
2449                 size -= 8;
2450                 count += 8;
2451                 if (size < chs_bytes)
2452                         return -ENOMEM;
2453                 size -= chs_bytes;
2454                 count += chs_bytes;
2455                 for (c = 0; c < map->channels; c++) {
2456                         if (put_user(map->map[c], dst))
2457                                 return -EFAULT;
2458                         dst++;
2459                 }
2460         }
2461         if (put_user(count, tlv + 1))
2462                 return -EFAULT;
2463         return 0;
2464 }
2465
2466 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2467 {
2468         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2469         info->pcm->streams[info->stream].chmap_kctl = NULL;
2470         kfree(info);
2471 }
2472
2473 /**
2474  * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2475  * @pcm: the assigned PCM instance
2476  * @stream: stream direction
2477  * @chmap: channel map elements (for query)
2478  * @max_channels: the max number of channels for the stream
2479  * @private_value: the value passed to each kcontrol's private_value field
2480  * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2481  *
2482  * Create channel-mapping control elements assigned to the given PCM stream(s).
2483  * Return: Zero if successful, or a negative error value.
2484  */
2485 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2486                            const struct snd_pcm_chmap_elem *chmap,
2487                            int max_channels,
2488                            unsigned long private_value,
2489                            struct snd_pcm_chmap **info_ret)
2490 {
2491         struct snd_pcm_chmap *info;
2492         struct snd_kcontrol_new knew = {
2493                 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2494                 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2495                         SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2496                         SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2497                 .info = pcm_chmap_ctl_info,
2498                 .get = pcm_chmap_ctl_get,
2499                 .tlv.c = pcm_chmap_ctl_tlv,
2500         };
2501         int err;
2502
2503         if (WARN_ON(pcm->streams[stream].chmap_kctl))
2504                 return -EBUSY;
2505         info = kzalloc(sizeof(*info), GFP_KERNEL);
2506         if (!info)
2507                 return -ENOMEM;
2508         info->pcm = pcm;
2509         info->stream = stream;
2510         info->chmap = chmap;
2511         info->max_channels = max_channels;
2512         if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2513                 knew.name = "Playback Channel Map";
2514         else
2515                 knew.name = "Capture Channel Map";
2516         knew.device = pcm->device;
2517         knew.count = pcm->streams[stream].substream_count;
2518         knew.private_value = private_value;
2519         info->kctl = snd_ctl_new1(&knew, info);
2520         if (!info->kctl) {
2521                 kfree(info);
2522                 return -ENOMEM;
2523         }
2524         info->kctl->private_free = pcm_chmap_ctl_private_free;
2525         err = snd_ctl_add(pcm->card, info->kctl);
2526         if (err < 0)
2527                 return err;
2528         pcm->streams[stream].chmap_kctl = info->kctl;
2529         if (info_ret)
2530                 *info_ret = info;
2531         return 0;
2532 }
2533 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);