Merge tag 'docs-5.13' of git://git.lwn.net/linux
[linux-2.6-microblaze.git] / security / selinux / ss / sidtab.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Implementation of the SID table type.
4  *
5  * Original author: Stephen Smalley, <sds@tycho.nsa.gov>
6  * Author: Ondrej Mosnacek, <omosnacek@gmail.com>
7  *
8  * Copyright (C) 2018 Red Hat, Inc.
9  */
10 #include <linux/errno.h>
11 #include <linux/kernel.h>
12 #include <linux/list.h>
13 #include <linux/rcupdate.h>
14 #include <linux/slab.h>
15 #include <linux/sched.h>
16 #include <linux/spinlock.h>
17 #include <asm/barrier.h>
18 #include "flask.h"
19 #include "security.h"
20 #include "sidtab.h"
21
22 struct sidtab_str_cache {
23         struct rcu_head rcu_member;
24         struct list_head lru_member;
25         struct sidtab_entry *parent;
26         u32 len;
27         char str[];
28 };
29
30 #define index_to_sid(index) (index + SECINITSID_NUM + 1)
31 #define sid_to_index(sid) (sid - (SECINITSID_NUM + 1))
32
33 int sidtab_init(struct sidtab *s)
34 {
35         u32 i;
36
37         memset(s->roots, 0, sizeof(s->roots));
38
39         for (i = 0; i < SECINITSID_NUM; i++)
40                 s->isids[i].set = 0;
41
42         s->frozen = false;
43         s->count = 0;
44         s->convert = NULL;
45         hash_init(s->context_to_sid);
46
47         spin_lock_init(&s->lock);
48
49 #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
50         s->cache_free_slots = CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE;
51         INIT_LIST_HEAD(&s->cache_lru_list);
52         spin_lock_init(&s->cache_lock);
53 #endif
54
55         return 0;
56 }
57
58 static u32 context_to_sid(struct sidtab *s, struct context *context, u32 hash)
59 {
60         struct sidtab_entry *entry;
61         u32 sid = 0;
62
63         rcu_read_lock();
64         hash_for_each_possible_rcu(s->context_to_sid, entry, list, hash) {
65                 if (entry->hash != hash)
66                         continue;
67                 if (context_cmp(&entry->context, context)) {
68                         sid = entry->sid;
69                         break;
70                 }
71         }
72         rcu_read_unlock();
73         return sid;
74 }
75
76 int sidtab_set_initial(struct sidtab *s, u32 sid, struct context *context)
77 {
78         struct sidtab_isid_entry *isid;
79         u32 hash;
80         int rc;
81
82         if (sid == 0 || sid > SECINITSID_NUM)
83                 return -EINVAL;
84
85         isid = &s->isids[sid - 1];
86
87         rc = context_cpy(&isid->entry.context, context);
88         if (rc)
89                 return rc;
90
91 #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
92         isid->entry.cache = NULL;
93 #endif
94         isid->set = 1;
95
96         hash = context_compute_hash(context);
97
98         /*
99          * Multiple initial sids may map to the same context. Check that this
100          * context is not already represented in the context_to_sid hashtable
101          * to avoid duplicate entries and long linked lists upon hash
102          * collision.
103          */
104         if (!context_to_sid(s, context, hash)) {
105                 isid->entry.sid = sid;
106                 isid->entry.hash = hash;
107                 hash_add(s->context_to_sid, &isid->entry.list, hash);
108         }
109
110         return 0;
111 }
112
113 int sidtab_hash_stats(struct sidtab *sidtab, char *page)
114 {
115         int i;
116         int chain_len = 0;
117         int slots_used = 0;
118         int entries = 0;
119         int max_chain_len = 0;
120         int cur_bucket = 0;
121         struct sidtab_entry *entry;
122
123         rcu_read_lock();
124         hash_for_each_rcu(sidtab->context_to_sid, i, entry, list) {
125                 entries++;
126                 if (i == cur_bucket) {
127                         chain_len++;
128                         if (chain_len == 1)
129                                 slots_used++;
130                 } else {
131                         cur_bucket = i;
132                         if (chain_len > max_chain_len)
133                                 max_chain_len = chain_len;
134                         chain_len = 0;
135                 }
136         }
137         rcu_read_unlock();
138
139         if (chain_len > max_chain_len)
140                 max_chain_len = chain_len;
141
142         return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
143                          "longest chain: %d\n", entries,
144                          slots_used, SIDTAB_HASH_BUCKETS, max_chain_len);
145 }
146
147 static u32 sidtab_level_from_count(u32 count)
148 {
149         u32 capacity = SIDTAB_LEAF_ENTRIES;
150         u32 level = 0;
151
152         while (count > capacity) {
153                 capacity <<= SIDTAB_INNER_SHIFT;
154                 ++level;
155         }
156         return level;
157 }
158
159 static int sidtab_alloc_roots(struct sidtab *s, u32 level)
160 {
161         u32 l;
162
163         if (!s->roots[0].ptr_leaf) {
164                 s->roots[0].ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
165                                                GFP_ATOMIC);
166                 if (!s->roots[0].ptr_leaf)
167                         return -ENOMEM;
168         }
169         for (l = 1; l <= level; ++l)
170                 if (!s->roots[l].ptr_inner) {
171                         s->roots[l].ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
172                                                         GFP_ATOMIC);
173                         if (!s->roots[l].ptr_inner)
174                                 return -ENOMEM;
175                         s->roots[l].ptr_inner->entries[0] = s->roots[l - 1];
176                 }
177         return 0;
178 }
179
180 static struct sidtab_entry *sidtab_do_lookup(struct sidtab *s, u32 index,
181                                              int alloc)
182 {
183         union sidtab_entry_inner *entry;
184         u32 level, capacity_shift, leaf_index = index / SIDTAB_LEAF_ENTRIES;
185
186         /* find the level of the subtree we need */
187         level = sidtab_level_from_count(index + 1);
188         capacity_shift = level * SIDTAB_INNER_SHIFT;
189
190         /* allocate roots if needed */
191         if (alloc && sidtab_alloc_roots(s, level) != 0)
192                 return NULL;
193
194         /* lookup inside the subtree */
195         entry = &s->roots[level];
196         while (level != 0) {
197                 capacity_shift -= SIDTAB_INNER_SHIFT;
198                 --level;
199
200                 entry = &entry->ptr_inner->entries[leaf_index >> capacity_shift];
201                 leaf_index &= ((u32)1 << capacity_shift) - 1;
202
203                 if (!entry->ptr_inner) {
204                         if (alloc)
205                                 entry->ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
206                                                            GFP_ATOMIC);
207                         if (!entry->ptr_inner)
208                                 return NULL;
209                 }
210         }
211         if (!entry->ptr_leaf) {
212                 if (alloc)
213                         entry->ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
214                                                   GFP_ATOMIC);
215                 if (!entry->ptr_leaf)
216                         return NULL;
217         }
218         return &entry->ptr_leaf->entries[index % SIDTAB_LEAF_ENTRIES];
219 }
220
221 static struct sidtab_entry *sidtab_lookup(struct sidtab *s, u32 index)
222 {
223         /* read entries only after reading count */
224         u32 count = smp_load_acquire(&s->count);
225
226         if (index >= count)
227                 return NULL;
228
229         return sidtab_do_lookup(s, index, 0);
230 }
231
232 static struct sidtab_entry *sidtab_lookup_initial(struct sidtab *s, u32 sid)
233 {
234         return s->isids[sid - 1].set ? &s->isids[sid - 1].entry : NULL;
235 }
236
237 static struct sidtab_entry *sidtab_search_core(struct sidtab *s, u32 sid,
238                                                int force)
239 {
240         if (sid != 0) {
241                 struct sidtab_entry *entry;
242
243                 if (sid > SECINITSID_NUM)
244                         entry = sidtab_lookup(s, sid_to_index(sid));
245                 else
246                         entry = sidtab_lookup_initial(s, sid);
247                 if (entry && (!entry->context.len || force))
248                         return entry;
249         }
250
251         return sidtab_lookup_initial(s, SECINITSID_UNLABELED);
252 }
253
254 struct sidtab_entry *sidtab_search_entry(struct sidtab *s, u32 sid)
255 {
256         return sidtab_search_core(s, sid, 0);
257 }
258
259 struct sidtab_entry *sidtab_search_entry_force(struct sidtab *s, u32 sid)
260 {
261         return sidtab_search_core(s, sid, 1);
262 }
263
264 int sidtab_context_to_sid(struct sidtab *s, struct context *context,
265                           u32 *sid)
266 {
267         unsigned long flags;
268         u32 count, hash = context_compute_hash(context);
269         struct sidtab_convert_params *convert;
270         struct sidtab_entry *dst, *dst_convert;
271         int rc;
272
273         *sid = context_to_sid(s, context, hash);
274         if (*sid)
275                 return 0;
276
277         /* lock-free search failed: lock, re-search, and insert if not found */
278         spin_lock_irqsave(&s->lock, flags);
279
280         rc = 0;
281         *sid = context_to_sid(s, context, hash);
282         if (*sid)
283                 goto out_unlock;
284
285         if (unlikely(s->frozen)) {
286                 /*
287                  * This sidtab is now frozen - tell the caller to abort and
288                  * get the new one.
289                  */
290                 rc = -ESTALE;
291                 goto out_unlock;
292         }
293
294         count = s->count;
295         convert = s->convert;
296
297         /* bail out if we already reached max entries */
298         rc = -EOVERFLOW;
299         if (count >= SIDTAB_MAX)
300                 goto out_unlock;
301
302         /* insert context into new entry */
303         rc = -ENOMEM;
304         dst = sidtab_do_lookup(s, count, 1);
305         if (!dst)
306                 goto out_unlock;
307
308         dst->sid = index_to_sid(count);
309         dst->hash = hash;
310
311         rc = context_cpy(&dst->context, context);
312         if (rc)
313                 goto out_unlock;
314
315         /*
316          * if we are building a new sidtab, we need to convert the context
317          * and insert it there as well
318          */
319         if (convert) {
320                 rc = -ENOMEM;
321                 dst_convert = sidtab_do_lookup(convert->target, count, 1);
322                 if (!dst_convert) {
323                         context_destroy(&dst->context);
324                         goto out_unlock;
325                 }
326
327                 rc = convert->func(context, &dst_convert->context,
328                                    convert->args);
329                 if (rc) {
330                         context_destroy(&dst->context);
331                         goto out_unlock;
332                 }
333                 dst_convert->sid = index_to_sid(count);
334                 dst_convert->hash = context_compute_hash(&dst_convert->context);
335                 convert->target->count = count + 1;
336
337                 hash_add_rcu(convert->target->context_to_sid,
338                              &dst_convert->list, dst_convert->hash);
339         }
340
341         if (context->len)
342                 pr_info("SELinux:  Context %s is not valid (left unmapped).\n",
343                         context->str);
344
345         *sid = index_to_sid(count);
346
347         /* write entries before updating count */
348         smp_store_release(&s->count, count + 1);
349         hash_add_rcu(s->context_to_sid, &dst->list, dst->hash);
350
351         rc = 0;
352 out_unlock:
353         spin_unlock_irqrestore(&s->lock, flags);
354         return rc;
355 }
356
357 static void sidtab_convert_hashtable(struct sidtab *s, u32 count)
358 {
359         struct sidtab_entry *entry;
360         u32 i;
361
362         for (i = 0; i < count; i++) {
363                 entry = sidtab_do_lookup(s, i, 0);
364                 entry->sid = index_to_sid(i);
365                 entry->hash = context_compute_hash(&entry->context);
366
367                 hash_add_rcu(s->context_to_sid, &entry->list, entry->hash);
368         }
369 }
370
371 static int sidtab_convert_tree(union sidtab_entry_inner *edst,
372                                union sidtab_entry_inner *esrc,
373                                u32 *pos, u32 count, u32 level,
374                                struct sidtab_convert_params *convert)
375 {
376         int rc;
377         u32 i;
378
379         if (level != 0) {
380                 if (!edst->ptr_inner) {
381                         edst->ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
382                                                   GFP_KERNEL);
383                         if (!edst->ptr_inner)
384                                 return -ENOMEM;
385                 }
386                 i = 0;
387                 while (i < SIDTAB_INNER_ENTRIES && *pos < count) {
388                         rc = sidtab_convert_tree(&edst->ptr_inner->entries[i],
389                                                  &esrc->ptr_inner->entries[i],
390                                                  pos, count, level - 1,
391                                                  convert);
392                         if (rc)
393                                 return rc;
394                         i++;
395                 }
396         } else {
397                 if (!edst->ptr_leaf) {
398                         edst->ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
399                                                  GFP_KERNEL);
400                         if (!edst->ptr_leaf)
401                                 return -ENOMEM;
402                 }
403                 i = 0;
404                 while (i < SIDTAB_LEAF_ENTRIES && *pos < count) {
405                         rc = convert->func(&esrc->ptr_leaf->entries[i].context,
406                                            &edst->ptr_leaf->entries[i].context,
407                                            convert->args);
408                         if (rc)
409                                 return rc;
410                         (*pos)++;
411                         i++;
412                 }
413                 cond_resched();
414         }
415         return 0;
416 }
417
418 int sidtab_convert(struct sidtab *s, struct sidtab_convert_params *params)
419 {
420         unsigned long flags;
421         u32 count, level, pos;
422         int rc;
423
424         spin_lock_irqsave(&s->lock, flags);
425
426         /* concurrent policy loads are not allowed */
427         if (s->convert) {
428                 spin_unlock_irqrestore(&s->lock, flags);
429                 return -EBUSY;
430         }
431
432         count = s->count;
433         level = sidtab_level_from_count(count);
434
435         /* allocate last leaf in the new sidtab (to avoid race with
436          * live convert)
437          */
438         rc = sidtab_do_lookup(params->target, count - 1, 1) ? 0 : -ENOMEM;
439         if (rc) {
440                 spin_unlock_irqrestore(&s->lock, flags);
441                 return rc;
442         }
443
444         /* set count in case no new entries are added during conversion */
445         params->target->count = count;
446
447         /* enable live convert of new entries */
448         s->convert = params;
449
450         /* we can safely convert the tree outside the lock */
451         spin_unlock_irqrestore(&s->lock, flags);
452
453         pr_info("SELinux:  Converting %u SID table entries...\n", count);
454
455         /* convert all entries not covered by live convert */
456         pos = 0;
457         rc = sidtab_convert_tree(&params->target->roots[level],
458                                  &s->roots[level], &pos, count, level, params);
459         if (rc) {
460                 /* we need to keep the old table - disable live convert */
461                 spin_lock_irqsave(&s->lock, flags);
462                 s->convert = NULL;
463                 spin_unlock_irqrestore(&s->lock, flags);
464                 return rc;
465         }
466         /*
467          * The hashtable can also be modified in sidtab_context_to_sid()
468          * so we must re-acquire the lock here.
469          */
470         spin_lock_irqsave(&s->lock, flags);
471         sidtab_convert_hashtable(params->target, count);
472         spin_unlock_irqrestore(&s->lock, flags);
473
474         return 0;
475 }
476
477 void sidtab_cancel_convert(struct sidtab *s)
478 {
479         unsigned long flags;
480
481         /* cancelling policy load - disable live convert of sidtab */
482         spin_lock_irqsave(&s->lock, flags);
483         s->convert = NULL;
484         spin_unlock_irqrestore(&s->lock, flags);
485 }
486
487 void sidtab_freeze_begin(struct sidtab *s, unsigned long *flags) __acquires(&s->lock)
488 {
489         spin_lock_irqsave(&s->lock, *flags);
490         s->frozen = true;
491         s->convert = NULL;
492 }
493 void sidtab_freeze_end(struct sidtab *s, unsigned long *flags) __releases(&s->lock)
494 {
495         spin_unlock_irqrestore(&s->lock, *flags);
496 }
497
498 static void sidtab_destroy_entry(struct sidtab_entry *entry)
499 {
500         context_destroy(&entry->context);
501 #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
502         kfree(rcu_dereference_raw(entry->cache));
503 #endif
504 }
505
506 static void sidtab_destroy_tree(union sidtab_entry_inner entry, u32 level)
507 {
508         u32 i;
509
510         if (level != 0) {
511                 struct sidtab_node_inner *node = entry.ptr_inner;
512
513                 if (!node)
514                         return;
515
516                 for (i = 0; i < SIDTAB_INNER_ENTRIES; i++)
517                         sidtab_destroy_tree(node->entries[i], level - 1);
518                 kfree(node);
519         } else {
520                 struct sidtab_node_leaf *node = entry.ptr_leaf;
521
522                 if (!node)
523                         return;
524
525                 for (i = 0; i < SIDTAB_LEAF_ENTRIES; i++)
526                         sidtab_destroy_entry(&node->entries[i]);
527                 kfree(node);
528         }
529 }
530
531 void sidtab_destroy(struct sidtab *s)
532 {
533         u32 i, level;
534
535         for (i = 0; i < SECINITSID_NUM; i++)
536                 if (s->isids[i].set)
537                         sidtab_destroy_entry(&s->isids[i].entry);
538
539         level = SIDTAB_MAX_LEVEL;
540         while (level && !s->roots[level].ptr_inner)
541                 --level;
542
543         sidtab_destroy_tree(s->roots[level], level);
544         /*
545          * The context_to_sid hashtable's objects are all shared
546          * with the isids array and context tree, and so don't need
547          * to be cleaned up here.
548          */
549 }
550
551 #if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
552
553 void sidtab_sid2str_put(struct sidtab *s, struct sidtab_entry *entry,
554                         const char *str, u32 str_len)
555 {
556         struct sidtab_str_cache *cache, *victim = NULL;
557         unsigned long flags;
558
559         /* do not cache invalid contexts */
560         if (entry->context.len)
561                 return;
562
563         spin_lock_irqsave(&s->cache_lock, flags);
564
565         cache = rcu_dereference_protected(entry->cache,
566                                           lockdep_is_held(&s->cache_lock));
567         if (cache) {
568                 /* entry in cache - just bump to the head of LRU list */
569                 list_move(&cache->lru_member, &s->cache_lru_list);
570                 goto out_unlock;
571         }
572
573         cache = kmalloc(sizeof(struct sidtab_str_cache) + str_len, GFP_ATOMIC);
574         if (!cache)
575                 goto out_unlock;
576
577         if (s->cache_free_slots == 0) {
578                 /* pop a cache entry from the tail and free it */
579                 victim = container_of(s->cache_lru_list.prev,
580                                       struct sidtab_str_cache, lru_member);
581                 list_del(&victim->lru_member);
582                 rcu_assign_pointer(victim->parent->cache, NULL);
583         } else {
584                 s->cache_free_slots--;
585         }
586         cache->parent = entry;
587         cache->len = str_len;
588         memcpy(cache->str, str, str_len);
589         list_add(&cache->lru_member, &s->cache_lru_list);
590
591         rcu_assign_pointer(entry->cache, cache);
592
593 out_unlock:
594         spin_unlock_irqrestore(&s->cache_lock, flags);
595         kfree_rcu(victim, rcu_member);
596 }
597
598 int sidtab_sid2str_get(struct sidtab *s, struct sidtab_entry *entry,
599                        char **out, u32 *out_len)
600 {
601         struct sidtab_str_cache *cache;
602         int rc = 0;
603
604         if (entry->context.len)
605                 return -ENOENT; /* do not cache invalid contexts */
606
607         rcu_read_lock();
608
609         cache = rcu_dereference(entry->cache);
610         if (!cache) {
611                 rc = -ENOENT;
612         } else {
613                 *out_len = cache->len;
614                 if (out) {
615                         *out = kmemdup(cache->str, cache->len, GFP_ATOMIC);
616                         if (!*out)
617                                 rc = -ENOMEM;
618                 }
619         }
620
621         rcu_read_unlock();
622
623         if (!rc && out)
624                 sidtab_sid2str_put(s, entry, *out, *out_len);
625         return rc;
626 }
627
628 #endif /* CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0 */