Merge tag 'zynqmp-soc-for-v5.7' of https://github.com/Xilinx/linux-xlnx into arm/soc
[linux-2.6-microblaze.git] / security / selinux / ss / sidtab.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Implementation of the SID table type.
4  *
5  * Original author: Stephen Smalley, <sds@tycho.nsa.gov>
6  * Author: Ondrej Mosnacek, <omosnacek@gmail.com>
7  *
8  * Copyright (C) 2018 Red Hat, Inc.
9  */
10 #include <linux/errno.h>
11 #include <linux/kernel.h>
12 #include <linux/list.h>
13 #include <linux/rcupdate.h>
14 #include <linux/slab.h>
15 #include <linux/sched.h>
16 #include <linux/spinlock.h>
17 #include <asm/barrier.h>
18 #include "flask.h"
19 #include "security.h"
20 #include "sidtab.h"
21
22 struct sidtab_str_cache {
23         struct rcu_head rcu_member;
24         struct list_head lru_member;
25         struct sidtab_entry *parent;
26         u32 len;
27         char str[];
28 };
29
30 #define index_to_sid(index) (index + SECINITSID_NUM + 1)
31 #define sid_to_index(sid) (sid - (SECINITSID_NUM + 1))
32
33 int sidtab_init(struct sidtab *s)
34 {
35         u32 i;
36
37         memset(s->roots, 0, sizeof(s->roots));
38
39         for (i = 0; i < SECINITSID_NUM; i++)
40                 s->isids[i].set = 0;
41
42         s->count = 0;
43         s->convert = NULL;
44         hash_init(s->context_to_sid);
45
46         spin_lock_init(&s->lock);
47
48 #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
49         s->cache_free_slots = CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE;
50         INIT_LIST_HEAD(&s->cache_lru_list);
51         spin_lock_init(&s->cache_lock);
52 #endif
53
54         return 0;
55 }
56
57 static u32 context_to_sid(struct sidtab *s, struct context *context)
58 {
59         struct sidtab_entry *entry;
60         u32 sid = 0;
61
62         rcu_read_lock();
63         hash_for_each_possible_rcu(s->context_to_sid, entry, list,
64                                    context->hash) {
65                 if (context_cmp(&entry->context, context)) {
66                         sid = entry->sid;
67                         break;
68                 }
69         }
70         rcu_read_unlock();
71         return sid;
72 }
73
74 int sidtab_set_initial(struct sidtab *s, u32 sid, struct context *context)
75 {
76         struct sidtab_isid_entry *isid;
77         int rc;
78
79         if (sid == 0 || sid > SECINITSID_NUM)
80                 return -EINVAL;
81
82         isid = &s->isids[sid - 1];
83
84         rc = context_cpy(&isid->entry.context, context);
85         if (rc)
86                 return rc;
87
88 #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
89         isid->entry.cache = NULL;
90 #endif
91         isid->set = 1;
92
93         /*
94          * Multiple initial sids may map to the same context. Check that this
95          * context is not already represented in the context_to_sid hashtable
96          * to avoid duplicate entries and long linked lists upon hash
97          * collision.
98          */
99         if (!context_to_sid(s, context)) {
100                 isid->entry.sid = sid;
101                 hash_add(s->context_to_sid, &isid->entry.list, context->hash);
102         }
103
104         return 0;
105 }
106
107 int sidtab_hash_stats(struct sidtab *sidtab, char *page)
108 {
109         int i;
110         int chain_len = 0;
111         int slots_used = 0;
112         int entries = 0;
113         int max_chain_len = 0;
114         int cur_bucket = 0;
115         struct sidtab_entry *entry;
116
117         rcu_read_lock();
118         hash_for_each_rcu(sidtab->context_to_sid, i, entry, list) {
119                 entries++;
120                 if (i == cur_bucket) {
121                         chain_len++;
122                         if (chain_len == 1)
123                                 slots_used++;
124                 } else {
125                         cur_bucket = i;
126                         if (chain_len > max_chain_len)
127                                 max_chain_len = chain_len;
128                         chain_len = 0;
129                 }
130         }
131         rcu_read_unlock();
132
133         if (chain_len > max_chain_len)
134                 max_chain_len = chain_len;
135
136         return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
137                          "longest chain: %d\n", entries,
138                          slots_used, SIDTAB_HASH_BUCKETS, max_chain_len);
139 }
140
141 static u32 sidtab_level_from_count(u32 count)
142 {
143         u32 capacity = SIDTAB_LEAF_ENTRIES;
144         u32 level = 0;
145
146         while (count > capacity) {
147                 capacity <<= SIDTAB_INNER_SHIFT;
148                 ++level;
149         }
150         return level;
151 }
152
153 static int sidtab_alloc_roots(struct sidtab *s, u32 level)
154 {
155         u32 l;
156
157         if (!s->roots[0].ptr_leaf) {
158                 s->roots[0].ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
159                                                GFP_ATOMIC);
160                 if (!s->roots[0].ptr_leaf)
161                         return -ENOMEM;
162         }
163         for (l = 1; l <= level; ++l)
164                 if (!s->roots[l].ptr_inner) {
165                         s->roots[l].ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
166                                                         GFP_ATOMIC);
167                         if (!s->roots[l].ptr_inner)
168                                 return -ENOMEM;
169                         s->roots[l].ptr_inner->entries[0] = s->roots[l - 1];
170                 }
171         return 0;
172 }
173
174 static struct sidtab_entry *sidtab_do_lookup(struct sidtab *s, u32 index,
175                                              int alloc)
176 {
177         union sidtab_entry_inner *entry;
178         u32 level, capacity_shift, leaf_index = index / SIDTAB_LEAF_ENTRIES;
179
180         /* find the level of the subtree we need */
181         level = sidtab_level_from_count(index + 1);
182         capacity_shift = level * SIDTAB_INNER_SHIFT;
183
184         /* allocate roots if needed */
185         if (alloc && sidtab_alloc_roots(s, level) != 0)
186                 return NULL;
187
188         /* lookup inside the subtree */
189         entry = &s->roots[level];
190         while (level != 0) {
191                 capacity_shift -= SIDTAB_INNER_SHIFT;
192                 --level;
193
194                 entry = &entry->ptr_inner->entries[leaf_index >> capacity_shift];
195                 leaf_index &= ((u32)1 << capacity_shift) - 1;
196
197                 if (!entry->ptr_inner) {
198                         if (alloc)
199                                 entry->ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
200                                                            GFP_ATOMIC);
201                         if (!entry->ptr_inner)
202                                 return NULL;
203                 }
204         }
205         if (!entry->ptr_leaf) {
206                 if (alloc)
207                         entry->ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
208                                                   GFP_ATOMIC);
209                 if (!entry->ptr_leaf)
210                         return NULL;
211         }
212         return &entry->ptr_leaf->entries[index % SIDTAB_LEAF_ENTRIES];
213 }
214
215 static struct sidtab_entry *sidtab_lookup(struct sidtab *s, u32 index)
216 {
217         /* read entries only after reading count */
218         u32 count = smp_load_acquire(&s->count);
219
220         if (index >= count)
221                 return NULL;
222
223         return sidtab_do_lookup(s, index, 0);
224 }
225
226 static struct sidtab_entry *sidtab_lookup_initial(struct sidtab *s, u32 sid)
227 {
228         return s->isids[sid - 1].set ? &s->isids[sid - 1].entry : NULL;
229 }
230
231 static struct sidtab_entry *sidtab_search_core(struct sidtab *s, u32 sid,
232                                                int force)
233 {
234         if (sid != 0) {
235                 struct sidtab_entry *entry;
236
237                 if (sid > SECINITSID_NUM)
238                         entry = sidtab_lookup(s, sid_to_index(sid));
239                 else
240                         entry = sidtab_lookup_initial(s, sid);
241                 if (entry && (!entry->context.len || force))
242                         return entry;
243         }
244
245         return sidtab_lookup_initial(s, SECINITSID_UNLABELED);
246 }
247
248 struct sidtab_entry *sidtab_search_entry(struct sidtab *s, u32 sid)
249 {
250         return sidtab_search_core(s, sid, 0);
251 }
252
253 struct sidtab_entry *sidtab_search_entry_force(struct sidtab *s, u32 sid)
254 {
255         return sidtab_search_core(s, sid, 1);
256 }
257
258 int sidtab_context_to_sid(struct sidtab *s, struct context *context,
259                           u32 *sid)
260 {
261         unsigned long flags;
262         u32 count;
263         struct sidtab_convert_params *convert;
264         struct sidtab_entry *dst, *dst_convert;
265         int rc;
266
267         *sid = context_to_sid(s, context);
268         if (*sid)
269                 return 0;
270
271         /* lock-free search failed: lock, re-search, and insert if not found */
272         spin_lock_irqsave(&s->lock, flags);
273
274         rc = 0;
275         *sid = context_to_sid(s, context);
276         if (*sid)
277                 goto out_unlock;
278
279         /* read entries only after reading count */
280         count = smp_load_acquire(&s->count);
281         convert = s->convert;
282
283         /* bail out if we already reached max entries */
284         rc = -EOVERFLOW;
285         if (count >= SIDTAB_MAX)
286                 goto out_unlock;
287
288         /* insert context into new entry */
289         rc = -ENOMEM;
290         dst = sidtab_do_lookup(s, count, 1);
291         if (!dst)
292                 goto out_unlock;
293
294         dst->sid = index_to_sid(count);
295
296         rc = context_cpy(&dst->context, context);
297         if (rc)
298                 goto out_unlock;
299
300         /*
301          * if we are building a new sidtab, we need to convert the context
302          * and insert it there as well
303          */
304         if (convert) {
305                 rc = -ENOMEM;
306                 dst_convert = sidtab_do_lookup(convert->target, count, 1);
307                 if (!dst_convert) {
308                         context_destroy(&dst->context);
309                         goto out_unlock;
310                 }
311
312                 rc = convert->func(context, &dst_convert->context,
313                                    convert->args);
314                 if (rc) {
315                         context_destroy(&dst->context);
316                         goto out_unlock;
317                 }
318                 dst_convert->sid = index_to_sid(count);
319                 convert->target->count = count + 1;
320
321                 hash_add_rcu(convert->target->context_to_sid,
322                              &dst_convert->list, dst_convert->context.hash);
323         }
324
325         if (context->len)
326                 pr_info("SELinux:  Context %s is not valid (left unmapped).\n",
327                         context->str);
328
329         *sid = index_to_sid(count);
330
331         /* write entries before updating count */
332         smp_store_release(&s->count, count + 1);
333         hash_add_rcu(s->context_to_sid, &dst->list, dst->context.hash);
334
335         rc = 0;
336 out_unlock:
337         spin_unlock_irqrestore(&s->lock, flags);
338         return rc;
339 }
340
341 static void sidtab_convert_hashtable(struct sidtab *s, u32 count)
342 {
343         struct sidtab_entry *entry;
344         u32 i;
345
346         for (i = 0; i < count; i++) {
347                 entry = sidtab_do_lookup(s, i, 0);
348                 entry->sid = index_to_sid(i);
349
350                 hash_add_rcu(s->context_to_sid, &entry->list,
351                              entry->context.hash);
352
353         }
354 }
355
356 static int sidtab_convert_tree(union sidtab_entry_inner *edst,
357                                union sidtab_entry_inner *esrc,
358                                u32 *pos, u32 count, u32 level,
359                                struct sidtab_convert_params *convert)
360 {
361         int rc;
362         u32 i;
363
364         if (level != 0) {
365                 if (!edst->ptr_inner) {
366                         edst->ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
367                                                   GFP_KERNEL);
368                         if (!edst->ptr_inner)
369                                 return -ENOMEM;
370                 }
371                 i = 0;
372                 while (i < SIDTAB_INNER_ENTRIES && *pos < count) {
373                         rc = sidtab_convert_tree(&edst->ptr_inner->entries[i],
374                                                  &esrc->ptr_inner->entries[i],
375                                                  pos, count, level - 1,
376                                                  convert);
377                         if (rc)
378                                 return rc;
379                         i++;
380                 }
381         } else {
382                 if (!edst->ptr_leaf) {
383                         edst->ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
384                                                  GFP_KERNEL);
385                         if (!edst->ptr_leaf)
386                                 return -ENOMEM;
387                 }
388                 i = 0;
389                 while (i < SIDTAB_LEAF_ENTRIES && *pos < count) {
390                         rc = convert->func(&esrc->ptr_leaf->entries[i].context,
391                                            &edst->ptr_leaf->entries[i].context,
392                                            convert->args);
393                         if (rc)
394                                 return rc;
395                         (*pos)++;
396                         i++;
397                 }
398                 cond_resched();
399         }
400         return 0;
401 }
402
403 int sidtab_convert(struct sidtab *s, struct sidtab_convert_params *params)
404 {
405         unsigned long flags;
406         u32 count, level, pos;
407         int rc;
408
409         spin_lock_irqsave(&s->lock, flags);
410
411         /* concurrent policy loads are not allowed */
412         if (s->convert) {
413                 spin_unlock_irqrestore(&s->lock, flags);
414                 return -EBUSY;
415         }
416
417         count = s->count;
418         level = sidtab_level_from_count(count);
419
420         /* allocate last leaf in the new sidtab (to avoid race with
421          * live convert)
422          */
423         rc = sidtab_do_lookup(params->target, count - 1, 1) ? 0 : -ENOMEM;
424         if (rc) {
425                 spin_unlock_irqrestore(&s->lock, flags);
426                 return rc;
427         }
428
429         /* set count in case no new entries are added during conversion */
430         params->target->count = count;
431
432         /* enable live convert of new entries */
433         s->convert = params;
434
435         /* we can safely convert the tree outside the lock */
436         spin_unlock_irqrestore(&s->lock, flags);
437
438         pr_info("SELinux:  Converting %u SID table entries...\n", count);
439
440         /* convert all entries not covered by live convert */
441         pos = 0;
442         rc = sidtab_convert_tree(&params->target->roots[level],
443                                  &s->roots[level], &pos, count, level, params);
444         if (rc) {
445                 /* we need to keep the old table - disable live convert */
446                 spin_lock_irqsave(&s->lock, flags);
447                 s->convert = NULL;
448                 spin_unlock_irqrestore(&s->lock, flags);
449                 return rc;
450         }
451         /*
452          * The hashtable can also be modified in sidtab_context_to_sid()
453          * so we must re-acquire the lock here.
454          */
455         spin_lock_irqsave(&s->lock, flags);
456         sidtab_convert_hashtable(params->target, count);
457         spin_unlock_irqrestore(&s->lock, flags);
458
459         return 0;
460 }
461
462 static void sidtab_destroy_entry(struct sidtab_entry *entry)
463 {
464         context_destroy(&entry->context);
465 #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
466         kfree(rcu_dereference_raw(entry->cache));
467 #endif
468 }
469
470 static void sidtab_destroy_tree(union sidtab_entry_inner entry, u32 level)
471 {
472         u32 i;
473
474         if (level != 0) {
475                 struct sidtab_node_inner *node = entry.ptr_inner;
476
477                 if (!node)
478                         return;
479
480                 for (i = 0; i < SIDTAB_INNER_ENTRIES; i++)
481                         sidtab_destroy_tree(node->entries[i], level - 1);
482                 kfree(node);
483         } else {
484                 struct sidtab_node_leaf *node = entry.ptr_leaf;
485
486                 if (!node)
487                         return;
488
489                 for (i = 0; i < SIDTAB_LEAF_ENTRIES; i++)
490                         sidtab_destroy_entry(&node->entries[i]);
491                 kfree(node);
492         }
493 }
494
495 void sidtab_destroy(struct sidtab *s)
496 {
497         u32 i, level;
498
499         for (i = 0; i < SECINITSID_NUM; i++)
500                 if (s->isids[i].set)
501                         sidtab_destroy_entry(&s->isids[i].entry);
502
503         level = SIDTAB_MAX_LEVEL;
504         while (level && !s->roots[level].ptr_inner)
505                 --level;
506
507         sidtab_destroy_tree(s->roots[level], level);
508         /*
509          * The context_to_sid hashtable's objects are all shared
510          * with the isids array and context tree, and so don't need
511          * to be cleaned up here.
512          */
513 }
514
515 #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
516
517 void sidtab_sid2str_put(struct sidtab *s, struct sidtab_entry *entry,
518                         const char *str, u32 str_len)
519 {
520         struct sidtab_str_cache *cache, *victim = NULL;
521         unsigned long flags;
522
523         /* do not cache invalid contexts */
524         if (entry->context.len)
525                 return;
526
527         spin_lock_irqsave(&s->cache_lock, flags);
528
529         cache = rcu_dereference_protected(entry->cache,
530                                           lockdep_is_held(&s->cache_lock));
531         if (cache) {
532                 /* entry in cache - just bump to the head of LRU list */
533                 list_move(&cache->lru_member, &s->cache_lru_list);
534                 goto out_unlock;
535         }
536
537         cache = kmalloc(sizeof(struct sidtab_str_cache) + str_len, GFP_ATOMIC);
538         if (!cache)
539                 goto out_unlock;
540
541         if (s->cache_free_slots == 0) {
542                 /* pop a cache entry from the tail and free it */
543                 victim = container_of(s->cache_lru_list.prev,
544                                       struct sidtab_str_cache, lru_member);
545                 list_del(&victim->lru_member);
546                 rcu_assign_pointer(victim->parent->cache, NULL);
547         } else {
548                 s->cache_free_slots--;
549         }
550         cache->parent = entry;
551         cache->len = str_len;
552         memcpy(cache->str, str, str_len);
553         list_add(&cache->lru_member, &s->cache_lru_list);
554
555         rcu_assign_pointer(entry->cache, cache);
556
557 out_unlock:
558         spin_unlock_irqrestore(&s->cache_lock, flags);
559         kfree_rcu(victim, rcu_member);
560 }
561
562 int sidtab_sid2str_get(struct sidtab *s, struct sidtab_entry *entry,
563                        char **out, u32 *out_len)
564 {
565         struct sidtab_str_cache *cache;
566         int rc = 0;
567
568         if (entry->context.len)
569                 return -ENOENT; /* do not cache invalid contexts */
570
571         rcu_read_lock();
572
573         cache = rcu_dereference(entry->cache);
574         if (!cache) {
575                 rc = -ENOENT;
576         } else {
577                 *out_len = cache->len;
578                 if (out) {
579                         *out = kmemdup(cache->str, cache->len, GFP_ATOMIC);
580                         if (!*out)
581                                 rc = -ENOMEM;
582                 }
583         }
584
585         rcu_read_unlock();
586
587         if (!rc && out)
588                 sidtab_sid2str_put(s, entry, *out, *out_len);
589         return rc;
590 }
591
592 #endif /* CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0 */