LSM: Add "contents" flag to kernel_read_file hook
[linux-2.6-microblaze.git] / security / selinux / hooks.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  NSA Security-Enhanced Linux (SELinux) security module
4  *
5  *  This file contains the SELinux hook function implementations.
6  *
7  *  Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
8  *            Chris Vance, <cvance@nai.com>
9  *            Wayne Salamon, <wsalamon@nai.com>
10  *            James Morris <jmorris@redhat.com>
11  *
12  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
13  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
14  *                                         Eric Paris <eparis@redhat.com>
15  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
16  *                          <dgoeddel@trustedcs.com>
17  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
18  *      Paul Moore <paul@paul-moore.com>
19  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
20  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
21  *  Copyright (C) 2016 Mellanox Technologies
22  */
23
24 #include <linux/init.h>
25 #include <linux/kd.h>
26 #include <linux/kernel.h>
27 #include <linux/kernel_read_file.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched/signal.h>
31 #include <linux/sched/task.h>
32 #include <linux/lsm_hooks.h>
33 #include <linux/xattr.h>
34 #include <linux/capability.h>
35 #include <linux/unistd.h>
36 #include <linux/mm.h>
37 #include <linux/mman.h>
38 #include <linux/slab.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/swap.h>
42 #include <linux/spinlock.h>
43 #include <linux/syscalls.h>
44 #include <linux/dcache.h>
45 #include <linux/file.h>
46 #include <linux/fdtable.h>
47 #include <linux/namei.h>
48 #include <linux/mount.h>
49 #include <linux/fs_context.h>
50 #include <linux/fs_parser.h>
51 #include <linux/netfilter_ipv4.h>
52 #include <linux/netfilter_ipv6.h>
53 #include <linux/tty.h>
54 #include <net/icmp.h>
55 #include <net/ip.h>             /* for local_port_range[] */
56 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
57 #include <net/inet_connection_sock.h>
58 #include <net/net_namespace.h>
59 #include <net/netlabel.h>
60 #include <linux/uaccess.h>
61 #include <asm/ioctls.h>
62 #include <linux/atomic.h>
63 #include <linux/bitops.h>
64 #include <linux/interrupt.h>
65 #include <linux/netdevice.h>    /* for network interface checks */
66 #include <net/netlink.h>
67 #include <linux/tcp.h>
68 #include <linux/udp.h>
69 #include <linux/dccp.h>
70 #include <linux/sctp.h>
71 #include <net/sctp/structs.h>
72 #include <linux/quota.h>
73 #include <linux/un.h>           /* for Unix socket types */
74 #include <net/af_unix.h>        /* for Unix socket types */
75 #include <linux/parser.h>
76 #include <linux/nfs_mount.h>
77 #include <net/ipv6.h>
78 #include <linux/hugetlb.h>
79 #include <linux/personality.h>
80 #include <linux/audit.h>
81 #include <linux/string.h>
82 #include <linux/mutex.h>
83 #include <linux/posix-timers.h>
84 #include <linux/syslog.h>
85 #include <linux/user_namespace.h>
86 #include <linux/export.h>
87 #include <linux/msg.h>
88 #include <linux/shm.h>
89 #include <linux/bpf.h>
90 #include <linux/kernfs.h>
91 #include <linux/stringhash.h>   /* for hashlen_string() */
92 #include <uapi/linux/mount.h>
93 #include <linux/fsnotify.h>
94 #include <linux/fanotify.h>
95
96 #include "avc.h"
97 #include "objsec.h"
98 #include "netif.h"
99 #include "netnode.h"
100 #include "netport.h"
101 #include "ibpkey.h"
102 #include "xfrm.h"
103 #include "netlabel.h"
104 #include "audit.h"
105 #include "avc_ss.h"
106
107 struct selinux_state selinux_state;
108
109 /* SECMARK reference count */
110 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
111
112 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
113 static int selinux_enforcing_boot __initdata;
114
115 static int __init enforcing_setup(char *str)
116 {
117         unsigned long enforcing;
118         if (!kstrtoul(str, 0, &enforcing))
119                 selinux_enforcing_boot = enforcing ? 1 : 0;
120         return 1;
121 }
122 __setup("enforcing=", enforcing_setup);
123 #else
124 #define selinux_enforcing_boot 1
125 #endif
126
127 int selinux_enabled_boot __initdata = 1;
128 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
129 static int __init selinux_enabled_setup(char *str)
130 {
131         unsigned long enabled;
132         if (!kstrtoul(str, 0, &enabled))
133                 selinux_enabled_boot = enabled ? 1 : 0;
134         return 1;
135 }
136 __setup("selinux=", selinux_enabled_setup);
137 #endif
138
139 static unsigned int selinux_checkreqprot_boot =
140         CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
141
142 static int __init checkreqprot_setup(char *str)
143 {
144         unsigned long checkreqprot;
145
146         if (!kstrtoul(str, 0, &checkreqprot)) {
147                 selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
148                 if (checkreqprot)
149                         pr_warn("SELinux: checkreqprot set to 1 via kernel parameter.  This is deprecated and will be rejected in a future kernel release.\n");
150         }
151         return 1;
152 }
153 __setup("checkreqprot=", checkreqprot_setup);
154
155 /**
156  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
157  *
158  * Description:
159  * This function checks the SECMARK reference counter to see if any SECMARK
160  * targets are currently configured, if the reference counter is greater than
161  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
162  * enabled, false (0) if SECMARK is disabled.  If the always_check_network
163  * policy capability is enabled, SECMARK is always considered enabled.
164  *
165  */
166 static int selinux_secmark_enabled(void)
167 {
168         return (selinux_policycap_alwaysnetwork() ||
169                 atomic_read(&selinux_secmark_refcount));
170 }
171
172 /**
173  * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
174  *
175  * Description:
176  * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
177  * (1) if any are enabled or false (0) if neither are enabled.  If the
178  * always_check_network policy capability is enabled, peer labeling
179  * is always considered enabled.
180  *
181  */
182 static int selinux_peerlbl_enabled(void)
183 {
184         return (selinux_policycap_alwaysnetwork() ||
185                 netlbl_enabled() || selinux_xfrm_enabled());
186 }
187
188 static int selinux_netcache_avc_callback(u32 event)
189 {
190         if (event == AVC_CALLBACK_RESET) {
191                 sel_netif_flush();
192                 sel_netnode_flush();
193                 sel_netport_flush();
194                 synchronize_net();
195         }
196         return 0;
197 }
198
199 static int selinux_lsm_notifier_avc_callback(u32 event)
200 {
201         if (event == AVC_CALLBACK_RESET) {
202                 sel_ib_pkey_flush();
203                 call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
204         }
205
206         return 0;
207 }
208
209 /*
210  * initialise the security for the init task
211  */
212 static void cred_init_security(void)
213 {
214         struct cred *cred = (struct cred *) current->real_cred;
215         struct task_security_struct *tsec;
216
217         tsec = selinux_cred(cred);
218         tsec->osid = tsec->sid = SECINITSID_KERNEL;
219 }
220
221 /*
222  * get the security ID of a set of credentials
223  */
224 static inline u32 cred_sid(const struct cred *cred)
225 {
226         const struct task_security_struct *tsec;
227
228         tsec = selinux_cred(cred);
229         return tsec->sid;
230 }
231
232 /*
233  * get the objective security ID of a task
234  */
235 static inline u32 task_sid(const struct task_struct *task)
236 {
237         u32 sid;
238
239         rcu_read_lock();
240         sid = cred_sid(__task_cred(task));
241         rcu_read_unlock();
242         return sid;
243 }
244
245 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
246
247 /*
248  * Try reloading inode security labels that have been marked as invalid.  The
249  * @may_sleep parameter indicates when sleeping and thus reloading labels is
250  * allowed; when set to false, returns -ECHILD when the label is
251  * invalid.  The @dentry parameter should be set to a dentry of the inode.
252  */
253 static int __inode_security_revalidate(struct inode *inode,
254                                        struct dentry *dentry,
255                                        bool may_sleep)
256 {
257         struct inode_security_struct *isec = selinux_inode(inode);
258
259         might_sleep_if(may_sleep);
260
261         if (selinux_initialized(&selinux_state) &&
262             isec->initialized != LABEL_INITIALIZED) {
263                 if (!may_sleep)
264                         return -ECHILD;
265
266                 /*
267                  * Try reloading the inode security label.  This will fail if
268                  * @opt_dentry is NULL and no dentry for this inode can be
269                  * found; in that case, continue using the old label.
270                  */
271                 inode_doinit_with_dentry(inode, dentry);
272         }
273         return 0;
274 }
275
276 static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
277 {
278         return selinux_inode(inode);
279 }
280
281 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
282 {
283         int error;
284
285         error = __inode_security_revalidate(inode, NULL, !rcu);
286         if (error)
287                 return ERR_PTR(error);
288         return selinux_inode(inode);
289 }
290
291 /*
292  * Get the security label of an inode.
293  */
294 static struct inode_security_struct *inode_security(struct inode *inode)
295 {
296         __inode_security_revalidate(inode, NULL, true);
297         return selinux_inode(inode);
298 }
299
300 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
301 {
302         struct inode *inode = d_backing_inode(dentry);
303
304         return selinux_inode(inode);
305 }
306
307 /*
308  * Get the security label of a dentry's backing inode.
309  */
310 static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
311 {
312         struct inode *inode = d_backing_inode(dentry);
313
314         __inode_security_revalidate(inode, dentry, true);
315         return selinux_inode(inode);
316 }
317
318 static void inode_free_security(struct inode *inode)
319 {
320         struct inode_security_struct *isec = selinux_inode(inode);
321         struct superblock_security_struct *sbsec;
322
323         if (!isec)
324                 return;
325         sbsec = inode->i_sb->s_security;
326         /*
327          * As not all inode security structures are in a list, we check for
328          * empty list outside of the lock to make sure that we won't waste
329          * time taking a lock doing nothing.
330          *
331          * The list_del_init() function can be safely called more than once.
332          * It should not be possible for this function to be called with
333          * concurrent list_add(), but for better safety against future changes
334          * in the code, we use list_empty_careful() here.
335          */
336         if (!list_empty_careful(&isec->list)) {
337                 spin_lock(&sbsec->isec_lock);
338                 list_del_init(&isec->list);
339                 spin_unlock(&sbsec->isec_lock);
340         }
341 }
342
343 static void superblock_free_security(struct super_block *sb)
344 {
345         struct superblock_security_struct *sbsec = sb->s_security;
346         sb->s_security = NULL;
347         kfree(sbsec);
348 }
349
350 struct selinux_mnt_opts {
351         const char *fscontext, *context, *rootcontext, *defcontext;
352 };
353
354 static void selinux_free_mnt_opts(void *mnt_opts)
355 {
356         struct selinux_mnt_opts *opts = mnt_opts;
357         kfree(opts->fscontext);
358         kfree(opts->context);
359         kfree(opts->rootcontext);
360         kfree(opts->defcontext);
361         kfree(opts);
362 }
363
364 enum {
365         Opt_error = -1,
366         Opt_context = 0,
367         Opt_defcontext = 1,
368         Opt_fscontext = 2,
369         Opt_rootcontext = 3,
370         Opt_seclabel = 4,
371 };
372
373 #define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
374 static struct {
375         const char *name;
376         int len;
377         int opt;
378         bool has_arg;
379 } tokens[] = {
380         A(context, true),
381         A(fscontext, true),
382         A(defcontext, true),
383         A(rootcontext, true),
384         A(seclabel, false),
385 };
386 #undef A
387
388 static int match_opt_prefix(char *s, int l, char **arg)
389 {
390         int i;
391
392         for (i = 0; i < ARRAY_SIZE(tokens); i++) {
393                 size_t len = tokens[i].len;
394                 if (len > l || memcmp(s, tokens[i].name, len))
395                         continue;
396                 if (tokens[i].has_arg) {
397                         if (len == l || s[len] != '=')
398                                 continue;
399                         *arg = s + len + 1;
400                 } else if (len != l)
401                         continue;
402                 return tokens[i].opt;
403         }
404         return Opt_error;
405 }
406
407 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
408
409 static int may_context_mount_sb_relabel(u32 sid,
410                         struct superblock_security_struct *sbsec,
411                         const struct cred *cred)
412 {
413         const struct task_security_struct *tsec = selinux_cred(cred);
414         int rc;
415
416         rc = avc_has_perm(&selinux_state,
417                           tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
418                           FILESYSTEM__RELABELFROM, NULL);
419         if (rc)
420                 return rc;
421
422         rc = avc_has_perm(&selinux_state,
423                           tsec->sid, sid, SECCLASS_FILESYSTEM,
424                           FILESYSTEM__RELABELTO, NULL);
425         return rc;
426 }
427
428 static int may_context_mount_inode_relabel(u32 sid,
429                         struct superblock_security_struct *sbsec,
430                         const struct cred *cred)
431 {
432         const struct task_security_struct *tsec = selinux_cred(cred);
433         int rc;
434         rc = avc_has_perm(&selinux_state,
435                           tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
436                           FILESYSTEM__RELABELFROM, NULL);
437         if (rc)
438                 return rc;
439
440         rc = avc_has_perm(&selinux_state,
441                           sid, sbsec->sid, SECCLASS_FILESYSTEM,
442                           FILESYSTEM__ASSOCIATE, NULL);
443         return rc;
444 }
445
446 static int selinux_is_genfs_special_handling(struct super_block *sb)
447 {
448         /* Special handling. Genfs but also in-core setxattr handler */
449         return  !strcmp(sb->s_type->name, "sysfs") ||
450                 !strcmp(sb->s_type->name, "pstore") ||
451                 !strcmp(sb->s_type->name, "debugfs") ||
452                 !strcmp(sb->s_type->name, "tracefs") ||
453                 !strcmp(sb->s_type->name, "rootfs") ||
454                 (selinux_policycap_cgroupseclabel() &&
455                  (!strcmp(sb->s_type->name, "cgroup") ||
456                   !strcmp(sb->s_type->name, "cgroup2")));
457 }
458
459 static int selinux_is_sblabel_mnt(struct super_block *sb)
460 {
461         struct superblock_security_struct *sbsec = sb->s_security;
462
463         /*
464          * IMPORTANT: Double-check logic in this function when adding a new
465          * SECURITY_FS_USE_* definition!
466          */
467         BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
468
469         switch (sbsec->behavior) {
470         case SECURITY_FS_USE_XATTR:
471         case SECURITY_FS_USE_TRANS:
472         case SECURITY_FS_USE_TASK:
473         case SECURITY_FS_USE_NATIVE:
474                 return 1;
475
476         case SECURITY_FS_USE_GENFS:
477                 return selinux_is_genfs_special_handling(sb);
478
479         /* Never allow relabeling on context mounts */
480         case SECURITY_FS_USE_MNTPOINT:
481         case SECURITY_FS_USE_NONE:
482         default:
483                 return 0;
484         }
485 }
486
487 static int sb_finish_set_opts(struct super_block *sb)
488 {
489         struct superblock_security_struct *sbsec = sb->s_security;
490         struct dentry *root = sb->s_root;
491         struct inode *root_inode = d_backing_inode(root);
492         int rc = 0;
493
494         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
495                 /* Make sure that the xattr handler exists and that no
496                    error other than -ENODATA is returned by getxattr on
497                    the root directory.  -ENODATA is ok, as this may be
498                    the first boot of the SELinux kernel before we have
499                    assigned xattr values to the filesystem. */
500                 if (!(root_inode->i_opflags & IOP_XATTR)) {
501                         pr_warn("SELinux: (dev %s, type %s) has no "
502                                "xattr support\n", sb->s_id, sb->s_type->name);
503                         rc = -EOPNOTSUPP;
504                         goto out;
505                 }
506
507                 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
508                 if (rc < 0 && rc != -ENODATA) {
509                         if (rc == -EOPNOTSUPP)
510                                 pr_warn("SELinux: (dev %s, type "
511                                        "%s) has no security xattr handler\n",
512                                        sb->s_id, sb->s_type->name);
513                         else
514                                 pr_warn("SELinux: (dev %s, type "
515                                        "%s) getxattr errno %d\n", sb->s_id,
516                                        sb->s_type->name, -rc);
517                         goto out;
518                 }
519         }
520
521         sbsec->flags |= SE_SBINITIALIZED;
522
523         /*
524          * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
525          * leave the flag untouched because sb_clone_mnt_opts might be handing
526          * us a superblock that needs the flag to be cleared.
527          */
528         if (selinux_is_sblabel_mnt(sb))
529                 sbsec->flags |= SBLABEL_MNT;
530         else
531                 sbsec->flags &= ~SBLABEL_MNT;
532
533         /* Initialize the root inode. */
534         rc = inode_doinit_with_dentry(root_inode, root);
535
536         /* Initialize any other inodes associated with the superblock, e.g.
537            inodes created prior to initial policy load or inodes created
538            during get_sb by a pseudo filesystem that directly
539            populates itself. */
540         spin_lock(&sbsec->isec_lock);
541         while (!list_empty(&sbsec->isec_head)) {
542                 struct inode_security_struct *isec =
543                                 list_first_entry(&sbsec->isec_head,
544                                            struct inode_security_struct, list);
545                 struct inode *inode = isec->inode;
546                 list_del_init(&isec->list);
547                 spin_unlock(&sbsec->isec_lock);
548                 inode = igrab(inode);
549                 if (inode) {
550                         if (!IS_PRIVATE(inode))
551                                 inode_doinit_with_dentry(inode, NULL);
552                         iput(inode);
553                 }
554                 spin_lock(&sbsec->isec_lock);
555         }
556         spin_unlock(&sbsec->isec_lock);
557 out:
558         return rc;
559 }
560
561 static int bad_option(struct superblock_security_struct *sbsec, char flag,
562                       u32 old_sid, u32 new_sid)
563 {
564         char mnt_flags = sbsec->flags & SE_MNTMASK;
565
566         /* check if the old mount command had the same options */
567         if (sbsec->flags & SE_SBINITIALIZED)
568                 if (!(sbsec->flags & flag) ||
569                     (old_sid != new_sid))
570                         return 1;
571
572         /* check if we were passed the same options twice,
573          * aka someone passed context=a,context=b
574          */
575         if (!(sbsec->flags & SE_SBINITIALIZED))
576                 if (mnt_flags & flag)
577                         return 1;
578         return 0;
579 }
580
581 static int parse_sid(struct super_block *sb, const char *s, u32 *sid)
582 {
583         int rc = security_context_str_to_sid(&selinux_state, s,
584                                              sid, GFP_KERNEL);
585         if (rc)
586                 pr_warn("SELinux: security_context_str_to_sid"
587                        "(%s) failed for (dev %s, type %s) errno=%d\n",
588                        s, sb->s_id, sb->s_type->name, rc);
589         return rc;
590 }
591
592 /*
593  * Allow filesystems with binary mount data to explicitly set mount point
594  * labeling information.
595  */
596 static int selinux_set_mnt_opts(struct super_block *sb,
597                                 void *mnt_opts,
598                                 unsigned long kern_flags,
599                                 unsigned long *set_kern_flags)
600 {
601         const struct cred *cred = current_cred();
602         struct superblock_security_struct *sbsec = sb->s_security;
603         struct dentry *root = sbsec->sb->s_root;
604         struct selinux_mnt_opts *opts = mnt_opts;
605         struct inode_security_struct *root_isec;
606         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
607         u32 defcontext_sid = 0;
608         int rc = 0;
609
610         mutex_lock(&sbsec->lock);
611
612         if (!selinux_initialized(&selinux_state)) {
613                 if (!opts) {
614                         /* Defer initialization until selinux_complete_init,
615                            after the initial policy is loaded and the security
616                            server is ready to handle calls. */
617                         goto out;
618                 }
619                 rc = -EINVAL;
620                 pr_warn("SELinux: Unable to set superblock options "
621                         "before the security server is initialized\n");
622                 goto out;
623         }
624         if (kern_flags && !set_kern_flags) {
625                 /* Specifying internal flags without providing a place to
626                  * place the results is not allowed */
627                 rc = -EINVAL;
628                 goto out;
629         }
630
631         /*
632          * Binary mount data FS will come through this function twice.  Once
633          * from an explicit call and once from the generic calls from the vfs.
634          * Since the generic VFS calls will not contain any security mount data
635          * we need to skip the double mount verification.
636          *
637          * This does open a hole in which we will not notice if the first
638          * mount using this sb set explict options and a second mount using
639          * this sb does not set any security options.  (The first options
640          * will be used for both mounts)
641          */
642         if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
643             && !opts)
644                 goto out;
645
646         root_isec = backing_inode_security_novalidate(root);
647
648         /*
649          * parse the mount options, check if they are valid sids.
650          * also check if someone is trying to mount the same sb more
651          * than once with different security options.
652          */
653         if (opts) {
654                 if (opts->fscontext) {
655                         rc = parse_sid(sb, opts->fscontext, &fscontext_sid);
656                         if (rc)
657                                 goto out;
658                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
659                                         fscontext_sid))
660                                 goto out_double_mount;
661                         sbsec->flags |= FSCONTEXT_MNT;
662                 }
663                 if (opts->context) {
664                         rc = parse_sid(sb, opts->context, &context_sid);
665                         if (rc)
666                                 goto out;
667                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
668                                         context_sid))
669                                 goto out_double_mount;
670                         sbsec->flags |= CONTEXT_MNT;
671                 }
672                 if (opts->rootcontext) {
673                         rc = parse_sid(sb, opts->rootcontext, &rootcontext_sid);
674                         if (rc)
675                                 goto out;
676                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
677                                         rootcontext_sid))
678                                 goto out_double_mount;
679                         sbsec->flags |= ROOTCONTEXT_MNT;
680                 }
681                 if (opts->defcontext) {
682                         rc = parse_sid(sb, opts->defcontext, &defcontext_sid);
683                         if (rc)
684                                 goto out;
685                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
686                                         defcontext_sid))
687                                 goto out_double_mount;
688                         sbsec->flags |= DEFCONTEXT_MNT;
689                 }
690         }
691
692         if (sbsec->flags & SE_SBINITIALIZED) {
693                 /* previously mounted with options, but not on this attempt? */
694                 if ((sbsec->flags & SE_MNTMASK) && !opts)
695                         goto out_double_mount;
696                 rc = 0;
697                 goto out;
698         }
699
700         if (strcmp(sb->s_type->name, "proc") == 0)
701                 sbsec->flags |= SE_SBPROC | SE_SBGENFS;
702
703         if (!strcmp(sb->s_type->name, "debugfs") ||
704             !strcmp(sb->s_type->name, "tracefs") ||
705             !strcmp(sb->s_type->name, "binder") ||
706             !strcmp(sb->s_type->name, "bpf") ||
707             !strcmp(sb->s_type->name, "pstore"))
708                 sbsec->flags |= SE_SBGENFS;
709
710         if (!strcmp(sb->s_type->name, "sysfs") ||
711             !strcmp(sb->s_type->name, "cgroup") ||
712             !strcmp(sb->s_type->name, "cgroup2"))
713                 sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
714
715         if (!sbsec->behavior) {
716                 /*
717                  * Determine the labeling behavior to use for this
718                  * filesystem type.
719                  */
720                 rc = security_fs_use(&selinux_state, sb);
721                 if (rc) {
722                         pr_warn("%s: security_fs_use(%s) returned %d\n",
723                                         __func__, sb->s_type->name, rc);
724                         goto out;
725                 }
726         }
727
728         /*
729          * If this is a user namespace mount and the filesystem type is not
730          * explicitly whitelisted, then no contexts are allowed on the command
731          * line and security labels must be ignored.
732          */
733         if (sb->s_user_ns != &init_user_ns &&
734             strcmp(sb->s_type->name, "tmpfs") &&
735             strcmp(sb->s_type->name, "ramfs") &&
736             strcmp(sb->s_type->name, "devpts")) {
737                 if (context_sid || fscontext_sid || rootcontext_sid ||
738                     defcontext_sid) {
739                         rc = -EACCES;
740                         goto out;
741                 }
742                 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
743                         sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
744                         rc = security_transition_sid(&selinux_state,
745                                                      current_sid(),
746                                                      current_sid(),
747                                                      SECCLASS_FILE, NULL,
748                                                      &sbsec->mntpoint_sid);
749                         if (rc)
750                                 goto out;
751                 }
752                 goto out_set_opts;
753         }
754
755         /* sets the context of the superblock for the fs being mounted. */
756         if (fscontext_sid) {
757                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
758                 if (rc)
759                         goto out;
760
761                 sbsec->sid = fscontext_sid;
762         }
763
764         /*
765          * Switch to using mount point labeling behavior.
766          * sets the label used on all file below the mountpoint, and will set
767          * the superblock context if not already set.
768          */
769         if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
770                 sbsec->behavior = SECURITY_FS_USE_NATIVE;
771                 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
772         }
773
774         if (context_sid) {
775                 if (!fscontext_sid) {
776                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
777                                                           cred);
778                         if (rc)
779                                 goto out;
780                         sbsec->sid = context_sid;
781                 } else {
782                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
783                                                              cred);
784                         if (rc)
785                                 goto out;
786                 }
787                 if (!rootcontext_sid)
788                         rootcontext_sid = context_sid;
789
790                 sbsec->mntpoint_sid = context_sid;
791                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
792         }
793
794         if (rootcontext_sid) {
795                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
796                                                      cred);
797                 if (rc)
798                         goto out;
799
800                 root_isec->sid = rootcontext_sid;
801                 root_isec->initialized = LABEL_INITIALIZED;
802         }
803
804         if (defcontext_sid) {
805                 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
806                         sbsec->behavior != SECURITY_FS_USE_NATIVE) {
807                         rc = -EINVAL;
808                         pr_warn("SELinux: defcontext option is "
809                                "invalid for this filesystem type\n");
810                         goto out;
811                 }
812
813                 if (defcontext_sid != sbsec->def_sid) {
814                         rc = may_context_mount_inode_relabel(defcontext_sid,
815                                                              sbsec, cred);
816                         if (rc)
817                                 goto out;
818                 }
819
820                 sbsec->def_sid = defcontext_sid;
821         }
822
823 out_set_opts:
824         rc = sb_finish_set_opts(sb);
825 out:
826         mutex_unlock(&sbsec->lock);
827         return rc;
828 out_double_mount:
829         rc = -EINVAL;
830         pr_warn("SELinux: mount invalid.  Same superblock, different "
831                "security settings for (dev %s, type %s)\n", sb->s_id,
832                sb->s_type->name);
833         goto out;
834 }
835
836 static int selinux_cmp_sb_context(const struct super_block *oldsb,
837                                     const struct super_block *newsb)
838 {
839         struct superblock_security_struct *old = oldsb->s_security;
840         struct superblock_security_struct *new = newsb->s_security;
841         char oldflags = old->flags & SE_MNTMASK;
842         char newflags = new->flags & SE_MNTMASK;
843
844         if (oldflags != newflags)
845                 goto mismatch;
846         if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
847                 goto mismatch;
848         if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
849                 goto mismatch;
850         if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
851                 goto mismatch;
852         if (oldflags & ROOTCONTEXT_MNT) {
853                 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
854                 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
855                 if (oldroot->sid != newroot->sid)
856                         goto mismatch;
857         }
858         return 0;
859 mismatch:
860         pr_warn("SELinux: mount invalid.  Same superblock, "
861                             "different security settings for (dev %s, "
862                             "type %s)\n", newsb->s_id, newsb->s_type->name);
863         return -EBUSY;
864 }
865
866 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
867                                         struct super_block *newsb,
868                                         unsigned long kern_flags,
869                                         unsigned long *set_kern_flags)
870 {
871         int rc = 0;
872         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
873         struct superblock_security_struct *newsbsec = newsb->s_security;
874
875         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
876         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
877         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
878
879         /*
880          * if the parent was able to be mounted it clearly had no special lsm
881          * mount options.  thus we can safely deal with this superblock later
882          */
883         if (!selinux_initialized(&selinux_state))
884                 return 0;
885
886         /*
887          * Specifying internal flags without providing a place to
888          * place the results is not allowed.
889          */
890         if (kern_flags && !set_kern_flags)
891                 return -EINVAL;
892
893         /* how can we clone if the old one wasn't set up?? */
894         BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
895
896         /* if fs is reusing a sb, make sure that the contexts match */
897         if (newsbsec->flags & SE_SBINITIALIZED) {
898                 if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
899                         *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
900                 return selinux_cmp_sb_context(oldsb, newsb);
901         }
902
903         mutex_lock(&newsbsec->lock);
904
905         newsbsec->flags = oldsbsec->flags;
906
907         newsbsec->sid = oldsbsec->sid;
908         newsbsec->def_sid = oldsbsec->def_sid;
909         newsbsec->behavior = oldsbsec->behavior;
910
911         if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
912                 !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
913                 rc = security_fs_use(&selinux_state, newsb);
914                 if (rc)
915                         goto out;
916         }
917
918         if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
919                 newsbsec->behavior = SECURITY_FS_USE_NATIVE;
920                 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
921         }
922
923         if (set_context) {
924                 u32 sid = oldsbsec->mntpoint_sid;
925
926                 if (!set_fscontext)
927                         newsbsec->sid = sid;
928                 if (!set_rootcontext) {
929                         struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
930                         newisec->sid = sid;
931                 }
932                 newsbsec->mntpoint_sid = sid;
933         }
934         if (set_rootcontext) {
935                 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
936                 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
937
938                 newisec->sid = oldisec->sid;
939         }
940
941         sb_finish_set_opts(newsb);
942 out:
943         mutex_unlock(&newsbsec->lock);
944         return rc;
945 }
946
947 static int selinux_add_opt(int token, const char *s, void **mnt_opts)
948 {
949         struct selinux_mnt_opts *opts = *mnt_opts;
950
951         if (token == Opt_seclabel)      /* eaten and completely ignored */
952                 return 0;
953
954         if (!opts) {
955                 opts = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
956                 if (!opts)
957                         return -ENOMEM;
958                 *mnt_opts = opts;
959         }
960         if (!s)
961                 return -ENOMEM;
962         switch (token) {
963         case Opt_context:
964                 if (opts->context || opts->defcontext)
965                         goto Einval;
966                 opts->context = s;
967                 break;
968         case Opt_fscontext:
969                 if (opts->fscontext)
970                         goto Einval;
971                 opts->fscontext = s;
972                 break;
973         case Opt_rootcontext:
974                 if (opts->rootcontext)
975                         goto Einval;
976                 opts->rootcontext = s;
977                 break;
978         case Opt_defcontext:
979                 if (opts->context || opts->defcontext)
980                         goto Einval;
981                 opts->defcontext = s;
982                 break;
983         }
984         return 0;
985 Einval:
986         pr_warn(SEL_MOUNT_FAIL_MSG);
987         return -EINVAL;
988 }
989
990 static int selinux_add_mnt_opt(const char *option, const char *val, int len,
991                                void **mnt_opts)
992 {
993         int token = Opt_error;
994         int rc, i;
995
996         for (i = 0; i < ARRAY_SIZE(tokens); i++) {
997                 if (strcmp(option, tokens[i].name) == 0) {
998                         token = tokens[i].opt;
999                         break;
1000                 }
1001         }
1002
1003         if (token == Opt_error)
1004                 return -EINVAL;
1005
1006         if (token != Opt_seclabel) {
1007                 val = kmemdup_nul(val, len, GFP_KERNEL);
1008                 if (!val) {
1009                         rc = -ENOMEM;
1010                         goto free_opt;
1011                 }
1012         }
1013         rc = selinux_add_opt(token, val, mnt_opts);
1014         if (unlikely(rc)) {
1015                 kfree(val);
1016                 goto free_opt;
1017         }
1018         return rc;
1019
1020 free_opt:
1021         if (*mnt_opts) {
1022                 selinux_free_mnt_opts(*mnt_opts);
1023                 *mnt_opts = NULL;
1024         }
1025         return rc;
1026 }
1027
1028 static int show_sid(struct seq_file *m, u32 sid)
1029 {
1030         char *context = NULL;
1031         u32 len;
1032         int rc;
1033
1034         rc = security_sid_to_context(&selinux_state, sid,
1035                                              &context, &len);
1036         if (!rc) {
1037                 bool has_comma = context && strchr(context, ',');
1038
1039                 seq_putc(m, '=');
1040                 if (has_comma)
1041                         seq_putc(m, '\"');
1042                 seq_escape(m, context, "\"\n\\");
1043                 if (has_comma)
1044                         seq_putc(m, '\"');
1045         }
1046         kfree(context);
1047         return rc;
1048 }
1049
1050 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1051 {
1052         struct superblock_security_struct *sbsec = sb->s_security;
1053         int rc;
1054
1055         if (!(sbsec->flags & SE_SBINITIALIZED))
1056                 return 0;
1057
1058         if (!selinux_initialized(&selinux_state))
1059                 return 0;
1060
1061         if (sbsec->flags & FSCONTEXT_MNT) {
1062                 seq_putc(m, ',');
1063                 seq_puts(m, FSCONTEXT_STR);
1064                 rc = show_sid(m, sbsec->sid);
1065                 if (rc)
1066                         return rc;
1067         }
1068         if (sbsec->flags & CONTEXT_MNT) {
1069                 seq_putc(m, ',');
1070                 seq_puts(m, CONTEXT_STR);
1071                 rc = show_sid(m, sbsec->mntpoint_sid);
1072                 if (rc)
1073                         return rc;
1074         }
1075         if (sbsec->flags & DEFCONTEXT_MNT) {
1076                 seq_putc(m, ',');
1077                 seq_puts(m, DEFCONTEXT_STR);
1078                 rc = show_sid(m, sbsec->def_sid);
1079                 if (rc)
1080                         return rc;
1081         }
1082         if (sbsec->flags & ROOTCONTEXT_MNT) {
1083                 struct dentry *root = sbsec->sb->s_root;
1084                 struct inode_security_struct *isec = backing_inode_security(root);
1085                 seq_putc(m, ',');
1086                 seq_puts(m, ROOTCONTEXT_STR);
1087                 rc = show_sid(m, isec->sid);
1088                 if (rc)
1089                         return rc;
1090         }
1091         if (sbsec->flags & SBLABEL_MNT) {
1092                 seq_putc(m, ',');
1093                 seq_puts(m, SECLABEL_STR);
1094         }
1095         return 0;
1096 }
1097
1098 static inline u16 inode_mode_to_security_class(umode_t mode)
1099 {
1100         switch (mode & S_IFMT) {
1101         case S_IFSOCK:
1102                 return SECCLASS_SOCK_FILE;
1103         case S_IFLNK:
1104                 return SECCLASS_LNK_FILE;
1105         case S_IFREG:
1106                 return SECCLASS_FILE;
1107         case S_IFBLK:
1108                 return SECCLASS_BLK_FILE;
1109         case S_IFDIR:
1110                 return SECCLASS_DIR;
1111         case S_IFCHR:
1112                 return SECCLASS_CHR_FILE;
1113         case S_IFIFO:
1114                 return SECCLASS_FIFO_FILE;
1115
1116         }
1117
1118         return SECCLASS_FILE;
1119 }
1120
1121 static inline int default_protocol_stream(int protocol)
1122 {
1123         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1124 }
1125
1126 static inline int default_protocol_dgram(int protocol)
1127 {
1128         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1129 }
1130
1131 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1132 {
1133         int extsockclass = selinux_policycap_extsockclass();
1134
1135         switch (family) {
1136         case PF_UNIX:
1137                 switch (type) {
1138                 case SOCK_STREAM:
1139                 case SOCK_SEQPACKET:
1140                         return SECCLASS_UNIX_STREAM_SOCKET;
1141                 case SOCK_DGRAM:
1142                 case SOCK_RAW:
1143                         return SECCLASS_UNIX_DGRAM_SOCKET;
1144                 }
1145                 break;
1146         case PF_INET:
1147         case PF_INET6:
1148                 switch (type) {
1149                 case SOCK_STREAM:
1150                 case SOCK_SEQPACKET:
1151                         if (default_protocol_stream(protocol))
1152                                 return SECCLASS_TCP_SOCKET;
1153                         else if (extsockclass && protocol == IPPROTO_SCTP)
1154                                 return SECCLASS_SCTP_SOCKET;
1155                         else
1156                                 return SECCLASS_RAWIP_SOCKET;
1157                 case SOCK_DGRAM:
1158                         if (default_protocol_dgram(protocol))
1159                                 return SECCLASS_UDP_SOCKET;
1160                         else if (extsockclass && (protocol == IPPROTO_ICMP ||
1161                                                   protocol == IPPROTO_ICMPV6))
1162                                 return SECCLASS_ICMP_SOCKET;
1163                         else
1164                                 return SECCLASS_RAWIP_SOCKET;
1165                 case SOCK_DCCP:
1166                         return SECCLASS_DCCP_SOCKET;
1167                 default:
1168                         return SECCLASS_RAWIP_SOCKET;
1169                 }
1170                 break;
1171         case PF_NETLINK:
1172                 switch (protocol) {
1173                 case NETLINK_ROUTE:
1174                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1175                 case NETLINK_SOCK_DIAG:
1176                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1177                 case NETLINK_NFLOG:
1178                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1179                 case NETLINK_XFRM:
1180                         return SECCLASS_NETLINK_XFRM_SOCKET;
1181                 case NETLINK_SELINUX:
1182                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1183                 case NETLINK_ISCSI:
1184                         return SECCLASS_NETLINK_ISCSI_SOCKET;
1185                 case NETLINK_AUDIT:
1186                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1187                 case NETLINK_FIB_LOOKUP:
1188                         return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1189                 case NETLINK_CONNECTOR:
1190                         return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1191                 case NETLINK_NETFILTER:
1192                         return SECCLASS_NETLINK_NETFILTER_SOCKET;
1193                 case NETLINK_DNRTMSG:
1194                         return SECCLASS_NETLINK_DNRT_SOCKET;
1195                 case NETLINK_KOBJECT_UEVENT:
1196                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1197                 case NETLINK_GENERIC:
1198                         return SECCLASS_NETLINK_GENERIC_SOCKET;
1199                 case NETLINK_SCSITRANSPORT:
1200                         return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1201                 case NETLINK_RDMA:
1202                         return SECCLASS_NETLINK_RDMA_SOCKET;
1203                 case NETLINK_CRYPTO:
1204                         return SECCLASS_NETLINK_CRYPTO_SOCKET;
1205                 default:
1206                         return SECCLASS_NETLINK_SOCKET;
1207                 }
1208         case PF_PACKET:
1209                 return SECCLASS_PACKET_SOCKET;
1210         case PF_KEY:
1211                 return SECCLASS_KEY_SOCKET;
1212         case PF_APPLETALK:
1213                 return SECCLASS_APPLETALK_SOCKET;
1214         }
1215
1216         if (extsockclass) {
1217                 switch (family) {
1218                 case PF_AX25:
1219                         return SECCLASS_AX25_SOCKET;
1220                 case PF_IPX:
1221                         return SECCLASS_IPX_SOCKET;
1222                 case PF_NETROM:
1223                         return SECCLASS_NETROM_SOCKET;
1224                 case PF_ATMPVC:
1225                         return SECCLASS_ATMPVC_SOCKET;
1226                 case PF_X25:
1227                         return SECCLASS_X25_SOCKET;
1228                 case PF_ROSE:
1229                         return SECCLASS_ROSE_SOCKET;
1230                 case PF_DECnet:
1231                         return SECCLASS_DECNET_SOCKET;
1232                 case PF_ATMSVC:
1233                         return SECCLASS_ATMSVC_SOCKET;
1234                 case PF_RDS:
1235                         return SECCLASS_RDS_SOCKET;
1236                 case PF_IRDA:
1237                         return SECCLASS_IRDA_SOCKET;
1238                 case PF_PPPOX:
1239                         return SECCLASS_PPPOX_SOCKET;
1240                 case PF_LLC:
1241                         return SECCLASS_LLC_SOCKET;
1242                 case PF_CAN:
1243                         return SECCLASS_CAN_SOCKET;
1244                 case PF_TIPC:
1245                         return SECCLASS_TIPC_SOCKET;
1246                 case PF_BLUETOOTH:
1247                         return SECCLASS_BLUETOOTH_SOCKET;
1248                 case PF_IUCV:
1249                         return SECCLASS_IUCV_SOCKET;
1250                 case PF_RXRPC:
1251                         return SECCLASS_RXRPC_SOCKET;
1252                 case PF_ISDN:
1253                         return SECCLASS_ISDN_SOCKET;
1254                 case PF_PHONET:
1255                         return SECCLASS_PHONET_SOCKET;
1256                 case PF_IEEE802154:
1257                         return SECCLASS_IEEE802154_SOCKET;
1258                 case PF_CAIF:
1259                         return SECCLASS_CAIF_SOCKET;
1260                 case PF_ALG:
1261                         return SECCLASS_ALG_SOCKET;
1262                 case PF_NFC:
1263                         return SECCLASS_NFC_SOCKET;
1264                 case PF_VSOCK:
1265                         return SECCLASS_VSOCK_SOCKET;
1266                 case PF_KCM:
1267                         return SECCLASS_KCM_SOCKET;
1268                 case PF_QIPCRTR:
1269                         return SECCLASS_QIPCRTR_SOCKET;
1270                 case PF_SMC:
1271                         return SECCLASS_SMC_SOCKET;
1272                 case PF_XDP:
1273                         return SECCLASS_XDP_SOCKET;
1274 #if PF_MAX > 45
1275 #error New address family defined, please update this function.
1276 #endif
1277                 }
1278         }
1279
1280         return SECCLASS_SOCKET;
1281 }
1282
1283 static int selinux_genfs_get_sid(struct dentry *dentry,
1284                                  u16 tclass,
1285                                  u16 flags,
1286                                  u32 *sid)
1287 {
1288         int rc;
1289         struct super_block *sb = dentry->d_sb;
1290         char *buffer, *path;
1291
1292         buffer = (char *)__get_free_page(GFP_KERNEL);
1293         if (!buffer)
1294                 return -ENOMEM;
1295
1296         path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1297         if (IS_ERR(path))
1298                 rc = PTR_ERR(path);
1299         else {
1300                 if (flags & SE_SBPROC) {
1301                         /* each process gets a /proc/PID/ entry. Strip off the
1302                          * PID part to get a valid selinux labeling.
1303                          * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1304                         while (path[1] >= '0' && path[1] <= '9') {
1305                                 path[1] = '/';
1306                                 path++;
1307                         }
1308                 }
1309                 rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1310                                         path, tclass, sid);
1311                 if (rc == -ENOENT) {
1312                         /* No match in policy, mark as unlabeled. */
1313                         *sid = SECINITSID_UNLABELED;
1314                         rc = 0;
1315                 }
1316         }
1317         free_page((unsigned long)buffer);
1318         return rc;
1319 }
1320
1321 static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1322                                   u32 def_sid, u32 *sid)
1323 {
1324 #define INITCONTEXTLEN 255
1325         char *context;
1326         unsigned int len;
1327         int rc;
1328
1329         len = INITCONTEXTLEN;
1330         context = kmalloc(len + 1, GFP_NOFS);
1331         if (!context)
1332                 return -ENOMEM;
1333
1334         context[len] = '\0';
1335         rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1336         if (rc == -ERANGE) {
1337                 kfree(context);
1338
1339                 /* Need a larger buffer.  Query for the right size. */
1340                 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1341                 if (rc < 0)
1342                         return rc;
1343
1344                 len = rc;
1345                 context = kmalloc(len + 1, GFP_NOFS);
1346                 if (!context)
1347                         return -ENOMEM;
1348
1349                 context[len] = '\0';
1350                 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1351                                     context, len);
1352         }
1353         if (rc < 0) {
1354                 kfree(context);
1355                 if (rc != -ENODATA) {
1356                         pr_warn("SELinux: %s:  getxattr returned %d for dev=%s ino=%ld\n",
1357                                 __func__, -rc, inode->i_sb->s_id, inode->i_ino);
1358                         return rc;
1359                 }
1360                 *sid = def_sid;
1361                 return 0;
1362         }
1363
1364         rc = security_context_to_sid_default(&selinux_state, context, rc, sid,
1365                                              def_sid, GFP_NOFS);
1366         if (rc) {
1367                 char *dev = inode->i_sb->s_id;
1368                 unsigned long ino = inode->i_ino;
1369
1370                 if (rc == -EINVAL) {
1371                         pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s.  This indicates you may need to relabel the inode or the filesystem in question.\n",
1372                                               ino, dev, context);
1373                 } else {
1374                         pr_warn("SELinux: %s:  context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1375                                 __func__, context, -rc, dev, ino);
1376                 }
1377         }
1378         kfree(context);
1379         return 0;
1380 }
1381
1382 /* The inode's security attributes must be initialized before first use. */
1383 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1384 {
1385         struct superblock_security_struct *sbsec = NULL;
1386         struct inode_security_struct *isec = selinux_inode(inode);
1387         u32 task_sid, sid = 0;
1388         u16 sclass;
1389         struct dentry *dentry;
1390         int rc = 0;
1391
1392         if (isec->initialized == LABEL_INITIALIZED)
1393                 return 0;
1394
1395         spin_lock(&isec->lock);
1396         if (isec->initialized == LABEL_INITIALIZED)
1397                 goto out_unlock;
1398
1399         if (isec->sclass == SECCLASS_FILE)
1400                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1401
1402         sbsec = inode->i_sb->s_security;
1403         if (!(sbsec->flags & SE_SBINITIALIZED)) {
1404                 /* Defer initialization until selinux_complete_init,
1405                    after the initial policy is loaded and the security
1406                    server is ready to handle calls. */
1407                 spin_lock(&sbsec->isec_lock);
1408                 if (list_empty(&isec->list))
1409                         list_add(&isec->list, &sbsec->isec_head);
1410                 spin_unlock(&sbsec->isec_lock);
1411                 goto out_unlock;
1412         }
1413
1414         sclass = isec->sclass;
1415         task_sid = isec->task_sid;
1416         sid = isec->sid;
1417         isec->initialized = LABEL_PENDING;
1418         spin_unlock(&isec->lock);
1419
1420         switch (sbsec->behavior) {
1421         case SECURITY_FS_USE_NATIVE:
1422                 break;
1423         case SECURITY_FS_USE_XATTR:
1424                 if (!(inode->i_opflags & IOP_XATTR)) {
1425                         sid = sbsec->def_sid;
1426                         break;
1427                 }
1428                 /* Need a dentry, since the xattr API requires one.
1429                    Life would be simpler if we could just pass the inode. */
1430                 if (opt_dentry) {
1431                         /* Called from d_instantiate or d_splice_alias. */
1432                         dentry = dget(opt_dentry);
1433                 } else {
1434                         /*
1435                          * Called from selinux_complete_init, try to find a dentry.
1436                          * Some filesystems really want a connected one, so try
1437                          * that first.  We could split SECURITY_FS_USE_XATTR in
1438                          * two, depending upon that...
1439                          */
1440                         dentry = d_find_alias(inode);
1441                         if (!dentry)
1442                                 dentry = d_find_any_alias(inode);
1443                 }
1444                 if (!dentry) {
1445                         /*
1446                          * this is can be hit on boot when a file is accessed
1447                          * before the policy is loaded.  When we load policy we
1448                          * may find inodes that have no dentry on the
1449                          * sbsec->isec_head list.  No reason to complain as these
1450                          * will get fixed up the next time we go through
1451                          * inode_doinit with a dentry, before these inodes could
1452                          * be used again by userspace.
1453                          */
1454                         goto out;
1455                 }
1456
1457                 rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1458                                             &sid);
1459                 dput(dentry);
1460                 if (rc)
1461                         goto out;
1462                 break;
1463         case SECURITY_FS_USE_TASK:
1464                 sid = task_sid;
1465                 break;
1466         case SECURITY_FS_USE_TRANS:
1467                 /* Default to the fs SID. */
1468                 sid = sbsec->sid;
1469
1470                 /* Try to obtain a transition SID. */
1471                 rc = security_transition_sid(&selinux_state, task_sid, sid,
1472                                              sclass, NULL, &sid);
1473                 if (rc)
1474                         goto out;
1475                 break;
1476         case SECURITY_FS_USE_MNTPOINT:
1477                 sid = sbsec->mntpoint_sid;
1478                 break;
1479         default:
1480                 /* Default to the fs superblock SID. */
1481                 sid = sbsec->sid;
1482
1483                 if ((sbsec->flags & SE_SBGENFS) &&
1484                      (!S_ISLNK(inode->i_mode) ||
1485                       selinux_policycap_genfs_seclabel_symlinks())) {
1486                         /* We must have a dentry to determine the label on
1487                          * procfs inodes */
1488                         if (opt_dentry) {
1489                                 /* Called from d_instantiate or
1490                                  * d_splice_alias. */
1491                                 dentry = dget(opt_dentry);
1492                         } else {
1493                                 /* Called from selinux_complete_init, try to
1494                                  * find a dentry.  Some filesystems really want
1495                                  * a connected one, so try that first.
1496                                  */
1497                                 dentry = d_find_alias(inode);
1498                                 if (!dentry)
1499                                         dentry = d_find_any_alias(inode);
1500                         }
1501                         /*
1502                          * This can be hit on boot when a file is accessed
1503                          * before the policy is loaded.  When we load policy we
1504                          * may find inodes that have no dentry on the
1505                          * sbsec->isec_head list.  No reason to complain as
1506                          * these will get fixed up the next time we go through
1507                          * inode_doinit() with a dentry, before these inodes
1508                          * could be used again by userspace.
1509                          */
1510                         if (!dentry)
1511                                 goto out;
1512                         rc = selinux_genfs_get_sid(dentry, sclass,
1513                                                    sbsec->flags, &sid);
1514                         if (rc) {
1515                                 dput(dentry);
1516                                 goto out;
1517                         }
1518
1519                         if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1520                             (inode->i_opflags & IOP_XATTR)) {
1521                                 rc = inode_doinit_use_xattr(inode, dentry,
1522                                                             sid, &sid);
1523                                 if (rc) {
1524                                         dput(dentry);
1525                                         goto out;
1526                                 }
1527                         }
1528                         dput(dentry);
1529                 }
1530                 break;
1531         }
1532
1533 out:
1534         spin_lock(&isec->lock);
1535         if (isec->initialized == LABEL_PENDING) {
1536                 if (!sid || rc) {
1537                         isec->initialized = LABEL_INVALID;
1538                         goto out_unlock;
1539                 }
1540
1541                 isec->initialized = LABEL_INITIALIZED;
1542                 isec->sid = sid;
1543         }
1544
1545 out_unlock:
1546         spin_unlock(&isec->lock);
1547         return rc;
1548 }
1549
1550 /* Convert a Linux signal to an access vector. */
1551 static inline u32 signal_to_av(int sig)
1552 {
1553         u32 perm = 0;
1554
1555         switch (sig) {
1556         case SIGCHLD:
1557                 /* Commonly granted from child to parent. */
1558                 perm = PROCESS__SIGCHLD;
1559                 break;
1560         case SIGKILL:
1561                 /* Cannot be caught or ignored */
1562                 perm = PROCESS__SIGKILL;
1563                 break;
1564         case SIGSTOP:
1565                 /* Cannot be caught or ignored */
1566                 perm = PROCESS__SIGSTOP;
1567                 break;
1568         default:
1569                 /* All other signals. */
1570                 perm = PROCESS__SIGNAL;
1571                 break;
1572         }
1573
1574         return perm;
1575 }
1576
1577 #if CAP_LAST_CAP > 63
1578 #error Fix SELinux to handle capabilities > 63.
1579 #endif
1580
1581 /* Check whether a task is allowed to use a capability. */
1582 static int cred_has_capability(const struct cred *cred,
1583                                int cap, unsigned int opts, bool initns)
1584 {
1585         struct common_audit_data ad;
1586         struct av_decision avd;
1587         u16 sclass;
1588         u32 sid = cred_sid(cred);
1589         u32 av = CAP_TO_MASK(cap);
1590         int rc;
1591
1592         ad.type = LSM_AUDIT_DATA_CAP;
1593         ad.u.cap = cap;
1594
1595         switch (CAP_TO_INDEX(cap)) {
1596         case 0:
1597                 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1598                 break;
1599         case 1:
1600                 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1601                 break;
1602         default:
1603                 pr_err("SELinux:  out of range capability %d\n", cap);
1604                 BUG();
1605                 return -EINVAL;
1606         }
1607
1608         rc = avc_has_perm_noaudit(&selinux_state,
1609                                   sid, sid, sclass, av, 0, &avd);
1610         if (!(opts & CAP_OPT_NOAUDIT)) {
1611                 int rc2 = avc_audit(&selinux_state,
1612                                     sid, sid, sclass, av, &avd, rc, &ad, 0);
1613                 if (rc2)
1614                         return rc2;
1615         }
1616         return rc;
1617 }
1618
1619 /* Check whether a task has a particular permission to an inode.
1620    The 'adp' parameter is optional and allows other audit
1621    data to be passed (e.g. the dentry). */
1622 static int inode_has_perm(const struct cred *cred,
1623                           struct inode *inode,
1624                           u32 perms,
1625                           struct common_audit_data *adp)
1626 {
1627         struct inode_security_struct *isec;
1628         u32 sid;
1629
1630         validate_creds(cred);
1631
1632         if (unlikely(IS_PRIVATE(inode)))
1633                 return 0;
1634
1635         sid = cred_sid(cred);
1636         isec = selinux_inode(inode);
1637
1638         return avc_has_perm(&selinux_state,
1639                             sid, isec->sid, isec->sclass, perms, adp);
1640 }
1641
1642 /* Same as inode_has_perm, but pass explicit audit data containing
1643    the dentry to help the auditing code to more easily generate the
1644    pathname if needed. */
1645 static inline int dentry_has_perm(const struct cred *cred,
1646                                   struct dentry *dentry,
1647                                   u32 av)
1648 {
1649         struct inode *inode = d_backing_inode(dentry);
1650         struct common_audit_data ad;
1651
1652         ad.type = LSM_AUDIT_DATA_DENTRY;
1653         ad.u.dentry = dentry;
1654         __inode_security_revalidate(inode, dentry, true);
1655         return inode_has_perm(cred, inode, av, &ad);
1656 }
1657
1658 /* Same as inode_has_perm, but pass explicit audit data containing
1659    the path to help the auditing code to more easily generate the
1660    pathname if needed. */
1661 static inline int path_has_perm(const struct cred *cred,
1662                                 const struct path *path,
1663                                 u32 av)
1664 {
1665         struct inode *inode = d_backing_inode(path->dentry);
1666         struct common_audit_data ad;
1667
1668         ad.type = LSM_AUDIT_DATA_PATH;
1669         ad.u.path = *path;
1670         __inode_security_revalidate(inode, path->dentry, true);
1671         return inode_has_perm(cred, inode, av, &ad);
1672 }
1673
1674 /* Same as path_has_perm, but uses the inode from the file struct. */
1675 static inline int file_path_has_perm(const struct cred *cred,
1676                                      struct file *file,
1677                                      u32 av)
1678 {
1679         struct common_audit_data ad;
1680
1681         ad.type = LSM_AUDIT_DATA_FILE;
1682         ad.u.file = file;
1683         return inode_has_perm(cred, file_inode(file), av, &ad);
1684 }
1685
1686 #ifdef CONFIG_BPF_SYSCALL
1687 static int bpf_fd_pass(struct file *file, u32 sid);
1688 #endif
1689
1690 /* Check whether a task can use an open file descriptor to
1691    access an inode in a given way.  Check access to the
1692    descriptor itself, and then use dentry_has_perm to
1693    check a particular permission to the file.
1694    Access to the descriptor is implicitly granted if it
1695    has the same SID as the process.  If av is zero, then
1696    access to the file is not checked, e.g. for cases
1697    where only the descriptor is affected like seek. */
1698 static int file_has_perm(const struct cred *cred,
1699                          struct file *file,
1700                          u32 av)
1701 {
1702         struct file_security_struct *fsec = selinux_file(file);
1703         struct inode *inode = file_inode(file);
1704         struct common_audit_data ad;
1705         u32 sid = cred_sid(cred);
1706         int rc;
1707
1708         ad.type = LSM_AUDIT_DATA_FILE;
1709         ad.u.file = file;
1710
1711         if (sid != fsec->sid) {
1712                 rc = avc_has_perm(&selinux_state,
1713                                   sid, fsec->sid,
1714                                   SECCLASS_FD,
1715                                   FD__USE,
1716                                   &ad);
1717                 if (rc)
1718                         goto out;
1719         }
1720
1721 #ifdef CONFIG_BPF_SYSCALL
1722         rc = bpf_fd_pass(file, cred_sid(cred));
1723         if (rc)
1724                 return rc;
1725 #endif
1726
1727         /* av is zero if only checking access to the descriptor. */
1728         rc = 0;
1729         if (av)
1730                 rc = inode_has_perm(cred, inode, av, &ad);
1731
1732 out:
1733         return rc;
1734 }
1735
1736 /*
1737  * Determine the label for an inode that might be unioned.
1738  */
1739 static int
1740 selinux_determine_inode_label(const struct task_security_struct *tsec,
1741                                  struct inode *dir,
1742                                  const struct qstr *name, u16 tclass,
1743                                  u32 *_new_isid)
1744 {
1745         const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1746
1747         if ((sbsec->flags & SE_SBINITIALIZED) &&
1748             (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1749                 *_new_isid = sbsec->mntpoint_sid;
1750         } else if ((sbsec->flags & SBLABEL_MNT) &&
1751                    tsec->create_sid) {
1752                 *_new_isid = tsec->create_sid;
1753         } else {
1754                 const struct inode_security_struct *dsec = inode_security(dir);
1755                 return security_transition_sid(&selinux_state, tsec->sid,
1756                                                dsec->sid, tclass,
1757                                                name, _new_isid);
1758         }
1759
1760         return 0;
1761 }
1762
1763 /* Check whether a task can create a file. */
1764 static int may_create(struct inode *dir,
1765                       struct dentry *dentry,
1766                       u16 tclass)
1767 {
1768         const struct task_security_struct *tsec = selinux_cred(current_cred());
1769         struct inode_security_struct *dsec;
1770         struct superblock_security_struct *sbsec;
1771         u32 sid, newsid;
1772         struct common_audit_data ad;
1773         int rc;
1774
1775         dsec = inode_security(dir);
1776         sbsec = dir->i_sb->s_security;
1777
1778         sid = tsec->sid;
1779
1780         ad.type = LSM_AUDIT_DATA_DENTRY;
1781         ad.u.dentry = dentry;
1782
1783         rc = avc_has_perm(&selinux_state,
1784                           sid, dsec->sid, SECCLASS_DIR,
1785                           DIR__ADD_NAME | DIR__SEARCH,
1786                           &ad);
1787         if (rc)
1788                 return rc;
1789
1790         rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1791                                            &newsid);
1792         if (rc)
1793                 return rc;
1794
1795         rc = avc_has_perm(&selinux_state,
1796                           sid, newsid, tclass, FILE__CREATE, &ad);
1797         if (rc)
1798                 return rc;
1799
1800         return avc_has_perm(&selinux_state,
1801                             newsid, sbsec->sid,
1802                             SECCLASS_FILESYSTEM,
1803                             FILESYSTEM__ASSOCIATE, &ad);
1804 }
1805
1806 #define MAY_LINK        0
1807 #define MAY_UNLINK      1
1808 #define MAY_RMDIR       2
1809
1810 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1811 static int may_link(struct inode *dir,
1812                     struct dentry *dentry,
1813                     int kind)
1814
1815 {
1816         struct inode_security_struct *dsec, *isec;
1817         struct common_audit_data ad;
1818         u32 sid = current_sid();
1819         u32 av;
1820         int rc;
1821
1822         dsec = inode_security(dir);
1823         isec = backing_inode_security(dentry);
1824
1825         ad.type = LSM_AUDIT_DATA_DENTRY;
1826         ad.u.dentry = dentry;
1827
1828         av = DIR__SEARCH;
1829         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1830         rc = avc_has_perm(&selinux_state,
1831                           sid, dsec->sid, SECCLASS_DIR, av, &ad);
1832         if (rc)
1833                 return rc;
1834
1835         switch (kind) {
1836         case MAY_LINK:
1837                 av = FILE__LINK;
1838                 break;
1839         case MAY_UNLINK:
1840                 av = FILE__UNLINK;
1841                 break;
1842         case MAY_RMDIR:
1843                 av = DIR__RMDIR;
1844                 break;
1845         default:
1846                 pr_warn("SELinux: %s:  unrecognized kind %d\n",
1847                         __func__, kind);
1848                 return 0;
1849         }
1850
1851         rc = avc_has_perm(&selinux_state,
1852                           sid, isec->sid, isec->sclass, av, &ad);
1853         return rc;
1854 }
1855
1856 static inline int may_rename(struct inode *old_dir,
1857                              struct dentry *old_dentry,
1858                              struct inode *new_dir,
1859                              struct dentry *new_dentry)
1860 {
1861         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1862         struct common_audit_data ad;
1863         u32 sid = current_sid();
1864         u32 av;
1865         int old_is_dir, new_is_dir;
1866         int rc;
1867
1868         old_dsec = inode_security(old_dir);
1869         old_isec = backing_inode_security(old_dentry);
1870         old_is_dir = d_is_dir(old_dentry);
1871         new_dsec = inode_security(new_dir);
1872
1873         ad.type = LSM_AUDIT_DATA_DENTRY;
1874
1875         ad.u.dentry = old_dentry;
1876         rc = avc_has_perm(&selinux_state,
1877                           sid, old_dsec->sid, SECCLASS_DIR,
1878                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1879         if (rc)
1880                 return rc;
1881         rc = avc_has_perm(&selinux_state,
1882                           sid, old_isec->sid,
1883                           old_isec->sclass, FILE__RENAME, &ad);
1884         if (rc)
1885                 return rc;
1886         if (old_is_dir && new_dir != old_dir) {
1887                 rc = avc_has_perm(&selinux_state,
1888                                   sid, old_isec->sid,
1889                                   old_isec->sclass, DIR__REPARENT, &ad);
1890                 if (rc)
1891                         return rc;
1892         }
1893
1894         ad.u.dentry = new_dentry;
1895         av = DIR__ADD_NAME | DIR__SEARCH;
1896         if (d_is_positive(new_dentry))
1897                 av |= DIR__REMOVE_NAME;
1898         rc = avc_has_perm(&selinux_state,
1899                           sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1900         if (rc)
1901                 return rc;
1902         if (d_is_positive(new_dentry)) {
1903                 new_isec = backing_inode_security(new_dentry);
1904                 new_is_dir = d_is_dir(new_dentry);
1905                 rc = avc_has_perm(&selinux_state,
1906                                   sid, new_isec->sid,
1907                                   new_isec->sclass,
1908                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1909                 if (rc)
1910                         return rc;
1911         }
1912
1913         return 0;
1914 }
1915
1916 /* Check whether a task can perform a filesystem operation. */
1917 static int superblock_has_perm(const struct cred *cred,
1918                                struct super_block *sb,
1919                                u32 perms,
1920                                struct common_audit_data *ad)
1921 {
1922         struct superblock_security_struct *sbsec;
1923         u32 sid = cred_sid(cred);
1924
1925         sbsec = sb->s_security;
1926         return avc_has_perm(&selinux_state,
1927                             sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1928 }
1929
1930 /* Convert a Linux mode and permission mask to an access vector. */
1931 static inline u32 file_mask_to_av(int mode, int mask)
1932 {
1933         u32 av = 0;
1934
1935         if (!S_ISDIR(mode)) {
1936                 if (mask & MAY_EXEC)
1937                         av |= FILE__EXECUTE;
1938                 if (mask & MAY_READ)
1939                         av |= FILE__READ;
1940
1941                 if (mask & MAY_APPEND)
1942                         av |= FILE__APPEND;
1943                 else if (mask & MAY_WRITE)
1944                         av |= FILE__WRITE;
1945
1946         } else {
1947                 if (mask & MAY_EXEC)
1948                         av |= DIR__SEARCH;
1949                 if (mask & MAY_WRITE)
1950                         av |= DIR__WRITE;
1951                 if (mask & MAY_READ)
1952                         av |= DIR__READ;
1953         }
1954
1955         return av;
1956 }
1957
1958 /* Convert a Linux file to an access vector. */
1959 static inline u32 file_to_av(struct file *file)
1960 {
1961         u32 av = 0;
1962
1963         if (file->f_mode & FMODE_READ)
1964                 av |= FILE__READ;
1965         if (file->f_mode & FMODE_WRITE) {
1966                 if (file->f_flags & O_APPEND)
1967                         av |= FILE__APPEND;
1968                 else
1969                         av |= FILE__WRITE;
1970         }
1971         if (!av) {
1972                 /*
1973                  * Special file opened with flags 3 for ioctl-only use.
1974                  */
1975                 av = FILE__IOCTL;
1976         }
1977
1978         return av;
1979 }
1980
1981 /*
1982  * Convert a file to an access vector and include the correct open
1983  * open permission.
1984  */
1985 static inline u32 open_file_to_av(struct file *file)
1986 {
1987         u32 av = file_to_av(file);
1988         struct inode *inode = file_inode(file);
1989
1990         if (selinux_policycap_openperm() &&
1991             inode->i_sb->s_magic != SOCKFS_MAGIC)
1992                 av |= FILE__OPEN;
1993
1994         return av;
1995 }
1996
1997 /* Hook functions begin here. */
1998
1999 static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2000 {
2001         u32 mysid = current_sid();
2002         u32 mgrsid = task_sid(mgr);
2003
2004         return avc_has_perm(&selinux_state,
2005                             mysid, mgrsid, SECCLASS_BINDER,
2006                             BINDER__SET_CONTEXT_MGR, NULL);
2007 }
2008
2009 static int selinux_binder_transaction(struct task_struct *from,
2010                                       struct task_struct *to)
2011 {
2012         u32 mysid = current_sid();
2013         u32 fromsid = task_sid(from);
2014         u32 tosid = task_sid(to);
2015         int rc;
2016
2017         if (mysid != fromsid) {
2018                 rc = avc_has_perm(&selinux_state,
2019                                   mysid, fromsid, SECCLASS_BINDER,
2020                                   BINDER__IMPERSONATE, NULL);
2021                 if (rc)
2022                         return rc;
2023         }
2024
2025         return avc_has_perm(&selinux_state,
2026                             fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2027                             NULL);
2028 }
2029
2030 static int selinux_binder_transfer_binder(struct task_struct *from,
2031                                           struct task_struct *to)
2032 {
2033         u32 fromsid = task_sid(from);
2034         u32 tosid = task_sid(to);
2035
2036         return avc_has_perm(&selinux_state,
2037                             fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2038                             NULL);
2039 }
2040
2041 static int selinux_binder_transfer_file(struct task_struct *from,
2042                                         struct task_struct *to,
2043                                         struct file *file)
2044 {
2045         u32 sid = task_sid(to);
2046         struct file_security_struct *fsec = selinux_file(file);
2047         struct dentry *dentry = file->f_path.dentry;
2048         struct inode_security_struct *isec;
2049         struct common_audit_data ad;
2050         int rc;
2051
2052         ad.type = LSM_AUDIT_DATA_PATH;
2053         ad.u.path = file->f_path;
2054
2055         if (sid != fsec->sid) {
2056                 rc = avc_has_perm(&selinux_state,
2057                                   sid, fsec->sid,
2058                                   SECCLASS_FD,
2059                                   FD__USE,
2060                                   &ad);
2061                 if (rc)
2062                         return rc;
2063         }
2064
2065 #ifdef CONFIG_BPF_SYSCALL
2066         rc = bpf_fd_pass(file, sid);
2067         if (rc)
2068                 return rc;
2069 #endif
2070
2071         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2072                 return 0;
2073
2074         isec = backing_inode_security(dentry);
2075         return avc_has_perm(&selinux_state,
2076                             sid, isec->sid, isec->sclass, file_to_av(file),
2077                             &ad);
2078 }
2079
2080 static int selinux_ptrace_access_check(struct task_struct *child,
2081                                      unsigned int mode)
2082 {
2083         u32 sid = current_sid();
2084         u32 csid = task_sid(child);
2085
2086         if (mode & PTRACE_MODE_READ)
2087                 return avc_has_perm(&selinux_state,
2088                                     sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2089
2090         return avc_has_perm(&selinux_state,
2091                             sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2092 }
2093
2094 static int selinux_ptrace_traceme(struct task_struct *parent)
2095 {
2096         return avc_has_perm(&selinux_state,
2097                             task_sid(parent), current_sid(), SECCLASS_PROCESS,
2098                             PROCESS__PTRACE, NULL);
2099 }
2100
2101 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2102                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
2103 {
2104         return avc_has_perm(&selinux_state,
2105                             current_sid(), task_sid(target), SECCLASS_PROCESS,
2106                             PROCESS__GETCAP, NULL);
2107 }
2108
2109 static int selinux_capset(struct cred *new, const struct cred *old,
2110                           const kernel_cap_t *effective,
2111                           const kernel_cap_t *inheritable,
2112                           const kernel_cap_t *permitted)
2113 {
2114         return avc_has_perm(&selinux_state,
2115                             cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2116                             PROCESS__SETCAP, NULL);
2117 }
2118
2119 /*
2120  * (This comment used to live with the selinux_task_setuid hook,
2121  * which was removed).
2122  *
2123  * Since setuid only affects the current process, and since the SELinux
2124  * controls are not based on the Linux identity attributes, SELinux does not
2125  * need to control this operation.  However, SELinux does control the use of
2126  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2127  */
2128
2129 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2130                            int cap, unsigned int opts)
2131 {
2132         return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2133 }
2134
2135 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2136 {
2137         const struct cred *cred = current_cred();
2138         int rc = 0;
2139
2140         if (!sb)
2141                 return 0;
2142
2143         switch (cmds) {
2144         case Q_SYNC:
2145         case Q_QUOTAON:
2146         case Q_QUOTAOFF:
2147         case Q_SETINFO:
2148         case Q_SETQUOTA:
2149         case Q_XQUOTAOFF:
2150         case Q_XQUOTAON:
2151         case Q_XSETQLIM:
2152                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2153                 break;
2154         case Q_GETFMT:
2155         case Q_GETINFO:
2156         case Q_GETQUOTA:
2157         case Q_XGETQUOTA:
2158         case Q_XGETQSTAT:
2159         case Q_XGETQSTATV:
2160         case Q_XGETNEXTQUOTA:
2161                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2162                 break;
2163         default:
2164                 rc = 0;  /* let the kernel handle invalid cmds */
2165                 break;
2166         }
2167         return rc;
2168 }
2169
2170 static int selinux_quota_on(struct dentry *dentry)
2171 {
2172         const struct cred *cred = current_cred();
2173
2174         return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2175 }
2176
2177 static int selinux_syslog(int type)
2178 {
2179         switch (type) {
2180         case SYSLOG_ACTION_READ_ALL:    /* Read last kernel messages */
2181         case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2182                 return avc_has_perm(&selinux_state,
2183                                     current_sid(), SECINITSID_KERNEL,
2184                                     SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2185         case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2186         case SYSLOG_ACTION_CONSOLE_ON:  /* Enable logging to console */
2187         /* Set level of messages printed to console */
2188         case SYSLOG_ACTION_CONSOLE_LEVEL:
2189                 return avc_has_perm(&selinux_state,
2190                                     current_sid(), SECINITSID_KERNEL,
2191                                     SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2192                                     NULL);
2193         }
2194         /* All other syslog types */
2195         return avc_has_perm(&selinux_state,
2196                             current_sid(), SECINITSID_KERNEL,
2197                             SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2198 }
2199
2200 /*
2201  * Check that a process has enough memory to allocate a new virtual
2202  * mapping. 0 means there is enough memory for the allocation to
2203  * succeed and -ENOMEM implies there is not.
2204  *
2205  * Do not audit the selinux permission check, as this is applied to all
2206  * processes that allocate mappings.
2207  */
2208 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2209 {
2210         int rc, cap_sys_admin = 0;
2211
2212         rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2213                                  CAP_OPT_NOAUDIT, true);
2214         if (rc == 0)
2215                 cap_sys_admin = 1;
2216
2217         return cap_sys_admin;
2218 }
2219
2220 /* binprm security operations */
2221
2222 static u32 ptrace_parent_sid(void)
2223 {
2224         u32 sid = 0;
2225         struct task_struct *tracer;
2226
2227         rcu_read_lock();
2228         tracer = ptrace_parent(current);
2229         if (tracer)
2230                 sid = task_sid(tracer);
2231         rcu_read_unlock();
2232
2233         return sid;
2234 }
2235
2236 static int check_nnp_nosuid(const struct linux_binprm *bprm,
2237                             const struct task_security_struct *old_tsec,
2238                             const struct task_security_struct *new_tsec)
2239 {
2240         int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2241         int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2242         int rc;
2243         u32 av;
2244
2245         if (!nnp && !nosuid)
2246                 return 0; /* neither NNP nor nosuid */
2247
2248         if (new_tsec->sid == old_tsec->sid)
2249                 return 0; /* No change in credentials */
2250
2251         /*
2252          * If the policy enables the nnp_nosuid_transition policy capability,
2253          * then we permit transitions under NNP or nosuid if the
2254          * policy allows the corresponding permission between
2255          * the old and new contexts.
2256          */
2257         if (selinux_policycap_nnp_nosuid_transition()) {
2258                 av = 0;
2259                 if (nnp)
2260                         av |= PROCESS2__NNP_TRANSITION;
2261                 if (nosuid)
2262                         av |= PROCESS2__NOSUID_TRANSITION;
2263                 rc = avc_has_perm(&selinux_state,
2264                                   old_tsec->sid, new_tsec->sid,
2265                                   SECCLASS_PROCESS2, av, NULL);
2266                 if (!rc)
2267                         return 0;
2268         }
2269
2270         /*
2271          * We also permit NNP or nosuid transitions to bounded SIDs,
2272          * i.e. SIDs that are guaranteed to only be allowed a subset
2273          * of the permissions of the current SID.
2274          */
2275         rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2276                                          new_tsec->sid);
2277         if (!rc)
2278                 return 0;
2279
2280         /*
2281          * On failure, preserve the errno values for NNP vs nosuid.
2282          * NNP:  Operation not permitted for caller.
2283          * nosuid:  Permission denied to file.
2284          */
2285         if (nnp)
2286                 return -EPERM;
2287         return -EACCES;
2288 }
2289
2290 static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2291 {
2292         const struct task_security_struct *old_tsec;
2293         struct task_security_struct *new_tsec;
2294         struct inode_security_struct *isec;
2295         struct common_audit_data ad;
2296         struct inode *inode = file_inode(bprm->file);
2297         int rc;
2298
2299         /* SELinux context only depends on initial program or script and not
2300          * the script interpreter */
2301
2302         old_tsec = selinux_cred(current_cred());
2303         new_tsec = selinux_cred(bprm->cred);
2304         isec = inode_security(inode);
2305
2306         /* Default to the current task SID. */
2307         new_tsec->sid = old_tsec->sid;
2308         new_tsec->osid = old_tsec->sid;
2309
2310         /* Reset fs, key, and sock SIDs on execve. */
2311         new_tsec->create_sid = 0;
2312         new_tsec->keycreate_sid = 0;
2313         new_tsec->sockcreate_sid = 0;
2314
2315         if (old_tsec->exec_sid) {
2316                 new_tsec->sid = old_tsec->exec_sid;
2317                 /* Reset exec SID on execve. */
2318                 new_tsec->exec_sid = 0;
2319
2320                 /* Fail on NNP or nosuid if not an allowed transition. */
2321                 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2322                 if (rc)
2323                         return rc;
2324         } else {
2325                 /* Check for a default transition on this program. */
2326                 rc = security_transition_sid(&selinux_state, old_tsec->sid,
2327                                              isec->sid, SECCLASS_PROCESS, NULL,
2328                                              &new_tsec->sid);
2329                 if (rc)
2330                         return rc;
2331
2332                 /*
2333                  * Fallback to old SID on NNP or nosuid if not an allowed
2334                  * transition.
2335                  */
2336                 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2337                 if (rc)
2338                         new_tsec->sid = old_tsec->sid;
2339         }
2340
2341         ad.type = LSM_AUDIT_DATA_FILE;
2342         ad.u.file = bprm->file;
2343
2344         if (new_tsec->sid == old_tsec->sid) {
2345                 rc = avc_has_perm(&selinux_state,
2346                                   old_tsec->sid, isec->sid,
2347                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2348                 if (rc)
2349                         return rc;
2350         } else {
2351                 /* Check permissions for the transition. */
2352                 rc = avc_has_perm(&selinux_state,
2353                                   old_tsec->sid, new_tsec->sid,
2354                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2355                 if (rc)
2356                         return rc;
2357
2358                 rc = avc_has_perm(&selinux_state,
2359                                   new_tsec->sid, isec->sid,
2360                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2361                 if (rc)
2362                         return rc;
2363
2364                 /* Check for shared state */
2365                 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2366                         rc = avc_has_perm(&selinux_state,
2367                                           old_tsec->sid, new_tsec->sid,
2368                                           SECCLASS_PROCESS, PROCESS__SHARE,
2369                                           NULL);
2370                         if (rc)
2371                                 return -EPERM;
2372                 }
2373
2374                 /* Make sure that anyone attempting to ptrace over a task that
2375                  * changes its SID has the appropriate permit */
2376                 if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2377                         u32 ptsid = ptrace_parent_sid();
2378                         if (ptsid != 0) {
2379                                 rc = avc_has_perm(&selinux_state,
2380                                                   ptsid, new_tsec->sid,
2381                                                   SECCLASS_PROCESS,
2382                                                   PROCESS__PTRACE, NULL);
2383                                 if (rc)
2384                                         return -EPERM;
2385                         }
2386                 }
2387
2388                 /* Clear any possibly unsafe personality bits on exec: */
2389                 bprm->per_clear |= PER_CLEAR_ON_SETID;
2390
2391                 /* Enable secure mode for SIDs transitions unless
2392                    the noatsecure permission is granted between
2393                    the two SIDs, i.e. ahp returns 0. */
2394                 rc = avc_has_perm(&selinux_state,
2395                                   old_tsec->sid, new_tsec->sid,
2396                                   SECCLASS_PROCESS, PROCESS__NOATSECURE,
2397                                   NULL);
2398                 bprm->secureexec |= !!rc;
2399         }
2400
2401         return 0;
2402 }
2403
2404 static int match_file(const void *p, struct file *file, unsigned fd)
2405 {
2406         return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2407 }
2408
2409 /* Derived from fs/exec.c:flush_old_files. */
2410 static inline void flush_unauthorized_files(const struct cred *cred,
2411                                             struct files_struct *files)
2412 {
2413         struct file *file, *devnull = NULL;
2414         struct tty_struct *tty;
2415         int drop_tty = 0;
2416         unsigned n;
2417
2418         tty = get_current_tty();
2419         if (tty) {
2420                 spin_lock(&tty->files_lock);
2421                 if (!list_empty(&tty->tty_files)) {
2422                         struct tty_file_private *file_priv;
2423
2424                         /* Revalidate access to controlling tty.
2425                            Use file_path_has_perm on the tty path directly
2426                            rather than using file_has_perm, as this particular
2427                            open file may belong to another process and we are
2428                            only interested in the inode-based check here. */
2429                         file_priv = list_first_entry(&tty->tty_files,
2430                                                 struct tty_file_private, list);
2431                         file = file_priv->file;
2432                         if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2433                                 drop_tty = 1;
2434                 }
2435                 spin_unlock(&tty->files_lock);
2436                 tty_kref_put(tty);
2437         }
2438         /* Reset controlling tty. */
2439         if (drop_tty)
2440                 no_tty();
2441
2442         /* Revalidate access to inherited open files. */
2443         n = iterate_fd(files, 0, match_file, cred);
2444         if (!n) /* none found? */
2445                 return;
2446
2447         devnull = dentry_open(&selinux_null, O_RDWR, cred);
2448         if (IS_ERR(devnull))
2449                 devnull = NULL;
2450         /* replace all the matching ones with this */
2451         do {
2452                 replace_fd(n - 1, devnull, 0);
2453         } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2454         if (devnull)
2455                 fput(devnull);
2456 }
2457
2458 /*
2459  * Prepare a process for imminent new credential changes due to exec
2460  */
2461 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2462 {
2463         struct task_security_struct *new_tsec;
2464         struct rlimit *rlim, *initrlim;
2465         int rc, i;
2466
2467         new_tsec = selinux_cred(bprm->cred);
2468         if (new_tsec->sid == new_tsec->osid)
2469                 return;
2470
2471         /* Close files for which the new task SID is not authorized. */
2472         flush_unauthorized_files(bprm->cred, current->files);
2473
2474         /* Always clear parent death signal on SID transitions. */
2475         current->pdeath_signal = 0;
2476
2477         /* Check whether the new SID can inherit resource limits from the old
2478          * SID.  If not, reset all soft limits to the lower of the current
2479          * task's hard limit and the init task's soft limit.
2480          *
2481          * Note that the setting of hard limits (even to lower them) can be
2482          * controlled by the setrlimit check.  The inclusion of the init task's
2483          * soft limit into the computation is to avoid resetting soft limits
2484          * higher than the default soft limit for cases where the default is
2485          * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2486          */
2487         rc = avc_has_perm(&selinux_state,
2488                           new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2489                           PROCESS__RLIMITINH, NULL);
2490         if (rc) {
2491                 /* protect against do_prlimit() */
2492                 task_lock(current);
2493                 for (i = 0; i < RLIM_NLIMITS; i++) {
2494                         rlim = current->signal->rlim + i;
2495                         initrlim = init_task.signal->rlim + i;
2496                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2497                 }
2498                 task_unlock(current);
2499                 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2500                         update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2501         }
2502 }
2503
2504 /*
2505  * Clean up the process immediately after the installation of new credentials
2506  * due to exec
2507  */
2508 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2509 {
2510         const struct task_security_struct *tsec = selinux_cred(current_cred());
2511         u32 osid, sid;
2512         int rc;
2513
2514         osid = tsec->osid;
2515         sid = tsec->sid;
2516
2517         if (sid == osid)
2518                 return;
2519
2520         /* Check whether the new SID can inherit signal state from the old SID.
2521          * If not, clear itimers to avoid subsequent signal generation and
2522          * flush and unblock signals.
2523          *
2524          * This must occur _after_ the task SID has been updated so that any
2525          * kill done after the flush will be checked against the new SID.
2526          */
2527         rc = avc_has_perm(&selinux_state,
2528                           osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2529         if (rc) {
2530                 clear_itimer();
2531
2532                 spin_lock_irq(&current->sighand->siglock);
2533                 if (!fatal_signal_pending(current)) {
2534                         flush_sigqueue(&current->pending);
2535                         flush_sigqueue(&current->signal->shared_pending);
2536                         flush_signal_handlers(current, 1);
2537                         sigemptyset(&current->blocked);
2538                         recalc_sigpending();
2539                 }
2540                 spin_unlock_irq(&current->sighand->siglock);
2541         }
2542
2543         /* Wake up the parent if it is waiting so that it can recheck
2544          * wait permission to the new task SID. */
2545         read_lock(&tasklist_lock);
2546         __wake_up_parent(current, current->real_parent);
2547         read_unlock(&tasklist_lock);
2548 }
2549
2550 /* superblock security operations */
2551
2552 static int selinux_sb_alloc_security(struct super_block *sb)
2553 {
2554         struct superblock_security_struct *sbsec;
2555
2556         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
2557         if (!sbsec)
2558                 return -ENOMEM;
2559
2560         mutex_init(&sbsec->lock);
2561         INIT_LIST_HEAD(&sbsec->isec_head);
2562         spin_lock_init(&sbsec->isec_lock);
2563         sbsec->sb = sb;
2564         sbsec->sid = SECINITSID_UNLABELED;
2565         sbsec->def_sid = SECINITSID_FILE;
2566         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2567         sb->s_security = sbsec;
2568
2569         return 0;
2570 }
2571
2572 static void selinux_sb_free_security(struct super_block *sb)
2573 {
2574         superblock_free_security(sb);
2575 }
2576
2577 static inline int opt_len(const char *s)
2578 {
2579         bool open_quote = false;
2580         int len;
2581         char c;
2582
2583         for (len = 0; (c = s[len]) != '\0'; len++) {
2584                 if (c == '"')
2585                         open_quote = !open_quote;
2586                 if (c == ',' && !open_quote)
2587                         break;
2588         }
2589         return len;
2590 }
2591
2592 static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2593 {
2594         char *from = options;
2595         char *to = options;
2596         bool first = true;
2597         int rc;
2598
2599         while (1) {
2600                 int len = opt_len(from);
2601                 int token;
2602                 char *arg = NULL;
2603
2604                 token = match_opt_prefix(from, len, &arg);
2605
2606                 if (token != Opt_error) {
2607                         char *p, *q;
2608
2609                         /* strip quotes */
2610                         if (arg) {
2611                                 for (p = q = arg; p < from + len; p++) {
2612                                         char c = *p;
2613                                         if (c != '"')
2614                                                 *q++ = c;
2615                                 }
2616                                 arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2617                                 if (!arg) {
2618                                         rc = -ENOMEM;
2619                                         goto free_opt;
2620                                 }
2621                         }
2622                         rc = selinux_add_opt(token, arg, mnt_opts);
2623                         if (unlikely(rc)) {
2624                                 kfree(arg);
2625                                 goto free_opt;
2626                         }
2627                 } else {
2628                         if (!first) {   // copy with preceding comma
2629                                 from--;
2630                                 len++;
2631                         }
2632                         if (to != from)
2633                                 memmove(to, from, len);
2634                         to += len;
2635                         first = false;
2636                 }
2637                 if (!from[len])
2638                         break;
2639                 from += len + 1;
2640         }
2641         *to = '\0';
2642         return 0;
2643
2644 free_opt:
2645         if (*mnt_opts) {
2646                 selinux_free_mnt_opts(*mnt_opts);
2647                 *mnt_opts = NULL;
2648         }
2649         return rc;
2650 }
2651
2652 static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2653 {
2654         struct selinux_mnt_opts *opts = mnt_opts;
2655         struct superblock_security_struct *sbsec = sb->s_security;
2656         u32 sid;
2657         int rc;
2658
2659         if (!(sbsec->flags & SE_SBINITIALIZED))
2660                 return 0;
2661
2662         if (!opts)
2663                 return 0;
2664
2665         if (opts->fscontext) {
2666                 rc = parse_sid(sb, opts->fscontext, &sid);
2667                 if (rc)
2668                         return rc;
2669                 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2670                         goto out_bad_option;
2671         }
2672         if (opts->context) {
2673                 rc = parse_sid(sb, opts->context, &sid);
2674                 if (rc)
2675                         return rc;
2676                 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2677                         goto out_bad_option;
2678         }
2679         if (opts->rootcontext) {
2680                 struct inode_security_struct *root_isec;
2681                 root_isec = backing_inode_security(sb->s_root);
2682                 rc = parse_sid(sb, opts->rootcontext, &sid);
2683                 if (rc)
2684                         return rc;
2685                 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2686                         goto out_bad_option;
2687         }
2688         if (opts->defcontext) {
2689                 rc = parse_sid(sb, opts->defcontext, &sid);
2690                 if (rc)
2691                         return rc;
2692                 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2693                         goto out_bad_option;
2694         }
2695         return 0;
2696
2697 out_bad_option:
2698         pr_warn("SELinux: unable to change security options "
2699                "during remount (dev %s, type=%s)\n", sb->s_id,
2700                sb->s_type->name);
2701         return -EINVAL;
2702 }
2703
2704 static int selinux_sb_kern_mount(struct super_block *sb)
2705 {
2706         const struct cred *cred = current_cred();
2707         struct common_audit_data ad;
2708
2709         ad.type = LSM_AUDIT_DATA_DENTRY;
2710         ad.u.dentry = sb->s_root;
2711         return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2712 }
2713
2714 static int selinux_sb_statfs(struct dentry *dentry)
2715 {
2716         const struct cred *cred = current_cred();
2717         struct common_audit_data ad;
2718
2719         ad.type = LSM_AUDIT_DATA_DENTRY;
2720         ad.u.dentry = dentry->d_sb->s_root;
2721         return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2722 }
2723
2724 static int selinux_mount(const char *dev_name,
2725                          const struct path *path,
2726                          const char *type,
2727                          unsigned long flags,
2728                          void *data)
2729 {
2730         const struct cred *cred = current_cred();
2731
2732         if (flags & MS_REMOUNT)
2733                 return superblock_has_perm(cred, path->dentry->d_sb,
2734                                            FILESYSTEM__REMOUNT, NULL);
2735         else
2736                 return path_has_perm(cred, path, FILE__MOUNTON);
2737 }
2738
2739 static int selinux_move_mount(const struct path *from_path,
2740                               const struct path *to_path)
2741 {
2742         const struct cred *cred = current_cred();
2743
2744         return path_has_perm(cred, to_path, FILE__MOUNTON);
2745 }
2746
2747 static int selinux_umount(struct vfsmount *mnt, int flags)
2748 {
2749         const struct cred *cred = current_cred();
2750
2751         return superblock_has_perm(cred, mnt->mnt_sb,
2752                                    FILESYSTEM__UNMOUNT, NULL);
2753 }
2754
2755 static int selinux_fs_context_dup(struct fs_context *fc,
2756                                   struct fs_context *src_fc)
2757 {
2758         const struct selinux_mnt_opts *src = src_fc->security;
2759         struct selinux_mnt_opts *opts;
2760
2761         if (!src)
2762                 return 0;
2763
2764         fc->security = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
2765         if (!fc->security)
2766                 return -ENOMEM;
2767
2768         opts = fc->security;
2769
2770         if (src->fscontext) {
2771                 opts->fscontext = kstrdup(src->fscontext, GFP_KERNEL);
2772                 if (!opts->fscontext)
2773                         return -ENOMEM;
2774         }
2775         if (src->context) {
2776                 opts->context = kstrdup(src->context, GFP_KERNEL);
2777                 if (!opts->context)
2778                         return -ENOMEM;
2779         }
2780         if (src->rootcontext) {
2781                 opts->rootcontext = kstrdup(src->rootcontext, GFP_KERNEL);
2782                 if (!opts->rootcontext)
2783                         return -ENOMEM;
2784         }
2785         if (src->defcontext) {
2786                 opts->defcontext = kstrdup(src->defcontext, GFP_KERNEL);
2787                 if (!opts->defcontext)
2788                         return -ENOMEM;
2789         }
2790         return 0;
2791 }
2792
2793 static const struct fs_parameter_spec selinux_fs_parameters[] = {
2794         fsparam_string(CONTEXT_STR,     Opt_context),
2795         fsparam_string(DEFCONTEXT_STR,  Opt_defcontext),
2796         fsparam_string(FSCONTEXT_STR,   Opt_fscontext),
2797         fsparam_string(ROOTCONTEXT_STR, Opt_rootcontext),
2798         fsparam_flag  (SECLABEL_STR,    Opt_seclabel),
2799         {}
2800 };
2801
2802 static int selinux_fs_context_parse_param(struct fs_context *fc,
2803                                           struct fs_parameter *param)
2804 {
2805         struct fs_parse_result result;
2806         int opt, rc;
2807
2808         opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2809         if (opt < 0)
2810                 return opt;
2811
2812         rc = selinux_add_opt(opt, param->string, &fc->security);
2813         if (!rc) {
2814                 param->string = NULL;
2815                 rc = 1;
2816         }
2817         return rc;
2818 }
2819
2820 /* inode security operations */
2821
2822 static int selinux_inode_alloc_security(struct inode *inode)
2823 {
2824         struct inode_security_struct *isec = selinux_inode(inode);
2825         u32 sid = current_sid();
2826
2827         spin_lock_init(&isec->lock);
2828         INIT_LIST_HEAD(&isec->list);
2829         isec->inode = inode;
2830         isec->sid = SECINITSID_UNLABELED;
2831         isec->sclass = SECCLASS_FILE;
2832         isec->task_sid = sid;
2833         isec->initialized = LABEL_INVALID;
2834
2835         return 0;
2836 }
2837
2838 static void selinux_inode_free_security(struct inode *inode)
2839 {
2840         inode_free_security(inode);
2841 }
2842
2843 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2844                                         const struct qstr *name, void **ctx,
2845                                         u32 *ctxlen)
2846 {
2847         u32 newsid;
2848         int rc;
2849
2850         rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2851                                            d_inode(dentry->d_parent), name,
2852                                            inode_mode_to_security_class(mode),
2853                                            &newsid);
2854         if (rc)
2855                 return rc;
2856
2857         return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
2858                                        ctxlen);
2859 }
2860
2861 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2862                                           struct qstr *name,
2863                                           const struct cred *old,
2864                                           struct cred *new)
2865 {
2866         u32 newsid;
2867         int rc;
2868         struct task_security_struct *tsec;
2869
2870         rc = selinux_determine_inode_label(selinux_cred(old),
2871                                            d_inode(dentry->d_parent), name,
2872                                            inode_mode_to_security_class(mode),
2873                                            &newsid);
2874         if (rc)
2875                 return rc;
2876
2877         tsec = selinux_cred(new);
2878         tsec->create_sid = newsid;
2879         return 0;
2880 }
2881
2882 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2883                                        const struct qstr *qstr,
2884                                        const char **name,
2885                                        void **value, size_t *len)
2886 {
2887         const struct task_security_struct *tsec = selinux_cred(current_cred());
2888         struct superblock_security_struct *sbsec;
2889         u32 newsid, clen;
2890         int rc;
2891         char *context;
2892
2893         sbsec = dir->i_sb->s_security;
2894
2895         newsid = tsec->create_sid;
2896
2897         rc = selinux_determine_inode_label(tsec, dir, qstr,
2898                 inode_mode_to_security_class(inode->i_mode),
2899                 &newsid);
2900         if (rc)
2901                 return rc;
2902
2903         /* Possibly defer initialization to selinux_complete_init. */
2904         if (sbsec->flags & SE_SBINITIALIZED) {
2905                 struct inode_security_struct *isec = selinux_inode(inode);
2906                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2907                 isec->sid = newsid;
2908                 isec->initialized = LABEL_INITIALIZED;
2909         }
2910
2911         if (!selinux_initialized(&selinux_state) ||
2912             !(sbsec->flags & SBLABEL_MNT))
2913                 return -EOPNOTSUPP;
2914
2915         if (name)
2916                 *name = XATTR_SELINUX_SUFFIX;
2917
2918         if (value && len) {
2919                 rc = security_sid_to_context_force(&selinux_state, newsid,
2920                                                    &context, &clen);
2921                 if (rc)
2922                         return rc;
2923                 *value = context;
2924                 *len = clen;
2925         }
2926
2927         return 0;
2928 }
2929
2930 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2931 {
2932         return may_create(dir, dentry, SECCLASS_FILE);
2933 }
2934
2935 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2936 {
2937         return may_link(dir, old_dentry, MAY_LINK);
2938 }
2939
2940 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2941 {
2942         return may_link(dir, dentry, MAY_UNLINK);
2943 }
2944
2945 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2946 {
2947         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2948 }
2949
2950 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2951 {
2952         return may_create(dir, dentry, SECCLASS_DIR);
2953 }
2954
2955 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2956 {
2957         return may_link(dir, dentry, MAY_RMDIR);
2958 }
2959
2960 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2961 {
2962         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2963 }
2964
2965 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2966                                 struct inode *new_inode, struct dentry *new_dentry)
2967 {
2968         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2969 }
2970
2971 static int selinux_inode_readlink(struct dentry *dentry)
2972 {
2973         const struct cred *cred = current_cred();
2974
2975         return dentry_has_perm(cred, dentry, FILE__READ);
2976 }
2977
2978 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
2979                                      bool rcu)
2980 {
2981         const struct cred *cred = current_cred();
2982         struct common_audit_data ad;
2983         struct inode_security_struct *isec;
2984         u32 sid;
2985
2986         validate_creds(cred);
2987
2988         ad.type = LSM_AUDIT_DATA_DENTRY;
2989         ad.u.dentry = dentry;
2990         sid = cred_sid(cred);
2991         isec = inode_security_rcu(inode, rcu);
2992         if (IS_ERR(isec))
2993                 return PTR_ERR(isec);
2994
2995         return avc_has_perm_flags(&selinux_state,
2996                                   sid, isec->sid, isec->sclass, FILE__READ, &ad,
2997                                   rcu ? MAY_NOT_BLOCK : 0);
2998 }
2999
3000 static noinline int audit_inode_permission(struct inode *inode,
3001                                            u32 perms, u32 audited, u32 denied,
3002                                            int result)
3003 {
3004         struct common_audit_data ad;
3005         struct inode_security_struct *isec = selinux_inode(inode);
3006         int rc;
3007
3008         ad.type = LSM_AUDIT_DATA_INODE;
3009         ad.u.inode = inode;
3010
3011         rc = slow_avc_audit(&selinux_state,
3012                             current_sid(), isec->sid, isec->sclass, perms,
3013                             audited, denied, result, &ad);
3014         if (rc)
3015                 return rc;
3016         return 0;
3017 }
3018
3019 static int selinux_inode_permission(struct inode *inode, int mask)
3020 {
3021         const struct cred *cred = current_cred();
3022         u32 perms;
3023         bool from_access;
3024         bool no_block = mask & MAY_NOT_BLOCK;
3025         struct inode_security_struct *isec;
3026         u32 sid;
3027         struct av_decision avd;
3028         int rc, rc2;
3029         u32 audited, denied;
3030
3031         from_access = mask & MAY_ACCESS;
3032         mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3033
3034         /* No permission to check.  Existence test. */
3035         if (!mask)
3036                 return 0;
3037
3038         validate_creds(cred);
3039
3040         if (unlikely(IS_PRIVATE(inode)))
3041                 return 0;
3042
3043         perms = file_mask_to_av(inode->i_mode, mask);
3044
3045         sid = cred_sid(cred);
3046         isec = inode_security_rcu(inode, no_block);
3047         if (IS_ERR(isec))
3048                 return PTR_ERR(isec);
3049
3050         rc = avc_has_perm_noaudit(&selinux_state,
3051                                   sid, isec->sid, isec->sclass, perms,
3052                                   no_block ? AVC_NONBLOCKING : 0,
3053                                   &avd);
3054         audited = avc_audit_required(perms, &avd, rc,
3055                                      from_access ? FILE__AUDIT_ACCESS : 0,
3056                                      &denied);
3057         if (likely(!audited))
3058                 return rc;
3059
3060         /* fall back to ref-walk if we have to generate audit */
3061         if (no_block)
3062                 return -ECHILD;
3063
3064         rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3065         if (rc2)
3066                 return rc2;
3067         return rc;
3068 }
3069
3070 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3071 {
3072         const struct cred *cred = current_cred();
3073         struct inode *inode = d_backing_inode(dentry);
3074         unsigned int ia_valid = iattr->ia_valid;
3075         __u32 av = FILE__WRITE;
3076
3077         /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3078         if (ia_valid & ATTR_FORCE) {
3079                 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3080                               ATTR_FORCE);
3081                 if (!ia_valid)
3082                         return 0;
3083         }
3084
3085         if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3086                         ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3087                 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3088
3089         if (selinux_policycap_openperm() &&
3090             inode->i_sb->s_magic != SOCKFS_MAGIC &&
3091             (ia_valid & ATTR_SIZE) &&
3092             !(ia_valid & ATTR_FILE))
3093                 av |= FILE__OPEN;
3094
3095         return dentry_has_perm(cred, dentry, av);
3096 }
3097
3098 static int selinux_inode_getattr(const struct path *path)
3099 {
3100         return path_has_perm(current_cred(), path, FILE__GETATTR);
3101 }
3102
3103 static bool has_cap_mac_admin(bool audit)
3104 {
3105         const struct cred *cred = current_cred();
3106         unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3107
3108         if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3109                 return false;
3110         if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3111                 return false;
3112         return true;
3113 }
3114
3115 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3116                                   const void *value, size_t size, int flags)
3117 {
3118         struct inode *inode = d_backing_inode(dentry);
3119         struct inode_security_struct *isec;
3120         struct superblock_security_struct *sbsec;
3121         struct common_audit_data ad;
3122         u32 newsid, sid = current_sid();
3123         int rc = 0;
3124
3125         if (strcmp(name, XATTR_NAME_SELINUX)) {
3126                 rc = cap_inode_setxattr(dentry, name, value, size, flags);
3127                 if (rc)
3128                         return rc;
3129
3130                 /* Not an attribute we recognize, so just check the
3131                    ordinary setattr permission. */
3132                 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3133         }
3134
3135         if (!selinux_initialized(&selinux_state))
3136                 return (inode_owner_or_capable(inode) ? 0 : -EPERM);
3137
3138         sbsec = inode->i_sb->s_security;
3139         if (!(sbsec->flags & SBLABEL_MNT))
3140                 return -EOPNOTSUPP;
3141
3142         if (!inode_owner_or_capable(inode))
3143                 return -EPERM;
3144
3145         ad.type = LSM_AUDIT_DATA_DENTRY;
3146         ad.u.dentry = dentry;
3147
3148         isec = backing_inode_security(dentry);
3149         rc = avc_has_perm(&selinux_state,
3150                           sid, isec->sid, isec->sclass,
3151                           FILE__RELABELFROM, &ad);
3152         if (rc)
3153                 return rc;
3154
3155         rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3156                                      GFP_KERNEL);
3157         if (rc == -EINVAL) {
3158                 if (!has_cap_mac_admin(true)) {
3159                         struct audit_buffer *ab;
3160                         size_t audit_size;
3161
3162                         /* We strip a nul only if it is at the end, otherwise the
3163                          * context contains a nul and we should audit that */
3164                         if (value) {
3165                                 const char *str = value;
3166
3167                                 if (str[size - 1] == '\0')
3168                                         audit_size = size - 1;
3169                                 else
3170                                         audit_size = size;
3171                         } else {
3172                                 audit_size = 0;
3173                         }
3174                         ab = audit_log_start(audit_context(),
3175                                              GFP_ATOMIC, AUDIT_SELINUX_ERR);
3176                         audit_log_format(ab, "op=setxattr invalid_context=");
3177                         audit_log_n_untrustedstring(ab, value, audit_size);
3178                         audit_log_end(ab);
3179
3180                         return rc;
3181                 }
3182                 rc = security_context_to_sid_force(&selinux_state, value,
3183                                                    size, &newsid);
3184         }
3185         if (rc)
3186                 return rc;
3187
3188         rc = avc_has_perm(&selinux_state,
3189                           sid, newsid, isec->sclass,
3190                           FILE__RELABELTO, &ad);
3191         if (rc)
3192                 return rc;
3193
3194         rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3195                                           sid, isec->sclass);
3196         if (rc)
3197                 return rc;
3198
3199         return avc_has_perm(&selinux_state,
3200                             newsid,
3201                             sbsec->sid,
3202                             SECCLASS_FILESYSTEM,
3203                             FILESYSTEM__ASSOCIATE,
3204                             &ad);
3205 }
3206
3207 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3208                                         const void *value, size_t size,
3209                                         int flags)
3210 {
3211         struct inode *inode = d_backing_inode(dentry);
3212         struct inode_security_struct *isec;
3213         u32 newsid;
3214         int rc;
3215
3216         if (strcmp(name, XATTR_NAME_SELINUX)) {
3217                 /* Not an attribute we recognize, so nothing to do. */
3218                 return;
3219         }
3220
3221         if (!selinux_initialized(&selinux_state)) {
3222                 /* If we haven't even been initialized, then we can't validate
3223                  * against a policy, so leave the label as invalid. It may
3224                  * resolve to a valid label on the next revalidation try if
3225                  * we've since initialized.
3226                  */
3227                 return;
3228         }
3229
3230         rc = security_context_to_sid_force(&selinux_state, value, size,
3231                                            &newsid);
3232         if (rc) {
3233                 pr_err("SELinux:  unable to map context to SID"
3234                        "for (%s, %lu), rc=%d\n",
3235                        inode->i_sb->s_id, inode->i_ino, -rc);
3236                 return;
3237         }
3238
3239         isec = backing_inode_security(dentry);
3240         spin_lock(&isec->lock);
3241         isec->sclass = inode_mode_to_security_class(inode->i_mode);
3242         isec->sid = newsid;
3243         isec->initialized = LABEL_INITIALIZED;
3244         spin_unlock(&isec->lock);
3245
3246         return;
3247 }
3248
3249 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3250 {
3251         const struct cred *cred = current_cred();
3252
3253         return dentry_has_perm(cred, dentry, FILE__GETATTR);
3254 }
3255
3256 static int selinux_inode_listxattr(struct dentry *dentry)
3257 {
3258         const struct cred *cred = current_cred();
3259
3260         return dentry_has_perm(cred, dentry, FILE__GETATTR);
3261 }
3262
3263 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3264 {
3265         if (strcmp(name, XATTR_NAME_SELINUX)) {
3266                 int rc = cap_inode_removexattr(dentry, name);
3267                 if (rc)
3268                         return rc;
3269
3270                 /* Not an attribute we recognize, so just check the
3271                    ordinary setattr permission. */
3272                 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3273         }
3274
3275         /* No one is allowed to remove a SELinux security label.
3276            You can change the label, but all data must be labeled. */
3277         return -EACCES;
3278 }
3279
3280 static int selinux_path_notify(const struct path *path, u64 mask,
3281                                                 unsigned int obj_type)
3282 {
3283         int ret;
3284         u32 perm;
3285
3286         struct common_audit_data ad;
3287
3288         ad.type = LSM_AUDIT_DATA_PATH;
3289         ad.u.path = *path;
3290
3291         /*
3292          * Set permission needed based on the type of mark being set.
3293          * Performs an additional check for sb watches.
3294          */
3295         switch (obj_type) {
3296         case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3297                 perm = FILE__WATCH_MOUNT;
3298                 break;
3299         case FSNOTIFY_OBJ_TYPE_SB:
3300                 perm = FILE__WATCH_SB;
3301                 ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3302                                                 FILESYSTEM__WATCH, &ad);
3303                 if (ret)
3304                         return ret;
3305                 break;
3306         case FSNOTIFY_OBJ_TYPE_INODE:
3307                 perm = FILE__WATCH;
3308                 break;
3309         default:
3310                 return -EINVAL;
3311         }
3312
3313         /* blocking watches require the file:watch_with_perm permission */
3314         if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3315                 perm |= FILE__WATCH_WITH_PERM;
3316
3317         /* watches on read-like events need the file:watch_reads permission */
3318         if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3319                 perm |= FILE__WATCH_READS;
3320
3321         return path_has_perm(current_cred(), path, perm);
3322 }
3323
3324 /*
3325  * Copy the inode security context value to the user.
3326  *
3327  * Permission check is handled by selinux_inode_getxattr hook.
3328  */
3329 static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3330 {
3331         u32 size;
3332         int error;
3333         char *context = NULL;
3334         struct inode_security_struct *isec;
3335
3336         /*
3337          * If we're not initialized yet, then we can't validate contexts, so
3338          * just let vfs_getxattr fall back to using the on-disk xattr.
3339          */
3340         if (!selinux_initialized(&selinux_state) ||
3341             strcmp(name, XATTR_SELINUX_SUFFIX))
3342                 return -EOPNOTSUPP;
3343
3344         /*
3345          * If the caller has CAP_MAC_ADMIN, then get the raw context
3346          * value even if it is not defined by current policy; otherwise,
3347          * use the in-core value under current policy.
3348          * Use the non-auditing forms of the permission checks since
3349          * getxattr may be called by unprivileged processes commonly
3350          * and lack of permission just means that we fall back to the
3351          * in-core context value, not a denial.
3352          */
3353         isec = inode_security(inode);
3354         if (has_cap_mac_admin(false))
3355                 error = security_sid_to_context_force(&selinux_state,
3356                                                       isec->sid, &context,
3357                                                       &size);
3358         else
3359                 error = security_sid_to_context(&selinux_state, isec->sid,
3360                                                 &context, &size);
3361         if (error)
3362                 return error;
3363         error = size;
3364         if (alloc) {
3365                 *buffer = context;
3366                 goto out_nofree;
3367         }
3368         kfree(context);
3369 out_nofree:
3370         return error;
3371 }
3372
3373 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3374                                      const void *value, size_t size, int flags)
3375 {
3376         struct inode_security_struct *isec = inode_security_novalidate(inode);
3377         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
3378         u32 newsid;
3379         int rc;
3380
3381         if (strcmp(name, XATTR_SELINUX_SUFFIX))
3382                 return -EOPNOTSUPP;
3383
3384         if (!(sbsec->flags & SBLABEL_MNT))
3385                 return -EOPNOTSUPP;
3386
3387         if (!value || !size)
3388                 return -EACCES;
3389
3390         rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3391                                      GFP_KERNEL);
3392         if (rc)
3393                 return rc;
3394
3395         spin_lock(&isec->lock);
3396         isec->sclass = inode_mode_to_security_class(inode->i_mode);
3397         isec->sid = newsid;
3398         isec->initialized = LABEL_INITIALIZED;
3399         spin_unlock(&isec->lock);
3400         return 0;
3401 }
3402
3403 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3404 {
3405         const int len = sizeof(XATTR_NAME_SELINUX);
3406         if (buffer && len <= buffer_size)
3407                 memcpy(buffer, XATTR_NAME_SELINUX, len);
3408         return len;
3409 }
3410
3411 static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3412 {
3413         struct inode_security_struct *isec = inode_security_novalidate(inode);
3414         *secid = isec->sid;
3415 }
3416
3417 static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3418 {
3419         u32 sid;
3420         struct task_security_struct *tsec;
3421         struct cred *new_creds = *new;
3422
3423         if (new_creds == NULL) {
3424                 new_creds = prepare_creds();
3425                 if (!new_creds)
3426                         return -ENOMEM;
3427         }
3428
3429         tsec = selinux_cred(new_creds);
3430         /* Get label from overlay inode and set it in create_sid */
3431         selinux_inode_getsecid(d_inode(src), &sid);
3432         tsec->create_sid = sid;
3433         *new = new_creds;
3434         return 0;
3435 }
3436
3437 static int selinux_inode_copy_up_xattr(const char *name)
3438 {
3439         /* The copy_up hook above sets the initial context on an inode, but we
3440          * don't then want to overwrite it by blindly copying all the lower
3441          * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
3442          */
3443         if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3444                 return 1; /* Discard */
3445         /*
3446          * Any other attribute apart from SELINUX is not claimed, supported
3447          * by selinux.
3448          */
3449         return -EOPNOTSUPP;
3450 }
3451
3452 /* kernfs node operations */
3453
3454 static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3455                                         struct kernfs_node *kn)
3456 {
3457         const struct task_security_struct *tsec = selinux_cred(current_cred());
3458         u32 parent_sid, newsid, clen;
3459         int rc;
3460         char *context;
3461
3462         rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3463         if (rc == -ENODATA)
3464                 return 0;
3465         else if (rc < 0)
3466                 return rc;
3467
3468         clen = (u32)rc;
3469         context = kmalloc(clen, GFP_KERNEL);
3470         if (!context)
3471                 return -ENOMEM;
3472
3473         rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3474         if (rc < 0) {
3475                 kfree(context);
3476                 return rc;
3477         }
3478
3479         rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid,
3480                                      GFP_KERNEL);
3481         kfree(context);
3482         if (rc)
3483                 return rc;
3484
3485         if (tsec->create_sid) {
3486                 newsid = tsec->create_sid;
3487         } else {
3488                 u16 secclass = inode_mode_to_security_class(kn->mode);
3489                 struct qstr q;
3490
3491                 q.name = kn->name;
3492                 q.hash_len = hashlen_string(kn_dir, kn->name);
3493
3494                 rc = security_transition_sid(&selinux_state, tsec->sid,
3495                                              parent_sid, secclass, &q,
3496                                              &newsid);
3497                 if (rc)
3498                         return rc;
3499         }
3500
3501         rc = security_sid_to_context_force(&selinux_state, newsid,
3502                                            &context, &clen);
3503         if (rc)
3504                 return rc;
3505
3506         rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3507                               XATTR_CREATE);
3508         kfree(context);
3509         return rc;
3510 }
3511
3512
3513 /* file security operations */
3514
3515 static int selinux_revalidate_file_permission(struct file *file, int mask)
3516 {
3517         const struct cred *cred = current_cred();
3518         struct inode *inode = file_inode(file);
3519
3520         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3521         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3522                 mask |= MAY_APPEND;
3523
3524         return file_has_perm(cred, file,
3525                              file_mask_to_av(inode->i_mode, mask));
3526 }
3527
3528 static int selinux_file_permission(struct file *file, int mask)
3529 {
3530         struct inode *inode = file_inode(file);
3531         struct file_security_struct *fsec = selinux_file(file);
3532         struct inode_security_struct *isec;
3533         u32 sid = current_sid();
3534
3535         if (!mask)
3536                 /* No permission to check.  Existence test. */
3537                 return 0;
3538
3539         isec = inode_security(inode);
3540         if (sid == fsec->sid && fsec->isid == isec->sid &&
3541             fsec->pseqno == avc_policy_seqno(&selinux_state))
3542                 /* No change since file_open check. */
3543                 return 0;
3544
3545         return selinux_revalidate_file_permission(file, mask);
3546 }
3547
3548 static int selinux_file_alloc_security(struct file *file)
3549 {
3550         struct file_security_struct *fsec = selinux_file(file);
3551         u32 sid = current_sid();
3552
3553         fsec->sid = sid;
3554         fsec->fown_sid = sid;
3555
3556         return 0;
3557 }
3558
3559 /*
3560  * Check whether a task has the ioctl permission and cmd
3561  * operation to an inode.
3562  */
3563 static int ioctl_has_perm(const struct cred *cred, struct file *file,
3564                 u32 requested, u16 cmd)
3565 {
3566         struct common_audit_data ad;
3567         struct file_security_struct *fsec = selinux_file(file);
3568         struct inode *inode = file_inode(file);
3569         struct inode_security_struct *isec;
3570         struct lsm_ioctlop_audit ioctl;
3571         u32 ssid = cred_sid(cred);
3572         int rc;
3573         u8 driver = cmd >> 8;
3574         u8 xperm = cmd & 0xff;
3575
3576         ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3577         ad.u.op = &ioctl;
3578         ad.u.op->cmd = cmd;
3579         ad.u.op->path = file->f_path;
3580
3581         if (ssid != fsec->sid) {
3582                 rc = avc_has_perm(&selinux_state,
3583                                   ssid, fsec->sid,
3584                                 SECCLASS_FD,
3585                                 FD__USE,
3586                                 &ad);
3587                 if (rc)
3588                         goto out;
3589         }
3590
3591         if (unlikely(IS_PRIVATE(inode)))
3592                 return 0;
3593
3594         isec = inode_security(inode);
3595         rc = avc_has_extended_perms(&selinux_state,
3596                                     ssid, isec->sid, isec->sclass,
3597                                     requested, driver, xperm, &ad);
3598 out:
3599         return rc;
3600 }
3601
3602 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3603                               unsigned long arg)
3604 {
3605         const struct cred *cred = current_cred();
3606         int error = 0;
3607
3608         switch (cmd) {
3609         case FIONREAD:
3610         case FIBMAP:
3611         case FIGETBSZ:
3612         case FS_IOC_GETFLAGS:
3613         case FS_IOC_GETVERSION:
3614                 error = file_has_perm(cred, file, FILE__GETATTR);
3615                 break;
3616
3617         case FS_IOC_SETFLAGS:
3618         case FS_IOC_SETVERSION:
3619                 error = file_has_perm(cred, file, FILE__SETATTR);
3620                 break;
3621
3622         /* sys_ioctl() checks */
3623         case FIONBIO:
3624         case FIOASYNC:
3625                 error = file_has_perm(cred, file, 0);
3626                 break;
3627
3628         case KDSKBENT:
3629         case KDSKBSENT:
3630                 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3631                                             CAP_OPT_NONE, true);
3632                 break;
3633
3634         /* default case assumes that the command will go
3635          * to the file's ioctl() function.
3636          */
3637         default:
3638                 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3639         }
3640         return error;
3641 }
3642
3643 static int default_noexec __ro_after_init;
3644
3645 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3646 {
3647         const struct cred *cred = current_cred();
3648         u32 sid = cred_sid(cred);
3649         int rc = 0;
3650
3651         if (default_noexec &&
3652             (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3653                                    (!shared && (prot & PROT_WRITE)))) {
3654                 /*
3655                  * We are making executable an anonymous mapping or a
3656                  * private file mapping that will also be writable.
3657                  * This has an additional check.
3658                  */
3659                 rc = avc_has_perm(&selinux_state,
3660                                   sid, sid, SECCLASS_PROCESS,
3661                                   PROCESS__EXECMEM, NULL);
3662                 if (rc)
3663                         goto error;
3664         }
3665
3666         if (file) {
3667                 /* read access is always possible with a mapping */
3668                 u32 av = FILE__READ;
3669
3670                 /* write access only matters if the mapping is shared */
3671                 if (shared && (prot & PROT_WRITE))
3672                         av |= FILE__WRITE;
3673
3674                 if (prot & PROT_EXEC)
3675                         av |= FILE__EXECUTE;
3676
3677                 return file_has_perm(cred, file, av);
3678         }
3679
3680 error:
3681         return rc;
3682 }
3683
3684 static int selinux_mmap_addr(unsigned long addr)
3685 {
3686         int rc = 0;
3687
3688         if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3689                 u32 sid = current_sid();
3690                 rc = avc_has_perm(&selinux_state,
3691                                   sid, sid, SECCLASS_MEMPROTECT,
3692                                   MEMPROTECT__MMAP_ZERO, NULL);
3693         }
3694
3695         return rc;
3696 }
3697
3698 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3699                              unsigned long prot, unsigned long flags)
3700 {
3701         struct common_audit_data ad;
3702         int rc;
3703
3704         if (file) {
3705                 ad.type = LSM_AUDIT_DATA_FILE;
3706                 ad.u.file = file;
3707                 rc = inode_has_perm(current_cred(), file_inode(file),
3708                                     FILE__MAP, &ad);
3709                 if (rc)
3710                         return rc;
3711         }
3712
3713         if (selinux_state.checkreqprot)
3714                 prot = reqprot;
3715
3716         return file_map_prot_check(file, prot,
3717                                    (flags & MAP_TYPE) == MAP_SHARED);
3718 }
3719
3720 static int selinux_file_mprotect(struct vm_area_struct *vma,
3721                                  unsigned long reqprot,
3722                                  unsigned long prot)
3723 {
3724         const struct cred *cred = current_cred();
3725         u32 sid = cred_sid(cred);
3726
3727         if (selinux_state.checkreqprot)
3728                 prot = reqprot;
3729
3730         if (default_noexec &&
3731             (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3732                 int rc = 0;
3733                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3734                     vma->vm_end <= vma->vm_mm->brk) {
3735                         rc = avc_has_perm(&selinux_state,
3736                                           sid, sid, SECCLASS_PROCESS,
3737                                           PROCESS__EXECHEAP, NULL);
3738                 } else if (!vma->vm_file &&
3739                            ((vma->vm_start <= vma->vm_mm->start_stack &&
3740                              vma->vm_end >= vma->vm_mm->start_stack) ||
3741                             vma_is_stack_for_current(vma))) {
3742                         rc = avc_has_perm(&selinux_state,
3743                                           sid, sid, SECCLASS_PROCESS,
3744                                           PROCESS__EXECSTACK, NULL);
3745                 } else if (vma->vm_file && vma->anon_vma) {
3746                         /*
3747                          * We are making executable a file mapping that has
3748                          * had some COW done. Since pages might have been
3749                          * written, check ability to execute the possibly
3750                          * modified content.  This typically should only
3751                          * occur for text relocations.
3752                          */
3753                         rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3754                 }
3755                 if (rc)
3756                         return rc;
3757         }
3758
3759         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3760 }
3761
3762 static int selinux_file_lock(struct file *file, unsigned int cmd)
3763 {
3764         const struct cred *cred = current_cred();
3765
3766         return file_has_perm(cred, file, FILE__LOCK);
3767 }
3768
3769 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3770                               unsigned long arg)
3771 {
3772         const struct cred *cred = current_cred();
3773         int err = 0;
3774
3775         switch (cmd) {
3776         case F_SETFL:
3777                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3778                         err = file_has_perm(cred, file, FILE__WRITE);
3779                         break;
3780                 }
3781                 fallthrough;
3782         case F_SETOWN:
3783         case F_SETSIG:
3784         case F_GETFL:
3785         case F_GETOWN:
3786         case F_GETSIG:
3787         case F_GETOWNER_UIDS:
3788                 /* Just check FD__USE permission */
3789                 err = file_has_perm(cred, file, 0);
3790                 break;
3791         case F_GETLK:
3792         case F_SETLK:
3793         case F_SETLKW:
3794         case F_OFD_GETLK:
3795         case F_OFD_SETLK:
3796         case F_OFD_SETLKW:
3797 #if BITS_PER_LONG == 32
3798         case F_GETLK64:
3799         case F_SETLK64:
3800         case F_SETLKW64:
3801 #endif
3802                 err = file_has_perm(cred, file, FILE__LOCK);
3803                 break;
3804         }
3805
3806         return err;
3807 }
3808
3809 static void selinux_file_set_fowner(struct file *file)
3810 {
3811         struct file_security_struct *fsec;
3812
3813         fsec = selinux_file(file);
3814         fsec->fown_sid = current_sid();
3815 }
3816
3817 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3818                                        struct fown_struct *fown, int signum)
3819 {
3820         struct file *file;
3821         u32 sid = task_sid(tsk);
3822         u32 perm;
3823         struct file_security_struct *fsec;
3824
3825         /* struct fown_struct is never outside the context of a struct file */
3826         file = container_of(fown, struct file, f_owner);
3827
3828         fsec = selinux_file(file);
3829
3830         if (!signum)
3831                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3832         else
3833                 perm = signal_to_av(signum);
3834
3835         return avc_has_perm(&selinux_state,
3836                             fsec->fown_sid, sid,
3837                             SECCLASS_PROCESS, perm, NULL);
3838 }
3839
3840 static int selinux_file_receive(struct file *file)
3841 {
3842         const struct cred *cred = current_cred();
3843
3844         return file_has_perm(cred, file, file_to_av(file));
3845 }
3846
3847 static int selinux_file_open(struct file *file)
3848 {
3849         struct file_security_struct *fsec;
3850         struct inode_security_struct *isec;
3851
3852         fsec = selinux_file(file);
3853         isec = inode_security(file_inode(file));
3854         /*
3855          * Save inode label and policy sequence number
3856          * at open-time so that selinux_file_permission
3857          * can determine whether revalidation is necessary.
3858          * Task label is already saved in the file security
3859          * struct as its SID.
3860          */
3861         fsec->isid = isec->sid;
3862         fsec->pseqno = avc_policy_seqno(&selinux_state);
3863         /*
3864          * Since the inode label or policy seqno may have changed
3865          * between the selinux_inode_permission check and the saving
3866          * of state above, recheck that access is still permitted.
3867          * Otherwise, access might never be revalidated against the
3868          * new inode label or new policy.
3869          * This check is not redundant - do not remove.
3870          */
3871         return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3872 }
3873
3874 /* task security operations */
3875
3876 static int selinux_task_alloc(struct task_struct *task,
3877                               unsigned long clone_flags)
3878 {
3879         u32 sid = current_sid();
3880
3881         return avc_has_perm(&selinux_state,
3882                             sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3883 }
3884
3885 /*
3886  * prepare a new set of credentials for modification
3887  */
3888 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3889                                 gfp_t gfp)
3890 {
3891         const struct task_security_struct *old_tsec = selinux_cred(old);
3892         struct task_security_struct *tsec = selinux_cred(new);
3893
3894         *tsec = *old_tsec;
3895         return 0;
3896 }
3897
3898 /*
3899  * transfer the SELinux data to a blank set of creds
3900  */
3901 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3902 {
3903         const struct task_security_struct *old_tsec = selinux_cred(old);
3904         struct task_security_struct *tsec = selinux_cred(new);
3905
3906         *tsec = *old_tsec;
3907 }
3908
3909 static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
3910 {
3911         *secid = cred_sid(c);
3912 }
3913
3914 /*
3915  * set the security data for a kernel service
3916  * - all the creation contexts are set to unlabelled
3917  */
3918 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3919 {
3920         struct task_security_struct *tsec = selinux_cred(new);
3921         u32 sid = current_sid();
3922         int ret;
3923
3924         ret = avc_has_perm(&selinux_state,
3925                            sid, secid,
3926                            SECCLASS_KERNEL_SERVICE,
3927                            KERNEL_SERVICE__USE_AS_OVERRIDE,
3928                            NULL);
3929         if (ret == 0) {
3930                 tsec->sid = secid;
3931                 tsec->create_sid = 0;
3932                 tsec->keycreate_sid = 0;
3933                 tsec->sockcreate_sid = 0;
3934         }
3935         return ret;
3936 }
3937
3938 /*
3939  * set the file creation context in a security record to the same as the
3940  * objective context of the specified inode
3941  */
3942 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3943 {
3944         struct inode_security_struct *isec = inode_security(inode);
3945         struct task_security_struct *tsec = selinux_cred(new);
3946         u32 sid = current_sid();
3947         int ret;
3948
3949         ret = avc_has_perm(&selinux_state,
3950                            sid, isec->sid,
3951                            SECCLASS_KERNEL_SERVICE,
3952                            KERNEL_SERVICE__CREATE_FILES_AS,
3953                            NULL);
3954
3955         if (ret == 0)
3956                 tsec->create_sid = isec->sid;
3957         return ret;
3958 }
3959
3960 static int selinux_kernel_module_request(char *kmod_name)
3961 {
3962         struct common_audit_data ad;
3963
3964         ad.type = LSM_AUDIT_DATA_KMOD;
3965         ad.u.kmod_name = kmod_name;
3966
3967         return avc_has_perm(&selinux_state,
3968                             current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
3969                             SYSTEM__MODULE_REQUEST, &ad);
3970 }
3971
3972 static int selinux_kernel_module_from_file(struct file *file)
3973 {
3974         struct common_audit_data ad;
3975         struct inode_security_struct *isec;
3976         struct file_security_struct *fsec;
3977         u32 sid = current_sid();
3978         int rc;
3979
3980         /* init_module */
3981         if (file == NULL)
3982                 return avc_has_perm(&selinux_state,
3983                                     sid, sid, SECCLASS_SYSTEM,
3984                                         SYSTEM__MODULE_LOAD, NULL);
3985
3986         /* finit_module */
3987
3988         ad.type = LSM_AUDIT_DATA_FILE;
3989         ad.u.file = file;
3990
3991         fsec = selinux_file(file);
3992         if (sid != fsec->sid) {
3993                 rc = avc_has_perm(&selinux_state,
3994                                   sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
3995                 if (rc)
3996                         return rc;
3997         }
3998
3999         isec = inode_security(file_inode(file));
4000         return avc_has_perm(&selinux_state,
4001                             sid, isec->sid, SECCLASS_SYSTEM,
4002                                 SYSTEM__MODULE_LOAD, &ad);
4003 }
4004
4005 static int selinux_kernel_read_file(struct file *file,
4006                                     enum kernel_read_file_id id,
4007                                     bool contents)
4008 {
4009         int rc = 0;
4010
4011         switch (id) {
4012         case READING_MODULE:
4013                 rc = selinux_kernel_module_from_file(contents ? file : NULL);
4014                 break;
4015         default:
4016                 break;
4017         }
4018
4019         return rc;
4020 }
4021
4022 static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents)
4023 {
4024         int rc = 0;
4025
4026         switch (id) {
4027         case LOADING_MODULE:
4028                 rc = selinux_kernel_module_from_file(NULL);
4029         default:
4030                 break;
4031         }
4032
4033         return rc;
4034 }
4035
4036 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4037 {
4038         return avc_has_perm(&selinux_state,
4039                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4040                             PROCESS__SETPGID, NULL);
4041 }
4042
4043 static int selinux_task_getpgid(struct task_struct *p)
4044 {
4045         return avc_has_perm(&selinux_state,
4046                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4047                             PROCESS__GETPGID, NULL);
4048 }
4049
4050 static int selinux_task_getsid(struct task_struct *p)
4051 {
4052         return avc_has_perm(&selinux_state,
4053                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4054                             PROCESS__GETSESSION, NULL);
4055 }
4056
4057 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
4058 {
4059         *secid = task_sid(p);
4060 }
4061
4062 static int selinux_task_setnice(struct task_struct *p, int nice)
4063 {
4064         return avc_has_perm(&selinux_state,
4065                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4066                             PROCESS__SETSCHED, NULL);
4067 }
4068
4069 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4070 {
4071         return avc_has_perm(&selinux_state,
4072                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4073                             PROCESS__SETSCHED, NULL);
4074 }
4075
4076 static int selinux_task_getioprio(struct task_struct *p)
4077 {
4078         return avc_has_perm(&selinux_state,
4079                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4080                             PROCESS__GETSCHED, NULL);
4081 }
4082
4083 static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4084                                 unsigned int flags)
4085 {
4086         u32 av = 0;
4087
4088         if (!flags)
4089                 return 0;
4090         if (flags & LSM_PRLIMIT_WRITE)
4091                 av |= PROCESS__SETRLIMIT;
4092         if (flags & LSM_PRLIMIT_READ)
4093                 av |= PROCESS__GETRLIMIT;
4094         return avc_has_perm(&selinux_state,
4095                             cred_sid(cred), cred_sid(tcred),
4096                             SECCLASS_PROCESS, av, NULL);
4097 }
4098
4099 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4100                 struct rlimit *new_rlim)
4101 {
4102         struct rlimit *old_rlim = p->signal->rlim + resource;
4103
4104         /* Control the ability to change the hard limit (whether
4105            lowering or raising it), so that the hard limit can
4106            later be used as a safe reset point for the soft limit
4107            upon context transitions.  See selinux_bprm_committing_creds. */
4108         if (old_rlim->rlim_max != new_rlim->rlim_max)
4109                 return avc_has_perm(&selinux_state,
4110                                     current_sid(), task_sid(p),
4111                                     SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4112
4113         return 0;
4114 }
4115
4116 static int selinux_task_setscheduler(struct task_struct *p)
4117 {
4118         return avc_has_perm(&selinux_state,
4119                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4120                             PROCESS__SETSCHED, NULL);
4121 }
4122
4123 static int selinux_task_getscheduler(struct task_struct *p)
4124 {
4125         return avc_has_perm(&selinux_state,
4126                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4127                             PROCESS__GETSCHED, NULL);
4128 }
4129
4130 static int selinux_task_movememory(struct task_struct *p)
4131 {
4132         return avc_has_perm(&selinux_state,
4133                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4134                             PROCESS__SETSCHED, NULL);
4135 }
4136
4137 static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4138                                 int sig, const struct cred *cred)
4139 {
4140         u32 secid;
4141         u32 perm;
4142
4143         if (!sig)
4144                 perm = PROCESS__SIGNULL; /* null signal; existence test */
4145         else
4146                 perm = signal_to_av(sig);
4147         if (!cred)
4148                 secid = current_sid();
4149         else
4150                 secid = cred_sid(cred);
4151         return avc_has_perm(&selinux_state,
4152                             secid, task_sid(p), SECCLASS_PROCESS, perm, NULL);
4153 }
4154
4155 static void selinux_task_to_inode(struct task_struct *p,
4156                                   struct inode *inode)
4157 {
4158         struct inode_security_struct *isec = selinux_inode(inode);
4159         u32 sid = task_sid(p);
4160
4161         spin_lock(&isec->lock);
4162         isec->sclass = inode_mode_to_security_class(inode->i_mode);
4163         isec->sid = sid;
4164         isec->initialized = LABEL_INITIALIZED;
4165         spin_unlock(&isec->lock);
4166 }
4167
4168 /* Returns error only if unable to parse addresses */
4169 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4170                         struct common_audit_data *ad, u8 *proto)
4171 {
4172         int offset, ihlen, ret = -EINVAL;
4173         struct iphdr _iph, *ih;
4174
4175         offset = skb_network_offset(skb);
4176         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4177         if (ih == NULL)
4178                 goto out;
4179
4180         ihlen = ih->ihl * 4;
4181         if (ihlen < sizeof(_iph))
4182                 goto out;
4183
4184         ad->u.net->v4info.saddr = ih->saddr;
4185         ad->u.net->v4info.daddr = ih->daddr;
4186         ret = 0;
4187
4188         if (proto)
4189                 *proto = ih->protocol;
4190
4191         switch (ih->protocol) {
4192         case IPPROTO_TCP: {
4193                 struct tcphdr _tcph, *th;
4194
4195                 if (ntohs(ih->frag_off) & IP_OFFSET)
4196                         break;
4197
4198                 offset += ihlen;
4199                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4200                 if (th == NULL)
4201                         break;
4202
4203                 ad->u.net->sport = th->source;
4204                 ad->u.net->dport = th->dest;
4205                 break;
4206         }
4207
4208         case IPPROTO_UDP: {
4209                 struct udphdr _udph, *uh;
4210
4211                 if (ntohs(ih->frag_off) & IP_OFFSET)
4212                         break;
4213
4214                 offset += ihlen;
4215                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4216                 if (uh == NULL)
4217                         break;
4218
4219                 ad->u.net->sport = uh->source;
4220                 ad->u.net->dport = uh->dest;
4221                 break;
4222         }
4223
4224         case IPPROTO_DCCP: {
4225                 struct dccp_hdr _dccph, *dh;
4226
4227                 if (ntohs(ih->frag_off) & IP_OFFSET)
4228                         break;
4229
4230                 offset += ihlen;
4231                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4232                 if (dh == NULL)
4233                         break;
4234
4235                 ad->u.net->sport = dh->dccph_sport;
4236                 ad->u.net->dport = dh->dccph_dport;
4237                 break;
4238         }
4239
4240 #if IS_ENABLED(CONFIG_IP_SCTP)
4241         case IPPROTO_SCTP: {
4242                 struct sctphdr _sctph, *sh;
4243
4244                 if (ntohs(ih->frag_off) & IP_OFFSET)
4245                         break;
4246
4247                 offset += ihlen;
4248                 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4249                 if (sh == NULL)
4250                         break;
4251
4252                 ad->u.net->sport = sh->source;
4253                 ad->u.net->dport = sh->dest;
4254                 break;
4255         }
4256 #endif
4257         default:
4258                 break;
4259         }
4260 out:
4261         return ret;
4262 }
4263
4264 #if IS_ENABLED(CONFIG_IPV6)
4265
4266 /* Returns error only if unable to parse addresses */
4267 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4268                         struct common_audit_data *ad, u8 *proto)
4269 {
4270         u8 nexthdr;
4271         int ret = -EINVAL, offset;
4272         struct ipv6hdr _ipv6h, *ip6;
4273         __be16 frag_off;
4274
4275         offset = skb_network_offset(skb);
4276         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4277         if (ip6 == NULL)
4278                 goto out;
4279
4280         ad->u.net->v6info.saddr = ip6->saddr;
4281         ad->u.net->v6info.daddr = ip6->daddr;
4282         ret = 0;
4283
4284         nexthdr = ip6->nexthdr;
4285         offset += sizeof(_ipv6h);
4286         offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4287         if (offset < 0)
4288                 goto out;
4289
4290         if (proto)
4291                 *proto = nexthdr;
4292
4293         switch (nexthdr) {
4294         case IPPROTO_TCP: {
4295                 struct tcphdr _tcph, *th;
4296
4297                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4298                 if (th == NULL)
4299                         break;
4300
4301                 ad->u.net->sport = th->source;
4302                 ad->u.net->dport = th->dest;
4303                 break;
4304         }
4305
4306         case IPPROTO_UDP: {
4307                 struct udphdr _udph, *uh;
4308
4309                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4310                 if (uh == NULL)
4311                         break;
4312
4313                 ad->u.net->sport = uh->source;
4314                 ad->u.net->dport = uh->dest;
4315                 break;
4316         }
4317
4318         case IPPROTO_DCCP: {
4319                 struct dccp_hdr _dccph, *dh;
4320
4321                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4322                 if (dh == NULL)
4323                         break;
4324
4325                 ad->u.net->sport = dh->dccph_sport;
4326                 ad->u.net->dport = dh->dccph_dport;
4327                 break;
4328         }
4329
4330 #if IS_ENABLED(CONFIG_IP_SCTP)
4331         case IPPROTO_SCTP: {
4332                 struct sctphdr _sctph, *sh;
4333
4334                 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4335                 if (sh == NULL)
4336                         break;
4337
4338                 ad->u.net->sport = sh->source;
4339                 ad->u.net->dport = sh->dest;
4340                 break;
4341         }
4342 #endif
4343         /* includes fragments */
4344         default:
4345                 break;
4346         }
4347 out:
4348         return ret;
4349 }
4350
4351 #endif /* IPV6 */
4352
4353 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4354                              char **_addrp, int src, u8 *proto)
4355 {
4356         char *addrp;
4357         int ret;
4358
4359         switch (ad->u.net->family) {
4360         case PF_INET:
4361                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
4362                 if (ret)
4363                         goto parse_error;
4364                 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4365                                        &ad->u.net->v4info.daddr);
4366                 goto okay;
4367
4368 #if IS_ENABLED(CONFIG_IPV6)
4369         case PF_INET6:
4370                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
4371                 if (ret)
4372                         goto parse_error;
4373                 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4374                                        &ad->u.net->v6info.daddr);
4375                 goto okay;
4376 #endif  /* IPV6 */
4377         default:
4378                 addrp = NULL;
4379                 goto okay;
4380         }
4381
4382 parse_error:
4383         pr_warn(
4384                "SELinux: failure in selinux_parse_skb(),"
4385                " unable to parse packet\n");
4386         return ret;
4387
4388 okay:
4389         if (_addrp)
4390                 *_addrp = addrp;
4391         return 0;
4392 }
4393
4394 /**
4395  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4396  * @skb: the packet
4397  * @family: protocol family
4398  * @sid: the packet's peer label SID
4399  *
4400  * Description:
4401  * Check the various different forms of network peer labeling and determine
4402  * the peer label/SID for the packet; most of the magic actually occurs in
4403  * the security server function security_net_peersid_cmp().  The function
4404  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4405  * or -EACCES if @sid is invalid due to inconsistencies with the different
4406  * peer labels.
4407  *
4408  */
4409 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4410 {
4411         int err;
4412         u32 xfrm_sid;
4413         u32 nlbl_sid;
4414         u32 nlbl_type;
4415
4416         err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4417         if (unlikely(err))
4418                 return -EACCES;
4419         err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4420         if (unlikely(err))
4421                 return -EACCES;
4422
4423         err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4424                                            nlbl_type, xfrm_sid, sid);
4425         if (unlikely(err)) {
4426                 pr_warn(
4427                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
4428                        " unable to determine packet's peer label\n");
4429                 return -EACCES;
4430         }
4431
4432         return 0;
4433 }
4434
4435 /**
4436  * selinux_conn_sid - Determine the child socket label for a connection
4437  * @sk_sid: the parent socket's SID
4438  * @skb_sid: the packet's SID
4439  * @conn_sid: the resulting connection SID
4440  *
4441  * If @skb_sid is valid then the user:role:type information from @sk_sid is
4442  * combined with the MLS information from @skb_sid in order to create
4443  * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
4444  * of @sk_sid.  Returns zero on success, negative values on failure.
4445  *
4446  */
4447 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4448 {
4449         int err = 0;
4450
4451         if (skb_sid != SECSID_NULL)
4452                 err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4453                                             conn_sid);
4454         else
4455                 *conn_sid = sk_sid;
4456
4457         return err;
4458 }
4459
4460 /* socket security operations */
4461
4462 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4463                                  u16 secclass, u32 *socksid)
4464 {
4465         if (tsec->sockcreate_sid > SECSID_NULL) {
4466                 *socksid = tsec->sockcreate_sid;
4467                 return 0;
4468         }
4469
4470         return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4471                                        secclass, NULL, socksid);
4472 }
4473
4474 static int sock_has_perm(struct sock *sk, u32 perms)
4475 {
4476         struct sk_security_struct *sksec = sk->sk_security;
4477         struct common_audit_data ad;
4478         struct lsm_network_audit net = {0,};
4479
4480         if (sksec->sid == SECINITSID_KERNEL)
4481                 return 0;
4482
4483         ad.type = LSM_AUDIT_DATA_NET;
4484         ad.u.net = &net;
4485         ad.u.net->sk = sk;
4486
4487         return avc_has_perm(&selinux_state,
4488                             current_sid(), sksec->sid, sksec->sclass, perms,
4489                             &ad);
4490 }
4491
4492 static int selinux_socket_create(int family, int type,
4493                                  int protocol, int kern)
4494 {
4495         const struct task_security_struct *tsec = selinux_cred(current_cred());
4496         u32 newsid;
4497         u16 secclass;
4498         int rc;
4499
4500         if (kern)
4501                 return 0;
4502
4503         secclass = socket_type_to_security_class(family, type, protocol);
4504         rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4505         if (rc)
4506                 return rc;
4507
4508         return avc_has_perm(&selinux_state,
4509                             tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4510 }
4511
4512 static int selinux_socket_post_create(struct socket *sock, int family,
4513                                       int type, int protocol, int kern)
4514 {
4515         const struct task_security_struct *tsec = selinux_cred(current_cred());
4516         struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4517         struct sk_security_struct *sksec;
4518         u16 sclass = socket_type_to_security_class(family, type, protocol);
4519         u32 sid = SECINITSID_KERNEL;
4520         int err = 0;
4521
4522         if (!kern) {
4523                 err = socket_sockcreate_sid(tsec, sclass, &sid);
4524                 if (err)
4525                         return err;
4526         }
4527
4528         isec->sclass = sclass;
4529         isec->sid = sid;
4530         isec->initialized = LABEL_INITIALIZED;
4531
4532         if (sock->sk) {
4533                 sksec = sock->sk->sk_security;
4534                 sksec->sclass = sclass;
4535                 sksec->sid = sid;
4536                 /* Allows detection of the first association on this socket */
4537                 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4538                         sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4539
4540                 err = selinux_netlbl_socket_post_create(sock->sk, family);
4541         }
4542
4543         return err;
4544 }
4545
4546 static int selinux_socket_socketpair(struct socket *socka,
4547                                      struct socket *sockb)
4548 {
4549         struct sk_security_struct *sksec_a = socka->sk->sk_security;
4550         struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4551
4552         sksec_a->peer_sid = sksec_b->sid;
4553         sksec_b->peer_sid = sksec_a->sid;
4554
4555         return 0;
4556 }
4557
4558 /* Range of port numbers used to automatically bind.
4559    Need to determine whether we should perform a name_bind
4560    permission check between the socket and the port number. */
4561
4562 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4563 {
4564         struct sock *sk = sock->sk;
4565         struct sk_security_struct *sksec = sk->sk_security;
4566         u16 family;
4567         int err;
4568
4569         err = sock_has_perm(sk, SOCKET__BIND);
4570         if (err)
4571                 goto out;
4572
4573         /* If PF_INET or PF_INET6, check name_bind permission for the port. */
4574         family = sk->sk_family;
4575         if (family == PF_INET || family == PF_INET6) {
4576                 char *addrp;
4577                 struct common_audit_data ad;
4578                 struct lsm_network_audit net = {0,};
4579                 struct sockaddr_in *addr4 = NULL;
4580                 struct sockaddr_in6 *addr6 = NULL;
4581                 u16 family_sa;
4582                 unsigned short snum;
4583                 u32 sid, node_perm;
4584
4585                 /*
4586                  * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4587                  * that validates multiple binding addresses. Because of this
4588                  * need to check address->sa_family as it is possible to have
4589                  * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4590                  */
4591                 if (addrlen < offsetofend(struct sockaddr, sa_family))
4592                         return -EINVAL;
4593                 family_sa = address->sa_family;
4594                 switch (family_sa) {
4595                 case AF_UNSPEC:
4596                 case AF_INET:
4597                         if (addrlen < sizeof(struct sockaddr_in))
4598                                 return -EINVAL;
4599                         addr4 = (struct sockaddr_in *)address;
4600                         if (family_sa == AF_UNSPEC) {
4601                                 /* see __inet_bind(), we only want to allow
4602                                  * AF_UNSPEC if the address is INADDR_ANY
4603                                  */
4604                                 if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4605                                         goto err_af;
4606                                 family_sa = AF_INET;
4607                         }
4608                         snum = ntohs(addr4->sin_port);
4609                         addrp = (char *)&addr4->sin_addr.s_addr;
4610                         break;
4611                 case AF_INET6:
4612                         if (addrlen < SIN6_LEN_RFC2133)
4613                                 return -EINVAL;
4614                         addr6 = (struct sockaddr_in6 *)address;
4615                         snum = ntohs(addr6->sin6_port);
4616                         addrp = (char *)&addr6->sin6_addr.s6_addr;
4617                         break;
4618                 default:
4619                         goto err_af;
4620                 }
4621
4622                 ad.type = LSM_AUDIT_DATA_NET;
4623                 ad.u.net = &net;
4624                 ad.u.net->sport = htons(snum);
4625                 ad.u.net->family = family_sa;
4626
4627                 if (snum) {
4628                         int low, high;
4629
4630                         inet_get_local_port_range(sock_net(sk), &low, &high);
4631
4632                         if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4633                             snum < low || snum > high) {
4634                                 err = sel_netport_sid(sk->sk_protocol,
4635                                                       snum, &sid);
4636                                 if (err)
4637                                         goto out;
4638                                 err = avc_has_perm(&selinux_state,
4639                                                    sksec->sid, sid,
4640                                                    sksec->sclass,
4641                                                    SOCKET__NAME_BIND, &ad);
4642                                 if (err)
4643                                         goto out;
4644                         }
4645                 }
4646
4647                 switch (sksec->sclass) {
4648                 case SECCLASS_TCP_SOCKET:
4649                         node_perm = TCP_SOCKET__NODE_BIND;
4650                         break;
4651
4652                 case SECCLASS_UDP_SOCKET:
4653                         node_perm = UDP_SOCKET__NODE_BIND;
4654                         break;
4655
4656                 case SECCLASS_DCCP_SOCKET:
4657                         node_perm = DCCP_SOCKET__NODE_BIND;
4658                         break;
4659
4660                 case SECCLASS_SCTP_SOCKET:
4661                         node_perm = SCTP_SOCKET__NODE_BIND;
4662                         break;
4663
4664                 default:
4665                         node_perm = RAWIP_SOCKET__NODE_BIND;
4666                         break;
4667                 }
4668
4669                 err = sel_netnode_sid(addrp, family_sa, &sid);
4670                 if (err)
4671                         goto out;
4672
4673                 if (family_sa == AF_INET)
4674                         ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4675                 else
4676                         ad.u.net->v6info.saddr = addr6->sin6_addr;
4677
4678                 err = avc_has_perm(&selinux_state,
4679                                    sksec->sid, sid,
4680                                    sksec->sclass, node_perm, &ad);
4681                 if (err)
4682                         goto out;
4683         }
4684 out:
4685         return err;
4686 err_af:
4687         /* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4688         if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4689                 return -EINVAL;
4690         return -EAFNOSUPPORT;
4691 }
4692
4693 /* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4694  * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4695  */
4696 static int selinux_socket_connect_helper(struct socket *sock,
4697                                          struct sockaddr *address, int addrlen)
4698 {
4699         struct sock *sk = sock->sk;
4700         struct sk_security_struct *sksec = sk->sk_security;
4701         int err;
4702
4703         err = sock_has_perm(sk, SOCKET__CONNECT);
4704         if (err)
4705                 return err;
4706         if (addrlen < offsetofend(struct sockaddr, sa_family))
4707                 return -EINVAL;
4708
4709         /* connect(AF_UNSPEC) has special handling, as it is a documented
4710          * way to disconnect the socket
4711          */
4712         if (address->sa_family == AF_UNSPEC)
4713                 return 0;
4714
4715         /*
4716          * If a TCP, DCCP or SCTP socket, check name_connect permission
4717          * for the port.
4718          */
4719         if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4720             sksec->sclass == SECCLASS_DCCP_SOCKET ||
4721             sksec->sclass == SECCLASS_SCTP_SOCKET) {
4722                 struct common_audit_data ad;
4723                 struct lsm_network_audit net = {0,};
4724                 struct sockaddr_in *addr4 = NULL;
4725                 struct sockaddr_in6 *addr6 = NULL;
4726                 unsigned short snum;
4727                 u32 sid, perm;
4728
4729                 /* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4730                  * that validates multiple connect addresses. Because of this
4731                  * need to check address->sa_family as it is possible to have
4732                  * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4733                  */
4734                 switch (address->sa_family) {
4735                 case AF_INET:
4736                         addr4 = (struct sockaddr_in *)address;
4737                         if (addrlen < sizeof(struct sockaddr_in))
4738                                 return -EINVAL;
4739                         snum = ntohs(addr4->sin_port);
4740                         break;
4741                 case AF_INET6:
4742                         addr6 = (struct sockaddr_in6 *)address;
4743                         if (addrlen < SIN6_LEN_RFC2133)
4744                                 return -EINVAL;
4745                         snum = ntohs(addr6->sin6_port);
4746                         break;
4747                 default:
4748                         /* Note that SCTP services expect -EINVAL, whereas
4749                          * others expect -EAFNOSUPPORT.
4750                          */
4751                         if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4752                                 return -EINVAL;
4753                         else
4754                                 return -EAFNOSUPPORT;
4755                 }
4756
4757                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4758                 if (err)
4759                         return err;
4760
4761                 switch (sksec->sclass) {
4762                 case SECCLASS_TCP_SOCKET:
4763                         perm = TCP_SOCKET__NAME_CONNECT;
4764                         break;
4765                 case SECCLASS_DCCP_SOCKET:
4766                         perm = DCCP_SOCKET__NAME_CONNECT;
4767                         break;
4768                 case SECCLASS_SCTP_SOCKET:
4769                         perm = SCTP_SOCKET__NAME_CONNECT;
4770                         break;
4771                 }
4772
4773                 ad.type = LSM_AUDIT_DATA_NET;
4774                 ad.u.net = &net;
4775                 ad.u.net->dport = htons(snum);
4776                 ad.u.net->family = address->sa_family;
4777                 err = avc_has_perm(&selinux_state,
4778                                    sksec->sid, sid, sksec->sclass, perm, &ad);
4779                 if (err)
4780                         return err;
4781         }
4782
4783         return 0;
4784 }
4785
4786 /* Supports connect(2), see comments in selinux_socket_connect_helper() */
4787 static int selinux_socket_connect(struct socket *sock,
4788                                   struct sockaddr *address, int addrlen)
4789 {
4790         int err;
4791         struct sock *sk = sock->sk;
4792
4793         err = selinux_socket_connect_helper(sock, address, addrlen);
4794         if (err)
4795                 return err;
4796
4797         return selinux_netlbl_socket_connect(sk, address);
4798 }
4799
4800 static int selinux_socket_listen(struct socket *sock, int backlog)
4801 {
4802         return sock_has_perm(sock->sk, SOCKET__LISTEN);
4803 }
4804
4805 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4806 {
4807         int err;
4808         struct inode_security_struct *isec;
4809         struct inode_security_struct *newisec;
4810         u16 sclass;
4811         u32 sid;
4812
4813         err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4814         if (err)
4815                 return err;
4816
4817         isec = inode_security_novalidate(SOCK_INODE(sock));
4818         spin_lock(&isec->lock);
4819         sclass = isec->sclass;
4820         sid = isec->sid;
4821         spin_unlock(&isec->lock);
4822
4823         newisec = inode_security_novalidate(SOCK_INODE(newsock));
4824         newisec->sclass = sclass;
4825         newisec->sid = sid;
4826         newisec->initialized = LABEL_INITIALIZED;
4827
4828         return 0;
4829 }
4830
4831 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4832                                   int size)
4833 {
4834         return sock_has_perm(sock->sk, SOCKET__WRITE);
4835 }
4836
4837 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4838                                   int size, int flags)
4839 {
4840         return sock_has_perm(sock->sk, SOCKET__READ);
4841 }
4842
4843 static int selinux_socket_getsockname(struct socket *sock)
4844 {
4845         return sock_has_perm(sock->sk, SOCKET__GETATTR);
4846 }
4847
4848 static int selinux_socket_getpeername(struct socket *sock)
4849 {
4850         return sock_has_perm(sock->sk, SOCKET__GETATTR);
4851 }
4852
4853 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4854 {
4855         int err;
4856
4857         err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4858         if (err)
4859                 return err;
4860
4861         return selinux_netlbl_socket_setsockopt(sock, level, optname);
4862 }
4863
4864 static int selinux_socket_getsockopt(struct socket *sock, int level,
4865                                      int optname)
4866 {
4867         return sock_has_perm(sock->sk, SOCKET__GETOPT);
4868 }
4869
4870 static int selinux_socket_shutdown(struct socket *sock, int how)
4871 {
4872         return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4873 }
4874
4875 static int selinux_socket_unix_stream_connect(struct sock *sock,
4876                                               struct sock *other,
4877                                               struct sock *newsk)
4878 {
4879         struct sk_security_struct *sksec_sock = sock->sk_security;
4880         struct sk_security_struct *sksec_other = other->sk_security;
4881         struct sk_security_struct *sksec_new = newsk->sk_security;
4882         struct common_audit_data ad;
4883         struct lsm_network_audit net = {0,};
4884         int err;
4885
4886         ad.type = LSM_AUDIT_DATA_NET;
4887         ad.u.net = &net;
4888         ad.u.net->sk = other;
4889
4890         err = avc_has_perm(&selinux_state,
4891                            sksec_sock->sid, sksec_other->sid,
4892                            sksec_other->sclass,
4893                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4894         if (err)
4895                 return err;
4896
4897         /* server child socket */
4898         sksec_new->peer_sid = sksec_sock->sid;
4899         err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
4900                                     sksec_sock->sid, &sksec_new->sid);
4901         if (err)
4902                 return err;
4903
4904         /* connecting socket */
4905         sksec_sock->peer_sid = sksec_new->sid;
4906
4907         return 0;
4908 }
4909
4910 static int selinux_socket_unix_may_send(struct socket *sock,
4911                                         struct socket *other)
4912 {
4913         struct sk_security_struct *ssec = sock->sk->sk_security;
4914         struct sk_security_struct *osec = other->sk->sk_security;
4915         struct common_audit_data ad;
4916         struct lsm_network_audit net = {0,};
4917
4918         ad.type = LSM_AUDIT_DATA_NET;
4919         ad.u.net = &net;
4920         ad.u.net->sk = other->sk;
4921
4922         return avc_has_perm(&selinux_state,
4923                             ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4924                             &ad);
4925 }
4926
4927 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4928                                     char *addrp, u16 family, u32 peer_sid,
4929                                     struct common_audit_data *ad)
4930 {
4931         int err;
4932         u32 if_sid;
4933         u32 node_sid;
4934
4935         err = sel_netif_sid(ns, ifindex, &if_sid);
4936         if (err)
4937                 return err;
4938         err = avc_has_perm(&selinux_state,
4939                            peer_sid, if_sid,
4940                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4941         if (err)
4942                 return err;
4943
4944         err = sel_netnode_sid(addrp, family, &node_sid);
4945         if (err)
4946                 return err;
4947         return avc_has_perm(&selinux_state,
4948                             peer_sid, node_sid,
4949                             SECCLASS_NODE, NODE__RECVFROM, ad);
4950 }
4951
4952 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4953                                        u16 family)
4954 {
4955         int err = 0;
4956         struct sk_security_struct *sksec = sk->sk_security;
4957         u32 sk_sid = sksec->sid;
4958         struct common_audit_data ad;
4959         struct lsm_network_audit net = {0,};
4960         char *addrp;
4961
4962         ad.type = LSM_AUDIT_DATA_NET;
4963         ad.u.net = &net;
4964         ad.u.net->netif = skb->skb_iif;
4965         ad.u.net->family = family;
4966         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4967         if (err)
4968                 return err;
4969
4970         if (selinux_secmark_enabled()) {
4971                 err = avc_has_perm(&selinux_state,
4972                                    sk_sid, skb->secmark, SECCLASS_PACKET,
4973                                    PACKET__RECV, &ad);
4974                 if (err)
4975                         return err;
4976         }
4977
4978         err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4979         if (err)
4980                 return err;
4981         err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4982
4983         return err;
4984 }
4985
4986 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4987 {
4988         int err;
4989         struct sk_security_struct *sksec = sk->sk_security;
4990         u16 family = sk->sk_family;
4991         u32 sk_sid = sksec->sid;
4992         struct common_audit_data ad;
4993         struct lsm_network_audit net = {0,};
4994         char *addrp;
4995         u8 secmark_active;
4996         u8 peerlbl_active;
4997
4998         if (family != PF_INET && family != PF_INET6)
4999                 return 0;
5000
5001         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
5002         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5003                 family = PF_INET;
5004
5005         /* If any sort of compatibility mode is enabled then handoff processing
5006          * to the selinux_sock_rcv_skb_compat() function to deal with the
5007          * special handling.  We do this in an attempt to keep this function
5008          * as fast and as clean as possible. */
5009         if (!selinux_policycap_netpeer())
5010                 return selinux_sock_rcv_skb_compat(sk, skb, family);
5011
5012         secmark_active = selinux_secmark_enabled();
5013         peerlbl_active = selinux_peerlbl_enabled();
5014         if (!secmark_active && !peerlbl_active)
5015                 return 0;
5016
5017         ad.type = LSM_AUDIT_DATA_NET;
5018         ad.u.net = &net;
5019         ad.u.net->netif = skb->skb_iif;
5020         ad.u.net->family = family;
5021         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5022         if (err)
5023                 return err;
5024
5025         if (peerlbl_active) {
5026                 u32 peer_sid;
5027
5028                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5029                 if (err)
5030                         return err;
5031                 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5032                                                addrp, family, peer_sid, &ad);
5033                 if (err) {
5034                         selinux_netlbl_err(skb, family, err, 0);
5035                         return err;
5036                 }
5037                 err = avc_has_perm(&selinux_state,
5038                                    sk_sid, peer_sid, SECCLASS_PEER,
5039                                    PEER__RECV, &ad);
5040                 if (err) {
5041                         selinux_netlbl_err(skb, family, err, 0);
5042                         return err;
5043                 }
5044         }
5045
5046         if (secmark_active) {
5047                 err = avc_has_perm(&selinux_state,
5048                                    sk_sid, skb->secmark, SECCLASS_PACKET,
5049                                    PACKET__RECV, &ad);
5050                 if (err)
5051                         return err;
5052         }
5053
5054         return err;
5055 }
5056
5057 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
5058                                             int __user *optlen, unsigned len)
5059 {
5060         int err = 0;
5061         char *scontext;
5062         u32 scontext_len;
5063         struct sk_security_struct *sksec = sock->sk->sk_security;
5064         u32 peer_sid = SECSID_NULL;
5065
5066         if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5067             sksec->sclass == SECCLASS_TCP_SOCKET ||
5068             sksec->sclass == SECCLASS_SCTP_SOCKET)
5069                 peer_sid = sksec->peer_sid;
5070         if (peer_sid == SECSID_NULL)
5071                 return -ENOPROTOOPT;
5072
5073         err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5074                                       &scontext_len);
5075         if (err)
5076                 return err;
5077
5078         if (scontext_len > len) {
5079                 err = -ERANGE;
5080                 goto out_len;
5081         }
5082
5083         if (copy_to_user(optval, scontext, scontext_len))
5084                 err = -EFAULT;
5085
5086 out_len:
5087         if (put_user(scontext_len, optlen))
5088                 err = -EFAULT;
5089         kfree(scontext);
5090         return err;
5091 }
5092
5093 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5094 {
5095         u32 peer_secid = SECSID_NULL;
5096         u16 family;
5097         struct inode_security_struct *isec;
5098
5099         if (skb && skb->protocol == htons(ETH_P_IP))
5100                 family = PF_INET;
5101         else if (skb && skb->protocol == htons(ETH_P_IPV6))
5102                 family = PF_INET6;
5103         else if (sock)
5104                 family = sock->sk->sk_family;
5105         else
5106                 goto out;
5107
5108         if (sock && family == PF_UNIX) {
5109                 isec = inode_security_novalidate(SOCK_INODE(sock));
5110                 peer_secid = isec->sid;
5111         } else if (skb)
5112                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5113
5114 out:
5115         *secid = peer_secid;
5116         if (peer_secid == SECSID_NULL)
5117                 return -EINVAL;
5118         return 0;
5119 }
5120
5121 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5122 {
5123         struct sk_security_struct *sksec;
5124
5125         sksec = kzalloc(sizeof(*sksec), priority);
5126         if (!sksec)
5127                 return -ENOMEM;
5128
5129         sksec->peer_sid = SECINITSID_UNLABELED;
5130         sksec->sid = SECINITSID_UNLABELED;
5131         sksec->sclass = SECCLASS_SOCKET;
5132         selinux_netlbl_sk_security_reset(sksec);
5133         sk->sk_security = sksec;
5134
5135         return 0;
5136 }
5137
5138 static void selinux_sk_free_security(struct sock *sk)
5139 {
5140         struct sk_security_struct *sksec = sk->sk_security;
5141
5142         sk->sk_security = NULL;
5143         selinux_netlbl_sk_security_free(sksec);
5144         kfree(sksec);
5145 }
5146
5147 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5148 {
5149         struct sk_security_struct *sksec = sk->sk_security;
5150         struct sk_security_struct *newsksec = newsk->sk_security;
5151
5152         newsksec->sid = sksec->sid;
5153         newsksec->peer_sid = sksec->peer_sid;
5154         newsksec->sclass = sksec->sclass;
5155
5156         selinux_netlbl_sk_security_reset(newsksec);
5157 }
5158
5159 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5160 {
5161         if (!sk)
5162                 *secid = SECINITSID_ANY_SOCKET;
5163         else {
5164                 struct sk_security_struct *sksec = sk->sk_security;
5165
5166                 *secid = sksec->sid;
5167         }
5168 }
5169
5170 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5171 {
5172         struct inode_security_struct *isec =
5173                 inode_security_novalidate(SOCK_INODE(parent));
5174         struct sk_security_struct *sksec = sk->sk_security;
5175
5176         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5177             sk->sk_family == PF_UNIX)
5178                 isec->sid = sksec->sid;
5179         sksec->sclass = isec->sclass;
5180 }
5181
5182 /* Called whenever SCTP receives an INIT chunk. This happens when an incoming
5183  * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association
5184  * already present).
5185  */
5186 static int selinux_sctp_assoc_request(struct sctp_endpoint *ep,
5187                                       struct sk_buff *skb)
5188 {
5189         struct sk_security_struct *sksec = ep->base.sk->sk_security;
5190         struct common_audit_data ad;
5191         struct lsm_network_audit net = {0,};
5192         u8 peerlbl_active;
5193         u32 peer_sid = SECINITSID_UNLABELED;
5194         u32 conn_sid;
5195         int err = 0;
5196
5197         if (!selinux_policycap_extsockclass())
5198                 return 0;
5199
5200         peerlbl_active = selinux_peerlbl_enabled();
5201
5202         if (peerlbl_active) {
5203                 /* This will return peer_sid = SECSID_NULL if there are
5204                  * no peer labels, see security_net_peersid_resolve().
5205                  */
5206                 err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family,
5207                                               &peer_sid);
5208                 if (err)
5209                         return err;
5210
5211                 if (peer_sid == SECSID_NULL)
5212                         peer_sid = SECINITSID_UNLABELED;
5213         }
5214
5215         if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5216                 sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5217
5218                 /* Here as first association on socket. As the peer SID
5219                  * was allowed by peer recv (and the netif/node checks),
5220                  * then it is approved by policy and used as the primary
5221                  * peer SID for getpeercon(3).
5222                  */
5223                 sksec->peer_sid = peer_sid;
5224         } else if  (sksec->peer_sid != peer_sid) {
5225                 /* Other association peer SIDs are checked to enforce
5226                  * consistency among the peer SIDs.
5227                  */
5228                 ad.type = LSM_AUDIT_DATA_NET;
5229                 ad.u.net = &net;
5230                 ad.u.net->sk = ep->base.sk;
5231                 err = avc_has_perm(&selinux_state,
5232                                    sksec->peer_sid, peer_sid, sksec->sclass,
5233                                    SCTP_SOCKET__ASSOCIATION, &ad);
5234                 if (err)
5235                         return err;
5236         }
5237
5238         /* Compute the MLS component for the connection and store
5239          * the information in ep. This will be used by SCTP TCP type
5240          * sockets and peeled off connections as they cause a new
5241          * socket to be generated. selinux_sctp_sk_clone() will then
5242          * plug this into the new socket.
5243          */
5244         err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid);
5245         if (err)
5246                 return err;
5247
5248         ep->secid = conn_sid;
5249         ep->peer_secid = peer_sid;
5250
5251         /* Set any NetLabel labels including CIPSO/CALIPSO options. */
5252         return selinux_netlbl_sctp_assoc_request(ep, skb);
5253 }
5254
5255 /* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5256  * based on their @optname.
5257  */
5258 static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5259                                      struct sockaddr *address,
5260                                      int addrlen)
5261 {
5262         int len, err = 0, walk_size = 0;
5263         void *addr_buf;
5264         struct sockaddr *addr;
5265         struct socket *sock;
5266
5267         if (!selinux_policycap_extsockclass())
5268                 return 0;
5269
5270         /* Process one or more addresses that may be IPv4 or IPv6 */
5271         sock = sk->sk_socket;
5272         addr_buf = address;
5273
5274         while (walk_size < addrlen) {
5275                 if (walk_size + sizeof(sa_family_t) > addrlen)
5276                         return -EINVAL;
5277
5278                 addr = addr_buf;
5279                 switch (addr->sa_family) {
5280                 case AF_UNSPEC:
5281                 case AF_INET:
5282                         len = sizeof(struct sockaddr_in);
5283                         break;
5284                 case AF_INET6:
5285                         len = sizeof(struct sockaddr_in6);
5286                         break;
5287                 default:
5288                         return -EINVAL;
5289                 }
5290
5291                 if (walk_size + len > addrlen)
5292                         return -EINVAL;
5293
5294                 err = -EINVAL;
5295                 switch (optname) {
5296                 /* Bind checks */
5297                 case SCTP_PRIMARY_ADDR:
5298                 case SCTP_SET_PEER_PRIMARY_ADDR:
5299                 case SCTP_SOCKOPT_BINDX_ADD:
5300                         err = selinux_socket_bind(sock, addr, len);
5301                         break;
5302                 /* Connect checks */
5303                 case SCTP_SOCKOPT_CONNECTX:
5304                 case SCTP_PARAM_SET_PRIMARY:
5305                 case SCTP_PARAM_ADD_IP:
5306                 case SCTP_SENDMSG_CONNECT:
5307                         err = selinux_socket_connect_helper(sock, addr, len);
5308                         if (err)
5309                                 return err;
5310
5311                         /* As selinux_sctp_bind_connect() is called by the
5312                          * SCTP protocol layer, the socket is already locked,
5313                          * therefore selinux_netlbl_socket_connect_locked() is
5314                          * is called here. The situations handled are:
5315                          * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5316                          * whenever a new IP address is added or when a new
5317                          * primary address is selected.
5318                          * Note that an SCTP connect(2) call happens before
5319                          * the SCTP protocol layer and is handled via
5320                          * selinux_socket_connect().
5321                          */
5322                         err = selinux_netlbl_socket_connect_locked(sk, addr);
5323                         break;
5324                 }
5325
5326                 if (err)
5327                         return err;
5328
5329                 addr_buf += len;
5330                 walk_size += len;
5331         }
5332
5333         return 0;
5334 }
5335
5336 /* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5337 static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
5338                                   struct sock *newsk)
5339 {
5340         struct sk_security_struct *sksec = sk->sk_security;
5341         struct sk_security_struct *newsksec = newsk->sk_security;
5342
5343         /* If policy does not support SECCLASS_SCTP_SOCKET then call
5344          * the non-sctp clone version.
5345          */
5346         if (!selinux_policycap_extsockclass())
5347                 return selinux_sk_clone_security(sk, newsk);
5348
5349         newsksec->sid = ep->secid;
5350         newsksec->peer_sid = ep->peer_secid;
5351         newsksec->sclass = sksec->sclass;
5352         selinux_netlbl_sctp_sk_clone(sk, newsk);
5353 }
5354
5355 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
5356                                      struct request_sock *req)
5357 {
5358         struct sk_security_struct *sksec = sk->sk_security;
5359         int err;
5360         u16 family = req->rsk_ops->family;
5361         u32 connsid;
5362         u32 peersid;
5363
5364         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5365         if (err)
5366                 return err;
5367         err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5368         if (err)
5369                 return err;
5370         req->secid = connsid;
5371         req->peer_secid = peersid;
5372
5373         return selinux_netlbl_inet_conn_request(req, family);
5374 }
5375
5376 static void selinux_inet_csk_clone(struct sock *newsk,
5377                                    const struct request_sock *req)
5378 {
5379         struct sk_security_struct *newsksec = newsk->sk_security;
5380
5381         newsksec->sid = req->secid;
5382         newsksec->peer_sid = req->peer_secid;
5383         /* NOTE: Ideally, we should also get the isec->sid for the
5384            new socket in sync, but we don't have the isec available yet.
5385            So we will wait until sock_graft to do it, by which
5386            time it will have been created and available. */
5387
5388         /* We don't need to take any sort of lock here as we are the only
5389          * thread with access to newsksec */
5390         selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5391 }
5392
5393 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5394 {
5395         u16 family = sk->sk_family;
5396         struct sk_security_struct *sksec = sk->sk_security;
5397
5398         /* handle mapped IPv4 packets arriving via IPv6 sockets */
5399         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5400                 family = PF_INET;
5401
5402         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5403 }
5404
5405 static int selinux_secmark_relabel_packet(u32 sid)
5406 {
5407         const struct task_security_struct *__tsec;
5408         u32 tsid;
5409
5410         __tsec = selinux_cred(current_cred());
5411         tsid = __tsec->sid;
5412
5413         return avc_has_perm(&selinux_state,
5414                             tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5415                             NULL);
5416 }
5417
5418 static void selinux_secmark_refcount_inc(void)
5419 {
5420         atomic_inc(&selinux_secmark_refcount);
5421 }
5422
5423 static void selinux_secmark_refcount_dec(void)
5424 {
5425         atomic_dec(&selinux_secmark_refcount);
5426 }
5427
5428 static void selinux_req_classify_flow(const struct request_sock *req,
5429                                       struct flowi *fl)
5430 {
5431         fl->flowi_secid = req->secid;
5432 }
5433
5434 static int selinux_tun_dev_alloc_security(void **security)
5435 {
5436         struct tun_security_struct *tunsec;
5437
5438         tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5439         if (!tunsec)
5440                 return -ENOMEM;
5441         tunsec->sid = current_sid();
5442
5443         *security = tunsec;
5444         return 0;
5445 }
5446
5447 static void selinux_tun_dev_free_security(void *security)
5448 {
5449         kfree(security);
5450 }
5451
5452 static int selinux_tun_dev_create(void)
5453 {
5454         u32 sid = current_sid();
5455
5456         /* we aren't taking into account the "sockcreate" SID since the socket
5457          * that is being created here is not a socket in the traditional sense,
5458          * instead it is a private sock, accessible only to the kernel, and
5459          * representing a wide range of network traffic spanning multiple
5460          * connections unlike traditional sockets - check the TUN driver to
5461          * get a better understanding of why this socket is special */
5462
5463         return avc_has_perm(&selinux_state,
5464                             sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5465                             NULL);
5466 }
5467
5468 static int selinux_tun_dev_attach_queue(void *security)
5469 {
5470         struct tun_security_struct *tunsec = security;
5471
5472         return avc_has_perm(&selinux_state,
5473                             current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5474                             TUN_SOCKET__ATTACH_QUEUE, NULL);
5475 }
5476
5477 static int selinux_tun_dev_attach(struct sock *sk, void *security)
5478 {
5479         struct tun_security_struct *tunsec = security;
5480         struct sk_security_struct *sksec = sk->sk_security;
5481
5482         /* we don't currently perform any NetLabel based labeling here and it
5483          * isn't clear that we would want to do so anyway; while we could apply
5484          * labeling without the support of the TUN user the resulting labeled
5485          * traffic from the other end of the connection would almost certainly
5486          * cause confusion to the TUN user that had no idea network labeling
5487          * protocols were being used */
5488
5489         sksec->sid = tunsec->sid;
5490         sksec->sclass = SECCLASS_TUN_SOCKET;
5491
5492         return 0;
5493 }
5494
5495 static int selinux_tun_dev_open(void *security)
5496 {
5497         struct tun_security_struct *tunsec = security;
5498         u32 sid = current_sid();
5499         int err;
5500
5501         err = avc_has_perm(&selinux_state,
5502                            sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5503                            TUN_SOCKET__RELABELFROM, NULL);
5504         if (err)
5505                 return err;
5506         err = avc_has_perm(&selinux_state,
5507                            sid, sid, SECCLASS_TUN_SOCKET,
5508                            TUN_SOCKET__RELABELTO, NULL);
5509         if (err)
5510                 return err;
5511         tunsec->sid = sid;
5512
5513         return 0;
5514 }
5515
5516 #ifdef CONFIG_NETFILTER
5517
5518 static unsigned int selinux_ip_forward(struct sk_buff *skb,
5519                                        const struct net_device *indev,
5520                                        u16 family)
5521 {
5522         int err;
5523         char *addrp;
5524         u32 peer_sid;
5525         struct common_audit_data ad;
5526         struct lsm_network_audit net = {0,};
5527         u8 secmark_active;
5528         u8 netlbl_active;
5529         u8 peerlbl_active;
5530
5531         if (!selinux_policycap_netpeer())
5532                 return NF_ACCEPT;
5533
5534         secmark_active = selinux_secmark_enabled();
5535         netlbl_active = netlbl_enabled();
5536         peerlbl_active = selinux_peerlbl_enabled();
5537         if (!secmark_active && !peerlbl_active)
5538                 return NF_ACCEPT;
5539
5540         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5541                 return NF_DROP;
5542
5543         ad.type = LSM_AUDIT_DATA_NET;
5544         ad.u.net = &net;
5545         ad.u.net->netif = indev->ifindex;
5546         ad.u.net->family = family;
5547         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5548                 return NF_DROP;
5549
5550         if (peerlbl_active) {
5551                 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5552                                                addrp, family, peer_sid, &ad);
5553                 if (err) {
5554                         selinux_netlbl_err(skb, family, err, 1);
5555                         return NF_DROP;
5556                 }
5557         }
5558
5559         if (secmark_active)
5560                 if (avc_has_perm(&selinux_state,
5561                                  peer_sid, skb->secmark,
5562                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5563                         return NF_DROP;
5564
5565         if (netlbl_active)
5566                 /* we do this in the FORWARD path and not the POST_ROUTING
5567                  * path because we want to make sure we apply the necessary
5568                  * labeling before IPsec is applied so we can leverage AH
5569                  * protection */
5570                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5571                         return NF_DROP;
5572
5573         return NF_ACCEPT;
5574 }
5575
5576 static unsigned int selinux_ipv4_forward(void *priv,
5577                                          struct sk_buff *skb,
5578                                          const struct nf_hook_state *state)
5579 {
5580         return selinux_ip_forward(skb, state->in, PF_INET);
5581 }
5582
5583 #if IS_ENABLED(CONFIG_IPV6)
5584 static unsigned int selinux_ipv6_forward(void *priv,
5585                                          struct sk_buff *skb,
5586                                          const struct nf_hook_state *state)
5587 {
5588         return selinux_ip_forward(skb, state->in, PF_INET6);
5589 }
5590 #endif  /* IPV6 */
5591
5592 static unsigned int selinux_ip_output(struct sk_buff *skb,
5593                                       u16 family)
5594 {
5595         struct sock *sk;
5596         u32 sid;
5597
5598         if (!netlbl_enabled())
5599                 return NF_ACCEPT;
5600
5601         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5602          * because we want to make sure we apply the necessary labeling
5603          * before IPsec is applied so we can leverage AH protection */
5604         sk = skb->sk;
5605         if (sk) {
5606                 struct sk_security_struct *sksec;
5607
5608                 if (sk_listener(sk))
5609                         /* if the socket is the listening state then this
5610                          * packet is a SYN-ACK packet which means it needs to
5611                          * be labeled based on the connection/request_sock and
5612                          * not the parent socket.  unfortunately, we can't
5613                          * lookup the request_sock yet as it isn't queued on
5614                          * the parent socket until after the SYN-ACK is sent.
5615                          * the "solution" is to simply pass the packet as-is
5616                          * as any IP option based labeling should be copied
5617                          * from the initial connection request (in the IP
5618                          * layer).  it is far from ideal, but until we get a
5619                          * security label in the packet itself this is the
5620                          * best we can do. */
5621                         return NF_ACCEPT;
5622
5623                 /* standard practice, label using the parent socket */
5624                 sksec = sk->sk_security;
5625                 sid = sksec->sid;
5626         } else
5627                 sid = SECINITSID_KERNEL;
5628         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5629                 return NF_DROP;
5630
5631         return NF_ACCEPT;
5632 }
5633
5634 static unsigned int selinux_ipv4_output(void *priv,
5635                                         struct sk_buff *skb,
5636                                         const struct nf_hook_state *state)
5637 {
5638         return selinux_ip_output(skb, PF_INET);
5639 }
5640
5641 #if IS_ENABLED(CONFIG_IPV6)
5642 static unsigned int selinux_ipv6_output(void *priv,
5643                                         struct sk_buff *skb,
5644                                         const struct nf_hook_state *state)
5645 {
5646         return selinux_ip_output(skb, PF_INET6);
5647 }
5648 #endif  /* IPV6 */
5649
5650 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5651                                                 int ifindex,
5652                                                 u16 family)
5653 {
5654         struct sock *sk = skb_to_full_sk(skb);
5655         struct sk_security_struct *sksec;
5656         struct common_audit_data ad;
5657         struct lsm_network_audit net = {0,};
5658         char *addrp;
5659         u8 proto;
5660
5661         if (sk == NULL)
5662                 return NF_ACCEPT;
5663         sksec = sk->sk_security;
5664
5665         ad.type = LSM_AUDIT_DATA_NET;
5666         ad.u.net = &net;
5667         ad.u.net->netif = ifindex;
5668         ad.u.net->family = family;
5669         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5670                 return NF_DROP;
5671
5672         if (selinux_secmark_enabled())
5673                 if (avc_has_perm(&selinux_state,
5674                                  sksec->sid, skb->secmark,
5675                                  SECCLASS_PACKET, PACKET__SEND, &ad))
5676                         return NF_DROP_ERR(-ECONNREFUSED);
5677
5678         if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5679                 return NF_DROP_ERR(-ECONNREFUSED);
5680
5681         return NF_ACCEPT;
5682 }
5683
5684 static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5685                                          const struct net_device *outdev,
5686                                          u16 family)
5687 {
5688         u32 secmark_perm;
5689         u32 peer_sid;
5690         int ifindex = outdev->ifindex;
5691         struct sock *sk;
5692         struct common_audit_data ad;
5693         struct lsm_network_audit net = {0,};
5694         char *addrp;
5695         u8 secmark_active;
5696         u8 peerlbl_active;
5697
5698         /* If any sort of compatibility mode is enabled then handoff processing
5699          * to the selinux_ip_postroute_compat() function to deal with the
5700          * special handling.  We do this in an attempt to keep this function
5701          * as fast and as clean as possible. */
5702         if (!selinux_policycap_netpeer())
5703                 return selinux_ip_postroute_compat(skb, ifindex, family);
5704
5705         secmark_active = selinux_secmark_enabled();
5706         peerlbl_active = selinux_peerlbl_enabled();
5707         if (!secmark_active && !peerlbl_active)
5708                 return NF_ACCEPT;
5709
5710         sk = skb_to_full_sk(skb);
5711
5712 #ifdef CONFIG_XFRM
5713         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5714          * packet transformation so allow the packet to pass without any checks
5715          * since we'll have another chance to perform access control checks
5716          * when the packet is on it's final way out.
5717          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5718          *       is NULL, in this case go ahead and apply access control.
5719          * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5720          *       TCP listening state we cannot wait until the XFRM processing
5721          *       is done as we will miss out on the SA label if we do;
5722          *       unfortunately, this means more work, but it is only once per
5723          *       connection. */
5724         if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5725             !(sk && sk_listener(sk)))
5726                 return NF_ACCEPT;
5727 #endif
5728
5729         if (sk == NULL) {
5730                 /* Without an associated socket the packet is either coming
5731                  * from the kernel or it is being forwarded; check the packet
5732                  * to determine which and if the packet is being forwarded
5733                  * query the packet directly to determine the security label. */
5734                 if (skb->skb_iif) {
5735                         secmark_perm = PACKET__FORWARD_OUT;
5736                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5737                                 return NF_DROP;
5738                 } else {
5739                         secmark_perm = PACKET__SEND;
5740                         peer_sid = SECINITSID_KERNEL;
5741                 }
5742         } else if (sk_listener(sk)) {
5743                 /* Locally generated packet but the associated socket is in the
5744                  * listening state which means this is a SYN-ACK packet.  In
5745                  * this particular case the correct security label is assigned
5746                  * to the connection/request_sock but unfortunately we can't
5747                  * query the request_sock as it isn't queued on the parent
5748                  * socket until after the SYN-ACK packet is sent; the only
5749                  * viable choice is to regenerate the label like we do in
5750                  * selinux_inet_conn_request().  See also selinux_ip_output()
5751                  * for similar problems. */
5752                 u32 skb_sid;
5753                 struct sk_security_struct *sksec;
5754
5755                 sksec = sk->sk_security;
5756                 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5757                         return NF_DROP;
5758                 /* At this point, if the returned skb peerlbl is SECSID_NULL
5759                  * and the packet has been through at least one XFRM
5760                  * transformation then we must be dealing with the "final"
5761                  * form of labeled IPsec packet; since we've already applied
5762                  * all of our access controls on this packet we can safely
5763                  * pass the packet. */
5764                 if (skb_sid == SECSID_NULL) {
5765                         switch (family) {
5766                         case PF_INET:
5767                                 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5768                                         return NF_ACCEPT;
5769                                 break;
5770                         case PF_INET6:
5771                                 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5772                                         return NF_ACCEPT;
5773                                 break;
5774                         default:
5775                                 return NF_DROP_ERR(-ECONNREFUSED);
5776                         }
5777                 }
5778                 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5779                         return NF_DROP;
5780                 secmark_perm = PACKET__SEND;
5781         } else {
5782                 /* Locally generated packet, fetch the security label from the
5783                  * associated socket. */
5784                 struct sk_security_struct *sksec = sk->sk_security;
5785                 peer_sid = sksec->sid;
5786                 secmark_perm = PACKET__SEND;
5787         }
5788
5789         ad.type = LSM_AUDIT_DATA_NET;
5790         ad.u.net = &net;
5791         ad.u.net->netif = ifindex;
5792         ad.u.net->family = family;
5793         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5794                 return NF_DROP;
5795
5796         if (secmark_active)
5797                 if (avc_has_perm(&selinux_state,
5798                                  peer_sid, skb->secmark,
5799                                  SECCLASS_PACKET, secmark_perm, &ad))
5800                         return NF_DROP_ERR(-ECONNREFUSED);
5801
5802         if (peerlbl_active) {
5803                 u32 if_sid;
5804                 u32 node_sid;
5805
5806                 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5807                         return NF_DROP;
5808                 if (avc_has_perm(&selinux_state,
5809                                  peer_sid, if_sid,
5810                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
5811                         return NF_DROP_ERR(-ECONNREFUSED);
5812
5813                 if (sel_netnode_sid(addrp, family, &node_sid))
5814                         return NF_DROP;
5815                 if (avc_has_perm(&selinux_state,
5816                                  peer_sid, node_sid,
5817                                  SECCLASS_NODE, NODE__SENDTO, &ad))
5818                         return NF_DROP_ERR(-ECONNREFUSED);
5819         }
5820
5821         return NF_ACCEPT;
5822 }
5823
5824 static unsigned int selinux_ipv4_postroute(void *priv,
5825                                            struct sk_buff *skb,
5826                                            const struct nf_hook_state *state)
5827 {
5828         return selinux_ip_postroute(skb, state->out, PF_INET);
5829 }
5830
5831 #if IS_ENABLED(CONFIG_IPV6)
5832 static unsigned int selinux_ipv6_postroute(void *priv,
5833                                            struct sk_buff *skb,
5834                                            const struct nf_hook_state *state)
5835 {
5836         return selinux_ip_postroute(skb, state->out, PF_INET6);
5837 }
5838 #endif  /* IPV6 */
5839
5840 #endif  /* CONFIG_NETFILTER */
5841
5842 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5843 {
5844         int rc = 0;
5845         unsigned int msg_len;
5846         unsigned int data_len = skb->len;
5847         unsigned char *data = skb->data;
5848         struct nlmsghdr *nlh;
5849         struct sk_security_struct *sksec = sk->sk_security;
5850         u16 sclass = sksec->sclass;
5851         u32 perm;
5852
5853         while (data_len >= nlmsg_total_size(0)) {
5854                 nlh = (struct nlmsghdr *)data;
5855
5856                 /* NOTE: the nlmsg_len field isn't reliably set by some netlink
5857                  *       users which means we can't reject skb's with bogus
5858                  *       length fields; our solution is to follow what
5859                  *       netlink_rcv_skb() does and simply skip processing at
5860                  *       messages with length fields that are clearly junk
5861                  */
5862                 if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
5863                         return 0;
5864
5865                 rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
5866                 if (rc == 0) {
5867                         rc = sock_has_perm(sk, perm);
5868                         if (rc)
5869                                 return rc;
5870                 } else if (rc == -EINVAL) {
5871                         /* -EINVAL is a missing msg/perm mapping */
5872                         pr_warn_ratelimited("SELinux: unrecognized netlink"
5873                                 " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5874                                 " pid=%d comm=%s\n",
5875                                 sk->sk_protocol, nlh->nlmsg_type,
5876                                 secclass_map[sclass - 1].name,
5877                                 task_pid_nr(current), current->comm);
5878                         if (enforcing_enabled(&selinux_state) &&
5879                             !security_get_allow_unknown(&selinux_state))
5880                                 return rc;
5881                         rc = 0;
5882                 } else if (rc == -ENOENT) {
5883                         /* -ENOENT is a missing socket/class mapping, ignore */
5884                         rc = 0;
5885                 } else {
5886                         return rc;
5887                 }
5888
5889                 /* move to the next message after applying netlink padding */
5890                 msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
5891                 if (msg_len >= data_len)
5892                         return 0;
5893                 data_len -= msg_len;
5894                 data += msg_len;
5895         }
5896
5897         return rc;
5898 }
5899
5900 static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
5901 {
5902         isec->sclass = sclass;
5903         isec->sid = current_sid();
5904 }
5905
5906 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5907                         u32 perms)
5908 {
5909         struct ipc_security_struct *isec;
5910         struct common_audit_data ad;
5911         u32 sid = current_sid();
5912
5913         isec = selinux_ipc(ipc_perms);
5914
5915         ad.type = LSM_AUDIT_DATA_IPC;
5916         ad.u.ipc_id = ipc_perms->key;
5917
5918         return avc_has_perm(&selinux_state,
5919                             sid, isec->sid, isec->sclass, perms, &ad);
5920 }
5921
5922 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5923 {
5924         struct msg_security_struct *msec;
5925
5926         msec = selinux_msg_msg(msg);
5927         msec->sid = SECINITSID_UNLABELED;
5928
5929         return 0;
5930 }
5931
5932 /* message queue security operations */
5933 static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
5934 {
5935         struct ipc_security_struct *isec;
5936         struct common_audit_data ad;
5937         u32 sid = current_sid();
5938         int rc;
5939
5940         isec = selinux_ipc(msq);
5941         ipc_init_security(isec, SECCLASS_MSGQ);
5942
5943         ad.type = LSM_AUDIT_DATA_IPC;
5944         ad.u.ipc_id = msq->key;
5945
5946         rc = avc_has_perm(&selinux_state,
5947                           sid, isec->sid, SECCLASS_MSGQ,
5948                           MSGQ__CREATE, &ad);
5949         return rc;
5950 }
5951
5952 static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
5953 {
5954         struct ipc_security_struct *isec;
5955         struct common_audit_data ad;
5956         u32 sid = current_sid();
5957
5958         isec = selinux_ipc(msq);
5959
5960         ad.type = LSM_AUDIT_DATA_IPC;
5961         ad.u.ipc_id = msq->key;
5962
5963         return avc_has_perm(&selinux_state,
5964                             sid, isec->sid, SECCLASS_MSGQ,
5965                             MSGQ__ASSOCIATE, &ad);
5966 }
5967
5968 static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
5969 {
5970         int err;
5971         int perms;
5972
5973         switch (cmd) {
5974         case IPC_INFO:
5975         case MSG_INFO:
5976                 /* No specific object, just general system-wide information. */
5977                 return avc_has_perm(&selinux_state,
5978                                     current_sid(), SECINITSID_KERNEL,
5979                                     SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
5980         case IPC_STAT:
5981         case MSG_STAT:
5982         case MSG_STAT_ANY:
5983                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5984                 break;
5985         case IPC_SET:
5986                 perms = MSGQ__SETATTR;
5987                 break;
5988         case IPC_RMID:
5989                 perms = MSGQ__DESTROY;
5990                 break;
5991         default:
5992                 return 0;
5993         }
5994
5995         err = ipc_has_perm(msq, perms);
5996         return err;
5997 }
5998
5999 static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6000 {
6001         struct ipc_security_struct *isec;
6002         struct msg_security_struct *msec;
6003         struct common_audit_data ad;
6004         u32 sid = current_sid();
6005         int rc;
6006
6007         isec = selinux_ipc(msq);
6008         msec = selinux_msg_msg(msg);
6009
6010         /*
6011          * First time through, need to assign label to the message
6012          */
6013         if (msec->sid == SECINITSID_UNLABELED) {
6014                 /*
6015                  * Compute new sid based on current process and
6016                  * message queue this message will be stored in
6017                  */
6018                 rc = security_transition_sid(&selinux_state, sid, isec->sid,
6019                                              SECCLASS_MSG, NULL, &msec->sid);
6020                 if (rc)
6021                         return rc;
6022         }
6023
6024         ad.type = LSM_AUDIT_DATA_IPC;
6025         ad.u.ipc_id = msq->key;
6026
6027         /* Can this process write to the queue? */
6028         rc = avc_has_perm(&selinux_state,
6029                           sid, isec->sid, SECCLASS_MSGQ,
6030                           MSGQ__WRITE, &ad);
6031         if (!rc)
6032                 /* Can this process send the message */
6033                 rc = avc_has_perm(&selinux_state,
6034                                   sid, msec->sid, SECCLASS_MSG,
6035                                   MSG__SEND, &ad);
6036         if (!rc)
6037                 /* Can the message be put in the queue? */
6038                 rc = avc_has_perm(&selinux_state,
6039                                   msec->sid, isec->sid, SECCLASS_MSGQ,
6040                                   MSGQ__ENQUEUE, &ad);
6041
6042         return rc;
6043 }
6044
6045 static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6046                                     struct task_struct *target,
6047                                     long type, int mode)
6048 {
6049         struct ipc_security_struct *isec;
6050         struct msg_security_struct *msec;
6051         struct common_audit_data ad;
6052         u32 sid = task_sid(target);
6053         int rc;
6054
6055         isec = selinux_ipc(msq);
6056         msec = selinux_msg_msg(msg);
6057
6058         ad.type = LSM_AUDIT_DATA_IPC;
6059         ad.u.ipc_id = msq->key;
6060
6061         rc = avc_has_perm(&selinux_state,
6062                           sid, isec->sid,
6063                           SECCLASS_MSGQ, MSGQ__READ, &ad);
6064         if (!rc)
6065                 rc = avc_has_perm(&selinux_state,
6066                                   sid, msec->sid,
6067                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
6068         return rc;
6069 }
6070
6071 /* Shared Memory security operations */
6072 static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6073 {
6074         struct ipc_security_struct *isec;
6075         struct common_audit_data ad;
6076         u32 sid = current_sid();
6077         int rc;
6078
6079         isec = selinux_ipc(shp);
6080         ipc_init_security(isec, SECCLASS_SHM);
6081
6082         ad.type = LSM_AUDIT_DATA_IPC;
6083         ad.u.ipc_id = shp->key;
6084
6085         rc = avc_has_perm(&selinux_state,
6086                           sid, isec->sid, SECCLASS_SHM,
6087                           SHM__CREATE, &ad);
6088         return rc;
6089 }
6090
6091 static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6092 {
6093         struct ipc_security_struct *isec;
6094         struct common_audit_data ad;
6095         u32 sid = current_sid();
6096
6097         isec = selinux_ipc(shp);
6098
6099         ad.type = LSM_AUDIT_DATA_IPC;
6100         ad.u.ipc_id = shp->key;
6101
6102         return avc_has_perm(&selinux_state,
6103                             sid, isec->sid, SECCLASS_SHM,
6104                             SHM__ASSOCIATE, &ad);
6105 }
6106
6107 /* Note, at this point, shp is locked down */
6108 static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6109 {
6110         int perms;
6111         int err;
6112
6113         switch (cmd) {
6114         case IPC_INFO:
6115         case SHM_INFO:
6116                 /* No specific object, just general system-wide information. */
6117                 return avc_has_perm(&selinux_state,
6118                                     current_sid(), SECINITSID_KERNEL,
6119                                     SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6120         case IPC_STAT:
6121         case SHM_STAT:
6122         case SHM_STAT_ANY:
6123                 perms = SHM__GETATTR | SHM__ASSOCIATE;
6124                 break;
6125         case IPC_SET:
6126                 perms = SHM__SETATTR;
6127                 break;
6128         case SHM_LOCK:
6129         case SHM_UNLOCK:
6130                 perms = SHM__LOCK;
6131                 break;
6132         case IPC_RMID:
6133                 perms = SHM__DESTROY;
6134                 break;
6135         default:
6136                 return 0;
6137         }
6138
6139         err = ipc_has_perm(shp, perms);
6140         return err;
6141 }
6142
6143 static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6144                              char __user *shmaddr, int shmflg)
6145 {
6146         u32 perms;
6147
6148         if (shmflg & SHM_RDONLY)
6149                 perms = SHM__READ;
6150         else
6151                 perms = SHM__READ | SHM__WRITE;
6152
6153         return ipc_has_perm(shp, perms);
6154 }
6155
6156 /* Semaphore security operations */
6157 static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6158 {
6159         struct ipc_security_struct *isec;
6160         struct common_audit_data ad;
6161         u32 sid = current_sid();
6162         int rc;
6163
6164         isec = selinux_ipc(sma);
6165         ipc_init_security(isec, SECCLASS_SEM);
6166
6167         ad.type = LSM_AUDIT_DATA_IPC;
6168         ad.u.ipc_id = sma->key;
6169
6170         rc = avc_has_perm(&selinux_state,
6171                           sid, isec->sid, SECCLASS_SEM,
6172                           SEM__CREATE, &ad);
6173         return rc;
6174 }
6175
6176 static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6177 {
6178         struct ipc_security_struct *isec;
6179         struct common_audit_data ad;
6180         u32 sid = current_sid();
6181
6182         isec = selinux_ipc(sma);
6183
6184         ad.type = LSM_AUDIT_DATA_IPC;
6185         ad.u.ipc_id = sma->key;
6186
6187         return avc_has_perm(&selinux_state,
6188                             sid, isec->sid, SECCLASS_SEM,
6189                             SEM__ASSOCIATE, &ad);
6190 }
6191
6192 /* Note, at this point, sma is locked down */
6193 static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6194 {
6195         int err;
6196         u32 perms;
6197
6198         switch (cmd) {
6199         case IPC_INFO:
6200         case SEM_INFO:
6201                 /* No specific object, just general system-wide information. */
6202                 return avc_has_perm(&selinux_state,
6203                                     current_sid(), SECINITSID_KERNEL,
6204                                     SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6205         case GETPID:
6206         case GETNCNT:
6207         case GETZCNT:
6208                 perms = SEM__GETATTR;
6209                 break;
6210         case GETVAL:
6211         case GETALL:
6212                 perms = SEM__READ;
6213                 break;
6214         case SETVAL:
6215         case SETALL:
6216                 perms = SEM__WRITE;
6217                 break;
6218         case IPC_RMID:
6219                 perms = SEM__DESTROY;
6220                 break;
6221         case IPC_SET:
6222                 perms = SEM__SETATTR;
6223                 break;
6224         case IPC_STAT:
6225         case SEM_STAT:
6226         case SEM_STAT_ANY:
6227                 perms = SEM__GETATTR | SEM__ASSOCIATE;
6228                 break;
6229         default:
6230                 return 0;
6231         }
6232
6233         err = ipc_has_perm(sma, perms);
6234         return err;
6235 }
6236
6237 static int selinux_sem_semop(struct kern_ipc_perm *sma,
6238                              struct sembuf *sops, unsigned nsops, int alter)
6239 {
6240         u32 perms;
6241
6242         if (alter)
6243                 perms = SEM__READ | SEM__WRITE;
6244         else
6245                 perms = SEM__READ;
6246
6247         return ipc_has_perm(sma, perms);
6248 }
6249
6250 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6251 {
6252         u32 av = 0;
6253
6254         av = 0;
6255         if (flag & S_IRUGO)
6256                 av |= IPC__UNIX_READ;
6257         if (flag & S_IWUGO)
6258                 av |= IPC__UNIX_WRITE;
6259
6260         if (av == 0)
6261                 return 0;
6262
6263         return ipc_has_perm(ipcp, av);
6264 }
6265
6266 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6267 {
6268         struct ipc_security_struct *isec = selinux_ipc(ipcp);
6269         *secid = isec->sid;
6270 }
6271
6272 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6273 {
6274         if (inode)
6275                 inode_doinit_with_dentry(inode, dentry);
6276 }
6277
6278 static int selinux_getprocattr(struct task_struct *p,
6279                                char *name, char **value)
6280 {
6281         const struct task_security_struct *__tsec;
6282         u32 sid;
6283         int error;
6284         unsigned len;
6285
6286         rcu_read_lock();
6287         __tsec = selinux_cred(__task_cred(p));
6288
6289         if (current != p) {
6290                 error = avc_has_perm(&selinux_state,
6291                                      current_sid(), __tsec->sid,
6292                                      SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6293                 if (error)
6294                         goto bad;
6295         }
6296
6297         if (!strcmp(name, "current"))
6298                 sid = __tsec->sid;
6299         else if (!strcmp(name, "prev"))
6300                 sid = __tsec->osid;
6301         else if (!strcmp(name, "exec"))
6302                 sid = __tsec->exec_sid;
6303         else if (!strcmp(name, "fscreate"))
6304                 sid = __tsec->create_sid;
6305         else if (!strcmp(name, "keycreate"))
6306                 sid = __tsec->keycreate_sid;
6307         else if (!strcmp(name, "sockcreate"))
6308                 sid = __tsec->sockcreate_sid;
6309         else {
6310                 error = -EINVAL;
6311                 goto bad;
6312         }
6313         rcu_read_unlock();
6314
6315         if (!sid)
6316                 return 0;
6317
6318         error = security_sid_to_context(&selinux_state, sid, value, &len);
6319         if (error)
6320                 return error;
6321         return len;
6322
6323 bad:
6324         rcu_read_unlock();
6325         return error;
6326 }
6327
6328 static int selinux_setprocattr(const char *name, void *value, size_t size)
6329 {
6330         struct task_security_struct *tsec;
6331         struct cred *new;
6332         u32 mysid = current_sid(), sid = 0, ptsid;
6333         int error;
6334         char *str = value;
6335
6336         /*
6337          * Basic control over ability to set these attributes at all.
6338          */
6339         if (!strcmp(name, "exec"))
6340                 error = avc_has_perm(&selinux_state,
6341                                      mysid, mysid, SECCLASS_PROCESS,
6342                                      PROCESS__SETEXEC, NULL);
6343         else if (!strcmp(name, "fscreate"))
6344                 error = avc_has_perm(&selinux_state,
6345                                      mysid, mysid, SECCLASS_PROCESS,
6346                                      PROCESS__SETFSCREATE, NULL);
6347         else if (!strcmp(name, "keycreate"))
6348                 error = avc_has_perm(&selinux_state,
6349                                      mysid, mysid, SECCLASS_PROCESS,
6350                                      PROCESS__SETKEYCREATE, NULL);
6351         else if (!strcmp(name, "sockcreate"))
6352                 error = avc_has_perm(&selinux_state,
6353                                      mysid, mysid, SECCLASS_PROCESS,
6354                                      PROCESS__SETSOCKCREATE, NULL);
6355         else if (!strcmp(name, "current"))
6356                 error = avc_has_perm(&selinux_state,
6357                                      mysid, mysid, SECCLASS_PROCESS,
6358                                      PROCESS__SETCURRENT, NULL);
6359         else
6360                 error = -EINVAL;
6361         if (error)
6362                 return error;
6363
6364         /* Obtain a SID for the context, if one was specified. */
6365         if (size && str[0] && str[0] != '\n') {
6366                 if (str[size-1] == '\n') {
6367                         str[size-1] = 0;
6368                         size--;
6369                 }
6370                 error = security_context_to_sid(&selinux_state, value, size,
6371                                                 &sid, GFP_KERNEL);
6372                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
6373                         if (!has_cap_mac_admin(true)) {
6374                                 struct audit_buffer *ab;
6375                                 size_t audit_size;
6376
6377                                 /* We strip a nul only if it is at the end, otherwise the
6378                                  * context contains a nul and we should audit that */
6379                                 if (str[size - 1] == '\0')
6380                                         audit_size = size - 1;
6381                                 else
6382                                         audit_size = size;
6383                                 ab = audit_log_start(audit_context(),
6384                                                      GFP_ATOMIC,
6385                                                      AUDIT_SELINUX_ERR);
6386                                 audit_log_format(ab, "op=fscreate invalid_context=");
6387                                 audit_log_n_untrustedstring(ab, value, audit_size);
6388                                 audit_log_end(ab);
6389
6390                                 return error;
6391                         }
6392                         error = security_context_to_sid_force(
6393                                                       &selinux_state,
6394                                                       value, size, &sid);
6395                 }
6396                 if (error)
6397                         return error;
6398         }
6399
6400         new = prepare_creds();
6401         if (!new)
6402                 return -ENOMEM;
6403
6404         /* Permission checking based on the specified context is
6405            performed during the actual operation (execve,
6406            open/mkdir/...), when we know the full context of the
6407            operation.  See selinux_bprm_creds_for_exec for the execve
6408            checks and may_create for the file creation checks. The
6409            operation will then fail if the context is not permitted. */
6410         tsec = selinux_cred(new);
6411         if (!strcmp(name, "exec")) {
6412                 tsec->exec_sid = sid;
6413         } else if (!strcmp(name, "fscreate")) {
6414                 tsec->create_sid = sid;
6415         } else if (!strcmp(name, "keycreate")) {
6416                 if (sid) {
6417                         error = avc_has_perm(&selinux_state, mysid, sid,
6418                                              SECCLASS_KEY, KEY__CREATE, NULL);
6419                         if (error)
6420                                 goto abort_change;
6421                 }
6422                 tsec->keycreate_sid = sid;
6423         } else if (!strcmp(name, "sockcreate")) {
6424                 tsec->sockcreate_sid = sid;
6425         } else if (!strcmp(name, "current")) {
6426                 error = -EINVAL;
6427                 if (sid == 0)
6428                         goto abort_change;
6429
6430                 /* Only allow single threaded processes to change context */
6431                 error = -EPERM;
6432                 if (!current_is_single_threaded()) {
6433                         error = security_bounded_transition(&selinux_state,
6434                                                             tsec->sid, sid);
6435                         if (error)
6436                                 goto abort_change;
6437                 }
6438
6439                 /* Check permissions for the transition. */
6440                 error = avc_has_perm(&selinux_state,
6441                                      tsec->sid, sid, SECCLASS_PROCESS,
6442                                      PROCESS__DYNTRANSITION, NULL);
6443                 if (error)
6444                         goto abort_change;
6445
6446                 /* Check for ptracing, and update the task SID if ok.
6447                    Otherwise, leave SID unchanged and fail. */
6448                 ptsid = ptrace_parent_sid();
6449                 if (ptsid != 0) {
6450                         error = avc_has_perm(&selinux_state,
6451                                              ptsid, sid, SECCLASS_PROCESS,
6452                                              PROCESS__PTRACE, NULL);
6453                         if (error)
6454                                 goto abort_change;
6455                 }
6456
6457                 tsec->sid = sid;
6458         } else {
6459                 error = -EINVAL;
6460                 goto abort_change;
6461         }
6462
6463         commit_creds(new);
6464         return size;
6465
6466 abort_change:
6467         abort_creds(new);
6468         return error;
6469 }
6470
6471 static int selinux_ismaclabel(const char *name)
6472 {
6473         return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6474 }
6475
6476 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6477 {
6478         return security_sid_to_context(&selinux_state, secid,
6479                                        secdata, seclen);
6480 }
6481
6482 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6483 {
6484         return security_context_to_sid(&selinux_state, secdata, seclen,
6485                                        secid, GFP_KERNEL);
6486 }
6487
6488 static void selinux_release_secctx(char *secdata, u32 seclen)
6489 {
6490         kfree(secdata);
6491 }
6492
6493 static void selinux_inode_invalidate_secctx(struct inode *inode)
6494 {
6495         struct inode_security_struct *isec = selinux_inode(inode);
6496
6497         spin_lock(&isec->lock);
6498         isec->initialized = LABEL_INVALID;
6499         spin_unlock(&isec->lock);
6500 }
6501
6502 /*
6503  *      called with inode->i_mutex locked
6504  */
6505 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6506 {
6507         int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6508                                            ctx, ctxlen, 0);
6509         /* Do not return error when suppressing label (SBLABEL_MNT not set). */
6510         return rc == -EOPNOTSUPP ? 0 : rc;
6511 }
6512
6513 /*
6514  *      called with inode->i_mutex locked
6515  */
6516 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6517 {
6518         return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
6519 }
6520
6521 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6522 {
6523         int len = 0;
6524         len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
6525                                                 ctx, true);
6526         if (len < 0)
6527                 return len;
6528         *ctxlen = len;
6529         return 0;
6530 }
6531 #ifdef CONFIG_KEYS
6532
6533 static int selinux_key_alloc(struct key *k, const struct cred *cred,
6534                              unsigned long flags)
6535 {
6536         const struct task_security_struct *tsec;
6537         struct key_security_struct *ksec;
6538
6539         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6540         if (!ksec)
6541                 return -ENOMEM;
6542
6543         tsec = selinux_cred(cred);
6544         if (tsec->keycreate_sid)
6545                 ksec->sid = tsec->keycreate_sid;
6546         else
6547                 ksec->sid = tsec->sid;
6548
6549         k->security = ksec;
6550         return 0;
6551 }
6552
6553 static void selinux_key_free(struct key *k)
6554 {
6555         struct key_security_struct *ksec = k->security;
6556
6557         k->security = NULL;
6558         kfree(ksec);
6559 }
6560
6561 static int selinux_key_permission(key_ref_t key_ref,
6562                                   const struct cred *cred,
6563                                   enum key_need_perm need_perm)
6564 {
6565         struct key *key;
6566         struct key_security_struct *ksec;
6567         u32 perm, sid;
6568
6569         switch (need_perm) {
6570         case KEY_NEED_VIEW:
6571                 perm = KEY__VIEW;
6572                 break;
6573         case KEY_NEED_READ:
6574                 perm = KEY__READ;
6575                 break;
6576         case KEY_NEED_WRITE:
6577                 perm = KEY__WRITE;
6578                 break;
6579         case KEY_NEED_SEARCH:
6580                 perm = KEY__SEARCH;
6581                 break;
6582         case KEY_NEED_LINK:
6583                 perm = KEY__LINK;
6584                 break;
6585         case KEY_NEED_SETATTR:
6586                 perm = KEY__SETATTR;
6587                 break;
6588         case KEY_NEED_UNLINK:
6589         case KEY_SYSADMIN_OVERRIDE:
6590         case KEY_AUTHTOKEN_OVERRIDE:
6591         case KEY_DEFER_PERM_CHECK:
6592                 return 0;
6593         default:
6594                 WARN_ON(1);
6595                 return -EPERM;
6596
6597         }
6598
6599         sid = cred_sid(cred);
6600         key = key_ref_to_ptr(key_ref);
6601         ksec = key->security;
6602
6603         return avc_has_perm(&selinux_state,
6604                             sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6605 }
6606
6607 static int selinux_key_getsecurity(struct key *key, char **_buffer)
6608 {
6609         struct key_security_struct *ksec = key->security;
6610         char *context = NULL;
6611         unsigned len;
6612         int rc;
6613
6614         rc = security_sid_to_context(&selinux_state, ksec->sid,
6615                                      &context, &len);
6616         if (!rc)
6617                 rc = len;
6618         *_buffer = context;
6619         return rc;
6620 }
6621
6622 #ifdef CONFIG_KEY_NOTIFICATIONS
6623 static int selinux_watch_key(struct key *key)
6624 {
6625         struct key_security_struct *ksec = key->security;
6626         u32 sid = current_sid();
6627
6628         return avc_has_perm(&selinux_state,
6629                             sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
6630 }
6631 #endif
6632 #endif
6633
6634 #ifdef CONFIG_SECURITY_INFINIBAND
6635 static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6636 {
6637         struct common_audit_data ad;
6638         int err;
6639         u32 sid = 0;
6640         struct ib_security_struct *sec = ib_sec;
6641         struct lsm_ibpkey_audit ibpkey;
6642
6643         err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6644         if (err)
6645                 return err;
6646
6647         ad.type = LSM_AUDIT_DATA_IBPKEY;
6648         ibpkey.subnet_prefix = subnet_prefix;
6649         ibpkey.pkey = pkey_val;
6650         ad.u.ibpkey = &ibpkey;
6651         return avc_has_perm(&selinux_state,
6652                             sec->sid, sid,
6653                             SECCLASS_INFINIBAND_PKEY,
6654                             INFINIBAND_PKEY__ACCESS, &ad);
6655 }
6656
6657 static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6658                                             u8 port_num)
6659 {
6660         struct common_audit_data ad;
6661         int err;
6662         u32 sid = 0;
6663         struct ib_security_struct *sec = ib_sec;
6664         struct lsm_ibendport_audit ibendport;
6665
6666         err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6667                                       &sid);
6668
6669         if (err)
6670                 return err;
6671
6672         ad.type = LSM_AUDIT_DATA_IBENDPORT;
6673         strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name));
6674         ibendport.port = port_num;
6675         ad.u.ibendport = &ibendport;
6676         return avc_has_perm(&selinux_state,
6677                             sec->sid, sid,
6678                             SECCLASS_INFINIBAND_ENDPORT,
6679                             INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6680 }
6681
6682 static int selinux_ib_alloc_security(void **ib_sec)
6683 {
6684         struct ib_security_struct *sec;
6685
6686         sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6687         if (!sec)
6688                 return -ENOMEM;
6689         sec->sid = current_sid();
6690
6691         *ib_sec = sec;
6692         return 0;
6693 }
6694
6695 static void selinux_ib_free_security(void *ib_sec)
6696 {
6697         kfree(ib_sec);
6698 }
6699 #endif
6700
6701 #ifdef CONFIG_BPF_SYSCALL
6702 static int selinux_bpf(int cmd, union bpf_attr *attr,
6703                                      unsigned int size)
6704 {
6705         u32 sid = current_sid();
6706         int ret;
6707
6708         switch (cmd) {
6709         case BPF_MAP_CREATE:
6710                 ret = avc_has_perm(&selinux_state,
6711                                    sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6712                                    NULL);
6713                 break;
6714         case BPF_PROG_LOAD:
6715                 ret = avc_has_perm(&selinux_state,
6716                                    sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6717                                    NULL);
6718                 break;
6719         default:
6720                 ret = 0;
6721                 break;
6722         }
6723
6724         return ret;
6725 }
6726
6727 static u32 bpf_map_fmode_to_av(fmode_t fmode)
6728 {
6729         u32 av = 0;
6730
6731         if (fmode & FMODE_READ)
6732                 av |= BPF__MAP_READ;
6733         if (fmode & FMODE_WRITE)
6734                 av |= BPF__MAP_WRITE;
6735         return av;
6736 }
6737
6738 /* This function will check the file pass through unix socket or binder to see
6739  * if it is a bpf related object. And apply correspinding checks on the bpf
6740  * object based on the type. The bpf maps and programs, not like other files and
6741  * socket, are using a shared anonymous inode inside the kernel as their inode.
6742  * So checking that inode cannot identify if the process have privilege to
6743  * access the bpf object and that's why we have to add this additional check in
6744  * selinux_file_receive and selinux_binder_transfer_files.
6745  */
6746 static int bpf_fd_pass(struct file *file, u32 sid)
6747 {
6748         struct bpf_security_struct *bpfsec;
6749         struct bpf_prog *prog;
6750         struct bpf_map *map;
6751         int ret;
6752
6753         if (file->f_op == &bpf_map_fops) {
6754                 map = file->private_data;
6755                 bpfsec = map->security;
6756                 ret = avc_has_perm(&selinux_state,
6757                                    sid, bpfsec->sid, SECCLASS_BPF,
6758                                    bpf_map_fmode_to_av(file->f_mode), NULL);
6759                 if (ret)
6760                         return ret;
6761         } else if (file->f_op == &bpf_prog_fops) {
6762                 prog = file->private_data;
6763                 bpfsec = prog->aux->security;
6764                 ret = avc_has_perm(&selinux_state,
6765                                    sid, bpfsec->sid, SECCLASS_BPF,
6766                                    BPF__PROG_RUN, NULL);
6767                 if (ret)
6768                         return ret;
6769         }
6770         return 0;
6771 }
6772
6773 static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6774 {
6775         u32 sid = current_sid();
6776         struct bpf_security_struct *bpfsec;
6777
6778         bpfsec = map->security;
6779         return avc_has_perm(&selinux_state,
6780                             sid, bpfsec->sid, SECCLASS_BPF,
6781                             bpf_map_fmode_to_av(fmode), NULL);
6782 }
6783
6784 static int selinux_bpf_prog(struct bpf_prog *prog)
6785 {
6786         u32 sid = current_sid();
6787         struct bpf_security_struct *bpfsec;
6788
6789         bpfsec = prog->aux->security;
6790         return avc_has_perm(&selinux_state,
6791                             sid, bpfsec->sid, SECCLASS_BPF,
6792                             BPF__PROG_RUN, NULL);
6793 }
6794
6795 static int selinux_bpf_map_alloc(struct bpf_map *map)
6796 {
6797         struct bpf_security_struct *bpfsec;
6798
6799         bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6800         if (!bpfsec)
6801                 return -ENOMEM;
6802
6803         bpfsec->sid = current_sid();
6804         map->security = bpfsec;
6805
6806         return 0;
6807 }
6808
6809 static void selinux_bpf_map_free(struct bpf_map *map)
6810 {
6811         struct bpf_security_struct *bpfsec = map->security;
6812
6813         map->security = NULL;
6814         kfree(bpfsec);
6815 }
6816
6817 static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6818 {
6819         struct bpf_security_struct *bpfsec;
6820
6821         bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6822         if (!bpfsec)
6823                 return -ENOMEM;
6824
6825         bpfsec->sid = current_sid();
6826         aux->security = bpfsec;
6827
6828         return 0;
6829 }
6830
6831 static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6832 {
6833         struct bpf_security_struct *bpfsec = aux->security;
6834
6835         aux->security = NULL;
6836         kfree(bpfsec);
6837 }
6838 #endif
6839
6840 static int selinux_lockdown(enum lockdown_reason what)
6841 {
6842         struct common_audit_data ad;
6843         u32 sid = current_sid();
6844         int invalid_reason = (what <= LOCKDOWN_NONE) ||
6845                              (what == LOCKDOWN_INTEGRITY_MAX) ||
6846                              (what >= LOCKDOWN_CONFIDENTIALITY_MAX);
6847
6848         if (WARN(invalid_reason, "Invalid lockdown reason")) {
6849                 audit_log(audit_context(),
6850                           GFP_ATOMIC, AUDIT_SELINUX_ERR,
6851                           "lockdown_reason=invalid");
6852                 return -EINVAL;
6853         }
6854
6855         ad.type = LSM_AUDIT_DATA_LOCKDOWN;
6856         ad.u.reason = what;
6857
6858         if (what <= LOCKDOWN_INTEGRITY_MAX)
6859                 return avc_has_perm(&selinux_state,
6860                                     sid, sid, SECCLASS_LOCKDOWN,
6861                                     LOCKDOWN__INTEGRITY, &ad);
6862         else
6863                 return avc_has_perm(&selinux_state,
6864                                     sid, sid, SECCLASS_LOCKDOWN,
6865                                     LOCKDOWN__CONFIDENTIALITY, &ad);
6866 }
6867
6868 struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = {
6869         .lbs_cred = sizeof(struct task_security_struct),
6870         .lbs_file = sizeof(struct file_security_struct),
6871         .lbs_inode = sizeof(struct inode_security_struct),
6872         .lbs_ipc = sizeof(struct ipc_security_struct),
6873         .lbs_msg_msg = sizeof(struct msg_security_struct),
6874 };
6875
6876 #ifdef CONFIG_PERF_EVENTS
6877 static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
6878 {
6879         u32 requested, sid = current_sid();
6880
6881         if (type == PERF_SECURITY_OPEN)
6882                 requested = PERF_EVENT__OPEN;
6883         else if (type == PERF_SECURITY_CPU)
6884                 requested = PERF_EVENT__CPU;
6885         else if (type == PERF_SECURITY_KERNEL)
6886                 requested = PERF_EVENT__KERNEL;
6887         else if (type == PERF_SECURITY_TRACEPOINT)
6888                 requested = PERF_EVENT__TRACEPOINT;
6889         else
6890                 return -EINVAL;
6891
6892         return avc_has_perm(&selinux_state, sid, sid, SECCLASS_PERF_EVENT,
6893                             requested, NULL);
6894 }
6895
6896 static int selinux_perf_event_alloc(struct perf_event *event)
6897 {
6898         struct perf_event_security_struct *perfsec;
6899
6900         perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL);
6901         if (!perfsec)
6902                 return -ENOMEM;
6903
6904         perfsec->sid = current_sid();
6905         event->security = perfsec;
6906
6907         return 0;
6908 }
6909
6910 static void selinux_perf_event_free(struct perf_event *event)
6911 {
6912         struct perf_event_security_struct *perfsec = event->security;
6913
6914         event->security = NULL;
6915         kfree(perfsec);
6916 }
6917
6918 static int selinux_perf_event_read(struct perf_event *event)
6919 {
6920         struct perf_event_security_struct *perfsec = event->security;
6921         u32 sid = current_sid();
6922
6923         return avc_has_perm(&selinux_state, sid, perfsec->sid,
6924                             SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
6925 }
6926
6927 static int selinux_perf_event_write(struct perf_event *event)
6928 {
6929         struct perf_event_security_struct *perfsec = event->security;
6930         u32 sid = current_sid();
6931
6932         return avc_has_perm(&selinux_state, sid, perfsec->sid,
6933                             SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
6934 }
6935 #endif
6936
6937 /*
6938  * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
6939  * 1. any hooks that don't belong to (2.) or (3.) below,
6940  * 2. hooks that both access structures allocated by other hooks, and allocate
6941  *    structures that can be later accessed by other hooks (mostly "cloning"
6942  *    hooks),
6943  * 3. hooks that only allocate structures that can be later accessed by other
6944  *    hooks ("allocating" hooks).
6945  *
6946  * Please follow block comment delimiters in the list to keep this order.
6947  *
6948  * This ordering is needed for SELinux runtime disable to work at least somewhat
6949  * safely. Breaking the ordering rules above might lead to NULL pointer derefs
6950  * when disabling SELinux at runtime.
6951  */
6952 static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
6953         LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6954         LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6955         LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6956         LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6957
6958         LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6959         LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6960         LSM_HOOK_INIT(capget, selinux_capget),
6961         LSM_HOOK_INIT(capset, selinux_capset),
6962         LSM_HOOK_INIT(capable, selinux_capable),
6963         LSM_HOOK_INIT(quotactl, selinux_quotactl),
6964         LSM_HOOK_INIT(quota_on, selinux_quota_on),
6965         LSM_HOOK_INIT(syslog, selinux_syslog),
6966         LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6967
6968         LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6969
6970         LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
6971         LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6972         LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
6973
6974         LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
6975         LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
6976         LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6977         LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6978         LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6979         LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6980         LSM_HOOK_INIT(sb_mount, selinux_mount),
6981         LSM_HOOK_INIT(sb_umount, selinux_umount),
6982         LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6983         LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6984
6985         LSM_HOOK_INIT(move_mount, selinux_move_mount),
6986
6987         LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6988         LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
6989
6990         LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
6991         LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
6992         LSM_HOOK_INIT(inode_create, selinux_inode_create),
6993         LSM_HOOK_INIT(inode_link, selinux_inode_link),
6994         LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
6995         LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
6996         LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
6997         LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
6998         LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
6999         LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
7000         LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
7001         LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7002         LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7003         LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7004         LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7005         LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7006         LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7007         LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7008         LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7009         LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7010         LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7011         LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7012         LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7013         LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
7014         LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7015         LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7016         LSM_HOOK_INIT(path_notify, selinux_path_notify),
7017
7018         LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7019
7020         LSM_HOOK_INIT(file_permission, selinux_file_permission),
7021         LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
7022         LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
7023         LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7024         LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7025         LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7026         LSM_HOOK_INIT(file_lock, selinux_file_lock),
7027         LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7028         LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7029         LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7030         LSM_HOOK_INIT(file_receive, selinux_file_receive),
7031
7032         LSM_HOOK_INIT(file_open, selinux_file_open),
7033
7034         LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
7035         LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7036         LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7037         LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7038         LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7039         LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7040         LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7041         LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7042         LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7043         LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7044         LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7045         LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7046         LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
7047         LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7048         LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7049         LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7050         LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7051         LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7052         LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7053         LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7054         LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7055         LSM_HOOK_INIT(task_kill, selinux_task_kill),
7056         LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7057
7058         LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7059         LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
7060
7061         LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7062         LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7063         LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7064         LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7065
7066         LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7067         LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7068         LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7069
7070         LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7071         LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7072         LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7073
7074         LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7075
7076         LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7077         LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7078
7079         LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7080         LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7081         LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7082         LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7083         LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7084         LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7085
7086         LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7087         LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7088
7089         LSM_HOOK_INIT(socket_create, selinux_socket_create),
7090         LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7091         LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7092         LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7093         LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7094         LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7095         LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7096         LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7097         LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7098         LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7099         LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7100         LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7101         LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7102         LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7103         LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7104         LSM_HOOK_INIT(socket_getpeersec_stream,
7105                         selinux_socket_getpeersec_stream),
7106         LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7107         LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7108         LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7109         LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7110         LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7111         LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7112         LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7113         LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7114         LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7115         LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7116         LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7117         LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7118         LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7119         LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7120         LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7121         LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7122         LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7123         LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7124         LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7125         LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7126 #ifdef CONFIG_SECURITY_INFINIBAND
7127         LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7128         LSM_HOOK_INIT(ib_endport_manage_subnet,
7129                       selinux_ib_endport_manage_subnet),
7130         LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7131 #endif
7132 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7133         LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7134         LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7135         LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7136         LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7137         LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7138         LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7139                         selinux_xfrm_state_pol_flow_match),
7140         LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7141 #endif
7142
7143 #ifdef CONFIG_KEYS
7144         LSM_HOOK_INIT(key_free, selinux_key_free),
7145         LSM_HOOK_INIT(key_permission, selinux_key_permission),
7146         LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7147 #ifdef CONFIG_KEY_NOTIFICATIONS
7148         LSM_HOOK_INIT(watch_key, selinux_watch_key),
7149 #endif
7150 #endif
7151
7152 #ifdef CONFIG_AUDIT
7153         LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7154         LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7155         LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7156 #endif
7157
7158 #ifdef CONFIG_BPF_SYSCALL
7159         LSM_HOOK_INIT(bpf, selinux_bpf),
7160         LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7161         LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7162         LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7163         LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7164 #endif
7165
7166 #ifdef CONFIG_PERF_EVENTS
7167         LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7168         LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free),
7169         LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7170         LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7171 #endif
7172
7173         LSM_HOOK_INIT(locked_down, selinux_lockdown),
7174
7175         /*
7176          * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7177          */
7178         LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7179         LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7180         LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7181         LSM_HOOK_INIT(sb_add_mnt_opt, selinux_add_mnt_opt),
7182 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7183         LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7184 #endif
7185
7186         /*
7187          * PUT "ALLOCATING" HOOKS HERE
7188          */
7189         LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7190         LSM_HOOK_INIT(msg_queue_alloc_security,
7191                       selinux_msg_queue_alloc_security),
7192         LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7193         LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7194         LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7195         LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7196         LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7197         LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7198         LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7199         LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7200 #ifdef CONFIG_SECURITY_INFINIBAND
7201         LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7202 #endif
7203 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7204         LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7205         LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7206         LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7207                       selinux_xfrm_state_alloc_acquire),
7208 #endif
7209 #ifdef CONFIG_KEYS
7210         LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7211 #endif
7212 #ifdef CONFIG_AUDIT
7213         LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7214 #endif
7215 #ifdef CONFIG_BPF_SYSCALL
7216         LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7217         LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7218 #endif
7219 #ifdef CONFIG_PERF_EVENTS
7220         LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7221 #endif
7222 };
7223
7224 static __init int selinux_init(void)
7225 {
7226         pr_info("SELinux:  Initializing.\n");
7227
7228         memset(&selinux_state, 0, sizeof(selinux_state));
7229         enforcing_set(&selinux_state, selinux_enforcing_boot);
7230         selinux_state.checkreqprot = selinux_checkreqprot_boot;
7231         selinux_ss_init(&selinux_state.ss);
7232         selinux_avc_init(&selinux_state.avc);
7233         mutex_init(&selinux_state.status_lock);
7234
7235         /* Set the security state for the initial task. */
7236         cred_init_security();
7237
7238         default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7239
7240         avc_init();
7241
7242         avtab_cache_init();
7243
7244         ebitmap_cache_init();
7245
7246         hashtab_cache_init();
7247
7248         security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7249
7250         if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7251                 panic("SELinux: Unable to register AVC netcache callback\n");
7252
7253         if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7254                 panic("SELinux: Unable to register AVC LSM notifier callback\n");
7255
7256         if (selinux_enforcing_boot)
7257                 pr_debug("SELinux:  Starting in enforcing mode\n");
7258         else
7259                 pr_debug("SELinux:  Starting in permissive mode\n");
7260
7261         fs_validate_description("selinux", selinux_fs_parameters);
7262
7263         return 0;
7264 }
7265
7266 static void delayed_superblock_init(struct super_block *sb, void *unused)
7267 {
7268         selinux_set_mnt_opts(sb, NULL, 0, NULL);
7269 }
7270
7271 void selinux_complete_init(void)
7272 {
7273         pr_debug("SELinux:  Completing initialization.\n");
7274
7275         /* Set up any superblocks initialized prior to the policy load. */
7276         pr_debug("SELinux:  Setting up existing superblocks.\n");
7277         iterate_supers(delayed_superblock_init, NULL);
7278 }
7279
7280 /* SELinux requires early initialization in order to label
7281    all processes and objects when they are created. */
7282 DEFINE_LSM(selinux) = {
7283         .name = "selinux",
7284         .flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7285         .enabled = &selinux_enabled_boot,
7286         .blobs = &selinux_blob_sizes,
7287         .init = selinux_init,
7288 };
7289
7290 #if defined(CONFIG_NETFILTER)
7291
7292 static const struct nf_hook_ops selinux_nf_ops[] = {
7293         {
7294                 .hook =         selinux_ipv4_postroute,
7295                 .pf =           NFPROTO_IPV4,
7296                 .hooknum =      NF_INET_POST_ROUTING,
7297                 .priority =     NF_IP_PRI_SELINUX_LAST,
7298         },
7299         {
7300                 .hook =         selinux_ipv4_forward,
7301                 .pf =           NFPROTO_IPV4,
7302                 .hooknum =      NF_INET_FORWARD,
7303                 .priority =     NF_IP_PRI_SELINUX_FIRST,
7304         },
7305         {
7306                 .hook =         selinux_ipv4_output,
7307                 .pf =           NFPROTO_IPV4,
7308                 .hooknum =      NF_INET_LOCAL_OUT,
7309                 .priority =     NF_IP_PRI_SELINUX_FIRST,
7310         },
7311 #if IS_ENABLED(CONFIG_IPV6)
7312         {
7313                 .hook =         selinux_ipv6_postroute,
7314                 .pf =           NFPROTO_IPV6,
7315                 .hooknum =      NF_INET_POST_ROUTING,
7316                 .priority =     NF_IP6_PRI_SELINUX_LAST,
7317         },
7318         {
7319                 .hook =         selinux_ipv6_forward,
7320                 .pf =           NFPROTO_IPV6,
7321                 .hooknum =      NF_INET_FORWARD,
7322                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
7323         },
7324         {
7325                 .hook =         selinux_ipv6_output,
7326                 .pf =           NFPROTO_IPV6,
7327                 .hooknum =      NF_INET_LOCAL_OUT,
7328                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
7329         },
7330 #endif  /* IPV6 */
7331 };
7332
7333 static int __net_init selinux_nf_register(struct net *net)
7334 {
7335         return nf_register_net_hooks(net, selinux_nf_ops,
7336                                      ARRAY_SIZE(selinux_nf_ops));
7337 }
7338
7339 static void __net_exit selinux_nf_unregister(struct net *net)
7340 {
7341         nf_unregister_net_hooks(net, selinux_nf_ops,
7342                                 ARRAY_SIZE(selinux_nf_ops));
7343 }
7344
7345 static struct pernet_operations selinux_net_ops = {
7346         .init = selinux_nf_register,
7347         .exit = selinux_nf_unregister,
7348 };
7349
7350 static int __init selinux_nf_ip_init(void)
7351 {
7352         int err;
7353
7354         if (!selinux_enabled_boot)
7355                 return 0;
7356
7357         pr_debug("SELinux:  Registering netfilter hooks\n");
7358
7359         err = register_pernet_subsys(&selinux_net_ops);
7360         if (err)
7361                 panic("SELinux: register_pernet_subsys: error %d\n", err);
7362
7363         return 0;
7364 }
7365 __initcall(selinux_nf_ip_init);
7366
7367 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7368 static void selinux_nf_ip_exit(void)
7369 {
7370         pr_debug("SELinux:  Unregistering netfilter hooks\n");
7371
7372         unregister_pernet_subsys(&selinux_net_ops);
7373 }
7374 #endif
7375
7376 #else /* CONFIG_NETFILTER */
7377
7378 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7379 #define selinux_nf_ip_exit()
7380 #endif
7381
7382 #endif /* CONFIG_NETFILTER */
7383
7384 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7385 int selinux_disable(struct selinux_state *state)
7386 {
7387         if (selinux_initialized(state)) {
7388                 /* Not permitted after initial policy load. */
7389                 return -EINVAL;
7390         }
7391
7392         if (selinux_disabled(state)) {
7393                 /* Only do this once. */
7394                 return -EINVAL;
7395         }
7396
7397         selinux_mark_disabled(state);
7398
7399         pr_info("SELinux:  Disabled at runtime.\n");
7400
7401         /*
7402          * Unregister netfilter hooks.
7403          * Must be done before security_delete_hooks() to avoid breaking
7404          * runtime disable.
7405          */
7406         selinux_nf_ip_exit();
7407
7408         security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7409
7410         /* Try to destroy the avc node cache */
7411         avc_disable();
7412
7413         /* Unregister selinuxfs. */
7414         exit_sel_fs();
7415
7416         return 0;
7417 }
7418 #endif