Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[linux-2.6-microblaze.git] / sound / core / pcm_lib.c
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22
23 #include <linux/slab.h>
24 #include <linux/sched/signal.h>
25 #include <linux/time.h>
26 #include <linux/math64.h>
27 #include <linux/export.h>
28 #include <sound/core.h>
29 #include <sound/control.h>
30 #include <sound/tlv.h>
31 #include <sound/info.h>
32 #include <sound/pcm.h>
33 #include <sound/pcm_params.h>
34 #include <sound/timer.h>
35
36 #include "pcm_local.h"
37
38 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
39 #define CREATE_TRACE_POINTS
40 #include "pcm_trace.h"
41 #else
42 #define trace_hwptr(substream, pos, in_interrupt)
43 #define trace_xrun(substream)
44 #define trace_hw_ptr_error(substream, reason)
45 #define trace_applptr(substream, prev, curr)
46 #endif
47
48 static int fill_silence_frames(struct snd_pcm_substream *substream,
49                                snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
50
51 /*
52  * fill ring buffer with silence
53  * runtime->silence_start: starting pointer to silence area
54  * runtime->silence_filled: size filled with silence
55  * runtime->silence_threshold: threshold from application
56  * runtime->silence_size: maximal size from application
57  *
58  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
59  */
60 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
61 {
62         struct snd_pcm_runtime *runtime = substream->runtime;
63         snd_pcm_uframes_t frames, ofs, transfer;
64         int err;
65
66         if (runtime->silence_size < runtime->boundary) {
67                 snd_pcm_sframes_t noise_dist, n;
68                 snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
69                 if (runtime->silence_start != appl_ptr) {
70                         n = appl_ptr - runtime->silence_start;
71                         if (n < 0)
72                                 n += runtime->boundary;
73                         if ((snd_pcm_uframes_t)n < runtime->silence_filled)
74                                 runtime->silence_filled -= n;
75                         else
76                                 runtime->silence_filled = 0;
77                         runtime->silence_start = appl_ptr;
78                 }
79                 if (runtime->silence_filled >= runtime->buffer_size)
80                         return;
81                 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
82                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
83                         return;
84                 frames = runtime->silence_threshold - noise_dist;
85                 if (frames > runtime->silence_size)
86                         frames = runtime->silence_size;
87         } else {
88                 if (new_hw_ptr == ULONG_MAX) {  /* initialization */
89                         snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
90                         if (avail > runtime->buffer_size)
91                                 avail = runtime->buffer_size;
92                         runtime->silence_filled = avail > 0 ? avail : 0;
93                         runtime->silence_start = (runtime->status->hw_ptr +
94                                                   runtime->silence_filled) %
95                                                  runtime->boundary;
96                 } else {
97                         ofs = runtime->status->hw_ptr;
98                         frames = new_hw_ptr - ofs;
99                         if ((snd_pcm_sframes_t)frames < 0)
100                                 frames += runtime->boundary;
101                         runtime->silence_filled -= frames;
102                         if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
103                                 runtime->silence_filled = 0;
104                                 runtime->silence_start = new_hw_ptr;
105                         } else {
106                                 runtime->silence_start = ofs;
107                         }
108                 }
109                 frames = runtime->buffer_size - runtime->silence_filled;
110         }
111         if (snd_BUG_ON(frames > runtime->buffer_size))
112                 return;
113         if (frames == 0)
114                 return;
115         ofs = runtime->silence_start % runtime->buffer_size;
116         while (frames > 0) {
117                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
118                 err = fill_silence_frames(substream, ofs, transfer);
119                 snd_BUG_ON(err < 0);
120                 runtime->silence_filled += transfer;
121                 frames -= transfer;
122                 ofs = 0;
123         }
124 }
125
126 #ifdef CONFIG_SND_DEBUG
127 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
128                            char *name, size_t len)
129 {
130         snprintf(name, len, "pcmC%dD%d%c:%d",
131                  substream->pcm->card->number,
132                  substream->pcm->device,
133                  substream->stream ? 'c' : 'p',
134                  substream->number);
135 }
136 EXPORT_SYMBOL(snd_pcm_debug_name);
137 #endif
138
139 #define XRUN_DEBUG_BASIC        (1<<0)
140 #define XRUN_DEBUG_STACK        (1<<1)  /* dump also stack */
141 #define XRUN_DEBUG_JIFFIESCHECK (1<<2)  /* do jiffies check */
142
143 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
144
145 #define xrun_debug(substream, mask) \
146                         ((substream)->pstr->xrun_debug & (mask))
147 #else
148 #define xrun_debug(substream, mask)     0
149 #endif
150
151 #define dump_stack_on_xrun(substream) do {                      \
152                 if (xrun_debug(substream, XRUN_DEBUG_STACK))    \
153                         dump_stack();                           \
154         } while (0)
155
156 static void xrun(struct snd_pcm_substream *substream)
157 {
158         struct snd_pcm_runtime *runtime = substream->runtime;
159
160         trace_xrun(substream);
161         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
162                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
163         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
164         if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
165                 char name[16];
166                 snd_pcm_debug_name(substream, name, sizeof(name));
167                 pcm_warn(substream->pcm, "XRUN: %s\n", name);
168                 dump_stack_on_xrun(substream);
169         }
170 }
171
172 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
173 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...)     \
174         do {                                                            \
175                 trace_hw_ptr_error(substream, reason);  \
176                 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {          \
177                         pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
178                                            (in_interrupt) ? 'Q' : 'P', ##args); \
179                         dump_stack_on_xrun(substream);                  \
180                 }                                                       \
181         } while (0)
182
183 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
184
185 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
186
187 #endif
188
189 int snd_pcm_update_state(struct snd_pcm_substream *substream,
190                          struct snd_pcm_runtime *runtime)
191 {
192         snd_pcm_uframes_t avail;
193
194         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
195                 avail = snd_pcm_playback_avail(runtime);
196         else
197                 avail = snd_pcm_capture_avail(runtime);
198         if (avail > runtime->avail_max)
199                 runtime->avail_max = avail;
200         if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
201                 if (avail >= runtime->buffer_size) {
202                         snd_pcm_drain_done(substream);
203                         return -EPIPE;
204                 }
205         } else {
206                 if (avail >= runtime->stop_threshold) {
207                         xrun(substream);
208                         return -EPIPE;
209                 }
210         }
211         if (runtime->twake) {
212                 if (avail >= runtime->twake)
213                         wake_up(&runtime->tsleep);
214         } else if (avail >= runtime->control->avail_min)
215                 wake_up(&runtime->sleep);
216         return 0;
217 }
218
219 static void update_audio_tstamp(struct snd_pcm_substream *substream,
220                                 struct timespec *curr_tstamp,
221                                 struct timespec *audio_tstamp)
222 {
223         struct snd_pcm_runtime *runtime = substream->runtime;
224         u64 audio_frames, audio_nsecs;
225         struct timespec driver_tstamp;
226
227         if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
228                 return;
229
230         if (!(substream->ops->get_time_info) ||
231                 (runtime->audio_tstamp_report.actual_type ==
232                         SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
233
234                 /*
235                  * provide audio timestamp derived from pointer position
236                  * add delay only if requested
237                  */
238
239                 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
240
241                 if (runtime->audio_tstamp_config.report_delay) {
242                         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
243                                 audio_frames -=  runtime->delay;
244                         else
245                                 audio_frames +=  runtime->delay;
246                 }
247                 audio_nsecs = div_u64(audio_frames * 1000000000LL,
248                                 runtime->rate);
249                 *audio_tstamp = ns_to_timespec(audio_nsecs);
250         }
251         if (!timespec_equal(&runtime->status->audio_tstamp, audio_tstamp)) {
252                 runtime->status->audio_tstamp = *audio_tstamp;
253                 runtime->status->tstamp = *curr_tstamp;
254         }
255
256         /*
257          * re-take a driver timestamp to let apps detect if the reference tstamp
258          * read by low-level hardware was provided with a delay
259          */
260         snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp);
261         runtime->driver_tstamp = driver_tstamp;
262 }
263
264 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
265                                   unsigned int in_interrupt)
266 {
267         struct snd_pcm_runtime *runtime = substream->runtime;
268         snd_pcm_uframes_t pos;
269         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
270         snd_pcm_sframes_t hdelta, delta;
271         unsigned long jdelta;
272         unsigned long curr_jiffies;
273         struct timespec curr_tstamp;
274         struct timespec audio_tstamp;
275         int crossed_boundary = 0;
276
277         old_hw_ptr = runtime->status->hw_ptr;
278
279         /*
280          * group pointer, time and jiffies reads to allow for more
281          * accurate correlations/corrections.
282          * The values are stored at the end of this routine after
283          * corrections for hw_ptr position
284          */
285         pos = substream->ops->pointer(substream);
286         curr_jiffies = jiffies;
287         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
288                 if ((substream->ops->get_time_info) &&
289                         (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
290                         substream->ops->get_time_info(substream, &curr_tstamp,
291                                                 &audio_tstamp,
292                                                 &runtime->audio_tstamp_config,
293                                                 &runtime->audio_tstamp_report);
294
295                         /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
296                         if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
297                                 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
298                 } else
299                         snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
300         }
301
302         if (pos == SNDRV_PCM_POS_XRUN) {
303                 xrun(substream);
304                 return -EPIPE;
305         }
306         if (pos >= runtime->buffer_size) {
307                 if (printk_ratelimit()) {
308                         char name[16];
309                         snd_pcm_debug_name(substream, name, sizeof(name));
310                         pcm_err(substream->pcm,
311                                 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
312                                 name, pos, runtime->buffer_size,
313                                 runtime->period_size);
314                 }
315                 pos = 0;
316         }
317         pos -= pos % runtime->min_align;
318         trace_hwptr(substream, pos, in_interrupt);
319         hw_base = runtime->hw_ptr_base;
320         new_hw_ptr = hw_base + pos;
321         if (in_interrupt) {
322                 /* we know that one period was processed */
323                 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
324                 delta = runtime->hw_ptr_interrupt + runtime->period_size;
325                 if (delta > new_hw_ptr) {
326                         /* check for double acknowledged interrupts */
327                         hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
328                         if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
329                                 hw_base += runtime->buffer_size;
330                                 if (hw_base >= runtime->boundary) {
331                                         hw_base = 0;
332                                         crossed_boundary++;
333                                 }
334                                 new_hw_ptr = hw_base + pos;
335                                 goto __delta;
336                         }
337                 }
338         }
339         /* new_hw_ptr might be lower than old_hw_ptr in case when */
340         /* pointer crosses the end of the ring buffer */
341         if (new_hw_ptr < old_hw_ptr) {
342                 hw_base += runtime->buffer_size;
343                 if (hw_base >= runtime->boundary) {
344                         hw_base = 0;
345                         crossed_boundary++;
346                 }
347                 new_hw_ptr = hw_base + pos;
348         }
349       __delta:
350         delta = new_hw_ptr - old_hw_ptr;
351         if (delta < 0)
352                 delta += runtime->boundary;
353
354         if (runtime->no_period_wakeup) {
355                 snd_pcm_sframes_t xrun_threshold;
356                 /*
357                  * Without regular period interrupts, we have to check
358                  * the elapsed time to detect xruns.
359                  */
360                 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
361                 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
362                         goto no_delta_check;
363                 hdelta = jdelta - delta * HZ / runtime->rate;
364                 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
365                 while (hdelta > xrun_threshold) {
366                         delta += runtime->buffer_size;
367                         hw_base += runtime->buffer_size;
368                         if (hw_base >= runtime->boundary) {
369                                 hw_base = 0;
370                                 crossed_boundary++;
371                         }
372                         new_hw_ptr = hw_base + pos;
373                         hdelta -= runtime->hw_ptr_buffer_jiffies;
374                 }
375                 goto no_delta_check;
376         }
377
378         /* something must be really wrong */
379         if (delta >= runtime->buffer_size + runtime->period_size) {
380                 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
381                              "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
382                              substream->stream, (long)pos,
383                              (long)new_hw_ptr, (long)old_hw_ptr);
384                 return 0;
385         }
386
387         /* Do jiffies check only in xrun_debug mode */
388         if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
389                 goto no_jiffies_check;
390
391         /* Skip the jiffies check for hardwares with BATCH flag.
392          * Such hardware usually just increases the position at each IRQ,
393          * thus it can't give any strange position.
394          */
395         if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
396                 goto no_jiffies_check;
397         hdelta = delta;
398         if (hdelta < runtime->delay)
399                 goto no_jiffies_check;
400         hdelta -= runtime->delay;
401         jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
402         if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
403                 delta = jdelta /
404                         (((runtime->period_size * HZ) / runtime->rate)
405                                                                 + HZ/100);
406                 /* move new_hw_ptr according jiffies not pos variable */
407                 new_hw_ptr = old_hw_ptr;
408                 hw_base = delta;
409                 /* use loop to avoid checks for delta overflows */
410                 /* the delta value is small or zero in most cases */
411                 while (delta > 0) {
412                         new_hw_ptr += runtime->period_size;
413                         if (new_hw_ptr >= runtime->boundary) {
414                                 new_hw_ptr -= runtime->boundary;
415                                 crossed_boundary--;
416                         }
417                         delta--;
418                 }
419                 /* align hw_base to buffer_size */
420                 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
421                              "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
422                              (long)pos, (long)hdelta,
423                              (long)runtime->period_size, jdelta,
424                              ((hdelta * HZ) / runtime->rate), hw_base,
425                              (unsigned long)old_hw_ptr,
426                              (unsigned long)new_hw_ptr);
427                 /* reset values to proper state */
428                 delta = 0;
429                 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
430         }
431  no_jiffies_check:
432         if (delta > runtime->period_size + runtime->period_size / 2) {
433                 hw_ptr_error(substream, in_interrupt,
434                              "Lost interrupts?",
435                              "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
436                              substream->stream, (long)delta,
437                              (long)new_hw_ptr,
438                              (long)old_hw_ptr);
439         }
440
441  no_delta_check:
442         if (runtime->status->hw_ptr == new_hw_ptr) {
443                 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
444                 return 0;
445         }
446
447         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
448             runtime->silence_size > 0)
449                 snd_pcm_playback_silence(substream, new_hw_ptr);
450
451         if (in_interrupt) {
452                 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
453                 if (delta < 0)
454                         delta += runtime->boundary;
455                 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
456                 runtime->hw_ptr_interrupt += delta;
457                 if (runtime->hw_ptr_interrupt >= runtime->boundary)
458                         runtime->hw_ptr_interrupt -= runtime->boundary;
459         }
460         runtime->hw_ptr_base = hw_base;
461         runtime->status->hw_ptr = new_hw_ptr;
462         runtime->hw_ptr_jiffies = curr_jiffies;
463         if (crossed_boundary) {
464                 snd_BUG_ON(crossed_boundary != 1);
465                 runtime->hw_ptr_wrap += runtime->boundary;
466         }
467
468         update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
469
470         return snd_pcm_update_state(substream, runtime);
471 }
472
473 /* CAUTION: call it with irq disabled */
474 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
475 {
476         return snd_pcm_update_hw_ptr0(substream, 0);
477 }
478
479 /**
480  * snd_pcm_set_ops - set the PCM operators
481  * @pcm: the pcm instance
482  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
483  * @ops: the operator table
484  *
485  * Sets the given PCM operators to the pcm instance.
486  */
487 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
488                      const struct snd_pcm_ops *ops)
489 {
490         struct snd_pcm_str *stream = &pcm->streams[direction];
491         struct snd_pcm_substream *substream;
492         
493         for (substream = stream->substream; substream != NULL; substream = substream->next)
494                 substream->ops = ops;
495 }
496 EXPORT_SYMBOL(snd_pcm_set_ops);
497
498 /**
499  * snd_pcm_sync - set the PCM sync id
500  * @substream: the pcm substream
501  *
502  * Sets the PCM sync identifier for the card.
503  */
504 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
505 {
506         struct snd_pcm_runtime *runtime = substream->runtime;
507         
508         runtime->sync.id32[0] = substream->pcm->card->number;
509         runtime->sync.id32[1] = -1;
510         runtime->sync.id32[2] = -1;
511         runtime->sync.id32[3] = -1;
512 }
513 EXPORT_SYMBOL(snd_pcm_set_sync);
514
515 /*
516  *  Standard ioctl routine
517  */
518
519 static inline unsigned int div32(unsigned int a, unsigned int b, 
520                                  unsigned int *r)
521 {
522         if (b == 0) {
523                 *r = 0;
524                 return UINT_MAX;
525         }
526         *r = a % b;
527         return a / b;
528 }
529
530 static inline unsigned int div_down(unsigned int a, unsigned int b)
531 {
532         if (b == 0)
533                 return UINT_MAX;
534         return a / b;
535 }
536
537 static inline unsigned int div_up(unsigned int a, unsigned int b)
538 {
539         unsigned int r;
540         unsigned int q;
541         if (b == 0)
542                 return UINT_MAX;
543         q = div32(a, b, &r);
544         if (r)
545                 ++q;
546         return q;
547 }
548
549 static inline unsigned int mul(unsigned int a, unsigned int b)
550 {
551         if (a == 0)
552                 return 0;
553         if (div_down(UINT_MAX, a) < b)
554                 return UINT_MAX;
555         return a * b;
556 }
557
558 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
559                                     unsigned int c, unsigned int *r)
560 {
561         u_int64_t n = (u_int64_t) a * b;
562         if (c == 0) {
563                 *r = 0;
564                 return UINT_MAX;
565         }
566         n = div_u64_rem(n, c, r);
567         if (n >= UINT_MAX) {
568                 *r = 0;
569                 return UINT_MAX;
570         }
571         return n;
572 }
573
574 /**
575  * snd_interval_refine - refine the interval value of configurator
576  * @i: the interval value to refine
577  * @v: the interval value to refer to
578  *
579  * Refines the interval value with the reference value.
580  * The interval is changed to the range satisfying both intervals.
581  * The interval status (min, max, integer, etc.) are evaluated.
582  *
583  * Return: Positive if the value is changed, zero if it's not changed, or a
584  * negative error code.
585  */
586 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
587 {
588         int changed = 0;
589         if (snd_BUG_ON(snd_interval_empty(i)))
590                 return -EINVAL;
591         if (i->min < v->min) {
592                 i->min = v->min;
593                 i->openmin = v->openmin;
594                 changed = 1;
595         } else if (i->min == v->min && !i->openmin && v->openmin) {
596                 i->openmin = 1;
597                 changed = 1;
598         }
599         if (i->max > v->max) {
600                 i->max = v->max;
601                 i->openmax = v->openmax;
602                 changed = 1;
603         } else if (i->max == v->max && !i->openmax && v->openmax) {
604                 i->openmax = 1;
605                 changed = 1;
606         }
607         if (!i->integer && v->integer) {
608                 i->integer = 1;
609                 changed = 1;
610         }
611         if (i->integer) {
612                 if (i->openmin) {
613                         i->min++;
614                         i->openmin = 0;
615                 }
616                 if (i->openmax) {
617                         i->max--;
618                         i->openmax = 0;
619                 }
620         } else if (!i->openmin && !i->openmax && i->min == i->max)
621                 i->integer = 1;
622         if (snd_interval_checkempty(i)) {
623                 snd_interval_none(i);
624                 return -EINVAL;
625         }
626         return changed;
627 }
628 EXPORT_SYMBOL(snd_interval_refine);
629
630 static int snd_interval_refine_first(struct snd_interval *i)
631 {
632         if (snd_BUG_ON(snd_interval_empty(i)))
633                 return -EINVAL;
634         if (snd_interval_single(i))
635                 return 0;
636         i->max = i->min;
637         i->openmax = i->openmin;
638         if (i->openmax)
639                 i->max++;
640         return 1;
641 }
642
643 static int snd_interval_refine_last(struct snd_interval *i)
644 {
645         if (snd_BUG_ON(snd_interval_empty(i)))
646                 return -EINVAL;
647         if (snd_interval_single(i))
648                 return 0;
649         i->min = i->max;
650         i->openmin = i->openmax;
651         if (i->openmin)
652                 i->min--;
653         return 1;
654 }
655
656 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
657 {
658         if (a->empty || b->empty) {
659                 snd_interval_none(c);
660                 return;
661         }
662         c->empty = 0;
663         c->min = mul(a->min, b->min);
664         c->openmin = (a->openmin || b->openmin);
665         c->max = mul(a->max,  b->max);
666         c->openmax = (a->openmax || b->openmax);
667         c->integer = (a->integer && b->integer);
668 }
669
670 /**
671  * snd_interval_div - refine the interval value with division
672  * @a: dividend
673  * @b: divisor
674  * @c: quotient
675  *
676  * c = a / b
677  *
678  * Returns non-zero if the value is changed, zero if not changed.
679  */
680 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
681 {
682         unsigned int r;
683         if (a->empty || b->empty) {
684                 snd_interval_none(c);
685                 return;
686         }
687         c->empty = 0;
688         c->min = div32(a->min, b->max, &r);
689         c->openmin = (r || a->openmin || b->openmax);
690         if (b->min > 0) {
691                 c->max = div32(a->max, b->min, &r);
692                 if (r) {
693                         c->max++;
694                         c->openmax = 1;
695                 } else
696                         c->openmax = (a->openmax || b->openmin);
697         } else {
698                 c->max = UINT_MAX;
699                 c->openmax = 0;
700         }
701         c->integer = 0;
702 }
703
704 /**
705  * snd_interval_muldivk - refine the interval value
706  * @a: dividend 1
707  * @b: dividend 2
708  * @k: divisor (as integer)
709  * @c: result
710   *
711  * c = a * b / k
712  *
713  * Returns non-zero if the value is changed, zero if not changed.
714  */
715 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
716                       unsigned int k, struct snd_interval *c)
717 {
718         unsigned int r;
719         if (a->empty || b->empty) {
720                 snd_interval_none(c);
721                 return;
722         }
723         c->empty = 0;
724         c->min = muldiv32(a->min, b->min, k, &r);
725         c->openmin = (r || a->openmin || b->openmin);
726         c->max = muldiv32(a->max, b->max, k, &r);
727         if (r) {
728                 c->max++;
729                 c->openmax = 1;
730         } else
731                 c->openmax = (a->openmax || b->openmax);
732         c->integer = 0;
733 }
734
735 /**
736  * snd_interval_mulkdiv - refine the interval value
737  * @a: dividend 1
738  * @k: dividend 2 (as integer)
739  * @b: divisor
740  * @c: result
741  *
742  * c = a * k / b
743  *
744  * Returns non-zero if the value is changed, zero if not changed.
745  */
746 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
747                       const struct snd_interval *b, struct snd_interval *c)
748 {
749         unsigned int r;
750         if (a->empty || b->empty) {
751                 snd_interval_none(c);
752                 return;
753         }
754         c->empty = 0;
755         c->min = muldiv32(a->min, k, b->max, &r);
756         c->openmin = (r || a->openmin || b->openmax);
757         if (b->min > 0) {
758                 c->max = muldiv32(a->max, k, b->min, &r);
759                 if (r) {
760                         c->max++;
761                         c->openmax = 1;
762                 } else
763                         c->openmax = (a->openmax || b->openmin);
764         } else {
765                 c->max = UINT_MAX;
766                 c->openmax = 0;
767         }
768         c->integer = 0;
769 }
770
771 /* ---- */
772
773
774 /**
775  * snd_interval_ratnum - refine the interval value
776  * @i: interval to refine
777  * @rats_count: number of ratnum_t 
778  * @rats: ratnum_t array
779  * @nump: pointer to store the resultant numerator
780  * @denp: pointer to store the resultant denominator
781  *
782  * Return: Positive if the value is changed, zero if it's not changed, or a
783  * negative error code.
784  */
785 int snd_interval_ratnum(struct snd_interval *i,
786                         unsigned int rats_count, const struct snd_ratnum *rats,
787                         unsigned int *nump, unsigned int *denp)
788 {
789         unsigned int best_num, best_den;
790         int best_diff;
791         unsigned int k;
792         struct snd_interval t;
793         int err;
794         unsigned int result_num, result_den;
795         int result_diff;
796
797         best_num = best_den = best_diff = 0;
798         for (k = 0; k < rats_count; ++k) {
799                 unsigned int num = rats[k].num;
800                 unsigned int den;
801                 unsigned int q = i->min;
802                 int diff;
803                 if (q == 0)
804                         q = 1;
805                 den = div_up(num, q);
806                 if (den < rats[k].den_min)
807                         continue;
808                 if (den > rats[k].den_max)
809                         den = rats[k].den_max;
810                 else {
811                         unsigned int r;
812                         r = (den - rats[k].den_min) % rats[k].den_step;
813                         if (r != 0)
814                                 den -= r;
815                 }
816                 diff = num - q * den;
817                 if (diff < 0)
818                         diff = -diff;
819                 if (best_num == 0 ||
820                     diff * best_den < best_diff * den) {
821                         best_diff = diff;
822                         best_den = den;
823                         best_num = num;
824                 }
825         }
826         if (best_den == 0) {
827                 i->empty = 1;
828                 return -EINVAL;
829         }
830         t.min = div_down(best_num, best_den);
831         t.openmin = !!(best_num % best_den);
832         
833         result_num = best_num;
834         result_diff = best_diff;
835         result_den = best_den;
836         best_num = best_den = best_diff = 0;
837         for (k = 0; k < rats_count; ++k) {
838                 unsigned int num = rats[k].num;
839                 unsigned int den;
840                 unsigned int q = i->max;
841                 int diff;
842                 if (q == 0) {
843                         i->empty = 1;
844                         return -EINVAL;
845                 }
846                 den = div_down(num, q);
847                 if (den > rats[k].den_max)
848                         continue;
849                 if (den < rats[k].den_min)
850                         den = rats[k].den_min;
851                 else {
852                         unsigned int r;
853                         r = (den - rats[k].den_min) % rats[k].den_step;
854                         if (r != 0)
855                                 den += rats[k].den_step - r;
856                 }
857                 diff = q * den - num;
858                 if (diff < 0)
859                         diff = -diff;
860                 if (best_num == 0 ||
861                     diff * best_den < best_diff * den) {
862                         best_diff = diff;
863                         best_den = den;
864                         best_num = num;
865                 }
866         }
867         if (best_den == 0) {
868                 i->empty = 1;
869                 return -EINVAL;
870         }
871         t.max = div_up(best_num, best_den);
872         t.openmax = !!(best_num % best_den);
873         t.integer = 0;
874         err = snd_interval_refine(i, &t);
875         if (err < 0)
876                 return err;
877
878         if (snd_interval_single(i)) {
879                 if (best_diff * result_den < result_diff * best_den) {
880                         result_num = best_num;
881                         result_den = best_den;
882                 }
883                 if (nump)
884                         *nump = result_num;
885                 if (denp)
886                         *denp = result_den;
887         }
888         return err;
889 }
890 EXPORT_SYMBOL(snd_interval_ratnum);
891
892 /**
893  * snd_interval_ratden - refine the interval value
894  * @i: interval to refine
895  * @rats_count: number of struct ratden
896  * @rats: struct ratden array
897  * @nump: pointer to store the resultant numerator
898  * @denp: pointer to store the resultant denominator
899  *
900  * Return: Positive if the value is changed, zero if it's not changed, or a
901  * negative error code.
902  */
903 static int snd_interval_ratden(struct snd_interval *i,
904                                unsigned int rats_count,
905                                const struct snd_ratden *rats,
906                                unsigned int *nump, unsigned int *denp)
907 {
908         unsigned int best_num, best_diff, best_den;
909         unsigned int k;
910         struct snd_interval t;
911         int err;
912
913         best_num = best_den = best_diff = 0;
914         for (k = 0; k < rats_count; ++k) {
915                 unsigned int num;
916                 unsigned int den = rats[k].den;
917                 unsigned int q = i->min;
918                 int diff;
919                 num = mul(q, den);
920                 if (num > rats[k].num_max)
921                         continue;
922                 if (num < rats[k].num_min)
923                         num = rats[k].num_max;
924                 else {
925                         unsigned int r;
926                         r = (num - rats[k].num_min) % rats[k].num_step;
927                         if (r != 0)
928                                 num += rats[k].num_step - r;
929                 }
930                 diff = num - q * den;
931                 if (best_num == 0 ||
932                     diff * best_den < best_diff * den) {
933                         best_diff = diff;
934                         best_den = den;
935                         best_num = num;
936                 }
937         }
938         if (best_den == 0) {
939                 i->empty = 1;
940                 return -EINVAL;
941         }
942         t.min = div_down(best_num, best_den);
943         t.openmin = !!(best_num % best_den);
944         
945         best_num = best_den = best_diff = 0;
946         for (k = 0; k < rats_count; ++k) {
947                 unsigned int num;
948                 unsigned int den = rats[k].den;
949                 unsigned int q = i->max;
950                 int diff;
951                 num = mul(q, den);
952                 if (num < rats[k].num_min)
953                         continue;
954                 if (num > rats[k].num_max)
955                         num = rats[k].num_max;
956                 else {
957                         unsigned int r;
958                         r = (num - rats[k].num_min) % rats[k].num_step;
959                         if (r != 0)
960                                 num -= r;
961                 }
962                 diff = q * den - num;
963                 if (best_num == 0 ||
964                     diff * best_den < best_diff * den) {
965                         best_diff = diff;
966                         best_den = den;
967                         best_num = num;
968                 }
969         }
970         if (best_den == 0) {
971                 i->empty = 1;
972                 return -EINVAL;
973         }
974         t.max = div_up(best_num, best_den);
975         t.openmax = !!(best_num % best_den);
976         t.integer = 0;
977         err = snd_interval_refine(i, &t);
978         if (err < 0)
979                 return err;
980
981         if (snd_interval_single(i)) {
982                 if (nump)
983                         *nump = best_num;
984                 if (denp)
985                         *denp = best_den;
986         }
987         return err;
988 }
989
990 /**
991  * snd_interval_list - refine the interval value from the list
992  * @i: the interval value to refine
993  * @count: the number of elements in the list
994  * @list: the value list
995  * @mask: the bit-mask to evaluate
996  *
997  * Refines the interval value from the list.
998  * When mask is non-zero, only the elements corresponding to bit 1 are
999  * evaluated.
1000  *
1001  * Return: Positive if the value is changed, zero if it's not changed, or a
1002  * negative error code.
1003  */
1004 int snd_interval_list(struct snd_interval *i, unsigned int count,
1005                       const unsigned int *list, unsigned int mask)
1006 {
1007         unsigned int k;
1008         struct snd_interval list_range;
1009
1010         if (!count) {
1011                 i->empty = 1;
1012                 return -EINVAL;
1013         }
1014         snd_interval_any(&list_range);
1015         list_range.min = UINT_MAX;
1016         list_range.max = 0;
1017         for (k = 0; k < count; k++) {
1018                 if (mask && !(mask & (1 << k)))
1019                         continue;
1020                 if (!snd_interval_test(i, list[k]))
1021                         continue;
1022                 list_range.min = min(list_range.min, list[k]);
1023                 list_range.max = max(list_range.max, list[k]);
1024         }
1025         return snd_interval_refine(i, &list_range);
1026 }
1027 EXPORT_SYMBOL(snd_interval_list);
1028
1029 /**
1030  * snd_interval_ranges - refine the interval value from the list of ranges
1031  * @i: the interval value to refine
1032  * @count: the number of elements in the list of ranges
1033  * @ranges: the ranges list
1034  * @mask: the bit-mask to evaluate
1035  *
1036  * Refines the interval value from the list of ranges.
1037  * When mask is non-zero, only the elements corresponding to bit 1 are
1038  * evaluated.
1039  *
1040  * Return: Positive if the value is changed, zero if it's not changed, or a
1041  * negative error code.
1042  */
1043 int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1044                         const struct snd_interval *ranges, unsigned int mask)
1045 {
1046         unsigned int k;
1047         struct snd_interval range_union;
1048         struct snd_interval range;
1049
1050         if (!count) {
1051                 snd_interval_none(i);
1052                 return -EINVAL;
1053         }
1054         snd_interval_any(&range_union);
1055         range_union.min = UINT_MAX;
1056         range_union.max = 0;
1057         for (k = 0; k < count; k++) {
1058                 if (mask && !(mask & (1 << k)))
1059                         continue;
1060                 snd_interval_copy(&range, &ranges[k]);
1061                 if (snd_interval_refine(&range, i) < 0)
1062                         continue;
1063                 if (snd_interval_empty(&range))
1064                         continue;
1065
1066                 if (range.min < range_union.min) {
1067                         range_union.min = range.min;
1068                         range_union.openmin = 1;
1069                 }
1070                 if (range.min == range_union.min && !range.openmin)
1071                         range_union.openmin = 0;
1072                 if (range.max > range_union.max) {
1073                         range_union.max = range.max;
1074                         range_union.openmax = 1;
1075                 }
1076                 if (range.max == range_union.max && !range.openmax)
1077                         range_union.openmax = 0;
1078         }
1079         return snd_interval_refine(i, &range_union);
1080 }
1081 EXPORT_SYMBOL(snd_interval_ranges);
1082
1083 static int snd_interval_step(struct snd_interval *i, unsigned int step)
1084 {
1085         unsigned int n;
1086         int changed = 0;
1087         n = i->min % step;
1088         if (n != 0 || i->openmin) {
1089                 i->min += step - n;
1090                 i->openmin = 0;
1091                 changed = 1;
1092         }
1093         n = i->max % step;
1094         if (n != 0 || i->openmax) {
1095                 i->max -= n;
1096                 i->openmax = 0;
1097                 changed = 1;
1098         }
1099         if (snd_interval_checkempty(i)) {
1100                 i->empty = 1;
1101                 return -EINVAL;
1102         }
1103         return changed;
1104 }
1105
1106 /* Info constraints helpers */
1107
1108 /**
1109  * snd_pcm_hw_rule_add - add the hw-constraint rule
1110  * @runtime: the pcm runtime instance
1111  * @cond: condition bits
1112  * @var: the variable to evaluate
1113  * @func: the evaluation function
1114  * @private: the private data pointer passed to function
1115  * @dep: the dependent variables
1116  *
1117  * Return: Zero if successful, or a negative error code on failure.
1118  */
1119 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1120                         int var,
1121                         snd_pcm_hw_rule_func_t func, void *private,
1122                         int dep, ...)
1123 {
1124         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1125         struct snd_pcm_hw_rule *c;
1126         unsigned int k;
1127         va_list args;
1128         va_start(args, dep);
1129         if (constrs->rules_num >= constrs->rules_all) {
1130                 struct snd_pcm_hw_rule *new;
1131                 unsigned int new_rules = constrs->rules_all + 16;
1132                 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1133                 if (!new) {
1134                         va_end(args);
1135                         return -ENOMEM;
1136                 }
1137                 if (constrs->rules) {
1138                         memcpy(new, constrs->rules,
1139                                constrs->rules_num * sizeof(*c));
1140                         kfree(constrs->rules);
1141                 }
1142                 constrs->rules = new;
1143                 constrs->rules_all = new_rules;
1144         }
1145         c = &constrs->rules[constrs->rules_num];
1146         c->cond = cond;
1147         c->func = func;
1148         c->var = var;
1149         c->private = private;
1150         k = 0;
1151         while (1) {
1152                 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1153                         va_end(args);
1154                         return -EINVAL;
1155                 }
1156                 c->deps[k++] = dep;
1157                 if (dep < 0)
1158                         break;
1159                 dep = va_arg(args, int);
1160         }
1161         constrs->rules_num++;
1162         va_end(args);
1163         return 0;
1164 }
1165 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1166
1167 /**
1168  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1169  * @runtime: PCM runtime instance
1170  * @var: hw_params variable to apply the mask
1171  * @mask: the bitmap mask
1172  *
1173  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1174  *
1175  * Return: Zero if successful, or a negative error code on failure.
1176  */
1177 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1178                                u_int32_t mask)
1179 {
1180         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1181         struct snd_mask *maskp = constrs_mask(constrs, var);
1182         *maskp->bits &= mask;
1183         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1184         if (*maskp->bits == 0)
1185                 return -EINVAL;
1186         return 0;
1187 }
1188
1189 /**
1190  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1191  * @runtime: PCM runtime instance
1192  * @var: hw_params variable to apply the mask
1193  * @mask: the 64bit bitmap mask
1194  *
1195  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1196  *
1197  * Return: Zero if successful, or a negative error code on failure.
1198  */
1199 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1200                                  u_int64_t mask)
1201 {
1202         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1203         struct snd_mask *maskp = constrs_mask(constrs, var);
1204         maskp->bits[0] &= (u_int32_t)mask;
1205         maskp->bits[1] &= (u_int32_t)(mask >> 32);
1206         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1207         if (! maskp->bits[0] && ! maskp->bits[1])
1208                 return -EINVAL;
1209         return 0;
1210 }
1211 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1212
1213 /**
1214  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1215  * @runtime: PCM runtime instance
1216  * @var: hw_params variable to apply the integer constraint
1217  *
1218  * Apply the constraint of integer to an interval parameter.
1219  *
1220  * Return: Positive if the value is changed, zero if it's not changed, or a
1221  * negative error code.
1222  */
1223 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1224 {
1225         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1226         return snd_interval_setinteger(constrs_interval(constrs, var));
1227 }
1228 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1229
1230 /**
1231  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1232  * @runtime: PCM runtime instance
1233  * @var: hw_params variable to apply the range
1234  * @min: the minimal value
1235  * @max: the maximal value
1236  * 
1237  * Apply the min/max range constraint to an interval parameter.
1238  *
1239  * Return: Positive if the value is changed, zero if it's not changed, or a
1240  * negative error code.
1241  */
1242 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1243                                  unsigned int min, unsigned int max)
1244 {
1245         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1246         struct snd_interval t;
1247         t.min = min;
1248         t.max = max;
1249         t.openmin = t.openmax = 0;
1250         t.integer = 0;
1251         return snd_interval_refine(constrs_interval(constrs, var), &t);
1252 }
1253 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1254
1255 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1256                                 struct snd_pcm_hw_rule *rule)
1257 {
1258         struct snd_pcm_hw_constraint_list *list = rule->private;
1259         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1260 }               
1261
1262
1263 /**
1264  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1265  * @runtime: PCM runtime instance
1266  * @cond: condition bits
1267  * @var: hw_params variable to apply the list constraint
1268  * @l: list
1269  * 
1270  * Apply the list of constraints to an interval parameter.
1271  *
1272  * Return: Zero if successful, or a negative error code on failure.
1273  */
1274 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1275                                unsigned int cond,
1276                                snd_pcm_hw_param_t var,
1277                                const struct snd_pcm_hw_constraint_list *l)
1278 {
1279         return snd_pcm_hw_rule_add(runtime, cond, var,
1280                                    snd_pcm_hw_rule_list, (void *)l,
1281                                    var, -1);
1282 }
1283 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1284
1285 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1286                                   struct snd_pcm_hw_rule *rule)
1287 {
1288         struct snd_pcm_hw_constraint_ranges *r = rule->private;
1289         return snd_interval_ranges(hw_param_interval(params, rule->var),
1290                                    r->count, r->ranges, r->mask);
1291 }
1292
1293
1294 /**
1295  * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1296  * @runtime: PCM runtime instance
1297  * @cond: condition bits
1298  * @var: hw_params variable to apply the list of range constraints
1299  * @r: ranges
1300  *
1301  * Apply the list of range constraints to an interval parameter.
1302  *
1303  * Return: Zero if successful, or a negative error code on failure.
1304  */
1305 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1306                                  unsigned int cond,
1307                                  snd_pcm_hw_param_t var,
1308                                  const struct snd_pcm_hw_constraint_ranges *r)
1309 {
1310         return snd_pcm_hw_rule_add(runtime, cond, var,
1311                                    snd_pcm_hw_rule_ranges, (void *)r,
1312                                    var, -1);
1313 }
1314 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1315
1316 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1317                                    struct snd_pcm_hw_rule *rule)
1318 {
1319         const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1320         unsigned int num = 0, den = 0;
1321         int err;
1322         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1323                                   r->nrats, r->rats, &num, &den);
1324         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1325                 params->rate_num = num;
1326                 params->rate_den = den;
1327         }
1328         return err;
1329 }
1330
1331 /**
1332  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1333  * @runtime: PCM runtime instance
1334  * @cond: condition bits
1335  * @var: hw_params variable to apply the ratnums constraint
1336  * @r: struct snd_ratnums constriants
1337  *
1338  * Return: Zero if successful, or a negative error code on failure.
1339  */
1340 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1341                                   unsigned int cond,
1342                                   snd_pcm_hw_param_t var,
1343                                   const struct snd_pcm_hw_constraint_ratnums *r)
1344 {
1345         return snd_pcm_hw_rule_add(runtime, cond, var,
1346                                    snd_pcm_hw_rule_ratnums, (void *)r,
1347                                    var, -1);
1348 }
1349 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1350
1351 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1352                                    struct snd_pcm_hw_rule *rule)
1353 {
1354         const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1355         unsigned int num = 0, den = 0;
1356         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1357                                   r->nrats, r->rats, &num, &den);
1358         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1359                 params->rate_num = num;
1360                 params->rate_den = den;
1361         }
1362         return err;
1363 }
1364
1365 /**
1366  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1367  * @runtime: PCM runtime instance
1368  * @cond: condition bits
1369  * @var: hw_params variable to apply the ratdens constraint
1370  * @r: struct snd_ratdens constriants
1371  *
1372  * Return: Zero if successful, or a negative error code on failure.
1373  */
1374 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1375                                   unsigned int cond,
1376                                   snd_pcm_hw_param_t var,
1377                                   const struct snd_pcm_hw_constraint_ratdens *r)
1378 {
1379         return snd_pcm_hw_rule_add(runtime, cond, var,
1380                                    snd_pcm_hw_rule_ratdens, (void *)r,
1381                                    var, -1);
1382 }
1383 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1384
1385 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1386                                   struct snd_pcm_hw_rule *rule)
1387 {
1388         unsigned int l = (unsigned long) rule->private;
1389         int width = l & 0xffff;
1390         unsigned int msbits = l >> 16;
1391         const struct snd_interval *i =
1392                 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1393
1394         if (!snd_interval_single(i))
1395                 return 0;
1396
1397         if ((snd_interval_value(i) == width) ||
1398             (width == 0 && snd_interval_value(i) > msbits))
1399                 params->msbits = min_not_zero(params->msbits, msbits);
1400
1401         return 0;
1402 }
1403
1404 /**
1405  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1406  * @runtime: PCM runtime instance
1407  * @cond: condition bits
1408  * @width: sample bits width
1409  * @msbits: msbits width
1410  *
1411  * This constraint will set the number of most significant bits (msbits) if a
1412  * sample format with the specified width has been select. If width is set to 0
1413  * the msbits will be set for any sample format with a width larger than the
1414  * specified msbits.
1415  *
1416  * Return: Zero if successful, or a negative error code on failure.
1417  */
1418 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1419                                  unsigned int cond,
1420                                  unsigned int width,
1421                                  unsigned int msbits)
1422 {
1423         unsigned long l = (msbits << 16) | width;
1424         return snd_pcm_hw_rule_add(runtime, cond, -1,
1425                                     snd_pcm_hw_rule_msbits,
1426                                     (void*) l,
1427                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1428 }
1429 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1430
1431 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1432                                 struct snd_pcm_hw_rule *rule)
1433 {
1434         unsigned long step = (unsigned long) rule->private;
1435         return snd_interval_step(hw_param_interval(params, rule->var), step);
1436 }
1437
1438 /**
1439  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1440  * @runtime: PCM runtime instance
1441  * @cond: condition bits
1442  * @var: hw_params variable to apply the step constraint
1443  * @step: step size
1444  *
1445  * Return: Zero if successful, or a negative error code on failure.
1446  */
1447 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1448                                unsigned int cond,
1449                                snd_pcm_hw_param_t var,
1450                                unsigned long step)
1451 {
1452         return snd_pcm_hw_rule_add(runtime, cond, var, 
1453                                    snd_pcm_hw_rule_step, (void *) step,
1454                                    var, -1);
1455 }
1456 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1457
1458 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1459 {
1460         static unsigned int pow2_sizes[] = {
1461                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1462                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1463                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1464                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1465         };
1466         return snd_interval_list(hw_param_interval(params, rule->var),
1467                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1468 }               
1469
1470 /**
1471  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1472  * @runtime: PCM runtime instance
1473  * @cond: condition bits
1474  * @var: hw_params variable to apply the power-of-2 constraint
1475  *
1476  * Return: Zero if successful, or a negative error code on failure.
1477  */
1478 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1479                                unsigned int cond,
1480                                snd_pcm_hw_param_t var)
1481 {
1482         return snd_pcm_hw_rule_add(runtime, cond, var, 
1483                                    snd_pcm_hw_rule_pow2, NULL,
1484                                    var, -1);
1485 }
1486 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1487
1488 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1489                                            struct snd_pcm_hw_rule *rule)
1490 {
1491         unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1492         struct snd_interval *rate;
1493
1494         rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1495         return snd_interval_list(rate, 1, &base_rate, 0);
1496 }
1497
1498 /**
1499  * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1500  * @runtime: PCM runtime instance
1501  * @base_rate: the rate at which the hardware does not resample
1502  *
1503  * Return: Zero if successful, or a negative error code on failure.
1504  */
1505 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1506                                unsigned int base_rate)
1507 {
1508         return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1509                                    SNDRV_PCM_HW_PARAM_RATE,
1510                                    snd_pcm_hw_rule_noresample_func,
1511                                    (void *)(uintptr_t)base_rate,
1512                                    SNDRV_PCM_HW_PARAM_RATE, -1);
1513 }
1514 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1515
1516 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1517                                   snd_pcm_hw_param_t var)
1518 {
1519         if (hw_is_mask(var)) {
1520                 snd_mask_any(hw_param_mask(params, var));
1521                 params->cmask |= 1 << var;
1522                 params->rmask |= 1 << var;
1523                 return;
1524         }
1525         if (hw_is_interval(var)) {
1526                 snd_interval_any(hw_param_interval(params, var));
1527                 params->cmask |= 1 << var;
1528                 params->rmask |= 1 << var;
1529                 return;
1530         }
1531         snd_BUG();
1532 }
1533
1534 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1535 {
1536         unsigned int k;
1537         memset(params, 0, sizeof(*params));
1538         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1539                 _snd_pcm_hw_param_any(params, k);
1540         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1541                 _snd_pcm_hw_param_any(params, k);
1542         params->info = ~0U;
1543 }
1544 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1545
1546 /**
1547  * snd_pcm_hw_param_value - return @params field @var value
1548  * @params: the hw_params instance
1549  * @var: parameter to retrieve
1550  * @dir: pointer to the direction (-1,0,1) or %NULL
1551  *
1552  * Return: The value for field @var if it's fixed in configuration space
1553  * defined by @params. -%EINVAL otherwise.
1554  */
1555 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1556                            snd_pcm_hw_param_t var, int *dir)
1557 {
1558         if (hw_is_mask(var)) {
1559                 const struct snd_mask *mask = hw_param_mask_c(params, var);
1560                 if (!snd_mask_single(mask))
1561                         return -EINVAL;
1562                 if (dir)
1563                         *dir = 0;
1564                 return snd_mask_value(mask);
1565         }
1566         if (hw_is_interval(var)) {
1567                 const struct snd_interval *i = hw_param_interval_c(params, var);
1568                 if (!snd_interval_single(i))
1569                         return -EINVAL;
1570                 if (dir)
1571                         *dir = i->openmin;
1572                 return snd_interval_value(i);
1573         }
1574         return -EINVAL;
1575 }
1576 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1577
1578 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1579                                 snd_pcm_hw_param_t var)
1580 {
1581         if (hw_is_mask(var)) {
1582                 snd_mask_none(hw_param_mask(params, var));
1583                 params->cmask |= 1 << var;
1584                 params->rmask |= 1 << var;
1585         } else if (hw_is_interval(var)) {
1586                 snd_interval_none(hw_param_interval(params, var));
1587                 params->cmask |= 1 << var;
1588                 params->rmask |= 1 << var;
1589         } else {
1590                 snd_BUG();
1591         }
1592 }
1593 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1594
1595 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1596                                    snd_pcm_hw_param_t var)
1597 {
1598         int changed;
1599         if (hw_is_mask(var))
1600                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1601         else if (hw_is_interval(var))
1602                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1603         else
1604                 return -EINVAL;
1605         if (changed > 0) {
1606                 params->cmask |= 1 << var;
1607                 params->rmask |= 1 << var;
1608         }
1609         return changed;
1610 }
1611
1612
1613 /**
1614  * snd_pcm_hw_param_first - refine config space and return minimum value
1615  * @pcm: PCM instance
1616  * @params: the hw_params instance
1617  * @var: parameter to retrieve
1618  * @dir: pointer to the direction (-1,0,1) or %NULL
1619  *
1620  * Inside configuration space defined by @params remove from @var all
1621  * values > minimum. Reduce configuration space accordingly.
1622  *
1623  * Return: The minimum, or a negative error code on failure.
1624  */
1625 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1626                            struct snd_pcm_hw_params *params, 
1627                            snd_pcm_hw_param_t var, int *dir)
1628 {
1629         int changed = _snd_pcm_hw_param_first(params, var);
1630         if (changed < 0)
1631                 return changed;
1632         if (params->rmask) {
1633                 int err = snd_pcm_hw_refine(pcm, params);
1634                 if (err < 0)
1635                         return err;
1636         }
1637         return snd_pcm_hw_param_value(params, var, dir);
1638 }
1639 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1640
1641 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1642                                   snd_pcm_hw_param_t var)
1643 {
1644         int changed;
1645         if (hw_is_mask(var))
1646                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1647         else if (hw_is_interval(var))
1648                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1649         else
1650                 return -EINVAL;
1651         if (changed > 0) {
1652                 params->cmask |= 1 << var;
1653                 params->rmask |= 1 << var;
1654         }
1655         return changed;
1656 }
1657
1658
1659 /**
1660  * snd_pcm_hw_param_last - refine config space and return maximum value
1661  * @pcm: PCM instance
1662  * @params: the hw_params instance
1663  * @var: parameter to retrieve
1664  * @dir: pointer to the direction (-1,0,1) or %NULL
1665  *
1666  * Inside configuration space defined by @params remove from @var all
1667  * values < maximum. Reduce configuration space accordingly.
1668  *
1669  * Return: The maximum, or a negative error code on failure.
1670  */
1671 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1672                           struct snd_pcm_hw_params *params,
1673                           snd_pcm_hw_param_t var, int *dir)
1674 {
1675         int changed = _snd_pcm_hw_param_last(params, var);
1676         if (changed < 0)
1677                 return changed;
1678         if (params->rmask) {
1679                 int err = snd_pcm_hw_refine(pcm, params);
1680                 if (err < 0)
1681                         return err;
1682         }
1683         return snd_pcm_hw_param_value(params, var, dir);
1684 }
1685 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1686
1687 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1688                                    void *arg)
1689 {
1690         struct snd_pcm_runtime *runtime = substream->runtime;
1691         unsigned long flags;
1692         snd_pcm_stream_lock_irqsave(substream, flags);
1693         if (snd_pcm_running(substream) &&
1694             snd_pcm_update_hw_ptr(substream) >= 0)
1695                 runtime->status->hw_ptr %= runtime->buffer_size;
1696         else {
1697                 runtime->status->hw_ptr = 0;
1698                 runtime->hw_ptr_wrap = 0;
1699         }
1700         snd_pcm_stream_unlock_irqrestore(substream, flags);
1701         return 0;
1702 }
1703
1704 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1705                                           void *arg)
1706 {
1707         struct snd_pcm_channel_info *info = arg;
1708         struct snd_pcm_runtime *runtime = substream->runtime;
1709         int width;
1710         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1711                 info->offset = -1;
1712                 return 0;
1713         }
1714         width = snd_pcm_format_physical_width(runtime->format);
1715         if (width < 0)
1716                 return width;
1717         info->offset = 0;
1718         switch (runtime->access) {
1719         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1720         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1721                 info->first = info->channel * width;
1722                 info->step = runtime->channels * width;
1723                 break;
1724         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1725         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1726         {
1727                 size_t size = runtime->dma_bytes / runtime->channels;
1728                 info->first = info->channel * size * 8;
1729                 info->step = width;
1730                 break;
1731         }
1732         default:
1733                 snd_BUG();
1734                 break;
1735         }
1736         return 0;
1737 }
1738
1739 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1740                                        void *arg)
1741 {
1742         struct snd_pcm_hw_params *params = arg;
1743         snd_pcm_format_t format;
1744         int channels;
1745         ssize_t frame_size;
1746
1747         params->fifo_size = substream->runtime->hw.fifo_size;
1748         if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1749                 format = params_format(params);
1750                 channels = params_channels(params);
1751                 frame_size = snd_pcm_format_size(format, channels);
1752                 if (frame_size > 0)
1753                         params->fifo_size /= (unsigned)frame_size;
1754         }
1755         return 0;
1756 }
1757
1758 /**
1759  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1760  * @substream: the pcm substream instance
1761  * @cmd: ioctl command
1762  * @arg: ioctl argument
1763  *
1764  * Processes the generic ioctl commands for PCM.
1765  * Can be passed as the ioctl callback for PCM ops.
1766  *
1767  * Return: Zero if successful, or a negative error code on failure.
1768  */
1769 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1770                       unsigned int cmd, void *arg)
1771 {
1772         switch (cmd) {
1773         case SNDRV_PCM_IOCTL1_RESET:
1774                 return snd_pcm_lib_ioctl_reset(substream, arg);
1775         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1776                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1777         case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1778                 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1779         }
1780         return -ENXIO;
1781 }
1782 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1783
1784 /**
1785  * snd_pcm_period_elapsed - update the pcm status for the next period
1786  * @substream: the pcm substream instance
1787  *
1788  * This function is called from the interrupt handler when the
1789  * PCM has processed the period size.  It will update the current
1790  * pointer, wake up sleepers, etc.
1791  *
1792  * Even if more than one periods have elapsed since the last call, you
1793  * have to call this only once.
1794  */
1795 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1796 {
1797         struct snd_pcm_runtime *runtime;
1798         unsigned long flags;
1799
1800         if (PCM_RUNTIME_CHECK(substream))
1801                 return;
1802         runtime = substream->runtime;
1803
1804         snd_pcm_stream_lock_irqsave(substream, flags);
1805         if (!snd_pcm_running(substream) ||
1806             snd_pcm_update_hw_ptr0(substream, 1) < 0)
1807                 goto _end;
1808
1809 #ifdef CONFIG_SND_PCM_TIMER
1810         if (substream->timer_running)
1811                 snd_timer_interrupt(substream->timer, 1);
1812 #endif
1813  _end:
1814         kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1815         snd_pcm_stream_unlock_irqrestore(substream, flags);
1816 }
1817 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1818
1819 /*
1820  * Wait until avail_min data becomes available
1821  * Returns a negative error code if any error occurs during operation.
1822  * The available space is stored on availp.  When err = 0 and avail = 0
1823  * on the capture stream, it indicates the stream is in DRAINING state.
1824  */
1825 static int wait_for_avail(struct snd_pcm_substream *substream,
1826                               snd_pcm_uframes_t *availp)
1827 {
1828         struct snd_pcm_runtime *runtime = substream->runtime;
1829         int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1830         wait_queue_entry_t wait;
1831         int err = 0;
1832         snd_pcm_uframes_t avail = 0;
1833         long wait_time, tout;
1834
1835         init_waitqueue_entry(&wait, current);
1836         set_current_state(TASK_INTERRUPTIBLE);
1837         add_wait_queue(&runtime->tsleep, &wait);
1838
1839         if (runtime->no_period_wakeup)
1840                 wait_time = MAX_SCHEDULE_TIMEOUT;
1841         else {
1842                 wait_time = 10;
1843                 if (runtime->rate) {
1844                         long t = runtime->period_size * 2 / runtime->rate;
1845                         wait_time = max(t, wait_time);
1846                 }
1847                 wait_time = msecs_to_jiffies(wait_time * 1000);
1848         }
1849
1850         for (;;) {
1851                 if (signal_pending(current)) {
1852                         err = -ERESTARTSYS;
1853                         break;
1854                 }
1855
1856                 /*
1857                  * We need to check if space became available already
1858                  * (and thus the wakeup happened already) first to close
1859                  * the race of space already having become available.
1860                  * This check must happen after been added to the waitqueue
1861                  * and having current state be INTERRUPTIBLE.
1862                  */
1863                 if (is_playback)
1864                         avail = snd_pcm_playback_avail(runtime);
1865                 else
1866                         avail = snd_pcm_capture_avail(runtime);
1867                 if (avail >= runtime->twake)
1868                         break;
1869                 snd_pcm_stream_unlock_irq(substream);
1870
1871                 tout = schedule_timeout(wait_time);
1872
1873                 snd_pcm_stream_lock_irq(substream);
1874                 set_current_state(TASK_INTERRUPTIBLE);
1875                 switch (runtime->status->state) {
1876                 case SNDRV_PCM_STATE_SUSPENDED:
1877                         err = -ESTRPIPE;
1878                         goto _endloop;
1879                 case SNDRV_PCM_STATE_XRUN:
1880                         err = -EPIPE;
1881                         goto _endloop;
1882                 case SNDRV_PCM_STATE_DRAINING:
1883                         if (is_playback)
1884                                 err = -EPIPE;
1885                         else 
1886                                 avail = 0; /* indicate draining */
1887                         goto _endloop;
1888                 case SNDRV_PCM_STATE_OPEN:
1889                 case SNDRV_PCM_STATE_SETUP:
1890                 case SNDRV_PCM_STATE_DISCONNECTED:
1891                         err = -EBADFD;
1892                         goto _endloop;
1893                 case SNDRV_PCM_STATE_PAUSED:
1894                         continue;
1895                 }
1896                 if (!tout) {
1897                         pcm_dbg(substream->pcm,
1898                                 "%s write error (DMA or IRQ trouble?)\n",
1899                                 is_playback ? "playback" : "capture");
1900                         err = -EIO;
1901                         break;
1902                 }
1903         }
1904  _endloop:
1905         set_current_state(TASK_RUNNING);
1906         remove_wait_queue(&runtime->tsleep, &wait);
1907         *availp = avail;
1908         return err;
1909 }
1910         
1911 typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
1912                               int channel, unsigned long hwoff,
1913                               void *buf, unsigned long bytes);
1914
1915 typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
1916                           snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f);
1917
1918 /* calculate the target DMA-buffer position to be written/read */
1919 static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
1920                            int channel, unsigned long hwoff)
1921 {
1922         return runtime->dma_area + hwoff +
1923                 channel * (runtime->dma_bytes / runtime->channels);
1924 }
1925
1926 /* default copy_user ops for write; used for both interleaved and non- modes */
1927 static int default_write_copy(struct snd_pcm_substream *substream,
1928                               int channel, unsigned long hwoff,
1929                               void *buf, unsigned long bytes)
1930 {
1931         if (copy_from_user(get_dma_ptr(substream->runtime, channel, hwoff),
1932                            (void __user *)buf, bytes))
1933                 return -EFAULT;
1934         return 0;
1935 }
1936
1937 /* default copy_kernel ops for write */
1938 static int default_write_copy_kernel(struct snd_pcm_substream *substream,
1939                                      int channel, unsigned long hwoff,
1940                                      void *buf, unsigned long bytes)
1941 {
1942         memcpy(get_dma_ptr(substream->runtime, channel, hwoff), buf, bytes);
1943         return 0;
1944 }
1945
1946 /* fill silence instead of copy data; called as a transfer helper
1947  * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
1948  * a NULL buffer is passed
1949  */
1950 static int fill_silence(struct snd_pcm_substream *substream, int channel,
1951                         unsigned long hwoff, void *buf, unsigned long bytes)
1952 {
1953         struct snd_pcm_runtime *runtime = substream->runtime;
1954
1955         if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
1956                 return 0;
1957         if (substream->ops->fill_silence)
1958                 return substream->ops->fill_silence(substream, channel,
1959                                                     hwoff, bytes);
1960
1961         snd_pcm_format_set_silence(runtime->format,
1962                                    get_dma_ptr(runtime, channel, hwoff),
1963                                    bytes_to_samples(runtime, bytes));
1964         return 0;
1965 }
1966
1967 /* default copy_user ops for read; used for both interleaved and non- modes */
1968 static int default_read_copy(struct snd_pcm_substream *substream,
1969                              int channel, unsigned long hwoff,
1970                              void *buf, unsigned long bytes)
1971 {
1972         if (copy_to_user((void __user *)buf,
1973                          get_dma_ptr(substream->runtime, channel, hwoff),
1974                          bytes))
1975                 return -EFAULT;
1976         return 0;
1977 }
1978
1979 /* default copy_kernel ops for read */
1980 static int default_read_copy_kernel(struct snd_pcm_substream *substream,
1981                                     int channel, unsigned long hwoff,
1982                                     void *buf, unsigned long bytes)
1983 {
1984         memcpy(buf, get_dma_ptr(substream->runtime, channel, hwoff), bytes);
1985         return 0;
1986 }
1987
1988 /* call transfer function with the converted pointers and sizes;
1989  * for interleaved mode, it's one shot for all samples
1990  */
1991 static int interleaved_copy(struct snd_pcm_substream *substream,
1992                             snd_pcm_uframes_t hwoff, void *data,
1993                             snd_pcm_uframes_t off,
1994                             snd_pcm_uframes_t frames,
1995                             pcm_transfer_f transfer)
1996 {
1997         struct snd_pcm_runtime *runtime = substream->runtime;
1998
1999         /* convert to bytes */
2000         hwoff = frames_to_bytes(runtime, hwoff);
2001         off = frames_to_bytes(runtime, off);
2002         frames = frames_to_bytes(runtime, frames);
2003         return transfer(substream, 0, hwoff, data + off, frames);
2004 }
2005
2006 /* call transfer function with the converted pointers and sizes for each
2007  * non-interleaved channel; when buffer is NULL, silencing instead of copying
2008  */
2009 static int noninterleaved_copy(struct snd_pcm_substream *substream,
2010                                snd_pcm_uframes_t hwoff, void *data,
2011                                snd_pcm_uframes_t off,
2012                                snd_pcm_uframes_t frames,
2013                                pcm_transfer_f transfer)
2014 {
2015         struct snd_pcm_runtime *runtime = substream->runtime;
2016         int channels = runtime->channels;
2017         void **bufs = data;
2018         int c, err;
2019
2020         /* convert to bytes; note that it's not frames_to_bytes() here.
2021          * in non-interleaved mode, we copy for each channel, thus
2022          * each copy is n_samples bytes x channels = whole frames.
2023          */
2024         off = samples_to_bytes(runtime, off);
2025         frames = samples_to_bytes(runtime, frames);
2026         hwoff = samples_to_bytes(runtime, hwoff);
2027         for (c = 0; c < channels; ++c, ++bufs) {
2028                 if (!data || !*bufs)
2029                         err = fill_silence(substream, c, hwoff, NULL, frames);
2030                 else
2031                         err = transfer(substream, c, hwoff, *bufs + off,
2032                                        frames);
2033                 if (err < 0)
2034                         return err;
2035         }
2036         return 0;
2037 }
2038
2039 /* fill silence on the given buffer position;
2040  * called from snd_pcm_playback_silence()
2041  */
2042 static int fill_silence_frames(struct snd_pcm_substream *substream,
2043                                snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2044 {
2045         if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2046             substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2047                 return interleaved_copy(substream, off, NULL, 0, frames,
2048                                         fill_silence);
2049         else
2050                 return noninterleaved_copy(substream, off, NULL, 0, frames,
2051                                            fill_silence);
2052 }
2053
2054 /* sanity-check for read/write methods */
2055 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2056 {
2057         struct snd_pcm_runtime *runtime;
2058         if (PCM_RUNTIME_CHECK(substream))
2059                 return -ENXIO;
2060         runtime = substream->runtime;
2061         if (snd_BUG_ON(!substream->ops->copy_user && !runtime->dma_area))
2062                 return -EINVAL;
2063         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2064                 return -EBADFD;
2065         return 0;
2066 }
2067
2068 static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2069 {
2070         switch (runtime->status->state) {
2071         case SNDRV_PCM_STATE_PREPARED:
2072         case SNDRV_PCM_STATE_RUNNING:
2073         case SNDRV_PCM_STATE_PAUSED:
2074                 return 0;
2075         case SNDRV_PCM_STATE_XRUN:
2076                 return -EPIPE;
2077         case SNDRV_PCM_STATE_SUSPENDED:
2078                 return -ESTRPIPE;
2079         default:
2080                 return -EBADFD;
2081         }
2082 }
2083
2084 /* update to the given appl_ptr and call ack callback if needed;
2085  * when an error is returned, take back to the original value
2086  */
2087 int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
2088                            snd_pcm_uframes_t appl_ptr)
2089 {
2090         struct snd_pcm_runtime *runtime = substream->runtime;
2091         snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
2092         int ret;
2093
2094         if (old_appl_ptr == appl_ptr)
2095                 return 0;
2096
2097         runtime->control->appl_ptr = appl_ptr;
2098         if (substream->ops->ack) {
2099                 ret = substream->ops->ack(substream);
2100                 if (ret < 0) {
2101                         runtime->control->appl_ptr = old_appl_ptr;
2102                         return ret;
2103                 }
2104         }
2105
2106         trace_applptr(substream, old_appl_ptr, appl_ptr);
2107
2108         return 0;
2109 }
2110
2111 /* the common loop for read/write data */
2112 snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2113                                      void *data, bool interleaved,
2114                                      snd_pcm_uframes_t size, bool in_kernel)
2115 {
2116         struct snd_pcm_runtime *runtime = substream->runtime;
2117         snd_pcm_uframes_t xfer = 0;
2118         snd_pcm_uframes_t offset = 0;
2119         snd_pcm_uframes_t avail;
2120         pcm_copy_f writer;
2121         pcm_transfer_f transfer;
2122         bool nonblock;
2123         bool is_playback;
2124         int err;
2125
2126         err = pcm_sanity_check(substream);
2127         if (err < 0)
2128                 return err;
2129
2130         is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2131         if (interleaved) {
2132                 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2133                     runtime->channels > 1)
2134                         return -EINVAL;
2135                 writer = interleaved_copy;
2136         } else {
2137                 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2138                         return -EINVAL;
2139                 writer = noninterleaved_copy;
2140         }
2141
2142         if (!data) {
2143                 if (is_playback)
2144                         transfer = fill_silence;
2145                 else
2146                         return -EINVAL;
2147         } else if (in_kernel) {
2148                 if (substream->ops->copy_kernel)
2149                         transfer = substream->ops->copy_kernel;
2150                 else
2151                         transfer = is_playback ?
2152                                 default_write_copy_kernel : default_read_copy_kernel;
2153         } else {
2154                 if (substream->ops->copy_user)
2155                         transfer = (pcm_transfer_f)substream->ops->copy_user;
2156                 else
2157                         transfer = is_playback ?
2158                                 default_write_copy : default_read_copy;
2159         }
2160
2161         if (size == 0)
2162                 return 0;
2163
2164         nonblock = !!(substream->f_flags & O_NONBLOCK);
2165
2166         snd_pcm_stream_lock_irq(substream);
2167         err = pcm_accessible_state(runtime);
2168         if (err < 0)
2169                 goto _end_unlock;
2170
2171         if (!is_playback &&
2172             runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2173             size >= runtime->start_threshold) {
2174                 err = snd_pcm_start(substream);
2175                 if (err < 0)
2176                         goto _end_unlock;
2177         }
2178
2179         runtime->twake = runtime->control->avail_min ? : 1;
2180         if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2181                 snd_pcm_update_hw_ptr(substream);
2182         if (is_playback)
2183                 avail = snd_pcm_playback_avail(runtime);
2184         else
2185                 avail = snd_pcm_capture_avail(runtime);
2186         while (size > 0) {
2187                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2188                 snd_pcm_uframes_t cont;
2189                 if (!avail) {
2190                         if (!is_playback &&
2191                             runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
2192                                 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2193                                 goto _end_unlock;
2194                         }
2195                         if (nonblock) {
2196                                 err = -EAGAIN;
2197                                 goto _end_unlock;
2198                         }
2199                         runtime->twake = min_t(snd_pcm_uframes_t, size,
2200                                         runtime->control->avail_min ? : 1);
2201                         err = wait_for_avail(substream, &avail);
2202                         if (err < 0)
2203                                 goto _end_unlock;
2204                         if (!avail)
2205                                 continue; /* draining */
2206                 }
2207                 frames = size > avail ? avail : size;
2208                 appl_ptr = READ_ONCE(runtime->control->appl_ptr);
2209                 appl_ofs = appl_ptr % runtime->buffer_size;
2210                 cont = runtime->buffer_size - appl_ofs;
2211                 if (frames > cont)
2212                         frames = cont;
2213                 if (snd_BUG_ON(!frames)) {
2214                         runtime->twake = 0;
2215                         snd_pcm_stream_unlock_irq(substream);
2216                         return -EINVAL;
2217                 }
2218                 snd_pcm_stream_unlock_irq(substream);
2219                 err = writer(substream, appl_ofs, data, offset, frames,
2220                              transfer);
2221                 snd_pcm_stream_lock_irq(substream);
2222                 if (err < 0)
2223                         goto _end_unlock;
2224                 err = pcm_accessible_state(runtime);
2225                 if (err < 0)
2226                         goto _end_unlock;
2227                 appl_ptr += frames;
2228                 if (appl_ptr >= runtime->boundary)
2229                         appl_ptr -= runtime->boundary;
2230                 err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
2231                 if (err < 0)
2232                         goto _end_unlock;
2233
2234                 offset += frames;
2235                 size -= frames;
2236                 xfer += frames;
2237                 avail -= frames;
2238                 if (is_playback &&
2239                     runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2240                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2241                         err = snd_pcm_start(substream);
2242                         if (err < 0)
2243                                 goto _end_unlock;
2244                 }
2245         }
2246  _end_unlock:
2247         runtime->twake = 0;
2248         if (xfer > 0 && err >= 0)
2249                 snd_pcm_update_state(substream, runtime);
2250         snd_pcm_stream_unlock_irq(substream);
2251         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2252 }
2253 EXPORT_SYMBOL(__snd_pcm_lib_xfer);
2254
2255 /*
2256  * standard channel mapping helpers
2257  */
2258
2259 /* default channel maps for multi-channel playbacks, up to 8 channels */
2260 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2261         { .channels = 1,
2262           .map = { SNDRV_CHMAP_MONO } },
2263         { .channels = 2,
2264           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2265         { .channels = 4,
2266           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2267                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2268         { .channels = 6,
2269           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2270                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2271                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2272         { .channels = 8,
2273           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2274                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2275                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2276                    SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2277         { }
2278 };
2279 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2280
2281 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2282 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2283         { .channels = 1,
2284           .map = { SNDRV_CHMAP_MONO } },
2285         { .channels = 2,
2286           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2287         { .channels = 4,
2288           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2289                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2290         { .channels = 6,
2291           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2292                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2293                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2294         { .channels = 8,
2295           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2296                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2297                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2298                    SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2299         { }
2300 };
2301 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2302
2303 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2304 {
2305         if (ch > info->max_channels)
2306                 return false;
2307         return !info->channel_mask || (info->channel_mask & (1U << ch));
2308 }
2309
2310 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2311                               struct snd_ctl_elem_info *uinfo)
2312 {
2313         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2314
2315         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2316         uinfo->count = 0;
2317         uinfo->count = info->max_channels;
2318         uinfo->value.integer.min = 0;
2319         uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2320         return 0;
2321 }
2322
2323 /* get callback for channel map ctl element
2324  * stores the channel position firstly matching with the current channels
2325  */
2326 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2327                              struct snd_ctl_elem_value *ucontrol)
2328 {
2329         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2330         unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2331         struct snd_pcm_substream *substream;
2332         const struct snd_pcm_chmap_elem *map;
2333
2334         if (!info->chmap)
2335                 return -EINVAL;
2336         substream = snd_pcm_chmap_substream(info, idx);
2337         if (!substream)
2338                 return -ENODEV;
2339         memset(ucontrol->value.integer.value, 0,
2340                sizeof(ucontrol->value.integer.value));
2341         if (!substream->runtime)
2342                 return 0; /* no channels set */
2343         for (map = info->chmap; map->channels; map++) {
2344                 int i;
2345                 if (map->channels == substream->runtime->channels &&
2346                     valid_chmap_channels(info, map->channels)) {
2347                         for (i = 0; i < map->channels; i++)
2348                                 ucontrol->value.integer.value[i] = map->map[i];
2349                         return 0;
2350                 }
2351         }
2352         return -EINVAL;
2353 }
2354
2355 /* tlv callback for channel map ctl element
2356  * expands the pre-defined channel maps in a form of TLV
2357  */
2358 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2359                              unsigned int size, unsigned int __user *tlv)
2360 {
2361         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2362         const struct snd_pcm_chmap_elem *map;
2363         unsigned int __user *dst;
2364         int c, count = 0;
2365
2366         if (!info->chmap)
2367                 return -EINVAL;
2368         if (size < 8)
2369                 return -ENOMEM;
2370         if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2371                 return -EFAULT;
2372         size -= 8;
2373         dst = tlv + 2;
2374         for (map = info->chmap; map->channels; map++) {
2375                 int chs_bytes = map->channels * 4;
2376                 if (!valid_chmap_channels(info, map->channels))
2377                         continue;
2378                 if (size < 8)
2379                         return -ENOMEM;
2380                 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2381                     put_user(chs_bytes, dst + 1))
2382                         return -EFAULT;
2383                 dst += 2;
2384                 size -= 8;
2385                 count += 8;
2386                 if (size < chs_bytes)
2387                         return -ENOMEM;
2388                 size -= chs_bytes;
2389                 count += chs_bytes;
2390                 for (c = 0; c < map->channels; c++) {
2391                         if (put_user(map->map[c], dst))
2392                                 return -EFAULT;
2393                         dst++;
2394                 }
2395         }
2396         if (put_user(count, tlv + 1))
2397                 return -EFAULT;
2398         return 0;
2399 }
2400
2401 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2402 {
2403         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2404         info->pcm->streams[info->stream].chmap_kctl = NULL;
2405         kfree(info);
2406 }
2407
2408 /**
2409  * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2410  * @pcm: the assigned PCM instance
2411  * @stream: stream direction
2412  * @chmap: channel map elements (for query)
2413  * @max_channels: the max number of channels for the stream
2414  * @private_value: the value passed to each kcontrol's private_value field
2415  * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2416  *
2417  * Create channel-mapping control elements assigned to the given PCM stream(s).
2418  * Return: Zero if successful, or a negative error value.
2419  */
2420 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2421                            const struct snd_pcm_chmap_elem *chmap,
2422                            int max_channels,
2423                            unsigned long private_value,
2424                            struct snd_pcm_chmap **info_ret)
2425 {
2426         struct snd_pcm_chmap *info;
2427         struct snd_kcontrol_new knew = {
2428                 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2429                 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2430                         SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2431                         SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2432                 .info = pcm_chmap_ctl_info,
2433                 .get = pcm_chmap_ctl_get,
2434                 .tlv.c = pcm_chmap_ctl_tlv,
2435         };
2436         int err;
2437
2438         if (WARN_ON(pcm->streams[stream].chmap_kctl))
2439                 return -EBUSY;
2440         info = kzalloc(sizeof(*info), GFP_KERNEL);
2441         if (!info)
2442                 return -ENOMEM;
2443         info->pcm = pcm;
2444         info->stream = stream;
2445         info->chmap = chmap;
2446         info->max_channels = max_channels;
2447         if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2448                 knew.name = "Playback Channel Map";
2449         else
2450                 knew.name = "Capture Channel Map";
2451         knew.device = pcm->device;
2452         knew.count = pcm->streams[stream].substream_count;
2453         knew.private_value = private_value;
2454         info->kctl = snd_ctl_new1(&knew, info);
2455         if (!info->kctl) {
2456                 kfree(info);
2457                 return -ENOMEM;
2458         }
2459         info->kctl->private_free = pcm_chmap_ctl_private_free;
2460         err = snd_ctl_add(pcm->card, info->kctl);
2461         if (err < 0)
2462                 return err;
2463         pcm->streams[stream].chmap_kctl = info->kctl;
2464         if (info_ret)
2465                 *info_ret = info;
2466         return 0;
2467 }
2468 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);