Merge tag 'fscrypt-for-linus' of git://git.kernel.org/pub/scm/fs/fscrypt/fscrypt
[linux-2.6-microblaze.git] / security / security.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Security plug functions
4  *
5  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8  * Copyright (C) 2016 Mellanox Technologies
9  */
10
11 #define pr_fmt(fmt) "LSM: " fmt
12
13 #include <linux/bpf.h>
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/kernel_read_file.h>
20 #include <linux/lsm_hooks.h>
21 #include <linux/integrity.h>
22 #include <linux/ima.h>
23 #include <linux/evm.h>
24 #include <linux/fsnotify.h>
25 #include <linux/mman.h>
26 #include <linux/mount.h>
27 #include <linux/personality.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/msg.h>
31 #include <net/flow.h>
32
33 #define MAX_LSM_EVM_XATTR       2
34
35 /* How many LSMs were built into the kernel? */
36 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
37
38 /*
39  * These are descriptions of the reasons that can be passed to the
40  * security_locked_down() LSM hook. Placing this array here allows
41  * all security modules to use the same descriptions for auditing
42  * purposes.
43  */
44 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
45         [LOCKDOWN_NONE] = "none",
46         [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
47         [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
48         [LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
49         [LOCKDOWN_KEXEC] = "kexec of unsigned images",
50         [LOCKDOWN_HIBERNATION] = "hibernation",
51         [LOCKDOWN_PCI_ACCESS] = "direct PCI access",
52         [LOCKDOWN_IOPORT] = "raw io port access",
53         [LOCKDOWN_MSR] = "raw MSR access",
54         [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
55         [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
56         [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
57         [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
58         [LOCKDOWN_MMIOTRACE] = "unsafe mmio",
59         [LOCKDOWN_DEBUGFS] = "debugfs access",
60         [LOCKDOWN_XMON_WR] = "xmon write access",
61         [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
62         [LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
63         [LOCKDOWN_INTEGRITY_MAX] = "integrity",
64         [LOCKDOWN_KCORE] = "/proc/kcore access",
65         [LOCKDOWN_KPROBES] = "use of kprobes",
66         [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
67         [LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
68         [LOCKDOWN_PERF] = "unsafe use of perf",
69         [LOCKDOWN_TRACEFS] = "use of tracefs",
70         [LOCKDOWN_XMON_RW] = "xmon read and write access",
71         [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
72         [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
73 };
74
75 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
76 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
77
78 static struct kmem_cache *lsm_file_cache;
79 static struct kmem_cache *lsm_inode_cache;
80
81 char *lsm_names;
82 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
83
84 /* Boot-time LSM user choice */
85 static __initdata const char *chosen_lsm_order;
86 static __initdata const char *chosen_major_lsm;
87
88 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
89
90 /* Ordered list of LSMs to initialize. */
91 static __initdata struct lsm_info **ordered_lsms;
92 static __initdata struct lsm_info *exclusive;
93
94 static __initdata bool debug;
95 #define init_debug(...)                                         \
96         do {                                                    \
97                 if (debug)                                      \
98                         pr_info(__VA_ARGS__);                   \
99         } while (0)
100
101 static bool __init is_enabled(struct lsm_info *lsm)
102 {
103         if (!lsm->enabled)
104                 return false;
105
106         return *lsm->enabled;
107 }
108
109 /* Mark an LSM's enabled flag. */
110 static int lsm_enabled_true __initdata = 1;
111 static int lsm_enabled_false __initdata = 0;
112 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
113 {
114         /*
115          * When an LSM hasn't configured an enable variable, we can use
116          * a hard-coded location for storing the default enabled state.
117          */
118         if (!lsm->enabled) {
119                 if (enabled)
120                         lsm->enabled = &lsm_enabled_true;
121                 else
122                         lsm->enabled = &lsm_enabled_false;
123         } else if (lsm->enabled == &lsm_enabled_true) {
124                 if (!enabled)
125                         lsm->enabled = &lsm_enabled_false;
126         } else if (lsm->enabled == &lsm_enabled_false) {
127                 if (enabled)
128                         lsm->enabled = &lsm_enabled_true;
129         } else {
130                 *lsm->enabled = enabled;
131         }
132 }
133
134 /* Is an LSM already listed in the ordered LSMs list? */
135 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
136 {
137         struct lsm_info **check;
138
139         for (check = ordered_lsms; *check; check++)
140                 if (*check == lsm)
141                         return true;
142
143         return false;
144 }
145
146 /* Append an LSM to the list of ordered LSMs to initialize. */
147 static int last_lsm __initdata;
148 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
149 {
150         /* Ignore duplicate selections. */
151         if (exists_ordered_lsm(lsm))
152                 return;
153
154         if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
155                 return;
156
157         /* Enable this LSM, if it is not already set. */
158         if (!lsm->enabled)
159                 lsm->enabled = &lsm_enabled_true;
160         ordered_lsms[last_lsm++] = lsm;
161
162         init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
163                    is_enabled(lsm) ? "en" : "dis");
164 }
165
166 /* Is an LSM allowed to be initialized? */
167 static bool __init lsm_allowed(struct lsm_info *lsm)
168 {
169         /* Skip if the LSM is disabled. */
170         if (!is_enabled(lsm))
171                 return false;
172
173         /* Not allowed if another exclusive LSM already initialized. */
174         if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
175                 init_debug("exclusive disabled: %s\n", lsm->name);
176                 return false;
177         }
178
179         return true;
180 }
181
182 static void __init lsm_set_blob_size(int *need, int *lbs)
183 {
184         int offset;
185
186         if (*need > 0) {
187                 offset = *lbs;
188                 *lbs += *need;
189                 *need = offset;
190         }
191 }
192
193 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
194 {
195         if (!needed)
196                 return;
197
198         lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
199         lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
200         /*
201          * The inode blob gets an rcu_head in addition to
202          * what the modules might need.
203          */
204         if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
205                 blob_sizes.lbs_inode = sizeof(struct rcu_head);
206         lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
207         lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
208         lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
209         lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
210         lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
211 }
212
213 /* Prepare LSM for initialization. */
214 static void __init prepare_lsm(struct lsm_info *lsm)
215 {
216         int enabled = lsm_allowed(lsm);
217
218         /* Record enablement (to handle any following exclusive LSMs). */
219         set_enabled(lsm, enabled);
220
221         /* If enabled, do pre-initialization work. */
222         if (enabled) {
223                 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
224                         exclusive = lsm;
225                         init_debug("exclusive chosen: %s\n", lsm->name);
226                 }
227
228                 lsm_set_blob_sizes(lsm->blobs);
229         }
230 }
231
232 /* Initialize a given LSM, if it is enabled. */
233 static void __init initialize_lsm(struct lsm_info *lsm)
234 {
235         if (is_enabled(lsm)) {
236                 int ret;
237
238                 init_debug("initializing %s\n", lsm->name);
239                 ret = lsm->init();
240                 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
241         }
242 }
243
244 /* Populate ordered LSMs list from comma-separated LSM name list. */
245 static void __init ordered_lsm_parse(const char *order, const char *origin)
246 {
247         struct lsm_info *lsm;
248         char *sep, *name, *next;
249
250         /* LSM_ORDER_FIRST is always first. */
251         for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
252                 if (lsm->order == LSM_ORDER_FIRST)
253                         append_ordered_lsm(lsm, "first");
254         }
255
256         /* Process "security=", if given. */
257         if (chosen_major_lsm) {
258                 struct lsm_info *major;
259
260                 /*
261                  * To match the original "security=" behavior, this
262                  * explicitly does NOT fallback to another Legacy Major
263                  * if the selected one was separately disabled: disable
264                  * all non-matching Legacy Major LSMs.
265                  */
266                 for (major = __start_lsm_info; major < __end_lsm_info;
267                      major++) {
268                         if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
269                             strcmp(major->name, chosen_major_lsm) != 0) {
270                                 set_enabled(major, false);
271                                 init_debug("security=%s disabled: %s\n",
272                                            chosen_major_lsm, major->name);
273                         }
274                 }
275         }
276
277         sep = kstrdup(order, GFP_KERNEL);
278         next = sep;
279         /* Walk the list, looking for matching LSMs. */
280         while ((name = strsep(&next, ",")) != NULL) {
281                 bool found = false;
282
283                 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
284                         if (lsm->order == LSM_ORDER_MUTABLE &&
285                             strcmp(lsm->name, name) == 0) {
286                                 append_ordered_lsm(lsm, origin);
287                                 found = true;
288                         }
289                 }
290
291                 if (!found)
292                         init_debug("%s ignored: %s\n", origin, name);
293         }
294
295         /* Process "security=", if given. */
296         if (chosen_major_lsm) {
297                 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
298                         if (exists_ordered_lsm(lsm))
299                                 continue;
300                         if (strcmp(lsm->name, chosen_major_lsm) == 0)
301                                 append_ordered_lsm(lsm, "security=");
302                 }
303         }
304
305         /* Disable all LSMs not in the ordered list. */
306         for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
307                 if (exists_ordered_lsm(lsm))
308                         continue;
309                 set_enabled(lsm, false);
310                 init_debug("%s disabled: %s\n", origin, lsm->name);
311         }
312
313         kfree(sep);
314 }
315
316 static void __init lsm_early_cred(struct cred *cred);
317 static void __init lsm_early_task(struct task_struct *task);
318
319 static int lsm_append(const char *new, char **result);
320
321 static void __init ordered_lsm_init(void)
322 {
323         struct lsm_info **lsm;
324
325         ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
326                                 GFP_KERNEL);
327
328         if (chosen_lsm_order) {
329                 if (chosen_major_lsm) {
330                         pr_info("security= is ignored because it is superseded by lsm=\n");
331                         chosen_major_lsm = NULL;
332                 }
333                 ordered_lsm_parse(chosen_lsm_order, "cmdline");
334         } else
335                 ordered_lsm_parse(builtin_lsm_order, "builtin");
336
337         for (lsm = ordered_lsms; *lsm; lsm++)
338                 prepare_lsm(*lsm);
339
340         init_debug("cred blob size       = %d\n", blob_sizes.lbs_cred);
341         init_debug("file blob size       = %d\n", blob_sizes.lbs_file);
342         init_debug("inode blob size      = %d\n", blob_sizes.lbs_inode);
343         init_debug("ipc blob size        = %d\n", blob_sizes.lbs_ipc);
344         init_debug("msg_msg blob size    = %d\n", blob_sizes.lbs_msg_msg);
345         init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
346         init_debug("task blob size       = %d\n", blob_sizes.lbs_task);
347
348         /*
349          * Create any kmem_caches needed for blobs
350          */
351         if (blob_sizes.lbs_file)
352                 lsm_file_cache = kmem_cache_create("lsm_file_cache",
353                                                    blob_sizes.lbs_file, 0,
354                                                    SLAB_PANIC, NULL);
355         if (blob_sizes.lbs_inode)
356                 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
357                                                     blob_sizes.lbs_inode, 0,
358                                                     SLAB_PANIC, NULL);
359
360         lsm_early_cred((struct cred *) current->cred);
361         lsm_early_task(current);
362         for (lsm = ordered_lsms; *lsm; lsm++)
363                 initialize_lsm(*lsm);
364
365         kfree(ordered_lsms);
366 }
367
368 int __init early_security_init(void)
369 {
370         int i;
371         struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
372         struct lsm_info *lsm;
373
374         for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
375              i++)
376                 INIT_HLIST_HEAD(&list[i]);
377
378         for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
379                 if (!lsm->enabled)
380                         lsm->enabled = &lsm_enabled_true;
381                 prepare_lsm(lsm);
382                 initialize_lsm(lsm);
383         }
384
385         return 0;
386 }
387
388 /**
389  * security_init - initializes the security framework
390  *
391  * This should be called early in the kernel initialization sequence.
392  */
393 int __init security_init(void)
394 {
395         struct lsm_info *lsm;
396
397         pr_info("Security Framework initializing\n");
398
399         /*
400          * Append the names of the early LSM modules now that kmalloc() is
401          * available
402          */
403         for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
404                 if (lsm->enabled)
405                         lsm_append(lsm->name, &lsm_names);
406         }
407
408         /* Load LSMs in specified order. */
409         ordered_lsm_init();
410
411         return 0;
412 }
413
414 /* Save user chosen LSM */
415 static int __init choose_major_lsm(char *str)
416 {
417         chosen_major_lsm = str;
418         return 1;
419 }
420 __setup("security=", choose_major_lsm);
421
422 /* Explicitly choose LSM initialization order. */
423 static int __init choose_lsm_order(char *str)
424 {
425         chosen_lsm_order = str;
426         return 1;
427 }
428 __setup("lsm=", choose_lsm_order);
429
430 /* Enable LSM order debugging. */
431 static int __init enable_debug(char *str)
432 {
433         debug = true;
434         return 1;
435 }
436 __setup("lsm.debug", enable_debug);
437
438 static bool match_last_lsm(const char *list, const char *lsm)
439 {
440         const char *last;
441
442         if (WARN_ON(!list || !lsm))
443                 return false;
444         last = strrchr(list, ',');
445         if (last)
446                 /* Pass the comma, strcmp() will check for '\0' */
447                 last++;
448         else
449                 last = list;
450         return !strcmp(last, lsm);
451 }
452
453 static int lsm_append(const char *new, char **result)
454 {
455         char *cp;
456
457         if (*result == NULL) {
458                 *result = kstrdup(new, GFP_KERNEL);
459                 if (*result == NULL)
460                         return -ENOMEM;
461         } else {
462                 /* Check if it is the last registered name */
463                 if (match_last_lsm(*result, new))
464                         return 0;
465                 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
466                 if (cp == NULL)
467                         return -ENOMEM;
468                 kfree(*result);
469                 *result = cp;
470         }
471         return 0;
472 }
473
474 /**
475  * security_add_hooks - Add a modules hooks to the hook lists.
476  * @hooks: the hooks to add
477  * @count: the number of hooks to add
478  * @lsm: the name of the security module
479  *
480  * Each LSM has to register its hooks with the infrastructure.
481  */
482 void __init security_add_hooks(struct security_hook_list *hooks, int count,
483                                 char *lsm)
484 {
485         int i;
486
487         for (i = 0; i < count; i++) {
488                 hooks[i].lsm = lsm;
489                 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
490         }
491
492         /*
493          * Don't try to append during early_security_init(), we'll come back
494          * and fix this up afterwards.
495          */
496         if (slab_is_available()) {
497                 if (lsm_append(lsm, &lsm_names) < 0)
498                         panic("%s - Cannot get early memory.\n", __func__);
499         }
500 }
501
502 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
503 {
504         return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
505                                             event, data);
506 }
507 EXPORT_SYMBOL(call_blocking_lsm_notifier);
508
509 int register_blocking_lsm_notifier(struct notifier_block *nb)
510 {
511         return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
512                                                 nb);
513 }
514 EXPORT_SYMBOL(register_blocking_lsm_notifier);
515
516 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
517 {
518         return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
519                                                   nb);
520 }
521 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
522
523 /**
524  * lsm_cred_alloc - allocate a composite cred blob
525  * @cred: the cred that needs a blob
526  * @gfp: allocation type
527  *
528  * Allocate the cred blob for all the modules
529  *
530  * Returns 0, or -ENOMEM if memory can't be allocated.
531  */
532 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
533 {
534         if (blob_sizes.lbs_cred == 0) {
535                 cred->security = NULL;
536                 return 0;
537         }
538
539         cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
540         if (cred->security == NULL)
541                 return -ENOMEM;
542         return 0;
543 }
544
545 /**
546  * lsm_early_cred - during initialization allocate a composite cred blob
547  * @cred: the cred that needs a blob
548  *
549  * Allocate the cred blob for all the modules
550  */
551 static void __init lsm_early_cred(struct cred *cred)
552 {
553         int rc = lsm_cred_alloc(cred, GFP_KERNEL);
554
555         if (rc)
556                 panic("%s: Early cred alloc failed.\n", __func__);
557 }
558
559 /**
560  * lsm_file_alloc - allocate a composite file blob
561  * @file: the file that needs a blob
562  *
563  * Allocate the file blob for all the modules
564  *
565  * Returns 0, or -ENOMEM if memory can't be allocated.
566  */
567 static int lsm_file_alloc(struct file *file)
568 {
569         if (!lsm_file_cache) {
570                 file->f_security = NULL;
571                 return 0;
572         }
573
574         file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
575         if (file->f_security == NULL)
576                 return -ENOMEM;
577         return 0;
578 }
579
580 /**
581  * lsm_inode_alloc - allocate a composite inode blob
582  * @inode: the inode that needs a blob
583  *
584  * Allocate the inode blob for all the modules
585  *
586  * Returns 0, or -ENOMEM if memory can't be allocated.
587  */
588 int lsm_inode_alloc(struct inode *inode)
589 {
590         if (!lsm_inode_cache) {
591                 inode->i_security = NULL;
592                 return 0;
593         }
594
595         inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
596         if (inode->i_security == NULL)
597                 return -ENOMEM;
598         return 0;
599 }
600
601 /**
602  * lsm_task_alloc - allocate a composite task blob
603  * @task: the task that needs a blob
604  *
605  * Allocate the task blob for all the modules
606  *
607  * Returns 0, or -ENOMEM if memory can't be allocated.
608  */
609 static int lsm_task_alloc(struct task_struct *task)
610 {
611         if (blob_sizes.lbs_task == 0) {
612                 task->security = NULL;
613                 return 0;
614         }
615
616         task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
617         if (task->security == NULL)
618                 return -ENOMEM;
619         return 0;
620 }
621
622 /**
623  * lsm_ipc_alloc - allocate a composite ipc blob
624  * @kip: the ipc that needs a blob
625  *
626  * Allocate the ipc blob for all the modules
627  *
628  * Returns 0, or -ENOMEM if memory can't be allocated.
629  */
630 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
631 {
632         if (blob_sizes.lbs_ipc == 0) {
633                 kip->security = NULL;
634                 return 0;
635         }
636
637         kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
638         if (kip->security == NULL)
639                 return -ENOMEM;
640         return 0;
641 }
642
643 /**
644  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
645  * @mp: the msg_msg that needs a blob
646  *
647  * Allocate the ipc blob for all the modules
648  *
649  * Returns 0, or -ENOMEM if memory can't be allocated.
650  */
651 static int lsm_msg_msg_alloc(struct msg_msg *mp)
652 {
653         if (blob_sizes.lbs_msg_msg == 0) {
654                 mp->security = NULL;
655                 return 0;
656         }
657
658         mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
659         if (mp->security == NULL)
660                 return -ENOMEM;
661         return 0;
662 }
663
664 /**
665  * lsm_early_task - during initialization allocate a composite task blob
666  * @task: the task that needs a blob
667  *
668  * Allocate the task blob for all the modules
669  */
670 static void __init lsm_early_task(struct task_struct *task)
671 {
672         int rc = lsm_task_alloc(task);
673
674         if (rc)
675                 panic("%s: Early task alloc failed.\n", __func__);
676 }
677
678 /**
679  * lsm_superblock_alloc - allocate a composite superblock blob
680  * @sb: the superblock that needs a blob
681  *
682  * Allocate the superblock blob for all the modules
683  *
684  * Returns 0, or -ENOMEM if memory can't be allocated.
685  */
686 static int lsm_superblock_alloc(struct super_block *sb)
687 {
688         if (blob_sizes.lbs_superblock == 0) {
689                 sb->s_security = NULL;
690                 return 0;
691         }
692
693         sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL);
694         if (sb->s_security == NULL)
695                 return -ENOMEM;
696         return 0;
697 }
698
699 /*
700  * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
701  * can be accessed with:
702  *
703  *      LSM_RET_DEFAULT(<hook_name>)
704  *
705  * The macros below define static constants for the default value of each
706  * LSM hook.
707  */
708 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
709 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
710 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
711         static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
712 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
713         DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
714
715 #include <linux/lsm_hook_defs.h>
716 #undef LSM_HOOK
717
718 /*
719  * Hook list operation macros.
720  *
721  * call_void_hook:
722  *      This is a hook that does not return a value.
723  *
724  * call_int_hook:
725  *      This is a hook that returns a value.
726  */
727
728 #define call_void_hook(FUNC, ...)                               \
729         do {                                                    \
730                 struct security_hook_list *P;                   \
731                                                                 \
732                 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
733                         P->hook.FUNC(__VA_ARGS__);              \
734         } while (0)
735
736 #define call_int_hook(FUNC, IRC, ...) ({                        \
737         int RC = IRC;                                           \
738         do {                                                    \
739                 struct security_hook_list *P;                   \
740                                                                 \
741                 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
742                         RC = P->hook.FUNC(__VA_ARGS__);         \
743                         if (RC != 0)                            \
744                                 break;                          \
745                 }                                               \
746         } while (0);                                            \
747         RC;                                                     \
748 })
749
750 /* Security operations */
751
752 int security_binder_set_context_mgr(const struct cred *mgr)
753 {
754         return call_int_hook(binder_set_context_mgr, 0, mgr);
755 }
756
757 int security_binder_transaction(const struct cred *from,
758                                 const struct cred *to)
759 {
760         return call_int_hook(binder_transaction, 0, from, to);
761 }
762
763 int security_binder_transfer_binder(const struct cred *from,
764                                     const struct cred *to)
765 {
766         return call_int_hook(binder_transfer_binder, 0, from, to);
767 }
768
769 int security_binder_transfer_file(const struct cred *from,
770                                   const struct cred *to, struct file *file)
771 {
772         return call_int_hook(binder_transfer_file, 0, from, to, file);
773 }
774
775 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
776 {
777         return call_int_hook(ptrace_access_check, 0, child, mode);
778 }
779
780 int security_ptrace_traceme(struct task_struct *parent)
781 {
782         return call_int_hook(ptrace_traceme, 0, parent);
783 }
784
785 int security_capget(struct task_struct *target,
786                      kernel_cap_t *effective,
787                      kernel_cap_t *inheritable,
788                      kernel_cap_t *permitted)
789 {
790         return call_int_hook(capget, 0, target,
791                                 effective, inheritable, permitted);
792 }
793
794 int security_capset(struct cred *new, const struct cred *old,
795                     const kernel_cap_t *effective,
796                     const kernel_cap_t *inheritable,
797                     const kernel_cap_t *permitted)
798 {
799         return call_int_hook(capset, 0, new, old,
800                                 effective, inheritable, permitted);
801 }
802
803 int security_capable(const struct cred *cred,
804                      struct user_namespace *ns,
805                      int cap,
806                      unsigned int opts)
807 {
808         return call_int_hook(capable, 0, cred, ns, cap, opts);
809 }
810
811 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
812 {
813         return call_int_hook(quotactl, 0, cmds, type, id, sb);
814 }
815
816 int security_quota_on(struct dentry *dentry)
817 {
818         return call_int_hook(quota_on, 0, dentry);
819 }
820
821 int security_syslog(int type)
822 {
823         return call_int_hook(syslog, 0, type);
824 }
825
826 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
827 {
828         return call_int_hook(settime, 0, ts, tz);
829 }
830
831 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
832 {
833         struct security_hook_list *hp;
834         int cap_sys_admin = 1;
835         int rc;
836
837         /*
838          * The module will respond with a positive value if
839          * it thinks the __vm_enough_memory() call should be
840          * made with the cap_sys_admin set. If all of the modules
841          * agree that it should be set it will. If any module
842          * thinks it should not be set it won't.
843          */
844         hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
845                 rc = hp->hook.vm_enough_memory(mm, pages);
846                 if (rc <= 0) {
847                         cap_sys_admin = 0;
848                         break;
849                 }
850         }
851         return __vm_enough_memory(mm, pages, cap_sys_admin);
852 }
853
854 int security_bprm_creds_for_exec(struct linux_binprm *bprm)
855 {
856         return call_int_hook(bprm_creds_for_exec, 0, bprm);
857 }
858
859 int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
860 {
861         return call_int_hook(bprm_creds_from_file, 0, bprm, file);
862 }
863
864 int security_bprm_check(struct linux_binprm *bprm)
865 {
866         int ret;
867
868         ret = call_int_hook(bprm_check_security, 0, bprm);
869         if (ret)
870                 return ret;
871         return ima_bprm_check(bprm);
872 }
873
874 void security_bprm_committing_creds(struct linux_binprm *bprm)
875 {
876         call_void_hook(bprm_committing_creds, bprm);
877 }
878
879 void security_bprm_committed_creds(struct linux_binprm *bprm)
880 {
881         call_void_hook(bprm_committed_creds, bprm);
882 }
883
884 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
885 {
886         return call_int_hook(fs_context_dup, 0, fc, src_fc);
887 }
888
889 int security_fs_context_parse_param(struct fs_context *fc,
890                                     struct fs_parameter *param)
891 {
892         struct security_hook_list *hp;
893         int trc;
894         int rc = -ENOPARAM;
895
896         hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param,
897                              list) {
898                 trc = hp->hook.fs_context_parse_param(fc, param);
899                 if (trc == 0)
900                         rc = 0;
901                 else if (trc != -ENOPARAM)
902                         return trc;
903         }
904         return rc;
905 }
906
907 int security_sb_alloc(struct super_block *sb)
908 {
909         int rc = lsm_superblock_alloc(sb);
910
911         if (unlikely(rc))
912                 return rc;
913         rc = call_int_hook(sb_alloc_security, 0, sb);
914         if (unlikely(rc))
915                 security_sb_free(sb);
916         return rc;
917 }
918
919 void security_sb_delete(struct super_block *sb)
920 {
921         call_void_hook(sb_delete, sb);
922 }
923
924 void security_sb_free(struct super_block *sb)
925 {
926         call_void_hook(sb_free_security, sb);
927         kfree(sb->s_security);
928         sb->s_security = NULL;
929 }
930
931 void security_free_mnt_opts(void **mnt_opts)
932 {
933         if (!*mnt_opts)
934                 return;
935         call_void_hook(sb_free_mnt_opts, *mnt_opts);
936         *mnt_opts = NULL;
937 }
938 EXPORT_SYMBOL(security_free_mnt_opts);
939
940 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
941 {
942         return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
943 }
944 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
945
946 int security_sb_mnt_opts_compat(struct super_block *sb,
947                                 void *mnt_opts)
948 {
949         return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts);
950 }
951 EXPORT_SYMBOL(security_sb_mnt_opts_compat);
952
953 int security_sb_remount(struct super_block *sb,
954                         void *mnt_opts)
955 {
956         return call_int_hook(sb_remount, 0, sb, mnt_opts);
957 }
958 EXPORT_SYMBOL(security_sb_remount);
959
960 int security_sb_kern_mount(struct super_block *sb)
961 {
962         return call_int_hook(sb_kern_mount, 0, sb);
963 }
964
965 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
966 {
967         return call_int_hook(sb_show_options, 0, m, sb);
968 }
969
970 int security_sb_statfs(struct dentry *dentry)
971 {
972         return call_int_hook(sb_statfs, 0, dentry);
973 }
974
975 int security_sb_mount(const char *dev_name, const struct path *path,
976                        const char *type, unsigned long flags, void *data)
977 {
978         return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
979 }
980
981 int security_sb_umount(struct vfsmount *mnt, int flags)
982 {
983         return call_int_hook(sb_umount, 0, mnt, flags);
984 }
985
986 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
987 {
988         return call_int_hook(sb_pivotroot, 0, old_path, new_path);
989 }
990
991 int security_sb_set_mnt_opts(struct super_block *sb,
992                                 void *mnt_opts,
993                                 unsigned long kern_flags,
994                                 unsigned long *set_kern_flags)
995 {
996         return call_int_hook(sb_set_mnt_opts,
997                                 mnt_opts ? -EOPNOTSUPP : 0, sb,
998                                 mnt_opts, kern_flags, set_kern_flags);
999 }
1000 EXPORT_SYMBOL(security_sb_set_mnt_opts);
1001
1002 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
1003                                 struct super_block *newsb,
1004                                 unsigned long kern_flags,
1005                                 unsigned long *set_kern_flags)
1006 {
1007         return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
1008                                 kern_flags, set_kern_flags);
1009 }
1010 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
1011
1012 int security_move_mount(const struct path *from_path, const struct path *to_path)
1013 {
1014         return call_int_hook(move_mount, 0, from_path, to_path);
1015 }
1016
1017 int security_path_notify(const struct path *path, u64 mask,
1018                                 unsigned int obj_type)
1019 {
1020         return call_int_hook(path_notify, 0, path, mask, obj_type);
1021 }
1022
1023 int security_inode_alloc(struct inode *inode)
1024 {
1025         int rc = lsm_inode_alloc(inode);
1026
1027         if (unlikely(rc))
1028                 return rc;
1029         rc = call_int_hook(inode_alloc_security, 0, inode);
1030         if (unlikely(rc))
1031                 security_inode_free(inode);
1032         return rc;
1033 }
1034
1035 static void inode_free_by_rcu(struct rcu_head *head)
1036 {
1037         /*
1038          * The rcu head is at the start of the inode blob
1039          */
1040         kmem_cache_free(lsm_inode_cache, head);
1041 }
1042
1043 void security_inode_free(struct inode *inode)
1044 {
1045         integrity_inode_free(inode);
1046         call_void_hook(inode_free_security, inode);
1047         /*
1048          * The inode may still be referenced in a path walk and
1049          * a call to security_inode_permission() can be made
1050          * after inode_free_security() is called. Ideally, the VFS
1051          * wouldn't do this, but fixing that is a much harder
1052          * job. For now, simply free the i_security via RCU, and
1053          * leave the current inode->i_security pointer intact.
1054          * The inode will be freed after the RCU grace period too.
1055          */
1056         if (inode->i_security)
1057                 call_rcu((struct rcu_head *)inode->i_security,
1058                                 inode_free_by_rcu);
1059 }
1060
1061 int security_dentry_init_security(struct dentry *dentry, int mode,
1062                                   const struct qstr *name,
1063                                   const char **xattr_name, void **ctx,
1064                                   u32 *ctxlen)
1065 {
1066         struct security_hook_list *hp;
1067         int rc;
1068
1069         /*
1070          * Only one module will provide a security context.
1071          */
1072         hlist_for_each_entry(hp, &security_hook_heads.dentry_init_security, list) {
1073                 rc = hp->hook.dentry_init_security(dentry, mode, name,
1074                                                    xattr_name, ctx, ctxlen);
1075                 if (rc != LSM_RET_DEFAULT(dentry_init_security))
1076                         return rc;
1077         }
1078         return LSM_RET_DEFAULT(dentry_init_security);
1079 }
1080 EXPORT_SYMBOL(security_dentry_init_security);
1081
1082 int security_dentry_create_files_as(struct dentry *dentry, int mode,
1083                                     struct qstr *name,
1084                                     const struct cred *old, struct cred *new)
1085 {
1086         return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1087                                 name, old, new);
1088 }
1089 EXPORT_SYMBOL(security_dentry_create_files_as);
1090
1091 int security_inode_init_security(struct inode *inode, struct inode *dir,
1092                                  const struct qstr *qstr,
1093                                  const initxattrs initxattrs, void *fs_data)
1094 {
1095         struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1096         struct xattr *lsm_xattr, *evm_xattr, *xattr;
1097         int ret;
1098
1099         if (unlikely(IS_PRIVATE(inode)))
1100                 return 0;
1101
1102         if (!initxattrs)
1103                 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1104                                      dir, qstr, NULL, NULL, NULL);
1105         memset(new_xattrs, 0, sizeof(new_xattrs));
1106         lsm_xattr = new_xattrs;
1107         ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1108                                                 &lsm_xattr->name,
1109                                                 &lsm_xattr->value,
1110                                                 &lsm_xattr->value_len);
1111         if (ret)
1112                 goto out;
1113
1114         evm_xattr = lsm_xattr + 1;
1115         ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1116         if (ret)
1117                 goto out;
1118         ret = initxattrs(inode, new_xattrs, fs_data);
1119 out:
1120         for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1121                 kfree(xattr->value);
1122         return (ret == -EOPNOTSUPP) ? 0 : ret;
1123 }
1124 EXPORT_SYMBOL(security_inode_init_security);
1125
1126 int security_inode_init_security_anon(struct inode *inode,
1127                                       const struct qstr *name,
1128                                       const struct inode *context_inode)
1129 {
1130         return call_int_hook(inode_init_security_anon, 0, inode, name,
1131                              context_inode);
1132 }
1133
1134 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1135                                      const struct qstr *qstr, const char **name,
1136                                      void **value, size_t *len)
1137 {
1138         if (unlikely(IS_PRIVATE(inode)))
1139                 return -EOPNOTSUPP;
1140         return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1141                              qstr, name, value, len);
1142 }
1143 EXPORT_SYMBOL(security_old_inode_init_security);
1144
1145 #ifdef CONFIG_SECURITY_PATH
1146 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1147                         unsigned int dev)
1148 {
1149         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1150                 return 0;
1151         return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1152 }
1153 EXPORT_SYMBOL(security_path_mknod);
1154
1155 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1156 {
1157         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1158                 return 0;
1159         return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1160 }
1161 EXPORT_SYMBOL(security_path_mkdir);
1162
1163 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1164 {
1165         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1166                 return 0;
1167         return call_int_hook(path_rmdir, 0, dir, dentry);
1168 }
1169
1170 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1171 {
1172         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1173                 return 0;
1174         return call_int_hook(path_unlink, 0, dir, dentry);
1175 }
1176 EXPORT_SYMBOL(security_path_unlink);
1177
1178 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1179                           const char *old_name)
1180 {
1181         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1182                 return 0;
1183         return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1184 }
1185
1186 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1187                        struct dentry *new_dentry)
1188 {
1189         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1190                 return 0;
1191         return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1192 }
1193
1194 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1195                          const struct path *new_dir, struct dentry *new_dentry,
1196                          unsigned int flags)
1197 {
1198         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1199                      (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1200                 return 0;
1201
1202         if (flags & RENAME_EXCHANGE) {
1203                 int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1204                                         old_dir, old_dentry);
1205                 if (err)
1206                         return err;
1207         }
1208
1209         return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1210                                 new_dentry);
1211 }
1212 EXPORT_SYMBOL(security_path_rename);
1213
1214 int security_path_truncate(const struct path *path)
1215 {
1216         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1217                 return 0;
1218         return call_int_hook(path_truncate, 0, path);
1219 }
1220
1221 int security_path_chmod(const struct path *path, umode_t mode)
1222 {
1223         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1224                 return 0;
1225         return call_int_hook(path_chmod, 0, path, mode);
1226 }
1227
1228 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1229 {
1230         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1231                 return 0;
1232         return call_int_hook(path_chown, 0, path, uid, gid);
1233 }
1234
1235 int security_path_chroot(const struct path *path)
1236 {
1237         return call_int_hook(path_chroot, 0, path);
1238 }
1239 #endif
1240
1241 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1242 {
1243         if (unlikely(IS_PRIVATE(dir)))
1244                 return 0;
1245         return call_int_hook(inode_create, 0, dir, dentry, mode);
1246 }
1247 EXPORT_SYMBOL_GPL(security_inode_create);
1248
1249 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1250                          struct dentry *new_dentry)
1251 {
1252         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1253                 return 0;
1254         return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1255 }
1256
1257 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1258 {
1259         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1260                 return 0;
1261         return call_int_hook(inode_unlink, 0, dir, dentry);
1262 }
1263
1264 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1265                             const char *old_name)
1266 {
1267         if (unlikely(IS_PRIVATE(dir)))
1268                 return 0;
1269         return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1270 }
1271
1272 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1273 {
1274         if (unlikely(IS_PRIVATE(dir)))
1275                 return 0;
1276         return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1277 }
1278 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1279
1280 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1281 {
1282         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1283                 return 0;
1284         return call_int_hook(inode_rmdir, 0, dir, dentry);
1285 }
1286
1287 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1288 {
1289         if (unlikely(IS_PRIVATE(dir)))
1290                 return 0;
1291         return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1292 }
1293
1294 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1295                            struct inode *new_dir, struct dentry *new_dentry,
1296                            unsigned int flags)
1297 {
1298         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1299             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1300                 return 0;
1301
1302         if (flags & RENAME_EXCHANGE) {
1303                 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1304                                                      old_dir, old_dentry);
1305                 if (err)
1306                         return err;
1307         }
1308
1309         return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1310                                            new_dir, new_dentry);
1311 }
1312
1313 int security_inode_readlink(struct dentry *dentry)
1314 {
1315         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1316                 return 0;
1317         return call_int_hook(inode_readlink, 0, dentry);
1318 }
1319
1320 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1321                                bool rcu)
1322 {
1323         if (unlikely(IS_PRIVATE(inode)))
1324                 return 0;
1325         return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1326 }
1327
1328 int security_inode_permission(struct inode *inode, int mask)
1329 {
1330         if (unlikely(IS_PRIVATE(inode)))
1331                 return 0;
1332         return call_int_hook(inode_permission, 0, inode, mask);
1333 }
1334
1335 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1336 {
1337         int ret;
1338
1339         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1340                 return 0;
1341         ret = call_int_hook(inode_setattr, 0, dentry, attr);
1342         if (ret)
1343                 return ret;
1344         return evm_inode_setattr(dentry, attr);
1345 }
1346 EXPORT_SYMBOL_GPL(security_inode_setattr);
1347
1348 int security_inode_getattr(const struct path *path)
1349 {
1350         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1351                 return 0;
1352         return call_int_hook(inode_getattr, 0, path);
1353 }
1354
1355 int security_inode_setxattr(struct user_namespace *mnt_userns,
1356                             struct dentry *dentry, const char *name,
1357                             const void *value, size_t size, int flags)
1358 {
1359         int ret;
1360
1361         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1362                 return 0;
1363         /*
1364          * SELinux and Smack integrate the cap call,
1365          * so assume that all LSMs supplying this call do so.
1366          */
1367         ret = call_int_hook(inode_setxattr, 1, mnt_userns, dentry, name, value,
1368                             size, flags);
1369
1370         if (ret == 1)
1371                 ret = cap_inode_setxattr(dentry, name, value, size, flags);
1372         if (ret)
1373                 return ret;
1374         ret = ima_inode_setxattr(dentry, name, value, size);
1375         if (ret)
1376                 return ret;
1377         return evm_inode_setxattr(mnt_userns, dentry, name, value, size);
1378 }
1379
1380 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1381                                   const void *value, size_t size, int flags)
1382 {
1383         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1384                 return;
1385         call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1386         evm_inode_post_setxattr(dentry, name, value, size);
1387 }
1388
1389 int security_inode_getxattr(struct dentry *dentry, const char *name)
1390 {
1391         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1392                 return 0;
1393         return call_int_hook(inode_getxattr, 0, dentry, name);
1394 }
1395
1396 int security_inode_listxattr(struct dentry *dentry)
1397 {
1398         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1399                 return 0;
1400         return call_int_hook(inode_listxattr, 0, dentry);
1401 }
1402
1403 int security_inode_removexattr(struct user_namespace *mnt_userns,
1404                                struct dentry *dentry, const char *name)
1405 {
1406         int ret;
1407
1408         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1409                 return 0;
1410         /*
1411          * SELinux and Smack integrate the cap call,
1412          * so assume that all LSMs supplying this call do so.
1413          */
1414         ret = call_int_hook(inode_removexattr, 1, mnt_userns, dentry, name);
1415         if (ret == 1)
1416                 ret = cap_inode_removexattr(mnt_userns, dentry, name);
1417         if (ret)
1418                 return ret;
1419         ret = ima_inode_removexattr(dentry, name);
1420         if (ret)
1421                 return ret;
1422         return evm_inode_removexattr(mnt_userns, dentry, name);
1423 }
1424
1425 int security_inode_need_killpriv(struct dentry *dentry)
1426 {
1427         return call_int_hook(inode_need_killpriv, 0, dentry);
1428 }
1429
1430 int security_inode_killpriv(struct user_namespace *mnt_userns,
1431                             struct dentry *dentry)
1432 {
1433         return call_int_hook(inode_killpriv, 0, mnt_userns, dentry);
1434 }
1435
1436 int security_inode_getsecurity(struct user_namespace *mnt_userns,
1437                                struct inode *inode, const char *name,
1438                                void **buffer, bool alloc)
1439 {
1440         struct security_hook_list *hp;
1441         int rc;
1442
1443         if (unlikely(IS_PRIVATE(inode)))
1444                 return LSM_RET_DEFAULT(inode_getsecurity);
1445         /*
1446          * Only one module will provide an attribute with a given name.
1447          */
1448         hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1449                 rc = hp->hook.inode_getsecurity(mnt_userns, inode, name, buffer, alloc);
1450                 if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1451                         return rc;
1452         }
1453         return LSM_RET_DEFAULT(inode_getsecurity);
1454 }
1455
1456 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1457 {
1458         struct security_hook_list *hp;
1459         int rc;
1460
1461         if (unlikely(IS_PRIVATE(inode)))
1462                 return LSM_RET_DEFAULT(inode_setsecurity);
1463         /*
1464          * Only one module will provide an attribute with a given name.
1465          */
1466         hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1467                 rc = hp->hook.inode_setsecurity(inode, name, value, size,
1468                                                                 flags);
1469                 if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1470                         return rc;
1471         }
1472         return LSM_RET_DEFAULT(inode_setsecurity);
1473 }
1474
1475 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1476 {
1477         if (unlikely(IS_PRIVATE(inode)))
1478                 return 0;
1479         return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1480 }
1481 EXPORT_SYMBOL(security_inode_listsecurity);
1482
1483 void security_inode_getsecid(struct inode *inode, u32 *secid)
1484 {
1485         call_void_hook(inode_getsecid, inode, secid);
1486 }
1487
1488 int security_inode_copy_up(struct dentry *src, struct cred **new)
1489 {
1490         return call_int_hook(inode_copy_up, 0, src, new);
1491 }
1492 EXPORT_SYMBOL(security_inode_copy_up);
1493
1494 int security_inode_copy_up_xattr(const char *name)
1495 {
1496         struct security_hook_list *hp;
1497         int rc;
1498
1499         /*
1500          * The implementation can return 0 (accept the xattr), 1 (discard the
1501          * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
1502          * any other error code incase of an error.
1503          */
1504         hlist_for_each_entry(hp,
1505                 &security_hook_heads.inode_copy_up_xattr, list) {
1506                 rc = hp->hook.inode_copy_up_xattr(name);
1507                 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
1508                         return rc;
1509         }
1510
1511         return LSM_RET_DEFAULT(inode_copy_up_xattr);
1512 }
1513 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1514
1515 int security_kernfs_init_security(struct kernfs_node *kn_dir,
1516                                   struct kernfs_node *kn)
1517 {
1518         return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1519 }
1520
1521 int security_file_permission(struct file *file, int mask)
1522 {
1523         int ret;
1524
1525         ret = call_int_hook(file_permission, 0, file, mask);
1526         if (ret)
1527                 return ret;
1528
1529         return fsnotify_perm(file, mask);
1530 }
1531
1532 int security_file_alloc(struct file *file)
1533 {
1534         int rc = lsm_file_alloc(file);
1535
1536         if (rc)
1537                 return rc;
1538         rc = call_int_hook(file_alloc_security, 0, file);
1539         if (unlikely(rc))
1540                 security_file_free(file);
1541         return rc;
1542 }
1543
1544 void security_file_free(struct file *file)
1545 {
1546         void *blob;
1547
1548         call_void_hook(file_free_security, file);
1549
1550         blob = file->f_security;
1551         if (blob) {
1552                 file->f_security = NULL;
1553                 kmem_cache_free(lsm_file_cache, blob);
1554         }
1555 }
1556
1557 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1558 {
1559         return call_int_hook(file_ioctl, 0, file, cmd, arg);
1560 }
1561 EXPORT_SYMBOL_GPL(security_file_ioctl);
1562
1563 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1564 {
1565         /*
1566          * Does we have PROT_READ and does the application expect
1567          * it to imply PROT_EXEC?  If not, nothing to talk about...
1568          */
1569         if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1570                 return prot;
1571         if (!(current->personality & READ_IMPLIES_EXEC))
1572                 return prot;
1573         /*
1574          * if that's an anonymous mapping, let it.
1575          */
1576         if (!file)
1577                 return prot | PROT_EXEC;
1578         /*
1579          * ditto if it's not on noexec mount, except that on !MMU we need
1580          * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1581          */
1582         if (!path_noexec(&file->f_path)) {
1583 #ifndef CONFIG_MMU
1584                 if (file->f_op->mmap_capabilities) {
1585                         unsigned caps = file->f_op->mmap_capabilities(file);
1586                         if (!(caps & NOMMU_MAP_EXEC))
1587                                 return prot;
1588                 }
1589 #endif
1590                 return prot | PROT_EXEC;
1591         }
1592         /* anything on noexec mount won't get PROT_EXEC */
1593         return prot;
1594 }
1595
1596 int security_mmap_file(struct file *file, unsigned long prot,
1597                         unsigned long flags)
1598 {
1599         int ret;
1600         ret = call_int_hook(mmap_file, 0, file, prot,
1601                                         mmap_prot(file, prot), flags);
1602         if (ret)
1603                 return ret;
1604         return ima_file_mmap(file, prot);
1605 }
1606
1607 int security_mmap_addr(unsigned long addr)
1608 {
1609         return call_int_hook(mmap_addr, 0, addr);
1610 }
1611
1612 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1613                             unsigned long prot)
1614 {
1615         int ret;
1616
1617         ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1618         if (ret)
1619                 return ret;
1620         return ima_file_mprotect(vma, prot);
1621 }
1622
1623 int security_file_lock(struct file *file, unsigned int cmd)
1624 {
1625         return call_int_hook(file_lock, 0, file, cmd);
1626 }
1627
1628 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1629 {
1630         return call_int_hook(file_fcntl, 0, file, cmd, arg);
1631 }
1632
1633 void security_file_set_fowner(struct file *file)
1634 {
1635         call_void_hook(file_set_fowner, file);
1636 }
1637
1638 int security_file_send_sigiotask(struct task_struct *tsk,
1639                                   struct fown_struct *fown, int sig)
1640 {
1641         return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1642 }
1643
1644 int security_file_receive(struct file *file)
1645 {
1646         return call_int_hook(file_receive, 0, file);
1647 }
1648
1649 int security_file_open(struct file *file)
1650 {
1651         int ret;
1652
1653         ret = call_int_hook(file_open, 0, file);
1654         if (ret)
1655                 return ret;
1656
1657         return fsnotify_perm(file, MAY_OPEN);
1658 }
1659
1660 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1661 {
1662         int rc = lsm_task_alloc(task);
1663
1664         if (rc)
1665                 return rc;
1666         rc = call_int_hook(task_alloc, 0, task, clone_flags);
1667         if (unlikely(rc))
1668                 security_task_free(task);
1669         return rc;
1670 }
1671
1672 void security_task_free(struct task_struct *task)
1673 {
1674         call_void_hook(task_free, task);
1675
1676         kfree(task->security);
1677         task->security = NULL;
1678 }
1679
1680 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1681 {
1682         int rc = lsm_cred_alloc(cred, gfp);
1683
1684         if (rc)
1685                 return rc;
1686
1687         rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1688         if (unlikely(rc))
1689                 security_cred_free(cred);
1690         return rc;
1691 }
1692
1693 void security_cred_free(struct cred *cred)
1694 {
1695         /*
1696          * There is a failure case in prepare_creds() that
1697          * may result in a call here with ->security being NULL.
1698          */
1699         if (unlikely(cred->security == NULL))
1700                 return;
1701
1702         call_void_hook(cred_free, cred);
1703
1704         kfree(cred->security);
1705         cred->security = NULL;
1706 }
1707
1708 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1709 {
1710         int rc = lsm_cred_alloc(new, gfp);
1711
1712         if (rc)
1713                 return rc;
1714
1715         rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1716         if (unlikely(rc))
1717                 security_cred_free(new);
1718         return rc;
1719 }
1720
1721 void security_transfer_creds(struct cred *new, const struct cred *old)
1722 {
1723         call_void_hook(cred_transfer, new, old);
1724 }
1725
1726 void security_cred_getsecid(const struct cred *c, u32 *secid)
1727 {
1728         *secid = 0;
1729         call_void_hook(cred_getsecid, c, secid);
1730 }
1731 EXPORT_SYMBOL(security_cred_getsecid);
1732
1733 int security_kernel_act_as(struct cred *new, u32 secid)
1734 {
1735         return call_int_hook(kernel_act_as, 0, new, secid);
1736 }
1737
1738 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1739 {
1740         return call_int_hook(kernel_create_files_as, 0, new, inode);
1741 }
1742
1743 int security_kernel_module_request(char *kmod_name)
1744 {
1745         int ret;
1746
1747         ret = call_int_hook(kernel_module_request, 0, kmod_name);
1748         if (ret)
1749                 return ret;
1750         return integrity_kernel_module_request(kmod_name);
1751 }
1752
1753 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
1754                               bool contents)
1755 {
1756         int ret;
1757
1758         ret = call_int_hook(kernel_read_file, 0, file, id, contents);
1759         if (ret)
1760                 return ret;
1761         return ima_read_file(file, id, contents);
1762 }
1763 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1764
1765 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1766                                    enum kernel_read_file_id id)
1767 {
1768         int ret;
1769
1770         ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1771         if (ret)
1772                 return ret;
1773         return ima_post_read_file(file, buf, size, id);
1774 }
1775 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1776
1777 int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
1778 {
1779         int ret;
1780
1781         ret = call_int_hook(kernel_load_data, 0, id, contents);
1782         if (ret)
1783                 return ret;
1784         return ima_load_data(id, contents);
1785 }
1786 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1787
1788 int security_kernel_post_load_data(char *buf, loff_t size,
1789                                    enum kernel_load_data_id id,
1790                                    char *description)
1791 {
1792         int ret;
1793
1794         ret = call_int_hook(kernel_post_load_data, 0, buf, size, id,
1795                             description);
1796         if (ret)
1797                 return ret;
1798         return ima_post_load_data(buf, size, id, description);
1799 }
1800 EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
1801
1802 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1803                              int flags)
1804 {
1805         return call_int_hook(task_fix_setuid, 0, new, old, flags);
1806 }
1807
1808 int security_task_fix_setgid(struct cred *new, const struct cred *old,
1809                                  int flags)
1810 {
1811         return call_int_hook(task_fix_setgid, 0, new, old, flags);
1812 }
1813
1814 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1815 {
1816         return call_int_hook(task_setpgid, 0, p, pgid);
1817 }
1818
1819 int security_task_getpgid(struct task_struct *p)
1820 {
1821         return call_int_hook(task_getpgid, 0, p);
1822 }
1823
1824 int security_task_getsid(struct task_struct *p)
1825 {
1826         return call_int_hook(task_getsid, 0, p);
1827 }
1828
1829 void security_current_getsecid_subj(u32 *secid)
1830 {
1831         *secid = 0;
1832         call_void_hook(current_getsecid_subj, secid);
1833 }
1834 EXPORT_SYMBOL(security_current_getsecid_subj);
1835
1836 void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
1837 {
1838         *secid = 0;
1839         call_void_hook(task_getsecid_obj, p, secid);
1840 }
1841 EXPORT_SYMBOL(security_task_getsecid_obj);
1842
1843 int security_task_setnice(struct task_struct *p, int nice)
1844 {
1845         return call_int_hook(task_setnice, 0, p, nice);
1846 }
1847
1848 int security_task_setioprio(struct task_struct *p, int ioprio)
1849 {
1850         return call_int_hook(task_setioprio, 0, p, ioprio);
1851 }
1852
1853 int security_task_getioprio(struct task_struct *p)
1854 {
1855         return call_int_hook(task_getioprio, 0, p);
1856 }
1857
1858 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1859                           unsigned int flags)
1860 {
1861         return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1862 }
1863
1864 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1865                 struct rlimit *new_rlim)
1866 {
1867         return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1868 }
1869
1870 int security_task_setscheduler(struct task_struct *p)
1871 {
1872         return call_int_hook(task_setscheduler, 0, p);
1873 }
1874
1875 int security_task_getscheduler(struct task_struct *p)
1876 {
1877         return call_int_hook(task_getscheduler, 0, p);
1878 }
1879
1880 int security_task_movememory(struct task_struct *p)
1881 {
1882         return call_int_hook(task_movememory, 0, p);
1883 }
1884
1885 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1886                         int sig, const struct cred *cred)
1887 {
1888         return call_int_hook(task_kill, 0, p, info, sig, cred);
1889 }
1890
1891 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1892                          unsigned long arg4, unsigned long arg5)
1893 {
1894         int thisrc;
1895         int rc = LSM_RET_DEFAULT(task_prctl);
1896         struct security_hook_list *hp;
1897
1898         hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1899                 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1900                 if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1901                         rc = thisrc;
1902                         if (thisrc != 0)
1903                                 break;
1904                 }
1905         }
1906         return rc;
1907 }
1908
1909 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1910 {
1911         call_void_hook(task_to_inode, p, inode);
1912 }
1913
1914 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1915 {
1916         return call_int_hook(ipc_permission, 0, ipcp, flag);
1917 }
1918
1919 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1920 {
1921         *secid = 0;
1922         call_void_hook(ipc_getsecid, ipcp, secid);
1923 }
1924
1925 int security_msg_msg_alloc(struct msg_msg *msg)
1926 {
1927         int rc = lsm_msg_msg_alloc(msg);
1928
1929         if (unlikely(rc))
1930                 return rc;
1931         rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1932         if (unlikely(rc))
1933                 security_msg_msg_free(msg);
1934         return rc;
1935 }
1936
1937 void security_msg_msg_free(struct msg_msg *msg)
1938 {
1939         call_void_hook(msg_msg_free_security, msg);
1940         kfree(msg->security);
1941         msg->security = NULL;
1942 }
1943
1944 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1945 {
1946         int rc = lsm_ipc_alloc(msq);
1947
1948         if (unlikely(rc))
1949                 return rc;
1950         rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1951         if (unlikely(rc))
1952                 security_msg_queue_free(msq);
1953         return rc;
1954 }
1955
1956 void security_msg_queue_free(struct kern_ipc_perm *msq)
1957 {
1958         call_void_hook(msg_queue_free_security, msq);
1959         kfree(msq->security);
1960         msq->security = NULL;
1961 }
1962
1963 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1964 {
1965         return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1966 }
1967
1968 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1969 {
1970         return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1971 }
1972
1973 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1974                                struct msg_msg *msg, int msqflg)
1975 {
1976         return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1977 }
1978
1979 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1980                                struct task_struct *target, long type, int mode)
1981 {
1982         return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1983 }
1984
1985 int security_shm_alloc(struct kern_ipc_perm *shp)
1986 {
1987         int rc = lsm_ipc_alloc(shp);
1988
1989         if (unlikely(rc))
1990                 return rc;
1991         rc = call_int_hook(shm_alloc_security, 0, shp);
1992         if (unlikely(rc))
1993                 security_shm_free(shp);
1994         return rc;
1995 }
1996
1997 void security_shm_free(struct kern_ipc_perm *shp)
1998 {
1999         call_void_hook(shm_free_security, shp);
2000         kfree(shp->security);
2001         shp->security = NULL;
2002 }
2003
2004 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
2005 {
2006         return call_int_hook(shm_associate, 0, shp, shmflg);
2007 }
2008
2009 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
2010 {
2011         return call_int_hook(shm_shmctl, 0, shp, cmd);
2012 }
2013
2014 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
2015 {
2016         return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
2017 }
2018
2019 int security_sem_alloc(struct kern_ipc_perm *sma)
2020 {
2021         int rc = lsm_ipc_alloc(sma);
2022
2023         if (unlikely(rc))
2024                 return rc;
2025         rc = call_int_hook(sem_alloc_security, 0, sma);
2026         if (unlikely(rc))
2027                 security_sem_free(sma);
2028         return rc;
2029 }
2030
2031 void security_sem_free(struct kern_ipc_perm *sma)
2032 {
2033         call_void_hook(sem_free_security, sma);
2034         kfree(sma->security);
2035         sma->security = NULL;
2036 }
2037
2038 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
2039 {
2040         return call_int_hook(sem_associate, 0, sma, semflg);
2041 }
2042
2043 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
2044 {
2045         return call_int_hook(sem_semctl, 0, sma, cmd);
2046 }
2047
2048 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
2049                         unsigned nsops, int alter)
2050 {
2051         return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
2052 }
2053
2054 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
2055 {
2056         if (unlikely(inode && IS_PRIVATE(inode)))
2057                 return;
2058         call_void_hook(d_instantiate, dentry, inode);
2059 }
2060 EXPORT_SYMBOL(security_d_instantiate);
2061
2062 int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
2063                                 char **value)
2064 {
2065         struct security_hook_list *hp;
2066
2067         hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
2068                 if (lsm != NULL && strcmp(lsm, hp->lsm))
2069                         continue;
2070                 return hp->hook.getprocattr(p, name, value);
2071         }
2072         return LSM_RET_DEFAULT(getprocattr);
2073 }
2074
2075 int security_setprocattr(const char *lsm, const char *name, void *value,
2076                          size_t size)
2077 {
2078         struct security_hook_list *hp;
2079
2080         hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
2081                 if (lsm != NULL && strcmp(lsm, hp->lsm))
2082                         continue;
2083                 return hp->hook.setprocattr(name, value, size);
2084         }
2085         return LSM_RET_DEFAULT(setprocattr);
2086 }
2087
2088 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
2089 {
2090         return call_int_hook(netlink_send, 0, sk, skb);
2091 }
2092
2093 int security_ismaclabel(const char *name)
2094 {
2095         return call_int_hook(ismaclabel, 0, name);
2096 }
2097 EXPORT_SYMBOL(security_ismaclabel);
2098
2099 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2100 {
2101         struct security_hook_list *hp;
2102         int rc;
2103
2104         /*
2105          * Currently, only one LSM can implement secid_to_secctx (i.e this
2106          * LSM hook is not "stackable").
2107          */
2108         hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
2109                 rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
2110                 if (rc != LSM_RET_DEFAULT(secid_to_secctx))
2111                         return rc;
2112         }
2113
2114         return LSM_RET_DEFAULT(secid_to_secctx);
2115 }
2116 EXPORT_SYMBOL(security_secid_to_secctx);
2117
2118 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
2119 {
2120         *secid = 0;
2121         return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
2122 }
2123 EXPORT_SYMBOL(security_secctx_to_secid);
2124
2125 void security_release_secctx(char *secdata, u32 seclen)
2126 {
2127         call_void_hook(release_secctx, secdata, seclen);
2128 }
2129 EXPORT_SYMBOL(security_release_secctx);
2130
2131 void security_inode_invalidate_secctx(struct inode *inode)
2132 {
2133         call_void_hook(inode_invalidate_secctx, inode);
2134 }
2135 EXPORT_SYMBOL(security_inode_invalidate_secctx);
2136
2137 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
2138 {
2139         return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
2140 }
2141 EXPORT_SYMBOL(security_inode_notifysecctx);
2142
2143 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2144 {
2145         return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2146 }
2147 EXPORT_SYMBOL(security_inode_setsecctx);
2148
2149 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2150 {
2151         return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
2152 }
2153 EXPORT_SYMBOL(security_inode_getsecctx);
2154
2155 #ifdef CONFIG_WATCH_QUEUE
2156 int security_post_notification(const struct cred *w_cred,
2157                                const struct cred *cred,
2158                                struct watch_notification *n)
2159 {
2160         return call_int_hook(post_notification, 0, w_cred, cred, n);
2161 }
2162 #endif /* CONFIG_WATCH_QUEUE */
2163
2164 #ifdef CONFIG_KEY_NOTIFICATIONS
2165 int security_watch_key(struct key *key)
2166 {
2167         return call_int_hook(watch_key, 0, key);
2168 }
2169 #endif
2170
2171 #ifdef CONFIG_SECURITY_NETWORK
2172
2173 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2174 {
2175         return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2176 }
2177 EXPORT_SYMBOL(security_unix_stream_connect);
2178
2179 int security_unix_may_send(struct socket *sock,  struct socket *other)
2180 {
2181         return call_int_hook(unix_may_send, 0, sock, other);
2182 }
2183 EXPORT_SYMBOL(security_unix_may_send);
2184
2185 int security_socket_create(int family, int type, int protocol, int kern)
2186 {
2187         return call_int_hook(socket_create, 0, family, type, protocol, kern);
2188 }
2189
2190 int security_socket_post_create(struct socket *sock, int family,
2191                                 int type, int protocol, int kern)
2192 {
2193         return call_int_hook(socket_post_create, 0, sock, family, type,
2194                                                 protocol, kern);
2195 }
2196
2197 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2198 {
2199         return call_int_hook(socket_socketpair, 0, socka, sockb);
2200 }
2201 EXPORT_SYMBOL(security_socket_socketpair);
2202
2203 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2204 {
2205         return call_int_hook(socket_bind, 0, sock, address, addrlen);
2206 }
2207
2208 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2209 {
2210         return call_int_hook(socket_connect, 0, sock, address, addrlen);
2211 }
2212
2213 int security_socket_listen(struct socket *sock, int backlog)
2214 {
2215         return call_int_hook(socket_listen, 0, sock, backlog);
2216 }
2217
2218 int security_socket_accept(struct socket *sock, struct socket *newsock)
2219 {
2220         return call_int_hook(socket_accept, 0, sock, newsock);
2221 }
2222
2223 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2224 {
2225         return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2226 }
2227
2228 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2229                             int size, int flags)
2230 {
2231         return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2232 }
2233
2234 int security_socket_getsockname(struct socket *sock)
2235 {
2236         return call_int_hook(socket_getsockname, 0, sock);
2237 }
2238
2239 int security_socket_getpeername(struct socket *sock)
2240 {
2241         return call_int_hook(socket_getpeername, 0, sock);
2242 }
2243
2244 int security_socket_getsockopt(struct socket *sock, int level, int optname)
2245 {
2246         return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2247 }
2248
2249 int security_socket_setsockopt(struct socket *sock, int level, int optname)
2250 {
2251         return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2252 }
2253
2254 int security_socket_shutdown(struct socket *sock, int how)
2255 {
2256         return call_int_hook(socket_shutdown, 0, sock, how);
2257 }
2258
2259 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2260 {
2261         return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2262 }
2263 EXPORT_SYMBOL(security_sock_rcv_skb);
2264
2265 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2266                                       int __user *optlen, unsigned len)
2267 {
2268         return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2269                                 optval, optlen, len);
2270 }
2271
2272 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2273 {
2274         return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2275                              skb, secid);
2276 }
2277 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2278
2279 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2280 {
2281         return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2282 }
2283
2284 void security_sk_free(struct sock *sk)
2285 {
2286         call_void_hook(sk_free_security, sk);
2287 }
2288
2289 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2290 {
2291         call_void_hook(sk_clone_security, sk, newsk);
2292 }
2293 EXPORT_SYMBOL(security_sk_clone);
2294
2295 void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic)
2296 {
2297         call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
2298 }
2299 EXPORT_SYMBOL(security_sk_classify_flow);
2300
2301 void security_req_classify_flow(const struct request_sock *req,
2302                                 struct flowi_common *flic)
2303 {
2304         call_void_hook(req_classify_flow, req, flic);
2305 }
2306 EXPORT_SYMBOL(security_req_classify_flow);
2307
2308 void security_sock_graft(struct sock *sk, struct socket *parent)
2309 {
2310         call_void_hook(sock_graft, sk, parent);
2311 }
2312 EXPORT_SYMBOL(security_sock_graft);
2313
2314 int security_inet_conn_request(const struct sock *sk,
2315                         struct sk_buff *skb, struct request_sock *req)
2316 {
2317         return call_int_hook(inet_conn_request, 0, sk, skb, req);
2318 }
2319 EXPORT_SYMBOL(security_inet_conn_request);
2320
2321 void security_inet_csk_clone(struct sock *newsk,
2322                         const struct request_sock *req)
2323 {
2324         call_void_hook(inet_csk_clone, newsk, req);
2325 }
2326
2327 void security_inet_conn_established(struct sock *sk,
2328                         struct sk_buff *skb)
2329 {
2330         call_void_hook(inet_conn_established, sk, skb);
2331 }
2332 EXPORT_SYMBOL(security_inet_conn_established);
2333
2334 int security_secmark_relabel_packet(u32 secid)
2335 {
2336         return call_int_hook(secmark_relabel_packet, 0, secid);
2337 }
2338 EXPORT_SYMBOL(security_secmark_relabel_packet);
2339
2340 void security_secmark_refcount_inc(void)
2341 {
2342         call_void_hook(secmark_refcount_inc);
2343 }
2344 EXPORT_SYMBOL(security_secmark_refcount_inc);
2345
2346 void security_secmark_refcount_dec(void)
2347 {
2348         call_void_hook(secmark_refcount_dec);
2349 }
2350 EXPORT_SYMBOL(security_secmark_refcount_dec);
2351
2352 int security_tun_dev_alloc_security(void **security)
2353 {
2354         return call_int_hook(tun_dev_alloc_security, 0, security);
2355 }
2356 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2357
2358 void security_tun_dev_free_security(void *security)
2359 {
2360         call_void_hook(tun_dev_free_security, security);
2361 }
2362 EXPORT_SYMBOL(security_tun_dev_free_security);
2363
2364 int security_tun_dev_create(void)
2365 {
2366         return call_int_hook(tun_dev_create, 0);
2367 }
2368 EXPORT_SYMBOL(security_tun_dev_create);
2369
2370 int security_tun_dev_attach_queue(void *security)
2371 {
2372         return call_int_hook(tun_dev_attach_queue, 0, security);
2373 }
2374 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2375
2376 int security_tun_dev_attach(struct sock *sk, void *security)
2377 {
2378         return call_int_hook(tun_dev_attach, 0, sk, security);
2379 }
2380 EXPORT_SYMBOL(security_tun_dev_attach);
2381
2382 int security_tun_dev_open(void *security)
2383 {
2384         return call_int_hook(tun_dev_open, 0, security);
2385 }
2386 EXPORT_SYMBOL(security_tun_dev_open);
2387
2388 int security_sctp_assoc_request(struct sctp_association *asoc, struct sk_buff *skb)
2389 {
2390         return call_int_hook(sctp_assoc_request, 0, asoc, skb);
2391 }
2392 EXPORT_SYMBOL(security_sctp_assoc_request);
2393
2394 int security_sctp_bind_connect(struct sock *sk, int optname,
2395                                struct sockaddr *address, int addrlen)
2396 {
2397         return call_int_hook(sctp_bind_connect, 0, sk, optname,
2398                              address, addrlen);
2399 }
2400 EXPORT_SYMBOL(security_sctp_bind_connect);
2401
2402 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
2403                             struct sock *newsk)
2404 {
2405         call_void_hook(sctp_sk_clone, asoc, sk, newsk);
2406 }
2407 EXPORT_SYMBOL(security_sctp_sk_clone);
2408
2409 int security_sctp_assoc_established(struct sctp_association *asoc,
2410                                     struct sk_buff *skb)
2411 {
2412         return call_int_hook(sctp_assoc_established, 0, asoc, skb);
2413 }
2414 EXPORT_SYMBOL(security_sctp_assoc_established);
2415
2416 #endif  /* CONFIG_SECURITY_NETWORK */
2417
2418 #ifdef CONFIG_SECURITY_INFINIBAND
2419
2420 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2421 {
2422         return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2423 }
2424 EXPORT_SYMBOL(security_ib_pkey_access);
2425
2426 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2427 {
2428         return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2429 }
2430 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2431
2432 int security_ib_alloc_security(void **sec)
2433 {
2434         return call_int_hook(ib_alloc_security, 0, sec);
2435 }
2436 EXPORT_SYMBOL(security_ib_alloc_security);
2437
2438 void security_ib_free_security(void *sec)
2439 {
2440         call_void_hook(ib_free_security, sec);
2441 }
2442 EXPORT_SYMBOL(security_ib_free_security);
2443 #endif  /* CONFIG_SECURITY_INFINIBAND */
2444
2445 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2446
2447 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2448                                struct xfrm_user_sec_ctx *sec_ctx,
2449                                gfp_t gfp)
2450 {
2451         return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2452 }
2453 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2454
2455 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2456                               struct xfrm_sec_ctx **new_ctxp)
2457 {
2458         return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2459 }
2460
2461 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2462 {
2463         call_void_hook(xfrm_policy_free_security, ctx);
2464 }
2465 EXPORT_SYMBOL(security_xfrm_policy_free);
2466
2467 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2468 {
2469         return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2470 }
2471
2472 int security_xfrm_state_alloc(struct xfrm_state *x,
2473                               struct xfrm_user_sec_ctx *sec_ctx)
2474 {
2475         return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2476 }
2477 EXPORT_SYMBOL(security_xfrm_state_alloc);
2478
2479 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2480                                       struct xfrm_sec_ctx *polsec, u32 secid)
2481 {
2482         return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2483 }
2484
2485 int security_xfrm_state_delete(struct xfrm_state *x)
2486 {
2487         return call_int_hook(xfrm_state_delete_security, 0, x);
2488 }
2489 EXPORT_SYMBOL(security_xfrm_state_delete);
2490
2491 void security_xfrm_state_free(struct xfrm_state *x)
2492 {
2493         call_void_hook(xfrm_state_free_security, x);
2494 }
2495
2496 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
2497 {
2498         return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid);
2499 }
2500
2501 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2502                                        struct xfrm_policy *xp,
2503                                        const struct flowi_common *flic)
2504 {
2505         struct security_hook_list *hp;
2506         int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2507
2508         /*
2509          * Since this function is expected to return 0 or 1, the judgment
2510          * becomes difficult if multiple LSMs supply this call. Fortunately,
2511          * we can use the first LSM's judgment because currently only SELinux
2512          * supplies this call.
2513          *
2514          * For speed optimization, we explicitly break the loop rather than
2515          * using the macro
2516          */
2517         hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2518                                 list) {
2519                 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
2520                 break;
2521         }
2522         return rc;
2523 }
2524
2525 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2526 {
2527         return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2528 }
2529
2530 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
2531 {
2532         int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid,
2533                                 0);
2534
2535         BUG_ON(rc);
2536 }
2537 EXPORT_SYMBOL(security_skb_classify_flow);
2538
2539 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
2540
2541 #ifdef CONFIG_KEYS
2542
2543 int security_key_alloc(struct key *key, const struct cred *cred,
2544                        unsigned long flags)
2545 {
2546         return call_int_hook(key_alloc, 0, key, cred, flags);
2547 }
2548
2549 void security_key_free(struct key *key)
2550 {
2551         call_void_hook(key_free, key);
2552 }
2553
2554 int security_key_permission(key_ref_t key_ref, const struct cred *cred,
2555                             enum key_need_perm need_perm)
2556 {
2557         return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
2558 }
2559
2560 int security_key_getsecurity(struct key *key, char **_buffer)
2561 {
2562         *_buffer = NULL;
2563         return call_int_hook(key_getsecurity, 0, key, _buffer);
2564 }
2565
2566 #endif  /* CONFIG_KEYS */
2567
2568 #ifdef CONFIG_AUDIT
2569
2570 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2571 {
2572         return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2573 }
2574
2575 int security_audit_rule_known(struct audit_krule *krule)
2576 {
2577         return call_int_hook(audit_rule_known, 0, krule);
2578 }
2579
2580 void security_audit_rule_free(void *lsmrule)
2581 {
2582         call_void_hook(audit_rule_free, lsmrule);
2583 }
2584
2585 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2586 {
2587         return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2588 }
2589 #endif /* CONFIG_AUDIT */
2590
2591 #ifdef CONFIG_BPF_SYSCALL
2592 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2593 {
2594         return call_int_hook(bpf, 0, cmd, attr, size);
2595 }
2596 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2597 {
2598         return call_int_hook(bpf_map, 0, map, fmode);
2599 }
2600 int security_bpf_prog(struct bpf_prog *prog)
2601 {
2602         return call_int_hook(bpf_prog, 0, prog);
2603 }
2604 int security_bpf_map_alloc(struct bpf_map *map)
2605 {
2606         return call_int_hook(bpf_map_alloc_security, 0, map);
2607 }
2608 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2609 {
2610         return call_int_hook(bpf_prog_alloc_security, 0, aux);
2611 }
2612 void security_bpf_map_free(struct bpf_map *map)
2613 {
2614         call_void_hook(bpf_map_free_security, map);
2615 }
2616 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2617 {
2618         call_void_hook(bpf_prog_free_security, aux);
2619 }
2620 #endif /* CONFIG_BPF_SYSCALL */
2621
2622 int security_locked_down(enum lockdown_reason what)
2623 {
2624         return call_int_hook(locked_down, 0, what);
2625 }
2626 EXPORT_SYMBOL(security_locked_down);
2627
2628 #ifdef CONFIG_PERF_EVENTS
2629 int security_perf_event_open(struct perf_event_attr *attr, int type)
2630 {
2631         return call_int_hook(perf_event_open, 0, attr, type);
2632 }
2633
2634 int security_perf_event_alloc(struct perf_event *event)
2635 {
2636         return call_int_hook(perf_event_alloc, 0, event);
2637 }
2638
2639 void security_perf_event_free(struct perf_event *event)
2640 {
2641         call_void_hook(perf_event_free, event);
2642 }
2643
2644 int security_perf_event_read(struct perf_event *event)
2645 {
2646         return call_int_hook(perf_event_read, 0, event);
2647 }
2648
2649 int security_perf_event_write(struct perf_event *event)
2650 {
2651         return call_int_hook(perf_event_write, 0, event);
2652 }
2653 #endif /* CONFIG_PERF_EVENTS */
2654
2655 #ifdef CONFIG_IO_URING
2656 int security_uring_override_creds(const struct cred *new)
2657 {
2658         return call_int_hook(uring_override_creds, 0, new);
2659 }
2660
2661 int security_uring_sqpoll(void)
2662 {
2663         return call_int_hook(uring_sqpoll, 0);
2664 }
2665 #endif /* CONFIG_IO_URING */