dt-bindings: rtc: tegra: Document Tegra234 RTC
[linux-2.6-microblaze.git] / security / security.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Security plug functions
4  *
5  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8  * Copyright (C) 2016 Mellanox Technologies
9  */
10
11 #define pr_fmt(fmt) "LSM: " fmt
12
13 #include <linux/bpf.h>
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/kernel_read_file.h>
20 #include <linux/lsm_hooks.h>
21 #include <linux/integrity.h>
22 #include <linux/ima.h>
23 #include <linux/evm.h>
24 #include <linux/fsnotify.h>
25 #include <linux/mman.h>
26 #include <linux/mount.h>
27 #include <linux/personality.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/msg.h>
31 #include <net/flow.h>
32
33 #define MAX_LSM_EVM_XATTR       2
34
35 /* How many LSMs were built into the kernel? */
36 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
37
38 /*
39  * These are descriptions of the reasons that can be passed to the
40  * security_locked_down() LSM hook. Placing this array here allows
41  * all security modules to use the same descriptions for auditing
42  * purposes.
43  */
44 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
45         [LOCKDOWN_NONE] = "none",
46         [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
47         [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
48         [LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
49         [LOCKDOWN_KEXEC] = "kexec of unsigned images",
50         [LOCKDOWN_HIBERNATION] = "hibernation",
51         [LOCKDOWN_PCI_ACCESS] = "direct PCI access",
52         [LOCKDOWN_IOPORT] = "raw io port access",
53         [LOCKDOWN_MSR] = "raw MSR access",
54         [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
55         [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
56         [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
57         [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
58         [LOCKDOWN_MMIOTRACE] = "unsafe mmio",
59         [LOCKDOWN_DEBUGFS] = "debugfs access",
60         [LOCKDOWN_XMON_WR] = "xmon write access",
61         [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
62         [LOCKDOWN_INTEGRITY_MAX] = "integrity",
63         [LOCKDOWN_KCORE] = "/proc/kcore access",
64         [LOCKDOWN_KPROBES] = "use of kprobes",
65         [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
66         [LOCKDOWN_PERF] = "unsafe use of perf",
67         [LOCKDOWN_TRACEFS] = "use of tracefs",
68         [LOCKDOWN_XMON_RW] = "xmon read and write access",
69         [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
70         [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
71 };
72
73 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
74 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
75
76 static struct kmem_cache *lsm_file_cache;
77 static struct kmem_cache *lsm_inode_cache;
78
79 char *lsm_names;
80 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
81
82 /* Boot-time LSM user choice */
83 static __initdata const char *chosen_lsm_order;
84 static __initdata const char *chosen_major_lsm;
85
86 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
87
88 /* Ordered list of LSMs to initialize. */
89 static __initdata struct lsm_info **ordered_lsms;
90 static __initdata struct lsm_info *exclusive;
91
92 static __initdata bool debug;
93 #define init_debug(...)                                         \
94         do {                                                    \
95                 if (debug)                                      \
96                         pr_info(__VA_ARGS__);                   \
97         } while (0)
98
99 static bool __init is_enabled(struct lsm_info *lsm)
100 {
101         if (!lsm->enabled)
102                 return false;
103
104         return *lsm->enabled;
105 }
106
107 /* Mark an LSM's enabled flag. */
108 static int lsm_enabled_true __initdata = 1;
109 static int lsm_enabled_false __initdata = 0;
110 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
111 {
112         /*
113          * When an LSM hasn't configured an enable variable, we can use
114          * a hard-coded location for storing the default enabled state.
115          */
116         if (!lsm->enabled) {
117                 if (enabled)
118                         lsm->enabled = &lsm_enabled_true;
119                 else
120                         lsm->enabled = &lsm_enabled_false;
121         } else if (lsm->enabled == &lsm_enabled_true) {
122                 if (!enabled)
123                         lsm->enabled = &lsm_enabled_false;
124         } else if (lsm->enabled == &lsm_enabled_false) {
125                 if (enabled)
126                         lsm->enabled = &lsm_enabled_true;
127         } else {
128                 *lsm->enabled = enabled;
129         }
130 }
131
132 /* Is an LSM already listed in the ordered LSMs list? */
133 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
134 {
135         struct lsm_info **check;
136
137         for (check = ordered_lsms; *check; check++)
138                 if (*check == lsm)
139                         return true;
140
141         return false;
142 }
143
144 /* Append an LSM to the list of ordered LSMs to initialize. */
145 static int last_lsm __initdata;
146 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
147 {
148         /* Ignore duplicate selections. */
149         if (exists_ordered_lsm(lsm))
150                 return;
151
152         if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
153                 return;
154
155         /* Enable this LSM, if it is not already set. */
156         if (!lsm->enabled)
157                 lsm->enabled = &lsm_enabled_true;
158         ordered_lsms[last_lsm++] = lsm;
159
160         init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
161                    is_enabled(lsm) ? "en" : "dis");
162 }
163
164 /* Is an LSM allowed to be initialized? */
165 static bool __init lsm_allowed(struct lsm_info *lsm)
166 {
167         /* Skip if the LSM is disabled. */
168         if (!is_enabled(lsm))
169                 return false;
170
171         /* Not allowed if another exclusive LSM already initialized. */
172         if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
173                 init_debug("exclusive disabled: %s\n", lsm->name);
174                 return false;
175         }
176
177         return true;
178 }
179
180 static void __init lsm_set_blob_size(int *need, int *lbs)
181 {
182         int offset;
183
184         if (*need > 0) {
185                 offset = *lbs;
186                 *lbs += *need;
187                 *need = offset;
188         }
189 }
190
191 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
192 {
193         if (!needed)
194                 return;
195
196         lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
197         lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
198         /*
199          * The inode blob gets an rcu_head in addition to
200          * what the modules might need.
201          */
202         if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
203                 blob_sizes.lbs_inode = sizeof(struct rcu_head);
204         lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
205         lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
206         lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
207         lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
208         lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
209 }
210
211 /* Prepare LSM for initialization. */
212 static void __init prepare_lsm(struct lsm_info *lsm)
213 {
214         int enabled = lsm_allowed(lsm);
215
216         /* Record enablement (to handle any following exclusive LSMs). */
217         set_enabled(lsm, enabled);
218
219         /* If enabled, do pre-initialization work. */
220         if (enabled) {
221                 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
222                         exclusive = lsm;
223                         init_debug("exclusive chosen: %s\n", lsm->name);
224                 }
225
226                 lsm_set_blob_sizes(lsm->blobs);
227         }
228 }
229
230 /* Initialize a given LSM, if it is enabled. */
231 static void __init initialize_lsm(struct lsm_info *lsm)
232 {
233         if (is_enabled(lsm)) {
234                 int ret;
235
236                 init_debug("initializing %s\n", lsm->name);
237                 ret = lsm->init();
238                 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
239         }
240 }
241
242 /* Populate ordered LSMs list from comma-separated LSM name list. */
243 static void __init ordered_lsm_parse(const char *order, const char *origin)
244 {
245         struct lsm_info *lsm;
246         char *sep, *name, *next;
247
248         /* LSM_ORDER_FIRST is always first. */
249         for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
250                 if (lsm->order == LSM_ORDER_FIRST)
251                         append_ordered_lsm(lsm, "first");
252         }
253
254         /* Process "security=", if given. */
255         if (chosen_major_lsm) {
256                 struct lsm_info *major;
257
258                 /*
259                  * To match the original "security=" behavior, this
260                  * explicitly does NOT fallback to another Legacy Major
261                  * if the selected one was separately disabled: disable
262                  * all non-matching Legacy Major LSMs.
263                  */
264                 for (major = __start_lsm_info; major < __end_lsm_info;
265                      major++) {
266                         if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
267                             strcmp(major->name, chosen_major_lsm) != 0) {
268                                 set_enabled(major, false);
269                                 init_debug("security=%s disabled: %s\n",
270                                            chosen_major_lsm, major->name);
271                         }
272                 }
273         }
274
275         sep = kstrdup(order, GFP_KERNEL);
276         next = sep;
277         /* Walk the list, looking for matching LSMs. */
278         while ((name = strsep(&next, ",")) != NULL) {
279                 bool found = false;
280
281                 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
282                         if (lsm->order == LSM_ORDER_MUTABLE &&
283                             strcmp(lsm->name, name) == 0) {
284                                 append_ordered_lsm(lsm, origin);
285                                 found = true;
286                         }
287                 }
288
289                 if (!found)
290                         init_debug("%s ignored: %s\n", origin, name);
291         }
292
293         /* Process "security=", if given. */
294         if (chosen_major_lsm) {
295                 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
296                         if (exists_ordered_lsm(lsm))
297                                 continue;
298                         if (strcmp(lsm->name, chosen_major_lsm) == 0)
299                                 append_ordered_lsm(lsm, "security=");
300                 }
301         }
302
303         /* Disable all LSMs not in the ordered list. */
304         for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
305                 if (exists_ordered_lsm(lsm))
306                         continue;
307                 set_enabled(lsm, false);
308                 init_debug("%s disabled: %s\n", origin, lsm->name);
309         }
310
311         kfree(sep);
312 }
313
314 static void __init lsm_early_cred(struct cred *cred);
315 static void __init lsm_early_task(struct task_struct *task);
316
317 static int lsm_append(const char *new, char **result);
318
319 static void __init ordered_lsm_init(void)
320 {
321         struct lsm_info **lsm;
322
323         ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
324                                 GFP_KERNEL);
325
326         if (chosen_lsm_order) {
327                 if (chosen_major_lsm) {
328                         pr_info("security= is ignored because it is superseded by lsm=\n");
329                         chosen_major_lsm = NULL;
330                 }
331                 ordered_lsm_parse(chosen_lsm_order, "cmdline");
332         } else
333                 ordered_lsm_parse(builtin_lsm_order, "builtin");
334
335         for (lsm = ordered_lsms; *lsm; lsm++)
336                 prepare_lsm(*lsm);
337
338         init_debug("cred blob size       = %d\n", blob_sizes.lbs_cred);
339         init_debug("file blob size       = %d\n", blob_sizes.lbs_file);
340         init_debug("inode blob size      = %d\n", blob_sizes.lbs_inode);
341         init_debug("ipc blob size        = %d\n", blob_sizes.lbs_ipc);
342         init_debug("msg_msg blob size    = %d\n", blob_sizes.lbs_msg_msg);
343         init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
344         init_debug("task blob size       = %d\n", blob_sizes.lbs_task);
345
346         /*
347          * Create any kmem_caches needed for blobs
348          */
349         if (blob_sizes.lbs_file)
350                 lsm_file_cache = kmem_cache_create("lsm_file_cache",
351                                                    blob_sizes.lbs_file, 0,
352                                                    SLAB_PANIC, NULL);
353         if (blob_sizes.lbs_inode)
354                 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
355                                                     blob_sizes.lbs_inode, 0,
356                                                     SLAB_PANIC, NULL);
357
358         lsm_early_cred((struct cred *) current->cred);
359         lsm_early_task(current);
360         for (lsm = ordered_lsms; *lsm; lsm++)
361                 initialize_lsm(*lsm);
362
363         kfree(ordered_lsms);
364 }
365
366 int __init early_security_init(void)
367 {
368         int i;
369         struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
370         struct lsm_info *lsm;
371
372         for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
373              i++)
374                 INIT_HLIST_HEAD(&list[i]);
375
376         for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
377                 if (!lsm->enabled)
378                         lsm->enabled = &lsm_enabled_true;
379                 prepare_lsm(lsm);
380                 initialize_lsm(lsm);
381         }
382
383         return 0;
384 }
385
386 /**
387  * security_init - initializes the security framework
388  *
389  * This should be called early in the kernel initialization sequence.
390  */
391 int __init security_init(void)
392 {
393         struct lsm_info *lsm;
394
395         pr_info("Security Framework initializing\n");
396
397         /*
398          * Append the names of the early LSM modules now that kmalloc() is
399          * available
400          */
401         for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
402                 if (lsm->enabled)
403                         lsm_append(lsm->name, &lsm_names);
404         }
405
406         /* Load LSMs in specified order. */
407         ordered_lsm_init();
408
409         return 0;
410 }
411
412 /* Save user chosen LSM */
413 static int __init choose_major_lsm(char *str)
414 {
415         chosen_major_lsm = str;
416         return 1;
417 }
418 __setup("security=", choose_major_lsm);
419
420 /* Explicitly choose LSM initialization order. */
421 static int __init choose_lsm_order(char *str)
422 {
423         chosen_lsm_order = str;
424         return 1;
425 }
426 __setup("lsm=", choose_lsm_order);
427
428 /* Enable LSM order debugging. */
429 static int __init enable_debug(char *str)
430 {
431         debug = true;
432         return 1;
433 }
434 __setup("lsm.debug", enable_debug);
435
436 static bool match_last_lsm(const char *list, const char *lsm)
437 {
438         const char *last;
439
440         if (WARN_ON(!list || !lsm))
441                 return false;
442         last = strrchr(list, ',');
443         if (last)
444                 /* Pass the comma, strcmp() will check for '\0' */
445                 last++;
446         else
447                 last = list;
448         return !strcmp(last, lsm);
449 }
450
451 static int lsm_append(const char *new, char **result)
452 {
453         char *cp;
454
455         if (*result == NULL) {
456                 *result = kstrdup(new, GFP_KERNEL);
457                 if (*result == NULL)
458                         return -ENOMEM;
459         } else {
460                 /* Check if it is the last registered name */
461                 if (match_last_lsm(*result, new))
462                         return 0;
463                 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
464                 if (cp == NULL)
465                         return -ENOMEM;
466                 kfree(*result);
467                 *result = cp;
468         }
469         return 0;
470 }
471
472 /**
473  * security_add_hooks - Add a modules hooks to the hook lists.
474  * @hooks: the hooks to add
475  * @count: the number of hooks to add
476  * @lsm: the name of the security module
477  *
478  * Each LSM has to register its hooks with the infrastructure.
479  */
480 void __init security_add_hooks(struct security_hook_list *hooks, int count,
481                                 char *lsm)
482 {
483         int i;
484
485         for (i = 0; i < count; i++) {
486                 hooks[i].lsm = lsm;
487                 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
488         }
489
490         /*
491          * Don't try to append during early_security_init(), we'll come back
492          * and fix this up afterwards.
493          */
494         if (slab_is_available()) {
495                 if (lsm_append(lsm, &lsm_names) < 0)
496                         panic("%s - Cannot get early memory.\n", __func__);
497         }
498 }
499
500 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
501 {
502         return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
503                                             event, data);
504 }
505 EXPORT_SYMBOL(call_blocking_lsm_notifier);
506
507 int register_blocking_lsm_notifier(struct notifier_block *nb)
508 {
509         return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
510                                                 nb);
511 }
512 EXPORT_SYMBOL(register_blocking_lsm_notifier);
513
514 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
515 {
516         return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
517                                                   nb);
518 }
519 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
520
521 /**
522  * lsm_cred_alloc - allocate a composite cred blob
523  * @cred: the cred that needs a blob
524  * @gfp: allocation type
525  *
526  * Allocate the cred blob for all the modules
527  *
528  * Returns 0, or -ENOMEM if memory can't be allocated.
529  */
530 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
531 {
532         if (blob_sizes.lbs_cred == 0) {
533                 cred->security = NULL;
534                 return 0;
535         }
536
537         cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
538         if (cred->security == NULL)
539                 return -ENOMEM;
540         return 0;
541 }
542
543 /**
544  * lsm_early_cred - during initialization allocate a composite cred blob
545  * @cred: the cred that needs a blob
546  *
547  * Allocate the cred blob for all the modules
548  */
549 static void __init lsm_early_cred(struct cred *cred)
550 {
551         int rc = lsm_cred_alloc(cred, GFP_KERNEL);
552
553         if (rc)
554                 panic("%s: Early cred alloc failed.\n", __func__);
555 }
556
557 /**
558  * lsm_file_alloc - allocate a composite file blob
559  * @file: the file that needs a blob
560  *
561  * Allocate the file blob for all the modules
562  *
563  * Returns 0, or -ENOMEM if memory can't be allocated.
564  */
565 static int lsm_file_alloc(struct file *file)
566 {
567         if (!lsm_file_cache) {
568                 file->f_security = NULL;
569                 return 0;
570         }
571
572         file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
573         if (file->f_security == NULL)
574                 return -ENOMEM;
575         return 0;
576 }
577
578 /**
579  * lsm_inode_alloc - allocate a composite inode blob
580  * @inode: the inode that needs a blob
581  *
582  * Allocate the inode blob for all the modules
583  *
584  * Returns 0, or -ENOMEM if memory can't be allocated.
585  */
586 int lsm_inode_alloc(struct inode *inode)
587 {
588         if (!lsm_inode_cache) {
589                 inode->i_security = NULL;
590                 return 0;
591         }
592
593         inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
594         if (inode->i_security == NULL)
595                 return -ENOMEM;
596         return 0;
597 }
598
599 /**
600  * lsm_task_alloc - allocate a composite task blob
601  * @task: the task that needs a blob
602  *
603  * Allocate the task blob for all the modules
604  *
605  * Returns 0, or -ENOMEM if memory can't be allocated.
606  */
607 static int lsm_task_alloc(struct task_struct *task)
608 {
609         if (blob_sizes.lbs_task == 0) {
610                 task->security = NULL;
611                 return 0;
612         }
613
614         task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
615         if (task->security == NULL)
616                 return -ENOMEM;
617         return 0;
618 }
619
620 /**
621  * lsm_ipc_alloc - allocate a composite ipc blob
622  * @kip: the ipc that needs a blob
623  *
624  * Allocate the ipc blob for all the modules
625  *
626  * Returns 0, or -ENOMEM if memory can't be allocated.
627  */
628 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
629 {
630         if (blob_sizes.lbs_ipc == 0) {
631                 kip->security = NULL;
632                 return 0;
633         }
634
635         kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
636         if (kip->security == NULL)
637                 return -ENOMEM;
638         return 0;
639 }
640
641 /**
642  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
643  * @mp: the msg_msg that needs a blob
644  *
645  * Allocate the ipc blob for all the modules
646  *
647  * Returns 0, or -ENOMEM if memory can't be allocated.
648  */
649 static int lsm_msg_msg_alloc(struct msg_msg *mp)
650 {
651         if (blob_sizes.lbs_msg_msg == 0) {
652                 mp->security = NULL;
653                 return 0;
654         }
655
656         mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
657         if (mp->security == NULL)
658                 return -ENOMEM;
659         return 0;
660 }
661
662 /**
663  * lsm_early_task - during initialization allocate a composite task blob
664  * @task: the task that needs a blob
665  *
666  * Allocate the task blob for all the modules
667  */
668 static void __init lsm_early_task(struct task_struct *task)
669 {
670         int rc = lsm_task_alloc(task);
671
672         if (rc)
673                 panic("%s: Early task alloc failed.\n", __func__);
674 }
675
676 /**
677  * lsm_superblock_alloc - allocate a composite superblock blob
678  * @sb: the superblock that needs a blob
679  *
680  * Allocate the superblock blob for all the modules
681  *
682  * Returns 0, or -ENOMEM if memory can't be allocated.
683  */
684 static int lsm_superblock_alloc(struct super_block *sb)
685 {
686         if (blob_sizes.lbs_superblock == 0) {
687                 sb->s_security = NULL;
688                 return 0;
689         }
690
691         sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL);
692         if (sb->s_security == NULL)
693                 return -ENOMEM;
694         return 0;
695 }
696
697 /*
698  * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
699  * can be accessed with:
700  *
701  *      LSM_RET_DEFAULT(<hook_name>)
702  *
703  * The macros below define static constants for the default value of each
704  * LSM hook.
705  */
706 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
707 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
708 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
709         static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
710 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
711         DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
712
713 #include <linux/lsm_hook_defs.h>
714 #undef LSM_HOOK
715
716 /*
717  * Hook list operation macros.
718  *
719  * call_void_hook:
720  *      This is a hook that does not return a value.
721  *
722  * call_int_hook:
723  *      This is a hook that returns a value.
724  */
725
726 #define call_void_hook(FUNC, ...)                               \
727         do {                                                    \
728                 struct security_hook_list *P;                   \
729                                                                 \
730                 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
731                         P->hook.FUNC(__VA_ARGS__);              \
732         } while (0)
733
734 #define call_int_hook(FUNC, IRC, ...) ({                        \
735         int RC = IRC;                                           \
736         do {                                                    \
737                 struct security_hook_list *P;                   \
738                                                                 \
739                 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
740                         RC = P->hook.FUNC(__VA_ARGS__);         \
741                         if (RC != 0)                            \
742                                 break;                          \
743                 }                                               \
744         } while (0);                                            \
745         RC;                                                     \
746 })
747
748 /* Security operations */
749
750 int security_binder_set_context_mgr(const struct cred *mgr)
751 {
752         return call_int_hook(binder_set_context_mgr, 0, mgr);
753 }
754
755 int security_binder_transaction(const struct cred *from,
756                                 const struct cred *to)
757 {
758         return call_int_hook(binder_transaction, 0, from, to);
759 }
760
761 int security_binder_transfer_binder(const struct cred *from,
762                                     const struct cred *to)
763 {
764         return call_int_hook(binder_transfer_binder, 0, from, to);
765 }
766
767 int security_binder_transfer_file(const struct cred *from,
768                                   const struct cred *to, struct file *file)
769 {
770         return call_int_hook(binder_transfer_file, 0, from, to, file);
771 }
772
773 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
774 {
775         return call_int_hook(ptrace_access_check, 0, child, mode);
776 }
777
778 int security_ptrace_traceme(struct task_struct *parent)
779 {
780         return call_int_hook(ptrace_traceme, 0, parent);
781 }
782
783 int security_capget(struct task_struct *target,
784                      kernel_cap_t *effective,
785                      kernel_cap_t *inheritable,
786                      kernel_cap_t *permitted)
787 {
788         return call_int_hook(capget, 0, target,
789                                 effective, inheritable, permitted);
790 }
791
792 int security_capset(struct cred *new, const struct cred *old,
793                     const kernel_cap_t *effective,
794                     const kernel_cap_t *inheritable,
795                     const kernel_cap_t *permitted)
796 {
797         return call_int_hook(capset, 0, new, old,
798                                 effective, inheritable, permitted);
799 }
800
801 int security_capable(const struct cred *cred,
802                      struct user_namespace *ns,
803                      int cap,
804                      unsigned int opts)
805 {
806         return call_int_hook(capable, 0, cred, ns, cap, opts);
807 }
808
809 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
810 {
811         return call_int_hook(quotactl, 0, cmds, type, id, sb);
812 }
813
814 int security_quota_on(struct dentry *dentry)
815 {
816         return call_int_hook(quota_on, 0, dentry);
817 }
818
819 int security_syslog(int type)
820 {
821         return call_int_hook(syslog, 0, type);
822 }
823
824 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
825 {
826         return call_int_hook(settime, 0, ts, tz);
827 }
828
829 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
830 {
831         struct security_hook_list *hp;
832         int cap_sys_admin = 1;
833         int rc;
834
835         /*
836          * The module will respond with a positive value if
837          * it thinks the __vm_enough_memory() call should be
838          * made with the cap_sys_admin set. If all of the modules
839          * agree that it should be set it will. If any module
840          * thinks it should not be set it won't.
841          */
842         hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
843                 rc = hp->hook.vm_enough_memory(mm, pages);
844                 if (rc <= 0) {
845                         cap_sys_admin = 0;
846                         break;
847                 }
848         }
849         return __vm_enough_memory(mm, pages, cap_sys_admin);
850 }
851
852 int security_bprm_creds_for_exec(struct linux_binprm *bprm)
853 {
854         return call_int_hook(bprm_creds_for_exec, 0, bprm);
855 }
856
857 int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
858 {
859         return call_int_hook(bprm_creds_from_file, 0, bprm, file);
860 }
861
862 int security_bprm_check(struct linux_binprm *bprm)
863 {
864         int ret;
865
866         ret = call_int_hook(bprm_check_security, 0, bprm);
867         if (ret)
868                 return ret;
869         return ima_bprm_check(bprm);
870 }
871
872 void security_bprm_committing_creds(struct linux_binprm *bprm)
873 {
874         call_void_hook(bprm_committing_creds, bprm);
875 }
876
877 void security_bprm_committed_creds(struct linux_binprm *bprm)
878 {
879         call_void_hook(bprm_committed_creds, bprm);
880 }
881
882 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
883 {
884         return call_int_hook(fs_context_dup, 0, fc, src_fc);
885 }
886
887 int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
888 {
889         return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
890 }
891
892 int security_sb_alloc(struct super_block *sb)
893 {
894         int rc = lsm_superblock_alloc(sb);
895
896         if (unlikely(rc))
897                 return rc;
898         rc = call_int_hook(sb_alloc_security, 0, sb);
899         if (unlikely(rc))
900                 security_sb_free(sb);
901         return rc;
902 }
903
904 void security_sb_delete(struct super_block *sb)
905 {
906         call_void_hook(sb_delete, sb);
907 }
908
909 void security_sb_free(struct super_block *sb)
910 {
911         call_void_hook(sb_free_security, sb);
912         kfree(sb->s_security);
913         sb->s_security = NULL;
914 }
915
916 void security_free_mnt_opts(void **mnt_opts)
917 {
918         if (!*mnt_opts)
919                 return;
920         call_void_hook(sb_free_mnt_opts, *mnt_opts);
921         *mnt_opts = NULL;
922 }
923 EXPORT_SYMBOL(security_free_mnt_opts);
924
925 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
926 {
927         return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
928 }
929 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
930
931 int security_sb_mnt_opts_compat(struct super_block *sb,
932                                 void *mnt_opts)
933 {
934         return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts);
935 }
936 EXPORT_SYMBOL(security_sb_mnt_opts_compat);
937
938 int security_sb_remount(struct super_block *sb,
939                         void *mnt_opts)
940 {
941         return call_int_hook(sb_remount, 0, sb, mnt_opts);
942 }
943 EXPORT_SYMBOL(security_sb_remount);
944
945 int security_sb_kern_mount(struct super_block *sb)
946 {
947         return call_int_hook(sb_kern_mount, 0, sb);
948 }
949
950 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
951 {
952         return call_int_hook(sb_show_options, 0, m, sb);
953 }
954
955 int security_sb_statfs(struct dentry *dentry)
956 {
957         return call_int_hook(sb_statfs, 0, dentry);
958 }
959
960 int security_sb_mount(const char *dev_name, const struct path *path,
961                        const char *type, unsigned long flags, void *data)
962 {
963         return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
964 }
965
966 int security_sb_umount(struct vfsmount *mnt, int flags)
967 {
968         return call_int_hook(sb_umount, 0, mnt, flags);
969 }
970
971 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
972 {
973         return call_int_hook(sb_pivotroot, 0, old_path, new_path);
974 }
975
976 int security_sb_set_mnt_opts(struct super_block *sb,
977                                 void *mnt_opts,
978                                 unsigned long kern_flags,
979                                 unsigned long *set_kern_flags)
980 {
981         return call_int_hook(sb_set_mnt_opts,
982                                 mnt_opts ? -EOPNOTSUPP : 0, sb,
983                                 mnt_opts, kern_flags, set_kern_flags);
984 }
985 EXPORT_SYMBOL(security_sb_set_mnt_opts);
986
987 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
988                                 struct super_block *newsb,
989                                 unsigned long kern_flags,
990                                 unsigned long *set_kern_flags)
991 {
992         return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
993                                 kern_flags, set_kern_flags);
994 }
995 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
996
997 int security_add_mnt_opt(const char *option, const char *val, int len,
998                          void **mnt_opts)
999 {
1000         return call_int_hook(sb_add_mnt_opt, -EINVAL,
1001                                         option, val, len, mnt_opts);
1002 }
1003 EXPORT_SYMBOL(security_add_mnt_opt);
1004
1005 int security_move_mount(const struct path *from_path, const struct path *to_path)
1006 {
1007         return call_int_hook(move_mount, 0, from_path, to_path);
1008 }
1009
1010 int security_path_notify(const struct path *path, u64 mask,
1011                                 unsigned int obj_type)
1012 {
1013         return call_int_hook(path_notify, 0, path, mask, obj_type);
1014 }
1015
1016 int security_inode_alloc(struct inode *inode)
1017 {
1018         int rc = lsm_inode_alloc(inode);
1019
1020         if (unlikely(rc))
1021                 return rc;
1022         rc = call_int_hook(inode_alloc_security, 0, inode);
1023         if (unlikely(rc))
1024                 security_inode_free(inode);
1025         return rc;
1026 }
1027
1028 static void inode_free_by_rcu(struct rcu_head *head)
1029 {
1030         /*
1031          * The rcu head is at the start of the inode blob
1032          */
1033         kmem_cache_free(lsm_inode_cache, head);
1034 }
1035
1036 void security_inode_free(struct inode *inode)
1037 {
1038         integrity_inode_free(inode);
1039         call_void_hook(inode_free_security, inode);
1040         /*
1041          * The inode may still be referenced in a path walk and
1042          * a call to security_inode_permission() can be made
1043          * after inode_free_security() is called. Ideally, the VFS
1044          * wouldn't do this, but fixing that is a much harder
1045          * job. For now, simply free the i_security via RCU, and
1046          * leave the current inode->i_security pointer intact.
1047          * The inode will be freed after the RCU grace period too.
1048          */
1049         if (inode->i_security)
1050                 call_rcu((struct rcu_head *)inode->i_security,
1051                                 inode_free_by_rcu);
1052 }
1053
1054 int security_dentry_init_security(struct dentry *dentry, int mode,
1055                                   const struct qstr *name,
1056                                   const char **xattr_name, void **ctx,
1057                                   u32 *ctxlen)
1058 {
1059         return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
1060                                 name, xattr_name, ctx, ctxlen);
1061 }
1062 EXPORT_SYMBOL(security_dentry_init_security);
1063
1064 int security_dentry_create_files_as(struct dentry *dentry, int mode,
1065                                     struct qstr *name,
1066                                     const struct cred *old, struct cred *new)
1067 {
1068         return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1069                                 name, old, new);
1070 }
1071 EXPORT_SYMBOL(security_dentry_create_files_as);
1072
1073 int security_inode_init_security(struct inode *inode, struct inode *dir,
1074                                  const struct qstr *qstr,
1075                                  const initxattrs initxattrs, void *fs_data)
1076 {
1077         struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1078         struct xattr *lsm_xattr, *evm_xattr, *xattr;
1079         int ret;
1080
1081         if (unlikely(IS_PRIVATE(inode)))
1082                 return 0;
1083
1084         if (!initxattrs)
1085                 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1086                                      dir, qstr, NULL, NULL, NULL);
1087         memset(new_xattrs, 0, sizeof(new_xattrs));
1088         lsm_xattr = new_xattrs;
1089         ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1090                                                 &lsm_xattr->name,
1091                                                 &lsm_xattr->value,
1092                                                 &lsm_xattr->value_len);
1093         if (ret)
1094                 goto out;
1095
1096         evm_xattr = lsm_xattr + 1;
1097         ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1098         if (ret)
1099                 goto out;
1100         ret = initxattrs(inode, new_xattrs, fs_data);
1101 out:
1102         for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1103                 kfree(xattr->value);
1104         return (ret == -EOPNOTSUPP) ? 0 : ret;
1105 }
1106 EXPORT_SYMBOL(security_inode_init_security);
1107
1108 int security_inode_init_security_anon(struct inode *inode,
1109                                       const struct qstr *name,
1110                                       const struct inode *context_inode)
1111 {
1112         return call_int_hook(inode_init_security_anon, 0, inode, name,
1113                              context_inode);
1114 }
1115
1116 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1117                                      const struct qstr *qstr, const char **name,
1118                                      void **value, size_t *len)
1119 {
1120         if (unlikely(IS_PRIVATE(inode)))
1121                 return -EOPNOTSUPP;
1122         return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1123                              qstr, name, value, len);
1124 }
1125 EXPORT_SYMBOL(security_old_inode_init_security);
1126
1127 #ifdef CONFIG_SECURITY_PATH
1128 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1129                         unsigned int dev)
1130 {
1131         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1132                 return 0;
1133         return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1134 }
1135 EXPORT_SYMBOL(security_path_mknod);
1136
1137 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1138 {
1139         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1140                 return 0;
1141         return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1142 }
1143 EXPORT_SYMBOL(security_path_mkdir);
1144
1145 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1146 {
1147         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1148                 return 0;
1149         return call_int_hook(path_rmdir, 0, dir, dentry);
1150 }
1151
1152 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1153 {
1154         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1155                 return 0;
1156         return call_int_hook(path_unlink, 0, dir, dentry);
1157 }
1158 EXPORT_SYMBOL(security_path_unlink);
1159
1160 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1161                           const char *old_name)
1162 {
1163         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1164                 return 0;
1165         return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1166 }
1167
1168 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1169                        struct dentry *new_dentry)
1170 {
1171         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1172                 return 0;
1173         return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1174 }
1175
1176 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1177                          const struct path *new_dir, struct dentry *new_dentry,
1178                          unsigned int flags)
1179 {
1180         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1181                      (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1182                 return 0;
1183
1184         if (flags & RENAME_EXCHANGE) {
1185                 int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1186                                         old_dir, old_dentry);
1187                 if (err)
1188                         return err;
1189         }
1190
1191         return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1192                                 new_dentry);
1193 }
1194 EXPORT_SYMBOL(security_path_rename);
1195
1196 int security_path_truncate(const struct path *path)
1197 {
1198         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1199                 return 0;
1200         return call_int_hook(path_truncate, 0, path);
1201 }
1202
1203 int security_path_chmod(const struct path *path, umode_t mode)
1204 {
1205         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1206                 return 0;
1207         return call_int_hook(path_chmod, 0, path, mode);
1208 }
1209
1210 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1211 {
1212         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1213                 return 0;
1214         return call_int_hook(path_chown, 0, path, uid, gid);
1215 }
1216
1217 int security_path_chroot(const struct path *path)
1218 {
1219         return call_int_hook(path_chroot, 0, path);
1220 }
1221 #endif
1222
1223 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1224 {
1225         if (unlikely(IS_PRIVATE(dir)))
1226                 return 0;
1227         return call_int_hook(inode_create, 0, dir, dentry, mode);
1228 }
1229 EXPORT_SYMBOL_GPL(security_inode_create);
1230
1231 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1232                          struct dentry *new_dentry)
1233 {
1234         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1235                 return 0;
1236         return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1237 }
1238
1239 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1240 {
1241         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1242                 return 0;
1243         return call_int_hook(inode_unlink, 0, dir, dentry);
1244 }
1245
1246 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1247                             const char *old_name)
1248 {
1249         if (unlikely(IS_PRIVATE(dir)))
1250                 return 0;
1251         return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1252 }
1253
1254 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1255 {
1256         if (unlikely(IS_PRIVATE(dir)))
1257                 return 0;
1258         return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1259 }
1260 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1261
1262 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1263 {
1264         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1265                 return 0;
1266         return call_int_hook(inode_rmdir, 0, dir, dentry);
1267 }
1268
1269 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1270 {
1271         if (unlikely(IS_PRIVATE(dir)))
1272                 return 0;
1273         return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1274 }
1275
1276 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1277                            struct inode *new_dir, struct dentry *new_dentry,
1278                            unsigned int flags)
1279 {
1280         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1281             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1282                 return 0;
1283
1284         if (flags & RENAME_EXCHANGE) {
1285                 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1286                                                      old_dir, old_dentry);
1287                 if (err)
1288                         return err;
1289         }
1290
1291         return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1292                                            new_dir, new_dentry);
1293 }
1294
1295 int security_inode_readlink(struct dentry *dentry)
1296 {
1297         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1298                 return 0;
1299         return call_int_hook(inode_readlink, 0, dentry);
1300 }
1301
1302 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1303                                bool rcu)
1304 {
1305         if (unlikely(IS_PRIVATE(inode)))
1306                 return 0;
1307         return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1308 }
1309
1310 int security_inode_permission(struct inode *inode, int mask)
1311 {
1312         if (unlikely(IS_PRIVATE(inode)))
1313                 return 0;
1314         return call_int_hook(inode_permission, 0, inode, mask);
1315 }
1316
1317 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1318 {
1319         int ret;
1320
1321         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1322                 return 0;
1323         ret = call_int_hook(inode_setattr, 0, dentry, attr);
1324         if (ret)
1325                 return ret;
1326         return evm_inode_setattr(dentry, attr);
1327 }
1328 EXPORT_SYMBOL_GPL(security_inode_setattr);
1329
1330 int security_inode_getattr(const struct path *path)
1331 {
1332         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1333                 return 0;
1334         return call_int_hook(inode_getattr, 0, path);
1335 }
1336
1337 int security_inode_setxattr(struct user_namespace *mnt_userns,
1338                             struct dentry *dentry, const char *name,
1339                             const void *value, size_t size, int flags)
1340 {
1341         int ret;
1342
1343         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1344                 return 0;
1345         /*
1346          * SELinux and Smack integrate the cap call,
1347          * so assume that all LSMs supplying this call do so.
1348          */
1349         ret = call_int_hook(inode_setxattr, 1, mnt_userns, dentry, name, value,
1350                             size, flags);
1351
1352         if (ret == 1)
1353                 ret = cap_inode_setxattr(dentry, name, value, size, flags);
1354         if (ret)
1355                 return ret;
1356         ret = ima_inode_setxattr(dentry, name, value, size);
1357         if (ret)
1358                 return ret;
1359         return evm_inode_setxattr(mnt_userns, dentry, name, value, size);
1360 }
1361
1362 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1363                                   const void *value, size_t size, int flags)
1364 {
1365         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1366                 return;
1367         call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1368         evm_inode_post_setxattr(dentry, name, value, size);
1369 }
1370
1371 int security_inode_getxattr(struct dentry *dentry, const char *name)
1372 {
1373         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1374                 return 0;
1375         return call_int_hook(inode_getxattr, 0, dentry, name);
1376 }
1377
1378 int security_inode_listxattr(struct dentry *dentry)
1379 {
1380         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1381                 return 0;
1382         return call_int_hook(inode_listxattr, 0, dentry);
1383 }
1384
1385 int security_inode_removexattr(struct user_namespace *mnt_userns,
1386                                struct dentry *dentry, const char *name)
1387 {
1388         int ret;
1389
1390         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1391                 return 0;
1392         /*
1393          * SELinux and Smack integrate the cap call,
1394          * so assume that all LSMs supplying this call do so.
1395          */
1396         ret = call_int_hook(inode_removexattr, 1, mnt_userns, dentry, name);
1397         if (ret == 1)
1398                 ret = cap_inode_removexattr(mnt_userns, dentry, name);
1399         if (ret)
1400                 return ret;
1401         ret = ima_inode_removexattr(dentry, name);
1402         if (ret)
1403                 return ret;
1404         return evm_inode_removexattr(mnt_userns, dentry, name);
1405 }
1406
1407 int security_inode_need_killpriv(struct dentry *dentry)
1408 {
1409         return call_int_hook(inode_need_killpriv, 0, dentry);
1410 }
1411
1412 int security_inode_killpriv(struct user_namespace *mnt_userns,
1413                             struct dentry *dentry)
1414 {
1415         return call_int_hook(inode_killpriv, 0, mnt_userns, dentry);
1416 }
1417
1418 int security_inode_getsecurity(struct user_namespace *mnt_userns,
1419                                struct inode *inode, const char *name,
1420                                void **buffer, bool alloc)
1421 {
1422         struct security_hook_list *hp;
1423         int rc;
1424
1425         if (unlikely(IS_PRIVATE(inode)))
1426                 return LSM_RET_DEFAULT(inode_getsecurity);
1427         /*
1428          * Only one module will provide an attribute with a given name.
1429          */
1430         hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1431                 rc = hp->hook.inode_getsecurity(mnt_userns, inode, name, buffer, alloc);
1432                 if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1433                         return rc;
1434         }
1435         return LSM_RET_DEFAULT(inode_getsecurity);
1436 }
1437
1438 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1439 {
1440         struct security_hook_list *hp;
1441         int rc;
1442
1443         if (unlikely(IS_PRIVATE(inode)))
1444                 return LSM_RET_DEFAULT(inode_setsecurity);
1445         /*
1446          * Only one module will provide an attribute with a given name.
1447          */
1448         hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1449                 rc = hp->hook.inode_setsecurity(inode, name, value, size,
1450                                                                 flags);
1451                 if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1452                         return rc;
1453         }
1454         return LSM_RET_DEFAULT(inode_setsecurity);
1455 }
1456
1457 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1458 {
1459         if (unlikely(IS_PRIVATE(inode)))
1460                 return 0;
1461         return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1462 }
1463 EXPORT_SYMBOL(security_inode_listsecurity);
1464
1465 void security_inode_getsecid(struct inode *inode, u32 *secid)
1466 {
1467         call_void_hook(inode_getsecid, inode, secid);
1468 }
1469
1470 int security_inode_copy_up(struct dentry *src, struct cred **new)
1471 {
1472         return call_int_hook(inode_copy_up, 0, src, new);
1473 }
1474 EXPORT_SYMBOL(security_inode_copy_up);
1475
1476 int security_inode_copy_up_xattr(const char *name)
1477 {
1478         struct security_hook_list *hp;
1479         int rc;
1480
1481         /*
1482          * The implementation can return 0 (accept the xattr), 1 (discard the
1483          * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
1484          * any other error code incase of an error.
1485          */
1486         hlist_for_each_entry(hp,
1487                 &security_hook_heads.inode_copy_up_xattr, list) {
1488                 rc = hp->hook.inode_copy_up_xattr(name);
1489                 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
1490                         return rc;
1491         }
1492
1493         return LSM_RET_DEFAULT(inode_copy_up_xattr);
1494 }
1495 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1496
1497 int security_kernfs_init_security(struct kernfs_node *kn_dir,
1498                                   struct kernfs_node *kn)
1499 {
1500         return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1501 }
1502
1503 int security_file_permission(struct file *file, int mask)
1504 {
1505         int ret;
1506
1507         ret = call_int_hook(file_permission, 0, file, mask);
1508         if (ret)
1509                 return ret;
1510
1511         return fsnotify_perm(file, mask);
1512 }
1513
1514 int security_file_alloc(struct file *file)
1515 {
1516         int rc = lsm_file_alloc(file);
1517
1518         if (rc)
1519                 return rc;
1520         rc = call_int_hook(file_alloc_security, 0, file);
1521         if (unlikely(rc))
1522                 security_file_free(file);
1523         return rc;
1524 }
1525
1526 void security_file_free(struct file *file)
1527 {
1528         void *blob;
1529
1530         call_void_hook(file_free_security, file);
1531
1532         blob = file->f_security;
1533         if (blob) {
1534                 file->f_security = NULL;
1535                 kmem_cache_free(lsm_file_cache, blob);
1536         }
1537 }
1538
1539 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1540 {
1541         return call_int_hook(file_ioctl, 0, file, cmd, arg);
1542 }
1543 EXPORT_SYMBOL_GPL(security_file_ioctl);
1544
1545 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1546 {
1547         /*
1548          * Does we have PROT_READ and does the application expect
1549          * it to imply PROT_EXEC?  If not, nothing to talk about...
1550          */
1551         if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1552                 return prot;
1553         if (!(current->personality & READ_IMPLIES_EXEC))
1554                 return prot;
1555         /*
1556          * if that's an anonymous mapping, let it.
1557          */
1558         if (!file)
1559                 return prot | PROT_EXEC;
1560         /*
1561          * ditto if it's not on noexec mount, except that on !MMU we need
1562          * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1563          */
1564         if (!path_noexec(&file->f_path)) {
1565 #ifndef CONFIG_MMU
1566                 if (file->f_op->mmap_capabilities) {
1567                         unsigned caps = file->f_op->mmap_capabilities(file);
1568                         if (!(caps & NOMMU_MAP_EXEC))
1569                                 return prot;
1570                 }
1571 #endif
1572                 return prot | PROT_EXEC;
1573         }
1574         /* anything on noexec mount won't get PROT_EXEC */
1575         return prot;
1576 }
1577
1578 int security_mmap_file(struct file *file, unsigned long prot,
1579                         unsigned long flags)
1580 {
1581         int ret;
1582         ret = call_int_hook(mmap_file, 0, file, prot,
1583                                         mmap_prot(file, prot), flags);
1584         if (ret)
1585                 return ret;
1586         return ima_file_mmap(file, prot);
1587 }
1588
1589 int security_mmap_addr(unsigned long addr)
1590 {
1591         return call_int_hook(mmap_addr, 0, addr);
1592 }
1593
1594 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1595                             unsigned long prot)
1596 {
1597         int ret;
1598
1599         ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1600         if (ret)
1601                 return ret;
1602         return ima_file_mprotect(vma, prot);
1603 }
1604
1605 int security_file_lock(struct file *file, unsigned int cmd)
1606 {
1607         return call_int_hook(file_lock, 0, file, cmd);
1608 }
1609
1610 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1611 {
1612         return call_int_hook(file_fcntl, 0, file, cmd, arg);
1613 }
1614
1615 void security_file_set_fowner(struct file *file)
1616 {
1617         call_void_hook(file_set_fowner, file);
1618 }
1619
1620 int security_file_send_sigiotask(struct task_struct *tsk,
1621                                   struct fown_struct *fown, int sig)
1622 {
1623         return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1624 }
1625
1626 int security_file_receive(struct file *file)
1627 {
1628         return call_int_hook(file_receive, 0, file);
1629 }
1630
1631 int security_file_open(struct file *file)
1632 {
1633         int ret;
1634
1635         ret = call_int_hook(file_open, 0, file);
1636         if (ret)
1637                 return ret;
1638
1639         return fsnotify_perm(file, MAY_OPEN);
1640 }
1641
1642 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1643 {
1644         int rc = lsm_task_alloc(task);
1645
1646         if (rc)
1647                 return rc;
1648         rc = call_int_hook(task_alloc, 0, task, clone_flags);
1649         if (unlikely(rc))
1650                 security_task_free(task);
1651         return rc;
1652 }
1653
1654 void security_task_free(struct task_struct *task)
1655 {
1656         call_void_hook(task_free, task);
1657
1658         kfree(task->security);
1659         task->security = NULL;
1660 }
1661
1662 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1663 {
1664         int rc = lsm_cred_alloc(cred, gfp);
1665
1666         if (rc)
1667                 return rc;
1668
1669         rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1670         if (unlikely(rc))
1671                 security_cred_free(cred);
1672         return rc;
1673 }
1674
1675 void security_cred_free(struct cred *cred)
1676 {
1677         /*
1678          * There is a failure case in prepare_creds() that
1679          * may result in a call here with ->security being NULL.
1680          */
1681         if (unlikely(cred->security == NULL))
1682                 return;
1683
1684         call_void_hook(cred_free, cred);
1685
1686         kfree(cred->security);
1687         cred->security = NULL;
1688 }
1689
1690 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1691 {
1692         int rc = lsm_cred_alloc(new, gfp);
1693
1694         if (rc)
1695                 return rc;
1696
1697         rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1698         if (unlikely(rc))
1699                 security_cred_free(new);
1700         return rc;
1701 }
1702
1703 void security_transfer_creds(struct cred *new, const struct cred *old)
1704 {
1705         call_void_hook(cred_transfer, new, old);
1706 }
1707
1708 void security_cred_getsecid(const struct cred *c, u32 *secid)
1709 {
1710         *secid = 0;
1711         call_void_hook(cred_getsecid, c, secid);
1712 }
1713 EXPORT_SYMBOL(security_cred_getsecid);
1714
1715 int security_kernel_act_as(struct cred *new, u32 secid)
1716 {
1717         return call_int_hook(kernel_act_as, 0, new, secid);
1718 }
1719
1720 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1721 {
1722         return call_int_hook(kernel_create_files_as, 0, new, inode);
1723 }
1724
1725 int security_kernel_module_request(char *kmod_name)
1726 {
1727         int ret;
1728
1729         ret = call_int_hook(kernel_module_request, 0, kmod_name);
1730         if (ret)
1731                 return ret;
1732         return integrity_kernel_module_request(kmod_name);
1733 }
1734
1735 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
1736                               bool contents)
1737 {
1738         int ret;
1739
1740         ret = call_int_hook(kernel_read_file, 0, file, id, contents);
1741         if (ret)
1742                 return ret;
1743         return ima_read_file(file, id, contents);
1744 }
1745 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1746
1747 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1748                                    enum kernel_read_file_id id)
1749 {
1750         int ret;
1751
1752         ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1753         if (ret)
1754                 return ret;
1755         return ima_post_read_file(file, buf, size, id);
1756 }
1757 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1758
1759 int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
1760 {
1761         int ret;
1762
1763         ret = call_int_hook(kernel_load_data, 0, id, contents);
1764         if (ret)
1765                 return ret;
1766         return ima_load_data(id, contents);
1767 }
1768 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1769
1770 int security_kernel_post_load_data(char *buf, loff_t size,
1771                                    enum kernel_load_data_id id,
1772                                    char *description)
1773 {
1774         int ret;
1775
1776         ret = call_int_hook(kernel_post_load_data, 0, buf, size, id,
1777                             description);
1778         if (ret)
1779                 return ret;
1780         return ima_post_load_data(buf, size, id, description);
1781 }
1782 EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
1783
1784 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1785                              int flags)
1786 {
1787         return call_int_hook(task_fix_setuid, 0, new, old, flags);
1788 }
1789
1790 int security_task_fix_setgid(struct cred *new, const struct cred *old,
1791                                  int flags)
1792 {
1793         return call_int_hook(task_fix_setgid, 0, new, old, flags);
1794 }
1795
1796 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1797 {
1798         return call_int_hook(task_setpgid, 0, p, pgid);
1799 }
1800
1801 int security_task_getpgid(struct task_struct *p)
1802 {
1803         return call_int_hook(task_getpgid, 0, p);
1804 }
1805
1806 int security_task_getsid(struct task_struct *p)
1807 {
1808         return call_int_hook(task_getsid, 0, p);
1809 }
1810
1811 void security_task_getsecid_subj(struct task_struct *p, u32 *secid)
1812 {
1813         *secid = 0;
1814         call_void_hook(task_getsecid_subj, p, secid);
1815 }
1816 EXPORT_SYMBOL(security_task_getsecid_subj);
1817
1818 void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
1819 {
1820         *secid = 0;
1821         call_void_hook(task_getsecid_obj, p, secid);
1822 }
1823 EXPORT_SYMBOL(security_task_getsecid_obj);
1824
1825 int security_task_setnice(struct task_struct *p, int nice)
1826 {
1827         return call_int_hook(task_setnice, 0, p, nice);
1828 }
1829
1830 int security_task_setioprio(struct task_struct *p, int ioprio)
1831 {
1832         return call_int_hook(task_setioprio, 0, p, ioprio);
1833 }
1834
1835 int security_task_getioprio(struct task_struct *p)
1836 {
1837         return call_int_hook(task_getioprio, 0, p);
1838 }
1839
1840 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1841                           unsigned int flags)
1842 {
1843         return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1844 }
1845
1846 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1847                 struct rlimit *new_rlim)
1848 {
1849         return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1850 }
1851
1852 int security_task_setscheduler(struct task_struct *p)
1853 {
1854         return call_int_hook(task_setscheduler, 0, p);
1855 }
1856
1857 int security_task_getscheduler(struct task_struct *p)
1858 {
1859         return call_int_hook(task_getscheduler, 0, p);
1860 }
1861
1862 int security_task_movememory(struct task_struct *p)
1863 {
1864         return call_int_hook(task_movememory, 0, p);
1865 }
1866
1867 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1868                         int sig, const struct cred *cred)
1869 {
1870         return call_int_hook(task_kill, 0, p, info, sig, cred);
1871 }
1872
1873 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1874                          unsigned long arg4, unsigned long arg5)
1875 {
1876         int thisrc;
1877         int rc = LSM_RET_DEFAULT(task_prctl);
1878         struct security_hook_list *hp;
1879
1880         hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1881                 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1882                 if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1883                         rc = thisrc;
1884                         if (thisrc != 0)
1885                                 break;
1886                 }
1887         }
1888         return rc;
1889 }
1890
1891 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1892 {
1893         call_void_hook(task_to_inode, p, inode);
1894 }
1895
1896 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1897 {
1898         return call_int_hook(ipc_permission, 0, ipcp, flag);
1899 }
1900
1901 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1902 {
1903         *secid = 0;
1904         call_void_hook(ipc_getsecid, ipcp, secid);
1905 }
1906
1907 int security_msg_msg_alloc(struct msg_msg *msg)
1908 {
1909         int rc = lsm_msg_msg_alloc(msg);
1910
1911         if (unlikely(rc))
1912                 return rc;
1913         rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1914         if (unlikely(rc))
1915                 security_msg_msg_free(msg);
1916         return rc;
1917 }
1918
1919 void security_msg_msg_free(struct msg_msg *msg)
1920 {
1921         call_void_hook(msg_msg_free_security, msg);
1922         kfree(msg->security);
1923         msg->security = NULL;
1924 }
1925
1926 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1927 {
1928         int rc = lsm_ipc_alloc(msq);
1929
1930         if (unlikely(rc))
1931                 return rc;
1932         rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1933         if (unlikely(rc))
1934                 security_msg_queue_free(msq);
1935         return rc;
1936 }
1937
1938 void security_msg_queue_free(struct kern_ipc_perm *msq)
1939 {
1940         call_void_hook(msg_queue_free_security, msq);
1941         kfree(msq->security);
1942         msq->security = NULL;
1943 }
1944
1945 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1946 {
1947         return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1948 }
1949
1950 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1951 {
1952         return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1953 }
1954
1955 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1956                                struct msg_msg *msg, int msqflg)
1957 {
1958         return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1959 }
1960
1961 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1962                                struct task_struct *target, long type, int mode)
1963 {
1964         return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1965 }
1966
1967 int security_shm_alloc(struct kern_ipc_perm *shp)
1968 {
1969         int rc = lsm_ipc_alloc(shp);
1970
1971         if (unlikely(rc))
1972                 return rc;
1973         rc = call_int_hook(shm_alloc_security, 0, shp);
1974         if (unlikely(rc))
1975                 security_shm_free(shp);
1976         return rc;
1977 }
1978
1979 void security_shm_free(struct kern_ipc_perm *shp)
1980 {
1981         call_void_hook(shm_free_security, shp);
1982         kfree(shp->security);
1983         shp->security = NULL;
1984 }
1985
1986 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1987 {
1988         return call_int_hook(shm_associate, 0, shp, shmflg);
1989 }
1990
1991 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1992 {
1993         return call_int_hook(shm_shmctl, 0, shp, cmd);
1994 }
1995
1996 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1997 {
1998         return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1999 }
2000
2001 int security_sem_alloc(struct kern_ipc_perm *sma)
2002 {
2003         int rc = lsm_ipc_alloc(sma);
2004
2005         if (unlikely(rc))
2006                 return rc;
2007         rc = call_int_hook(sem_alloc_security, 0, sma);
2008         if (unlikely(rc))
2009                 security_sem_free(sma);
2010         return rc;
2011 }
2012
2013 void security_sem_free(struct kern_ipc_perm *sma)
2014 {
2015         call_void_hook(sem_free_security, sma);
2016         kfree(sma->security);
2017         sma->security = NULL;
2018 }
2019
2020 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
2021 {
2022         return call_int_hook(sem_associate, 0, sma, semflg);
2023 }
2024
2025 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
2026 {
2027         return call_int_hook(sem_semctl, 0, sma, cmd);
2028 }
2029
2030 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
2031                         unsigned nsops, int alter)
2032 {
2033         return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
2034 }
2035
2036 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
2037 {
2038         if (unlikely(inode && IS_PRIVATE(inode)))
2039                 return;
2040         call_void_hook(d_instantiate, dentry, inode);
2041 }
2042 EXPORT_SYMBOL(security_d_instantiate);
2043
2044 int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
2045                                 char **value)
2046 {
2047         struct security_hook_list *hp;
2048
2049         hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
2050                 if (lsm != NULL && strcmp(lsm, hp->lsm))
2051                         continue;
2052                 return hp->hook.getprocattr(p, name, value);
2053         }
2054         return LSM_RET_DEFAULT(getprocattr);
2055 }
2056
2057 int security_setprocattr(const char *lsm, const char *name, void *value,
2058                          size_t size)
2059 {
2060         struct security_hook_list *hp;
2061
2062         hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
2063                 if (lsm != NULL && strcmp(lsm, hp->lsm))
2064                         continue;
2065                 return hp->hook.setprocattr(name, value, size);
2066         }
2067         return LSM_RET_DEFAULT(setprocattr);
2068 }
2069
2070 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
2071 {
2072         return call_int_hook(netlink_send, 0, sk, skb);
2073 }
2074
2075 int security_ismaclabel(const char *name)
2076 {
2077         return call_int_hook(ismaclabel, 0, name);
2078 }
2079 EXPORT_SYMBOL(security_ismaclabel);
2080
2081 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2082 {
2083         struct security_hook_list *hp;
2084         int rc;
2085
2086         /*
2087          * Currently, only one LSM can implement secid_to_secctx (i.e this
2088          * LSM hook is not "stackable").
2089          */
2090         hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
2091                 rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
2092                 if (rc != LSM_RET_DEFAULT(secid_to_secctx))
2093                         return rc;
2094         }
2095
2096         return LSM_RET_DEFAULT(secid_to_secctx);
2097 }
2098 EXPORT_SYMBOL(security_secid_to_secctx);
2099
2100 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
2101 {
2102         *secid = 0;
2103         return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
2104 }
2105 EXPORT_SYMBOL(security_secctx_to_secid);
2106
2107 void security_release_secctx(char *secdata, u32 seclen)
2108 {
2109         call_void_hook(release_secctx, secdata, seclen);
2110 }
2111 EXPORT_SYMBOL(security_release_secctx);
2112
2113 void security_inode_invalidate_secctx(struct inode *inode)
2114 {
2115         call_void_hook(inode_invalidate_secctx, inode);
2116 }
2117 EXPORT_SYMBOL(security_inode_invalidate_secctx);
2118
2119 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
2120 {
2121         return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
2122 }
2123 EXPORT_SYMBOL(security_inode_notifysecctx);
2124
2125 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2126 {
2127         return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2128 }
2129 EXPORT_SYMBOL(security_inode_setsecctx);
2130
2131 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2132 {
2133         return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
2134 }
2135 EXPORT_SYMBOL(security_inode_getsecctx);
2136
2137 #ifdef CONFIG_WATCH_QUEUE
2138 int security_post_notification(const struct cred *w_cred,
2139                                const struct cred *cred,
2140                                struct watch_notification *n)
2141 {
2142         return call_int_hook(post_notification, 0, w_cred, cred, n);
2143 }
2144 #endif /* CONFIG_WATCH_QUEUE */
2145
2146 #ifdef CONFIG_KEY_NOTIFICATIONS
2147 int security_watch_key(struct key *key)
2148 {
2149         return call_int_hook(watch_key, 0, key);
2150 }
2151 #endif
2152
2153 #ifdef CONFIG_SECURITY_NETWORK
2154
2155 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2156 {
2157         return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2158 }
2159 EXPORT_SYMBOL(security_unix_stream_connect);
2160
2161 int security_unix_may_send(struct socket *sock,  struct socket *other)
2162 {
2163         return call_int_hook(unix_may_send, 0, sock, other);
2164 }
2165 EXPORT_SYMBOL(security_unix_may_send);
2166
2167 int security_socket_create(int family, int type, int protocol, int kern)
2168 {
2169         return call_int_hook(socket_create, 0, family, type, protocol, kern);
2170 }
2171
2172 int security_socket_post_create(struct socket *sock, int family,
2173                                 int type, int protocol, int kern)
2174 {
2175         return call_int_hook(socket_post_create, 0, sock, family, type,
2176                                                 protocol, kern);
2177 }
2178
2179 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2180 {
2181         return call_int_hook(socket_socketpair, 0, socka, sockb);
2182 }
2183 EXPORT_SYMBOL(security_socket_socketpair);
2184
2185 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2186 {
2187         return call_int_hook(socket_bind, 0, sock, address, addrlen);
2188 }
2189
2190 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2191 {
2192         return call_int_hook(socket_connect, 0, sock, address, addrlen);
2193 }
2194
2195 int security_socket_listen(struct socket *sock, int backlog)
2196 {
2197         return call_int_hook(socket_listen, 0, sock, backlog);
2198 }
2199
2200 int security_socket_accept(struct socket *sock, struct socket *newsock)
2201 {
2202         return call_int_hook(socket_accept, 0, sock, newsock);
2203 }
2204
2205 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2206 {
2207         return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2208 }
2209
2210 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2211                             int size, int flags)
2212 {
2213         return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2214 }
2215
2216 int security_socket_getsockname(struct socket *sock)
2217 {
2218         return call_int_hook(socket_getsockname, 0, sock);
2219 }
2220
2221 int security_socket_getpeername(struct socket *sock)
2222 {
2223         return call_int_hook(socket_getpeername, 0, sock);
2224 }
2225
2226 int security_socket_getsockopt(struct socket *sock, int level, int optname)
2227 {
2228         return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2229 }
2230
2231 int security_socket_setsockopt(struct socket *sock, int level, int optname)
2232 {
2233         return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2234 }
2235
2236 int security_socket_shutdown(struct socket *sock, int how)
2237 {
2238         return call_int_hook(socket_shutdown, 0, sock, how);
2239 }
2240
2241 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2242 {
2243         return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2244 }
2245 EXPORT_SYMBOL(security_sock_rcv_skb);
2246
2247 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2248                                       int __user *optlen, unsigned len)
2249 {
2250         return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2251                                 optval, optlen, len);
2252 }
2253
2254 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2255 {
2256         return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2257                              skb, secid);
2258 }
2259 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2260
2261 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2262 {
2263         return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2264 }
2265
2266 void security_sk_free(struct sock *sk)
2267 {
2268         call_void_hook(sk_free_security, sk);
2269 }
2270
2271 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2272 {
2273         call_void_hook(sk_clone_security, sk, newsk);
2274 }
2275 EXPORT_SYMBOL(security_sk_clone);
2276
2277 void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic)
2278 {
2279         call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
2280 }
2281 EXPORT_SYMBOL(security_sk_classify_flow);
2282
2283 void security_req_classify_flow(const struct request_sock *req,
2284                                 struct flowi_common *flic)
2285 {
2286         call_void_hook(req_classify_flow, req, flic);
2287 }
2288 EXPORT_SYMBOL(security_req_classify_flow);
2289
2290 void security_sock_graft(struct sock *sk, struct socket *parent)
2291 {
2292         call_void_hook(sock_graft, sk, parent);
2293 }
2294 EXPORT_SYMBOL(security_sock_graft);
2295
2296 int security_inet_conn_request(const struct sock *sk,
2297                         struct sk_buff *skb, struct request_sock *req)
2298 {
2299         return call_int_hook(inet_conn_request, 0, sk, skb, req);
2300 }
2301 EXPORT_SYMBOL(security_inet_conn_request);
2302
2303 void security_inet_csk_clone(struct sock *newsk,
2304                         const struct request_sock *req)
2305 {
2306         call_void_hook(inet_csk_clone, newsk, req);
2307 }
2308
2309 void security_inet_conn_established(struct sock *sk,
2310                         struct sk_buff *skb)
2311 {
2312         call_void_hook(inet_conn_established, sk, skb);
2313 }
2314 EXPORT_SYMBOL(security_inet_conn_established);
2315
2316 int security_secmark_relabel_packet(u32 secid)
2317 {
2318         return call_int_hook(secmark_relabel_packet, 0, secid);
2319 }
2320 EXPORT_SYMBOL(security_secmark_relabel_packet);
2321
2322 void security_secmark_refcount_inc(void)
2323 {
2324         call_void_hook(secmark_refcount_inc);
2325 }
2326 EXPORT_SYMBOL(security_secmark_refcount_inc);
2327
2328 void security_secmark_refcount_dec(void)
2329 {
2330         call_void_hook(secmark_refcount_dec);
2331 }
2332 EXPORT_SYMBOL(security_secmark_refcount_dec);
2333
2334 int security_tun_dev_alloc_security(void **security)
2335 {
2336         return call_int_hook(tun_dev_alloc_security, 0, security);
2337 }
2338 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2339
2340 void security_tun_dev_free_security(void *security)
2341 {
2342         call_void_hook(tun_dev_free_security, security);
2343 }
2344 EXPORT_SYMBOL(security_tun_dev_free_security);
2345
2346 int security_tun_dev_create(void)
2347 {
2348         return call_int_hook(tun_dev_create, 0);
2349 }
2350 EXPORT_SYMBOL(security_tun_dev_create);
2351
2352 int security_tun_dev_attach_queue(void *security)
2353 {
2354         return call_int_hook(tun_dev_attach_queue, 0, security);
2355 }
2356 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2357
2358 int security_tun_dev_attach(struct sock *sk, void *security)
2359 {
2360         return call_int_hook(tun_dev_attach, 0, sk, security);
2361 }
2362 EXPORT_SYMBOL(security_tun_dev_attach);
2363
2364 int security_tun_dev_open(void *security)
2365 {
2366         return call_int_hook(tun_dev_open, 0, security);
2367 }
2368 EXPORT_SYMBOL(security_tun_dev_open);
2369
2370 int security_sctp_assoc_request(struct sctp_association *asoc, struct sk_buff *skb)
2371 {
2372         return call_int_hook(sctp_assoc_request, 0, asoc, skb);
2373 }
2374 EXPORT_SYMBOL(security_sctp_assoc_request);
2375
2376 int security_sctp_bind_connect(struct sock *sk, int optname,
2377                                struct sockaddr *address, int addrlen)
2378 {
2379         return call_int_hook(sctp_bind_connect, 0, sk, optname,
2380                              address, addrlen);
2381 }
2382 EXPORT_SYMBOL(security_sctp_bind_connect);
2383
2384 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
2385                             struct sock *newsk)
2386 {
2387         call_void_hook(sctp_sk_clone, asoc, sk, newsk);
2388 }
2389 EXPORT_SYMBOL(security_sctp_sk_clone);
2390
2391 #endif  /* CONFIG_SECURITY_NETWORK */
2392
2393 #ifdef CONFIG_SECURITY_INFINIBAND
2394
2395 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2396 {
2397         return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2398 }
2399 EXPORT_SYMBOL(security_ib_pkey_access);
2400
2401 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2402 {
2403         return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2404 }
2405 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2406
2407 int security_ib_alloc_security(void **sec)
2408 {
2409         return call_int_hook(ib_alloc_security, 0, sec);
2410 }
2411 EXPORT_SYMBOL(security_ib_alloc_security);
2412
2413 void security_ib_free_security(void *sec)
2414 {
2415         call_void_hook(ib_free_security, sec);
2416 }
2417 EXPORT_SYMBOL(security_ib_free_security);
2418 #endif  /* CONFIG_SECURITY_INFINIBAND */
2419
2420 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2421
2422 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2423                                struct xfrm_user_sec_ctx *sec_ctx,
2424                                gfp_t gfp)
2425 {
2426         return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2427 }
2428 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2429
2430 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2431                               struct xfrm_sec_ctx **new_ctxp)
2432 {
2433         return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2434 }
2435
2436 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2437 {
2438         call_void_hook(xfrm_policy_free_security, ctx);
2439 }
2440 EXPORT_SYMBOL(security_xfrm_policy_free);
2441
2442 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2443 {
2444         return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2445 }
2446
2447 int security_xfrm_state_alloc(struct xfrm_state *x,
2448                               struct xfrm_user_sec_ctx *sec_ctx)
2449 {
2450         return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2451 }
2452 EXPORT_SYMBOL(security_xfrm_state_alloc);
2453
2454 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2455                                       struct xfrm_sec_ctx *polsec, u32 secid)
2456 {
2457         return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2458 }
2459
2460 int security_xfrm_state_delete(struct xfrm_state *x)
2461 {
2462         return call_int_hook(xfrm_state_delete_security, 0, x);
2463 }
2464 EXPORT_SYMBOL(security_xfrm_state_delete);
2465
2466 void security_xfrm_state_free(struct xfrm_state *x)
2467 {
2468         call_void_hook(xfrm_state_free_security, x);
2469 }
2470
2471 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
2472 {
2473         return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid);
2474 }
2475
2476 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2477                                        struct xfrm_policy *xp,
2478                                        const struct flowi_common *flic)
2479 {
2480         struct security_hook_list *hp;
2481         int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2482
2483         /*
2484          * Since this function is expected to return 0 or 1, the judgment
2485          * becomes difficult if multiple LSMs supply this call. Fortunately,
2486          * we can use the first LSM's judgment because currently only SELinux
2487          * supplies this call.
2488          *
2489          * For speed optimization, we explicitly break the loop rather than
2490          * using the macro
2491          */
2492         hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2493                                 list) {
2494                 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
2495                 break;
2496         }
2497         return rc;
2498 }
2499
2500 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2501 {
2502         return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2503 }
2504
2505 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
2506 {
2507         int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid,
2508                                 0);
2509
2510         BUG_ON(rc);
2511 }
2512 EXPORT_SYMBOL(security_skb_classify_flow);
2513
2514 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
2515
2516 #ifdef CONFIG_KEYS
2517
2518 int security_key_alloc(struct key *key, const struct cred *cred,
2519                        unsigned long flags)
2520 {
2521         return call_int_hook(key_alloc, 0, key, cred, flags);
2522 }
2523
2524 void security_key_free(struct key *key)
2525 {
2526         call_void_hook(key_free, key);
2527 }
2528
2529 int security_key_permission(key_ref_t key_ref, const struct cred *cred,
2530                             enum key_need_perm need_perm)
2531 {
2532         return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
2533 }
2534
2535 int security_key_getsecurity(struct key *key, char **_buffer)
2536 {
2537         *_buffer = NULL;
2538         return call_int_hook(key_getsecurity, 0, key, _buffer);
2539 }
2540
2541 #endif  /* CONFIG_KEYS */
2542
2543 #ifdef CONFIG_AUDIT
2544
2545 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2546 {
2547         return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2548 }
2549
2550 int security_audit_rule_known(struct audit_krule *krule)
2551 {
2552         return call_int_hook(audit_rule_known, 0, krule);
2553 }
2554
2555 void security_audit_rule_free(void *lsmrule)
2556 {
2557         call_void_hook(audit_rule_free, lsmrule);
2558 }
2559
2560 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2561 {
2562         return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2563 }
2564 #endif /* CONFIG_AUDIT */
2565
2566 #ifdef CONFIG_BPF_SYSCALL
2567 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2568 {
2569         return call_int_hook(bpf, 0, cmd, attr, size);
2570 }
2571 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2572 {
2573         return call_int_hook(bpf_map, 0, map, fmode);
2574 }
2575 int security_bpf_prog(struct bpf_prog *prog)
2576 {
2577         return call_int_hook(bpf_prog, 0, prog);
2578 }
2579 int security_bpf_map_alloc(struct bpf_map *map)
2580 {
2581         return call_int_hook(bpf_map_alloc_security, 0, map);
2582 }
2583 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2584 {
2585         return call_int_hook(bpf_prog_alloc_security, 0, aux);
2586 }
2587 void security_bpf_map_free(struct bpf_map *map)
2588 {
2589         call_void_hook(bpf_map_free_security, map);
2590 }
2591 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2592 {
2593         call_void_hook(bpf_prog_free_security, aux);
2594 }
2595 #endif /* CONFIG_BPF_SYSCALL */
2596
2597 int security_locked_down(enum lockdown_reason what)
2598 {
2599         return call_int_hook(locked_down, 0, what);
2600 }
2601 EXPORT_SYMBOL(security_locked_down);
2602
2603 #ifdef CONFIG_PERF_EVENTS
2604 int security_perf_event_open(struct perf_event_attr *attr, int type)
2605 {
2606         return call_int_hook(perf_event_open, 0, attr, type);
2607 }
2608
2609 int security_perf_event_alloc(struct perf_event *event)
2610 {
2611         return call_int_hook(perf_event_alloc, 0, event);
2612 }
2613
2614 void security_perf_event_free(struct perf_event *event)
2615 {
2616         call_void_hook(perf_event_free, event);
2617 }
2618
2619 int security_perf_event_read(struct perf_event *event)
2620 {
2621         return call_int_hook(perf_event_read, 0, event);
2622 }
2623
2624 int security_perf_event_write(struct perf_event *event)
2625 {
2626         return call_int_hook(perf_event_write, 0, event);
2627 }
2628 #endif /* CONFIG_PERF_EVENTS */
2629
2630 #ifdef CONFIG_IO_URING
2631 int security_uring_override_creds(const struct cred *new)
2632 {
2633         return call_int_hook(uring_override_creds, 0, new);
2634 }
2635
2636 int security_uring_sqpoll(void)
2637 {
2638         return call_int_hook(uring_sqpoll, 0);
2639 }
2640 #endif /* CONFIG_IO_URING */