clk: Drop the rate range on clk_put()
[linux-2.6-microblaze.git] / security / security.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Security plug functions
4  *
5  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8  * Copyright (C) 2016 Mellanox Technologies
9  */
10
11 #define pr_fmt(fmt) "LSM: " fmt
12
13 #include <linux/bpf.h>
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/kernel_read_file.h>
20 #include <linux/lsm_hooks.h>
21 #include <linux/integrity.h>
22 #include <linux/ima.h>
23 #include <linux/evm.h>
24 #include <linux/fsnotify.h>
25 #include <linux/mman.h>
26 #include <linux/mount.h>
27 #include <linux/personality.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/msg.h>
31 #include <net/flow.h>
32
33 #define MAX_LSM_EVM_XATTR       2
34
35 /* How many LSMs were built into the kernel? */
36 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
37
38 /*
39  * These are descriptions of the reasons that can be passed to the
40  * security_locked_down() LSM hook. Placing this array here allows
41  * all security modules to use the same descriptions for auditing
42  * purposes.
43  */
44 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
45         [LOCKDOWN_NONE] = "none",
46         [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
47         [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
48         [LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
49         [LOCKDOWN_KEXEC] = "kexec of unsigned images",
50         [LOCKDOWN_HIBERNATION] = "hibernation",
51         [LOCKDOWN_PCI_ACCESS] = "direct PCI access",
52         [LOCKDOWN_IOPORT] = "raw io port access",
53         [LOCKDOWN_MSR] = "raw MSR access",
54         [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
55         [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
56         [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
57         [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
58         [LOCKDOWN_MMIOTRACE] = "unsafe mmio",
59         [LOCKDOWN_DEBUGFS] = "debugfs access",
60         [LOCKDOWN_XMON_WR] = "xmon write access",
61         [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
62         [LOCKDOWN_INTEGRITY_MAX] = "integrity",
63         [LOCKDOWN_KCORE] = "/proc/kcore access",
64         [LOCKDOWN_KPROBES] = "use of kprobes",
65         [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
66         [LOCKDOWN_PERF] = "unsafe use of perf",
67         [LOCKDOWN_TRACEFS] = "use of tracefs",
68         [LOCKDOWN_XMON_RW] = "xmon read and write access",
69         [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
70         [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
71 };
72
73 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
74 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
75
76 static struct kmem_cache *lsm_file_cache;
77 static struct kmem_cache *lsm_inode_cache;
78
79 char *lsm_names;
80 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
81
82 /* Boot-time LSM user choice */
83 static __initdata const char *chosen_lsm_order;
84 static __initdata const char *chosen_major_lsm;
85
86 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
87
88 /* Ordered list of LSMs to initialize. */
89 static __initdata struct lsm_info **ordered_lsms;
90 static __initdata struct lsm_info *exclusive;
91
92 static __initdata bool debug;
93 #define init_debug(...)                                         \
94         do {                                                    \
95                 if (debug)                                      \
96                         pr_info(__VA_ARGS__);                   \
97         } while (0)
98
99 static bool __init is_enabled(struct lsm_info *lsm)
100 {
101         if (!lsm->enabled)
102                 return false;
103
104         return *lsm->enabled;
105 }
106
107 /* Mark an LSM's enabled flag. */
108 static int lsm_enabled_true __initdata = 1;
109 static int lsm_enabled_false __initdata = 0;
110 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
111 {
112         /*
113          * When an LSM hasn't configured an enable variable, we can use
114          * a hard-coded location for storing the default enabled state.
115          */
116         if (!lsm->enabled) {
117                 if (enabled)
118                         lsm->enabled = &lsm_enabled_true;
119                 else
120                         lsm->enabled = &lsm_enabled_false;
121         } else if (lsm->enabled == &lsm_enabled_true) {
122                 if (!enabled)
123                         lsm->enabled = &lsm_enabled_false;
124         } else if (lsm->enabled == &lsm_enabled_false) {
125                 if (enabled)
126                         lsm->enabled = &lsm_enabled_true;
127         } else {
128                 *lsm->enabled = enabled;
129         }
130 }
131
132 /* Is an LSM already listed in the ordered LSMs list? */
133 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
134 {
135         struct lsm_info **check;
136
137         for (check = ordered_lsms; *check; check++)
138                 if (*check == lsm)
139                         return true;
140
141         return false;
142 }
143
144 /* Append an LSM to the list of ordered LSMs to initialize. */
145 static int last_lsm __initdata;
146 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
147 {
148         /* Ignore duplicate selections. */
149         if (exists_ordered_lsm(lsm))
150                 return;
151
152         if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
153                 return;
154
155         /* Enable this LSM, if it is not already set. */
156         if (!lsm->enabled)
157                 lsm->enabled = &lsm_enabled_true;
158         ordered_lsms[last_lsm++] = lsm;
159
160         init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
161                    is_enabled(lsm) ? "en" : "dis");
162 }
163
164 /* Is an LSM allowed to be initialized? */
165 static bool __init lsm_allowed(struct lsm_info *lsm)
166 {
167         /* Skip if the LSM is disabled. */
168         if (!is_enabled(lsm))
169                 return false;
170
171         /* Not allowed if another exclusive LSM already initialized. */
172         if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
173                 init_debug("exclusive disabled: %s\n", lsm->name);
174                 return false;
175         }
176
177         return true;
178 }
179
180 static void __init lsm_set_blob_size(int *need, int *lbs)
181 {
182         int offset;
183
184         if (*need > 0) {
185                 offset = *lbs;
186                 *lbs += *need;
187                 *need = offset;
188         }
189 }
190
191 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
192 {
193         if (!needed)
194                 return;
195
196         lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
197         lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
198         /*
199          * The inode blob gets an rcu_head in addition to
200          * what the modules might need.
201          */
202         if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
203                 blob_sizes.lbs_inode = sizeof(struct rcu_head);
204         lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
205         lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
206         lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
207         lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
208         lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
209 }
210
211 /* Prepare LSM for initialization. */
212 static void __init prepare_lsm(struct lsm_info *lsm)
213 {
214         int enabled = lsm_allowed(lsm);
215
216         /* Record enablement (to handle any following exclusive LSMs). */
217         set_enabled(lsm, enabled);
218
219         /* If enabled, do pre-initialization work. */
220         if (enabled) {
221                 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
222                         exclusive = lsm;
223                         init_debug("exclusive chosen: %s\n", lsm->name);
224                 }
225
226                 lsm_set_blob_sizes(lsm->blobs);
227         }
228 }
229
230 /* Initialize a given LSM, if it is enabled. */
231 static void __init initialize_lsm(struct lsm_info *lsm)
232 {
233         if (is_enabled(lsm)) {
234                 int ret;
235
236                 init_debug("initializing %s\n", lsm->name);
237                 ret = lsm->init();
238                 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
239         }
240 }
241
242 /* Populate ordered LSMs list from comma-separated LSM name list. */
243 static void __init ordered_lsm_parse(const char *order, const char *origin)
244 {
245         struct lsm_info *lsm;
246         char *sep, *name, *next;
247
248         /* LSM_ORDER_FIRST is always first. */
249         for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
250                 if (lsm->order == LSM_ORDER_FIRST)
251                         append_ordered_lsm(lsm, "first");
252         }
253
254         /* Process "security=", if given. */
255         if (chosen_major_lsm) {
256                 struct lsm_info *major;
257
258                 /*
259                  * To match the original "security=" behavior, this
260                  * explicitly does NOT fallback to another Legacy Major
261                  * if the selected one was separately disabled: disable
262                  * all non-matching Legacy Major LSMs.
263                  */
264                 for (major = __start_lsm_info; major < __end_lsm_info;
265                      major++) {
266                         if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
267                             strcmp(major->name, chosen_major_lsm) != 0) {
268                                 set_enabled(major, false);
269                                 init_debug("security=%s disabled: %s\n",
270                                            chosen_major_lsm, major->name);
271                         }
272                 }
273         }
274
275         sep = kstrdup(order, GFP_KERNEL);
276         next = sep;
277         /* Walk the list, looking for matching LSMs. */
278         while ((name = strsep(&next, ",")) != NULL) {
279                 bool found = false;
280
281                 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
282                         if (lsm->order == LSM_ORDER_MUTABLE &&
283                             strcmp(lsm->name, name) == 0) {
284                                 append_ordered_lsm(lsm, origin);
285                                 found = true;
286                         }
287                 }
288
289                 if (!found)
290                         init_debug("%s ignored: %s\n", origin, name);
291         }
292
293         /* Process "security=", if given. */
294         if (chosen_major_lsm) {
295                 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
296                         if (exists_ordered_lsm(lsm))
297                                 continue;
298                         if (strcmp(lsm->name, chosen_major_lsm) == 0)
299                                 append_ordered_lsm(lsm, "security=");
300                 }
301         }
302
303         /* Disable all LSMs not in the ordered list. */
304         for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
305                 if (exists_ordered_lsm(lsm))
306                         continue;
307                 set_enabled(lsm, false);
308                 init_debug("%s disabled: %s\n", origin, lsm->name);
309         }
310
311         kfree(sep);
312 }
313
314 static void __init lsm_early_cred(struct cred *cred);
315 static void __init lsm_early_task(struct task_struct *task);
316
317 static int lsm_append(const char *new, char **result);
318
319 static void __init ordered_lsm_init(void)
320 {
321         struct lsm_info **lsm;
322
323         ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
324                                 GFP_KERNEL);
325
326         if (chosen_lsm_order) {
327                 if (chosen_major_lsm) {
328                         pr_info("security= is ignored because it is superseded by lsm=\n");
329                         chosen_major_lsm = NULL;
330                 }
331                 ordered_lsm_parse(chosen_lsm_order, "cmdline");
332         } else
333                 ordered_lsm_parse(builtin_lsm_order, "builtin");
334
335         for (lsm = ordered_lsms; *lsm; lsm++)
336                 prepare_lsm(*lsm);
337
338         init_debug("cred blob size       = %d\n", blob_sizes.lbs_cred);
339         init_debug("file blob size       = %d\n", blob_sizes.lbs_file);
340         init_debug("inode blob size      = %d\n", blob_sizes.lbs_inode);
341         init_debug("ipc blob size        = %d\n", blob_sizes.lbs_ipc);
342         init_debug("msg_msg blob size    = %d\n", blob_sizes.lbs_msg_msg);
343         init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
344         init_debug("task blob size       = %d\n", blob_sizes.lbs_task);
345
346         /*
347          * Create any kmem_caches needed for blobs
348          */
349         if (blob_sizes.lbs_file)
350                 lsm_file_cache = kmem_cache_create("lsm_file_cache",
351                                                    blob_sizes.lbs_file, 0,
352                                                    SLAB_PANIC, NULL);
353         if (blob_sizes.lbs_inode)
354                 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
355                                                     blob_sizes.lbs_inode, 0,
356                                                     SLAB_PANIC, NULL);
357
358         lsm_early_cred((struct cred *) current->cred);
359         lsm_early_task(current);
360         for (lsm = ordered_lsms; *lsm; lsm++)
361                 initialize_lsm(*lsm);
362
363         kfree(ordered_lsms);
364 }
365
366 int __init early_security_init(void)
367 {
368         int i;
369         struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
370         struct lsm_info *lsm;
371
372         for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
373              i++)
374                 INIT_HLIST_HEAD(&list[i]);
375
376         for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
377                 if (!lsm->enabled)
378                         lsm->enabled = &lsm_enabled_true;
379                 prepare_lsm(lsm);
380                 initialize_lsm(lsm);
381         }
382
383         return 0;
384 }
385
386 /**
387  * security_init - initializes the security framework
388  *
389  * This should be called early in the kernel initialization sequence.
390  */
391 int __init security_init(void)
392 {
393         struct lsm_info *lsm;
394
395         pr_info("Security Framework initializing\n");
396
397         /*
398          * Append the names of the early LSM modules now that kmalloc() is
399          * available
400          */
401         for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
402                 if (lsm->enabled)
403                         lsm_append(lsm->name, &lsm_names);
404         }
405
406         /* Load LSMs in specified order. */
407         ordered_lsm_init();
408
409         return 0;
410 }
411
412 /* Save user chosen LSM */
413 static int __init choose_major_lsm(char *str)
414 {
415         chosen_major_lsm = str;
416         return 1;
417 }
418 __setup("security=", choose_major_lsm);
419
420 /* Explicitly choose LSM initialization order. */
421 static int __init choose_lsm_order(char *str)
422 {
423         chosen_lsm_order = str;
424         return 1;
425 }
426 __setup("lsm=", choose_lsm_order);
427
428 /* Enable LSM order debugging. */
429 static int __init enable_debug(char *str)
430 {
431         debug = true;
432         return 1;
433 }
434 __setup("lsm.debug", enable_debug);
435
436 static bool match_last_lsm(const char *list, const char *lsm)
437 {
438         const char *last;
439
440         if (WARN_ON(!list || !lsm))
441                 return false;
442         last = strrchr(list, ',');
443         if (last)
444                 /* Pass the comma, strcmp() will check for '\0' */
445                 last++;
446         else
447                 last = list;
448         return !strcmp(last, lsm);
449 }
450
451 static int lsm_append(const char *new, char **result)
452 {
453         char *cp;
454
455         if (*result == NULL) {
456                 *result = kstrdup(new, GFP_KERNEL);
457                 if (*result == NULL)
458                         return -ENOMEM;
459         } else {
460                 /* Check if it is the last registered name */
461                 if (match_last_lsm(*result, new))
462                         return 0;
463                 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
464                 if (cp == NULL)
465                         return -ENOMEM;
466                 kfree(*result);
467                 *result = cp;
468         }
469         return 0;
470 }
471
472 /**
473  * security_add_hooks - Add a modules hooks to the hook lists.
474  * @hooks: the hooks to add
475  * @count: the number of hooks to add
476  * @lsm: the name of the security module
477  *
478  * Each LSM has to register its hooks with the infrastructure.
479  */
480 void __init security_add_hooks(struct security_hook_list *hooks, int count,
481                                 char *lsm)
482 {
483         int i;
484
485         for (i = 0; i < count; i++) {
486                 hooks[i].lsm = lsm;
487                 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
488         }
489
490         /*
491          * Don't try to append during early_security_init(), we'll come back
492          * and fix this up afterwards.
493          */
494         if (slab_is_available()) {
495                 if (lsm_append(lsm, &lsm_names) < 0)
496                         panic("%s - Cannot get early memory.\n", __func__);
497         }
498 }
499
500 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
501 {
502         return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
503                                             event, data);
504 }
505 EXPORT_SYMBOL(call_blocking_lsm_notifier);
506
507 int register_blocking_lsm_notifier(struct notifier_block *nb)
508 {
509         return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
510                                                 nb);
511 }
512 EXPORT_SYMBOL(register_blocking_lsm_notifier);
513
514 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
515 {
516         return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
517                                                   nb);
518 }
519 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
520
521 /**
522  * lsm_cred_alloc - allocate a composite cred blob
523  * @cred: the cred that needs a blob
524  * @gfp: allocation type
525  *
526  * Allocate the cred blob for all the modules
527  *
528  * Returns 0, or -ENOMEM if memory can't be allocated.
529  */
530 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
531 {
532         if (blob_sizes.lbs_cred == 0) {
533                 cred->security = NULL;
534                 return 0;
535         }
536
537         cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
538         if (cred->security == NULL)
539                 return -ENOMEM;
540         return 0;
541 }
542
543 /**
544  * lsm_early_cred - during initialization allocate a composite cred blob
545  * @cred: the cred that needs a blob
546  *
547  * Allocate the cred blob for all the modules
548  */
549 static void __init lsm_early_cred(struct cred *cred)
550 {
551         int rc = lsm_cred_alloc(cred, GFP_KERNEL);
552
553         if (rc)
554                 panic("%s: Early cred alloc failed.\n", __func__);
555 }
556
557 /**
558  * lsm_file_alloc - allocate a composite file blob
559  * @file: the file that needs a blob
560  *
561  * Allocate the file blob for all the modules
562  *
563  * Returns 0, or -ENOMEM if memory can't be allocated.
564  */
565 static int lsm_file_alloc(struct file *file)
566 {
567         if (!lsm_file_cache) {
568                 file->f_security = NULL;
569                 return 0;
570         }
571
572         file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
573         if (file->f_security == NULL)
574                 return -ENOMEM;
575         return 0;
576 }
577
578 /**
579  * lsm_inode_alloc - allocate a composite inode blob
580  * @inode: the inode that needs a blob
581  *
582  * Allocate the inode blob for all the modules
583  *
584  * Returns 0, or -ENOMEM if memory can't be allocated.
585  */
586 int lsm_inode_alloc(struct inode *inode)
587 {
588         if (!lsm_inode_cache) {
589                 inode->i_security = NULL;
590                 return 0;
591         }
592
593         inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
594         if (inode->i_security == NULL)
595                 return -ENOMEM;
596         return 0;
597 }
598
599 /**
600  * lsm_task_alloc - allocate a composite task blob
601  * @task: the task that needs a blob
602  *
603  * Allocate the task blob for all the modules
604  *
605  * Returns 0, or -ENOMEM if memory can't be allocated.
606  */
607 static int lsm_task_alloc(struct task_struct *task)
608 {
609         if (blob_sizes.lbs_task == 0) {
610                 task->security = NULL;
611                 return 0;
612         }
613
614         task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
615         if (task->security == NULL)
616                 return -ENOMEM;
617         return 0;
618 }
619
620 /**
621  * lsm_ipc_alloc - allocate a composite ipc blob
622  * @kip: the ipc that needs a blob
623  *
624  * Allocate the ipc blob for all the modules
625  *
626  * Returns 0, or -ENOMEM if memory can't be allocated.
627  */
628 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
629 {
630         if (blob_sizes.lbs_ipc == 0) {
631                 kip->security = NULL;
632                 return 0;
633         }
634
635         kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
636         if (kip->security == NULL)
637                 return -ENOMEM;
638         return 0;
639 }
640
641 /**
642  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
643  * @mp: the msg_msg that needs a blob
644  *
645  * Allocate the ipc blob for all the modules
646  *
647  * Returns 0, or -ENOMEM if memory can't be allocated.
648  */
649 static int lsm_msg_msg_alloc(struct msg_msg *mp)
650 {
651         if (blob_sizes.lbs_msg_msg == 0) {
652                 mp->security = NULL;
653                 return 0;
654         }
655
656         mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
657         if (mp->security == NULL)
658                 return -ENOMEM;
659         return 0;
660 }
661
662 /**
663  * lsm_early_task - during initialization allocate a composite task blob
664  * @task: the task that needs a blob
665  *
666  * Allocate the task blob for all the modules
667  */
668 static void __init lsm_early_task(struct task_struct *task)
669 {
670         int rc = lsm_task_alloc(task);
671
672         if (rc)
673                 panic("%s: Early task alloc failed.\n", __func__);
674 }
675
676 /**
677  * lsm_superblock_alloc - allocate a composite superblock blob
678  * @sb: the superblock that needs a blob
679  *
680  * Allocate the superblock blob for all the modules
681  *
682  * Returns 0, or -ENOMEM if memory can't be allocated.
683  */
684 static int lsm_superblock_alloc(struct super_block *sb)
685 {
686         if (blob_sizes.lbs_superblock == 0) {
687                 sb->s_security = NULL;
688                 return 0;
689         }
690
691         sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL);
692         if (sb->s_security == NULL)
693                 return -ENOMEM;
694         return 0;
695 }
696
697 /*
698  * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
699  * can be accessed with:
700  *
701  *      LSM_RET_DEFAULT(<hook_name>)
702  *
703  * The macros below define static constants for the default value of each
704  * LSM hook.
705  */
706 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
707 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
708 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
709         static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
710 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
711         DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
712
713 #include <linux/lsm_hook_defs.h>
714 #undef LSM_HOOK
715
716 /*
717  * Hook list operation macros.
718  *
719  * call_void_hook:
720  *      This is a hook that does not return a value.
721  *
722  * call_int_hook:
723  *      This is a hook that returns a value.
724  */
725
726 #define call_void_hook(FUNC, ...)                               \
727         do {                                                    \
728                 struct security_hook_list *P;                   \
729                                                                 \
730                 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
731                         P->hook.FUNC(__VA_ARGS__);              \
732         } while (0)
733
734 #define call_int_hook(FUNC, IRC, ...) ({                        \
735         int RC = IRC;                                           \
736         do {                                                    \
737                 struct security_hook_list *P;                   \
738                                                                 \
739                 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
740                         RC = P->hook.FUNC(__VA_ARGS__);         \
741                         if (RC != 0)                            \
742                                 break;                          \
743                 }                                               \
744         } while (0);                                            \
745         RC;                                                     \
746 })
747
748 /* Security operations */
749
750 int security_binder_set_context_mgr(const struct cred *mgr)
751 {
752         return call_int_hook(binder_set_context_mgr, 0, mgr);
753 }
754
755 int security_binder_transaction(const struct cred *from,
756                                 const struct cred *to)
757 {
758         return call_int_hook(binder_transaction, 0, from, to);
759 }
760
761 int security_binder_transfer_binder(const struct cred *from,
762                                     const struct cred *to)
763 {
764         return call_int_hook(binder_transfer_binder, 0, from, to);
765 }
766
767 int security_binder_transfer_file(const struct cred *from,
768                                   const struct cred *to, struct file *file)
769 {
770         return call_int_hook(binder_transfer_file, 0, from, to, file);
771 }
772
773 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
774 {
775         return call_int_hook(ptrace_access_check, 0, child, mode);
776 }
777
778 int security_ptrace_traceme(struct task_struct *parent)
779 {
780         return call_int_hook(ptrace_traceme, 0, parent);
781 }
782
783 int security_capget(struct task_struct *target,
784                      kernel_cap_t *effective,
785                      kernel_cap_t *inheritable,
786                      kernel_cap_t *permitted)
787 {
788         return call_int_hook(capget, 0, target,
789                                 effective, inheritable, permitted);
790 }
791
792 int security_capset(struct cred *new, const struct cred *old,
793                     const kernel_cap_t *effective,
794                     const kernel_cap_t *inheritable,
795                     const kernel_cap_t *permitted)
796 {
797         return call_int_hook(capset, 0, new, old,
798                                 effective, inheritable, permitted);
799 }
800
801 int security_capable(const struct cred *cred,
802                      struct user_namespace *ns,
803                      int cap,
804                      unsigned int opts)
805 {
806         return call_int_hook(capable, 0, cred, ns, cap, opts);
807 }
808
809 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
810 {
811         return call_int_hook(quotactl, 0, cmds, type, id, sb);
812 }
813
814 int security_quota_on(struct dentry *dentry)
815 {
816         return call_int_hook(quota_on, 0, dentry);
817 }
818
819 int security_syslog(int type)
820 {
821         return call_int_hook(syslog, 0, type);
822 }
823
824 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
825 {
826         return call_int_hook(settime, 0, ts, tz);
827 }
828
829 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
830 {
831         struct security_hook_list *hp;
832         int cap_sys_admin = 1;
833         int rc;
834
835         /*
836          * The module will respond with a positive value if
837          * it thinks the __vm_enough_memory() call should be
838          * made with the cap_sys_admin set. If all of the modules
839          * agree that it should be set it will. If any module
840          * thinks it should not be set it won't.
841          */
842         hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
843                 rc = hp->hook.vm_enough_memory(mm, pages);
844                 if (rc <= 0) {
845                         cap_sys_admin = 0;
846                         break;
847                 }
848         }
849         return __vm_enough_memory(mm, pages, cap_sys_admin);
850 }
851
852 int security_bprm_creds_for_exec(struct linux_binprm *bprm)
853 {
854         return call_int_hook(bprm_creds_for_exec, 0, bprm);
855 }
856
857 int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
858 {
859         return call_int_hook(bprm_creds_from_file, 0, bprm, file);
860 }
861
862 int security_bprm_check(struct linux_binprm *bprm)
863 {
864         int ret;
865
866         ret = call_int_hook(bprm_check_security, 0, bprm);
867         if (ret)
868                 return ret;
869         return ima_bprm_check(bprm);
870 }
871
872 void security_bprm_committing_creds(struct linux_binprm *bprm)
873 {
874         call_void_hook(bprm_committing_creds, bprm);
875 }
876
877 void security_bprm_committed_creds(struct linux_binprm *bprm)
878 {
879         call_void_hook(bprm_committed_creds, bprm);
880 }
881
882 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
883 {
884         return call_int_hook(fs_context_dup, 0, fc, src_fc);
885 }
886
887 int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
888 {
889         return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
890 }
891
892 int security_sb_alloc(struct super_block *sb)
893 {
894         int rc = lsm_superblock_alloc(sb);
895
896         if (unlikely(rc))
897                 return rc;
898         rc = call_int_hook(sb_alloc_security, 0, sb);
899         if (unlikely(rc))
900                 security_sb_free(sb);
901         return rc;
902 }
903
904 void security_sb_delete(struct super_block *sb)
905 {
906         call_void_hook(sb_delete, sb);
907 }
908
909 void security_sb_free(struct super_block *sb)
910 {
911         call_void_hook(sb_free_security, sb);
912         kfree(sb->s_security);
913         sb->s_security = NULL;
914 }
915
916 void security_free_mnt_opts(void **mnt_opts)
917 {
918         if (!*mnt_opts)
919                 return;
920         call_void_hook(sb_free_mnt_opts, *mnt_opts);
921         *mnt_opts = NULL;
922 }
923 EXPORT_SYMBOL(security_free_mnt_opts);
924
925 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
926 {
927         return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
928 }
929 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
930
931 int security_sb_mnt_opts_compat(struct super_block *sb,
932                                 void *mnt_opts)
933 {
934         return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts);
935 }
936 EXPORT_SYMBOL(security_sb_mnt_opts_compat);
937
938 int security_sb_remount(struct super_block *sb,
939                         void *mnt_opts)
940 {
941         return call_int_hook(sb_remount, 0, sb, mnt_opts);
942 }
943 EXPORT_SYMBOL(security_sb_remount);
944
945 int security_sb_kern_mount(struct super_block *sb)
946 {
947         return call_int_hook(sb_kern_mount, 0, sb);
948 }
949
950 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
951 {
952         return call_int_hook(sb_show_options, 0, m, sb);
953 }
954
955 int security_sb_statfs(struct dentry *dentry)
956 {
957         return call_int_hook(sb_statfs, 0, dentry);
958 }
959
960 int security_sb_mount(const char *dev_name, const struct path *path,
961                        const char *type, unsigned long flags, void *data)
962 {
963         return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
964 }
965
966 int security_sb_umount(struct vfsmount *mnt, int flags)
967 {
968         return call_int_hook(sb_umount, 0, mnt, flags);
969 }
970
971 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
972 {
973         return call_int_hook(sb_pivotroot, 0, old_path, new_path);
974 }
975
976 int security_sb_set_mnt_opts(struct super_block *sb,
977                                 void *mnt_opts,
978                                 unsigned long kern_flags,
979                                 unsigned long *set_kern_flags)
980 {
981         return call_int_hook(sb_set_mnt_opts,
982                                 mnt_opts ? -EOPNOTSUPP : 0, sb,
983                                 mnt_opts, kern_flags, set_kern_flags);
984 }
985 EXPORT_SYMBOL(security_sb_set_mnt_opts);
986
987 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
988                                 struct super_block *newsb,
989                                 unsigned long kern_flags,
990                                 unsigned long *set_kern_flags)
991 {
992         return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
993                                 kern_flags, set_kern_flags);
994 }
995 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
996
997 int security_move_mount(const struct path *from_path, const struct path *to_path)
998 {
999         return call_int_hook(move_mount, 0, from_path, to_path);
1000 }
1001
1002 int security_path_notify(const struct path *path, u64 mask,
1003                                 unsigned int obj_type)
1004 {
1005         return call_int_hook(path_notify, 0, path, mask, obj_type);
1006 }
1007
1008 int security_inode_alloc(struct inode *inode)
1009 {
1010         int rc = lsm_inode_alloc(inode);
1011
1012         if (unlikely(rc))
1013                 return rc;
1014         rc = call_int_hook(inode_alloc_security, 0, inode);
1015         if (unlikely(rc))
1016                 security_inode_free(inode);
1017         return rc;
1018 }
1019
1020 static void inode_free_by_rcu(struct rcu_head *head)
1021 {
1022         /*
1023          * The rcu head is at the start of the inode blob
1024          */
1025         kmem_cache_free(lsm_inode_cache, head);
1026 }
1027
1028 void security_inode_free(struct inode *inode)
1029 {
1030         integrity_inode_free(inode);
1031         call_void_hook(inode_free_security, inode);
1032         /*
1033          * The inode may still be referenced in a path walk and
1034          * a call to security_inode_permission() can be made
1035          * after inode_free_security() is called. Ideally, the VFS
1036          * wouldn't do this, but fixing that is a much harder
1037          * job. For now, simply free the i_security via RCU, and
1038          * leave the current inode->i_security pointer intact.
1039          * The inode will be freed after the RCU grace period too.
1040          */
1041         if (inode->i_security)
1042                 call_rcu((struct rcu_head *)inode->i_security,
1043                                 inode_free_by_rcu);
1044 }
1045
1046 int security_dentry_init_security(struct dentry *dentry, int mode,
1047                                   const struct qstr *name,
1048                                   const char **xattr_name, void **ctx,
1049                                   u32 *ctxlen)
1050 {
1051         return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
1052                                 name, xattr_name, ctx, ctxlen);
1053 }
1054 EXPORT_SYMBOL(security_dentry_init_security);
1055
1056 int security_dentry_create_files_as(struct dentry *dentry, int mode,
1057                                     struct qstr *name,
1058                                     const struct cred *old, struct cred *new)
1059 {
1060         return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1061                                 name, old, new);
1062 }
1063 EXPORT_SYMBOL(security_dentry_create_files_as);
1064
1065 int security_inode_init_security(struct inode *inode, struct inode *dir,
1066                                  const struct qstr *qstr,
1067                                  const initxattrs initxattrs, void *fs_data)
1068 {
1069         struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1070         struct xattr *lsm_xattr, *evm_xattr, *xattr;
1071         int ret;
1072
1073         if (unlikely(IS_PRIVATE(inode)))
1074                 return 0;
1075
1076         if (!initxattrs)
1077                 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1078                                      dir, qstr, NULL, NULL, NULL);
1079         memset(new_xattrs, 0, sizeof(new_xattrs));
1080         lsm_xattr = new_xattrs;
1081         ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1082                                                 &lsm_xattr->name,
1083                                                 &lsm_xattr->value,
1084                                                 &lsm_xattr->value_len);
1085         if (ret)
1086                 goto out;
1087
1088         evm_xattr = lsm_xattr + 1;
1089         ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1090         if (ret)
1091                 goto out;
1092         ret = initxattrs(inode, new_xattrs, fs_data);
1093 out:
1094         for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1095                 kfree(xattr->value);
1096         return (ret == -EOPNOTSUPP) ? 0 : ret;
1097 }
1098 EXPORT_SYMBOL(security_inode_init_security);
1099
1100 int security_inode_init_security_anon(struct inode *inode,
1101                                       const struct qstr *name,
1102                                       const struct inode *context_inode)
1103 {
1104         return call_int_hook(inode_init_security_anon, 0, inode, name,
1105                              context_inode);
1106 }
1107
1108 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1109                                      const struct qstr *qstr, const char **name,
1110                                      void **value, size_t *len)
1111 {
1112         if (unlikely(IS_PRIVATE(inode)))
1113                 return -EOPNOTSUPP;
1114         return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1115                              qstr, name, value, len);
1116 }
1117 EXPORT_SYMBOL(security_old_inode_init_security);
1118
1119 #ifdef CONFIG_SECURITY_PATH
1120 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1121                         unsigned int dev)
1122 {
1123         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1124                 return 0;
1125         return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1126 }
1127 EXPORT_SYMBOL(security_path_mknod);
1128
1129 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1130 {
1131         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1132                 return 0;
1133         return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1134 }
1135 EXPORT_SYMBOL(security_path_mkdir);
1136
1137 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1138 {
1139         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1140                 return 0;
1141         return call_int_hook(path_rmdir, 0, dir, dentry);
1142 }
1143
1144 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1145 {
1146         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1147                 return 0;
1148         return call_int_hook(path_unlink, 0, dir, dentry);
1149 }
1150 EXPORT_SYMBOL(security_path_unlink);
1151
1152 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1153                           const char *old_name)
1154 {
1155         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1156                 return 0;
1157         return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1158 }
1159
1160 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1161                        struct dentry *new_dentry)
1162 {
1163         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1164                 return 0;
1165         return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1166 }
1167
1168 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1169                          const struct path *new_dir, struct dentry *new_dentry,
1170                          unsigned int flags)
1171 {
1172         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1173                      (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1174                 return 0;
1175
1176         if (flags & RENAME_EXCHANGE) {
1177                 int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1178                                         old_dir, old_dentry);
1179                 if (err)
1180                         return err;
1181         }
1182
1183         return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1184                                 new_dentry);
1185 }
1186 EXPORT_SYMBOL(security_path_rename);
1187
1188 int security_path_truncate(const struct path *path)
1189 {
1190         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1191                 return 0;
1192         return call_int_hook(path_truncate, 0, path);
1193 }
1194
1195 int security_path_chmod(const struct path *path, umode_t mode)
1196 {
1197         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1198                 return 0;
1199         return call_int_hook(path_chmod, 0, path, mode);
1200 }
1201
1202 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1203 {
1204         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1205                 return 0;
1206         return call_int_hook(path_chown, 0, path, uid, gid);
1207 }
1208
1209 int security_path_chroot(const struct path *path)
1210 {
1211         return call_int_hook(path_chroot, 0, path);
1212 }
1213 #endif
1214
1215 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1216 {
1217         if (unlikely(IS_PRIVATE(dir)))
1218                 return 0;
1219         return call_int_hook(inode_create, 0, dir, dentry, mode);
1220 }
1221 EXPORT_SYMBOL_GPL(security_inode_create);
1222
1223 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1224                          struct dentry *new_dentry)
1225 {
1226         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1227                 return 0;
1228         return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1229 }
1230
1231 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1232 {
1233         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1234                 return 0;
1235         return call_int_hook(inode_unlink, 0, dir, dentry);
1236 }
1237
1238 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1239                             const char *old_name)
1240 {
1241         if (unlikely(IS_PRIVATE(dir)))
1242                 return 0;
1243         return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1244 }
1245
1246 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1247 {
1248         if (unlikely(IS_PRIVATE(dir)))
1249                 return 0;
1250         return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1251 }
1252 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1253
1254 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1255 {
1256         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1257                 return 0;
1258         return call_int_hook(inode_rmdir, 0, dir, dentry);
1259 }
1260
1261 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1262 {
1263         if (unlikely(IS_PRIVATE(dir)))
1264                 return 0;
1265         return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1266 }
1267
1268 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1269                            struct inode *new_dir, struct dentry *new_dentry,
1270                            unsigned int flags)
1271 {
1272         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1273             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1274                 return 0;
1275
1276         if (flags & RENAME_EXCHANGE) {
1277                 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1278                                                      old_dir, old_dentry);
1279                 if (err)
1280                         return err;
1281         }
1282
1283         return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1284                                            new_dir, new_dentry);
1285 }
1286
1287 int security_inode_readlink(struct dentry *dentry)
1288 {
1289         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1290                 return 0;
1291         return call_int_hook(inode_readlink, 0, dentry);
1292 }
1293
1294 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1295                                bool rcu)
1296 {
1297         if (unlikely(IS_PRIVATE(inode)))
1298                 return 0;
1299         return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1300 }
1301
1302 int security_inode_permission(struct inode *inode, int mask)
1303 {
1304         if (unlikely(IS_PRIVATE(inode)))
1305                 return 0;
1306         return call_int_hook(inode_permission, 0, inode, mask);
1307 }
1308
1309 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1310 {
1311         int ret;
1312
1313         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1314                 return 0;
1315         ret = call_int_hook(inode_setattr, 0, dentry, attr);
1316         if (ret)
1317                 return ret;
1318         return evm_inode_setattr(dentry, attr);
1319 }
1320 EXPORT_SYMBOL_GPL(security_inode_setattr);
1321
1322 int security_inode_getattr(const struct path *path)
1323 {
1324         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1325                 return 0;
1326         return call_int_hook(inode_getattr, 0, path);
1327 }
1328
1329 int security_inode_setxattr(struct user_namespace *mnt_userns,
1330                             struct dentry *dentry, const char *name,
1331                             const void *value, size_t size, int flags)
1332 {
1333         int ret;
1334
1335         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1336                 return 0;
1337         /*
1338          * SELinux and Smack integrate the cap call,
1339          * so assume that all LSMs supplying this call do so.
1340          */
1341         ret = call_int_hook(inode_setxattr, 1, mnt_userns, dentry, name, value,
1342                             size, flags);
1343
1344         if (ret == 1)
1345                 ret = cap_inode_setxattr(dentry, name, value, size, flags);
1346         if (ret)
1347                 return ret;
1348         ret = ima_inode_setxattr(dentry, name, value, size);
1349         if (ret)
1350                 return ret;
1351         return evm_inode_setxattr(mnt_userns, dentry, name, value, size);
1352 }
1353
1354 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1355                                   const void *value, size_t size, int flags)
1356 {
1357         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1358                 return;
1359         call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1360         evm_inode_post_setxattr(dentry, name, value, size);
1361 }
1362
1363 int security_inode_getxattr(struct dentry *dentry, const char *name)
1364 {
1365         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1366                 return 0;
1367         return call_int_hook(inode_getxattr, 0, dentry, name);
1368 }
1369
1370 int security_inode_listxattr(struct dentry *dentry)
1371 {
1372         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1373                 return 0;
1374         return call_int_hook(inode_listxattr, 0, dentry);
1375 }
1376
1377 int security_inode_removexattr(struct user_namespace *mnt_userns,
1378                                struct dentry *dentry, const char *name)
1379 {
1380         int ret;
1381
1382         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1383                 return 0;
1384         /*
1385          * SELinux and Smack integrate the cap call,
1386          * so assume that all LSMs supplying this call do so.
1387          */
1388         ret = call_int_hook(inode_removexattr, 1, mnt_userns, dentry, name);
1389         if (ret == 1)
1390                 ret = cap_inode_removexattr(mnt_userns, dentry, name);
1391         if (ret)
1392                 return ret;
1393         ret = ima_inode_removexattr(dentry, name);
1394         if (ret)
1395                 return ret;
1396         return evm_inode_removexattr(mnt_userns, dentry, name);
1397 }
1398
1399 int security_inode_need_killpriv(struct dentry *dentry)
1400 {
1401         return call_int_hook(inode_need_killpriv, 0, dentry);
1402 }
1403
1404 int security_inode_killpriv(struct user_namespace *mnt_userns,
1405                             struct dentry *dentry)
1406 {
1407         return call_int_hook(inode_killpriv, 0, mnt_userns, dentry);
1408 }
1409
1410 int security_inode_getsecurity(struct user_namespace *mnt_userns,
1411                                struct inode *inode, const char *name,
1412                                void **buffer, bool alloc)
1413 {
1414         struct security_hook_list *hp;
1415         int rc;
1416
1417         if (unlikely(IS_PRIVATE(inode)))
1418                 return LSM_RET_DEFAULT(inode_getsecurity);
1419         /*
1420          * Only one module will provide an attribute with a given name.
1421          */
1422         hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1423                 rc = hp->hook.inode_getsecurity(mnt_userns, inode, name, buffer, alloc);
1424                 if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1425                         return rc;
1426         }
1427         return LSM_RET_DEFAULT(inode_getsecurity);
1428 }
1429
1430 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1431 {
1432         struct security_hook_list *hp;
1433         int rc;
1434
1435         if (unlikely(IS_PRIVATE(inode)))
1436                 return LSM_RET_DEFAULT(inode_setsecurity);
1437         /*
1438          * Only one module will provide an attribute with a given name.
1439          */
1440         hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1441                 rc = hp->hook.inode_setsecurity(inode, name, value, size,
1442                                                                 flags);
1443                 if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1444                         return rc;
1445         }
1446         return LSM_RET_DEFAULT(inode_setsecurity);
1447 }
1448
1449 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1450 {
1451         if (unlikely(IS_PRIVATE(inode)))
1452                 return 0;
1453         return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1454 }
1455 EXPORT_SYMBOL(security_inode_listsecurity);
1456
1457 void security_inode_getsecid(struct inode *inode, u32 *secid)
1458 {
1459         call_void_hook(inode_getsecid, inode, secid);
1460 }
1461
1462 int security_inode_copy_up(struct dentry *src, struct cred **new)
1463 {
1464         return call_int_hook(inode_copy_up, 0, src, new);
1465 }
1466 EXPORT_SYMBOL(security_inode_copy_up);
1467
1468 int security_inode_copy_up_xattr(const char *name)
1469 {
1470         struct security_hook_list *hp;
1471         int rc;
1472
1473         /*
1474          * The implementation can return 0 (accept the xattr), 1 (discard the
1475          * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
1476          * any other error code incase of an error.
1477          */
1478         hlist_for_each_entry(hp,
1479                 &security_hook_heads.inode_copy_up_xattr, list) {
1480                 rc = hp->hook.inode_copy_up_xattr(name);
1481                 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
1482                         return rc;
1483         }
1484
1485         return LSM_RET_DEFAULT(inode_copy_up_xattr);
1486 }
1487 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1488
1489 int security_kernfs_init_security(struct kernfs_node *kn_dir,
1490                                   struct kernfs_node *kn)
1491 {
1492         return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1493 }
1494
1495 int security_file_permission(struct file *file, int mask)
1496 {
1497         int ret;
1498
1499         ret = call_int_hook(file_permission, 0, file, mask);
1500         if (ret)
1501                 return ret;
1502
1503         return fsnotify_perm(file, mask);
1504 }
1505
1506 int security_file_alloc(struct file *file)
1507 {
1508         int rc = lsm_file_alloc(file);
1509
1510         if (rc)
1511                 return rc;
1512         rc = call_int_hook(file_alloc_security, 0, file);
1513         if (unlikely(rc))
1514                 security_file_free(file);
1515         return rc;
1516 }
1517
1518 void security_file_free(struct file *file)
1519 {
1520         void *blob;
1521
1522         call_void_hook(file_free_security, file);
1523
1524         blob = file->f_security;
1525         if (blob) {
1526                 file->f_security = NULL;
1527                 kmem_cache_free(lsm_file_cache, blob);
1528         }
1529 }
1530
1531 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1532 {
1533         return call_int_hook(file_ioctl, 0, file, cmd, arg);
1534 }
1535 EXPORT_SYMBOL_GPL(security_file_ioctl);
1536
1537 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1538 {
1539         /*
1540          * Does we have PROT_READ and does the application expect
1541          * it to imply PROT_EXEC?  If not, nothing to talk about...
1542          */
1543         if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1544                 return prot;
1545         if (!(current->personality & READ_IMPLIES_EXEC))
1546                 return prot;
1547         /*
1548          * if that's an anonymous mapping, let it.
1549          */
1550         if (!file)
1551                 return prot | PROT_EXEC;
1552         /*
1553          * ditto if it's not on noexec mount, except that on !MMU we need
1554          * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1555          */
1556         if (!path_noexec(&file->f_path)) {
1557 #ifndef CONFIG_MMU
1558                 if (file->f_op->mmap_capabilities) {
1559                         unsigned caps = file->f_op->mmap_capabilities(file);
1560                         if (!(caps & NOMMU_MAP_EXEC))
1561                                 return prot;
1562                 }
1563 #endif
1564                 return prot | PROT_EXEC;
1565         }
1566         /* anything on noexec mount won't get PROT_EXEC */
1567         return prot;
1568 }
1569
1570 int security_mmap_file(struct file *file, unsigned long prot,
1571                         unsigned long flags)
1572 {
1573         int ret;
1574         ret = call_int_hook(mmap_file, 0, file, prot,
1575                                         mmap_prot(file, prot), flags);
1576         if (ret)
1577                 return ret;
1578         return ima_file_mmap(file, prot);
1579 }
1580
1581 int security_mmap_addr(unsigned long addr)
1582 {
1583         return call_int_hook(mmap_addr, 0, addr);
1584 }
1585
1586 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1587                             unsigned long prot)
1588 {
1589         int ret;
1590
1591         ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1592         if (ret)
1593                 return ret;
1594         return ima_file_mprotect(vma, prot);
1595 }
1596
1597 int security_file_lock(struct file *file, unsigned int cmd)
1598 {
1599         return call_int_hook(file_lock, 0, file, cmd);
1600 }
1601
1602 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1603 {
1604         return call_int_hook(file_fcntl, 0, file, cmd, arg);
1605 }
1606
1607 void security_file_set_fowner(struct file *file)
1608 {
1609         call_void_hook(file_set_fowner, file);
1610 }
1611
1612 int security_file_send_sigiotask(struct task_struct *tsk,
1613                                   struct fown_struct *fown, int sig)
1614 {
1615         return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1616 }
1617
1618 int security_file_receive(struct file *file)
1619 {
1620         return call_int_hook(file_receive, 0, file);
1621 }
1622
1623 int security_file_open(struct file *file)
1624 {
1625         int ret;
1626
1627         ret = call_int_hook(file_open, 0, file);
1628         if (ret)
1629                 return ret;
1630
1631         return fsnotify_perm(file, MAY_OPEN);
1632 }
1633
1634 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1635 {
1636         int rc = lsm_task_alloc(task);
1637
1638         if (rc)
1639                 return rc;
1640         rc = call_int_hook(task_alloc, 0, task, clone_flags);
1641         if (unlikely(rc))
1642                 security_task_free(task);
1643         return rc;
1644 }
1645
1646 void security_task_free(struct task_struct *task)
1647 {
1648         call_void_hook(task_free, task);
1649
1650         kfree(task->security);
1651         task->security = NULL;
1652 }
1653
1654 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1655 {
1656         int rc = lsm_cred_alloc(cred, gfp);
1657
1658         if (rc)
1659                 return rc;
1660
1661         rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1662         if (unlikely(rc))
1663                 security_cred_free(cred);
1664         return rc;
1665 }
1666
1667 void security_cred_free(struct cred *cred)
1668 {
1669         /*
1670          * There is a failure case in prepare_creds() that
1671          * may result in a call here with ->security being NULL.
1672          */
1673         if (unlikely(cred->security == NULL))
1674                 return;
1675
1676         call_void_hook(cred_free, cred);
1677
1678         kfree(cred->security);
1679         cred->security = NULL;
1680 }
1681
1682 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1683 {
1684         int rc = lsm_cred_alloc(new, gfp);
1685
1686         if (rc)
1687                 return rc;
1688
1689         rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1690         if (unlikely(rc))
1691                 security_cred_free(new);
1692         return rc;
1693 }
1694
1695 void security_transfer_creds(struct cred *new, const struct cred *old)
1696 {
1697         call_void_hook(cred_transfer, new, old);
1698 }
1699
1700 void security_cred_getsecid(const struct cred *c, u32 *secid)
1701 {
1702         *secid = 0;
1703         call_void_hook(cred_getsecid, c, secid);
1704 }
1705 EXPORT_SYMBOL(security_cred_getsecid);
1706
1707 int security_kernel_act_as(struct cred *new, u32 secid)
1708 {
1709         return call_int_hook(kernel_act_as, 0, new, secid);
1710 }
1711
1712 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1713 {
1714         return call_int_hook(kernel_create_files_as, 0, new, inode);
1715 }
1716
1717 int security_kernel_module_request(char *kmod_name)
1718 {
1719         int ret;
1720
1721         ret = call_int_hook(kernel_module_request, 0, kmod_name);
1722         if (ret)
1723                 return ret;
1724         return integrity_kernel_module_request(kmod_name);
1725 }
1726
1727 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
1728                               bool contents)
1729 {
1730         int ret;
1731
1732         ret = call_int_hook(kernel_read_file, 0, file, id, contents);
1733         if (ret)
1734                 return ret;
1735         return ima_read_file(file, id, contents);
1736 }
1737 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1738
1739 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1740                                    enum kernel_read_file_id id)
1741 {
1742         int ret;
1743
1744         ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1745         if (ret)
1746                 return ret;
1747         return ima_post_read_file(file, buf, size, id);
1748 }
1749 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1750
1751 int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
1752 {
1753         int ret;
1754
1755         ret = call_int_hook(kernel_load_data, 0, id, contents);
1756         if (ret)
1757                 return ret;
1758         return ima_load_data(id, contents);
1759 }
1760 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1761
1762 int security_kernel_post_load_data(char *buf, loff_t size,
1763                                    enum kernel_load_data_id id,
1764                                    char *description)
1765 {
1766         int ret;
1767
1768         ret = call_int_hook(kernel_post_load_data, 0, buf, size, id,
1769                             description);
1770         if (ret)
1771                 return ret;
1772         return ima_post_load_data(buf, size, id, description);
1773 }
1774 EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
1775
1776 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1777                              int flags)
1778 {
1779         return call_int_hook(task_fix_setuid, 0, new, old, flags);
1780 }
1781
1782 int security_task_fix_setgid(struct cred *new, const struct cred *old,
1783                                  int flags)
1784 {
1785         return call_int_hook(task_fix_setgid, 0, new, old, flags);
1786 }
1787
1788 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1789 {
1790         return call_int_hook(task_setpgid, 0, p, pgid);
1791 }
1792
1793 int security_task_getpgid(struct task_struct *p)
1794 {
1795         return call_int_hook(task_getpgid, 0, p);
1796 }
1797
1798 int security_task_getsid(struct task_struct *p)
1799 {
1800         return call_int_hook(task_getsid, 0, p);
1801 }
1802
1803 void security_current_getsecid_subj(u32 *secid)
1804 {
1805         *secid = 0;
1806         call_void_hook(current_getsecid_subj, secid);
1807 }
1808 EXPORT_SYMBOL(security_current_getsecid_subj);
1809
1810 void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
1811 {
1812         *secid = 0;
1813         call_void_hook(task_getsecid_obj, p, secid);
1814 }
1815 EXPORT_SYMBOL(security_task_getsecid_obj);
1816
1817 int security_task_setnice(struct task_struct *p, int nice)
1818 {
1819         return call_int_hook(task_setnice, 0, p, nice);
1820 }
1821
1822 int security_task_setioprio(struct task_struct *p, int ioprio)
1823 {
1824         return call_int_hook(task_setioprio, 0, p, ioprio);
1825 }
1826
1827 int security_task_getioprio(struct task_struct *p)
1828 {
1829         return call_int_hook(task_getioprio, 0, p);
1830 }
1831
1832 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1833                           unsigned int flags)
1834 {
1835         return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1836 }
1837
1838 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1839                 struct rlimit *new_rlim)
1840 {
1841         return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1842 }
1843
1844 int security_task_setscheduler(struct task_struct *p)
1845 {
1846         return call_int_hook(task_setscheduler, 0, p);
1847 }
1848
1849 int security_task_getscheduler(struct task_struct *p)
1850 {
1851         return call_int_hook(task_getscheduler, 0, p);
1852 }
1853
1854 int security_task_movememory(struct task_struct *p)
1855 {
1856         return call_int_hook(task_movememory, 0, p);
1857 }
1858
1859 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1860                         int sig, const struct cred *cred)
1861 {
1862         return call_int_hook(task_kill, 0, p, info, sig, cred);
1863 }
1864
1865 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1866                          unsigned long arg4, unsigned long arg5)
1867 {
1868         int thisrc;
1869         int rc = LSM_RET_DEFAULT(task_prctl);
1870         struct security_hook_list *hp;
1871
1872         hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1873                 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1874                 if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1875                         rc = thisrc;
1876                         if (thisrc != 0)
1877                                 break;
1878                 }
1879         }
1880         return rc;
1881 }
1882
1883 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1884 {
1885         call_void_hook(task_to_inode, p, inode);
1886 }
1887
1888 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1889 {
1890         return call_int_hook(ipc_permission, 0, ipcp, flag);
1891 }
1892
1893 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1894 {
1895         *secid = 0;
1896         call_void_hook(ipc_getsecid, ipcp, secid);
1897 }
1898
1899 int security_msg_msg_alloc(struct msg_msg *msg)
1900 {
1901         int rc = lsm_msg_msg_alloc(msg);
1902
1903         if (unlikely(rc))
1904                 return rc;
1905         rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1906         if (unlikely(rc))
1907                 security_msg_msg_free(msg);
1908         return rc;
1909 }
1910
1911 void security_msg_msg_free(struct msg_msg *msg)
1912 {
1913         call_void_hook(msg_msg_free_security, msg);
1914         kfree(msg->security);
1915         msg->security = NULL;
1916 }
1917
1918 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1919 {
1920         int rc = lsm_ipc_alloc(msq);
1921
1922         if (unlikely(rc))
1923                 return rc;
1924         rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1925         if (unlikely(rc))
1926                 security_msg_queue_free(msq);
1927         return rc;
1928 }
1929
1930 void security_msg_queue_free(struct kern_ipc_perm *msq)
1931 {
1932         call_void_hook(msg_queue_free_security, msq);
1933         kfree(msq->security);
1934         msq->security = NULL;
1935 }
1936
1937 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1938 {
1939         return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1940 }
1941
1942 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1943 {
1944         return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1945 }
1946
1947 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1948                                struct msg_msg *msg, int msqflg)
1949 {
1950         return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1951 }
1952
1953 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1954                                struct task_struct *target, long type, int mode)
1955 {
1956         return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1957 }
1958
1959 int security_shm_alloc(struct kern_ipc_perm *shp)
1960 {
1961         int rc = lsm_ipc_alloc(shp);
1962
1963         if (unlikely(rc))
1964                 return rc;
1965         rc = call_int_hook(shm_alloc_security, 0, shp);
1966         if (unlikely(rc))
1967                 security_shm_free(shp);
1968         return rc;
1969 }
1970
1971 void security_shm_free(struct kern_ipc_perm *shp)
1972 {
1973         call_void_hook(shm_free_security, shp);
1974         kfree(shp->security);
1975         shp->security = NULL;
1976 }
1977
1978 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1979 {
1980         return call_int_hook(shm_associate, 0, shp, shmflg);
1981 }
1982
1983 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1984 {
1985         return call_int_hook(shm_shmctl, 0, shp, cmd);
1986 }
1987
1988 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1989 {
1990         return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1991 }
1992
1993 int security_sem_alloc(struct kern_ipc_perm *sma)
1994 {
1995         int rc = lsm_ipc_alloc(sma);
1996
1997         if (unlikely(rc))
1998                 return rc;
1999         rc = call_int_hook(sem_alloc_security, 0, sma);
2000         if (unlikely(rc))
2001                 security_sem_free(sma);
2002         return rc;
2003 }
2004
2005 void security_sem_free(struct kern_ipc_perm *sma)
2006 {
2007         call_void_hook(sem_free_security, sma);
2008         kfree(sma->security);
2009         sma->security = NULL;
2010 }
2011
2012 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
2013 {
2014         return call_int_hook(sem_associate, 0, sma, semflg);
2015 }
2016
2017 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
2018 {
2019         return call_int_hook(sem_semctl, 0, sma, cmd);
2020 }
2021
2022 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
2023                         unsigned nsops, int alter)
2024 {
2025         return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
2026 }
2027
2028 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
2029 {
2030         if (unlikely(inode && IS_PRIVATE(inode)))
2031                 return;
2032         call_void_hook(d_instantiate, dentry, inode);
2033 }
2034 EXPORT_SYMBOL(security_d_instantiate);
2035
2036 int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
2037                                 char **value)
2038 {
2039         struct security_hook_list *hp;
2040
2041         hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
2042                 if (lsm != NULL && strcmp(lsm, hp->lsm))
2043                         continue;
2044                 return hp->hook.getprocattr(p, name, value);
2045         }
2046         return LSM_RET_DEFAULT(getprocattr);
2047 }
2048
2049 int security_setprocattr(const char *lsm, const char *name, void *value,
2050                          size_t size)
2051 {
2052         struct security_hook_list *hp;
2053
2054         hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
2055                 if (lsm != NULL && strcmp(lsm, hp->lsm))
2056                         continue;
2057                 return hp->hook.setprocattr(name, value, size);
2058         }
2059         return LSM_RET_DEFAULT(setprocattr);
2060 }
2061
2062 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
2063 {
2064         return call_int_hook(netlink_send, 0, sk, skb);
2065 }
2066
2067 int security_ismaclabel(const char *name)
2068 {
2069         return call_int_hook(ismaclabel, 0, name);
2070 }
2071 EXPORT_SYMBOL(security_ismaclabel);
2072
2073 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2074 {
2075         struct security_hook_list *hp;
2076         int rc;
2077
2078         /*
2079          * Currently, only one LSM can implement secid_to_secctx (i.e this
2080          * LSM hook is not "stackable").
2081          */
2082         hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
2083                 rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
2084                 if (rc != LSM_RET_DEFAULT(secid_to_secctx))
2085                         return rc;
2086         }
2087
2088         return LSM_RET_DEFAULT(secid_to_secctx);
2089 }
2090 EXPORT_SYMBOL(security_secid_to_secctx);
2091
2092 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
2093 {
2094         *secid = 0;
2095         return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
2096 }
2097 EXPORT_SYMBOL(security_secctx_to_secid);
2098
2099 void security_release_secctx(char *secdata, u32 seclen)
2100 {
2101         call_void_hook(release_secctx, secdata, seclen);
2102 }
2103 EXPORT_SYMBOL(security_release_secctx);
2104
2105 void security_inode_invalidate_secctx(struct inode *inode)
2106 {
2107         call_void_hook(inode_invalidate_secctx, inode);
2108 }
2109 EXPORT_SYMBOL(security_inode_invalidate_secctx);
2110
2111 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
2112 {
2113         return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
2114 }
2115 EXPORT_SYMBOL(security_inode_notifysecctx);
2116
2117 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2118 {
2119         return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2120 }
2121 EXPORT_SYMBOL(security_inode_setsecctx);
2122
2123 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2124 {
2125         return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
2126 }
2127 EXPORT_SYMBOL(security_inode_getsecctx);
2128
2129 #ifdef CONFIG_WATCH_QUEUE
2130 int security_post_notification(const struct cred *w_cred,
2131                                const struct cred *cred,
2132                                struct watch_notification *n)
2133 {
2134         return call_int_hook(post_notification, 0, w_cred, cred, n);
2135 }
2136 #endif /* CONFIG_WATCH_QUEUE */
2137
2138 #ifdef CONFIG_KEY_NOTIFICATIONS
2139 int security_watch_key(struct key *key)
2140 {
2141         return call_int_hook(watch_key, 0, key);
2142 }
2143 #endif
2144
2145 #ifdef CONFIG_SECURITY_NETWORK
2146
2147 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2148 {
2149         return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2150 }
2151 EXPORT_SYMBOL(security_unix_stream_connect);
2152
2153 int security_unix_may_send(struct socket *sock,  struct socket *other)
2154 {
2155         return call_int_hook(unix_may_send, 0, sock, other);
2156 }
2157 EXPORT_SYMBOL(security_unix_may_send);
2158
2159 int security_socket_create(int family, int type, int protocol, int kern)
2160 {
2161         return call_int_hook(socket_create, 0, family, type, protocol, kern);
2162 }
2163
2164 int security_socket_post_create(struct socket *sock, int family,
2165                                 int type, int protocol, int kern)
2166 {
2167         return call_int_hook(socket_post_create, 0, sock, family, type,
2168                                                 protocol, kern);
2169 }
2170
2171 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2172 {
2173         return call_int_hook(socket_socketpair, 0, socka, sockb);
2174 }
2175 EXPORT_SYMBOL(security_socket_socketpair);
2176
2177 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2178 {
2179         return call_int_hook(socket_bind, 0, sock, address, addrlen);
2180 }
2181
2182 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2183 {
2184         return call_int_hook(socket_connect, 0, sock, address, addrlen);
2185 }
2186
2187 int security_socket_listen(struct socket *sock, int backlog)
2188 {
2189         return call_int_hook(socket_listen, 0, sock, backlog);
2190 }
2191
2192 int security_socket_accept(struct socket *sock, struct socket *newsock)
2193 {
2194         return call_int_hook(socket_accept, 0, sock, newsock);
2195 }
2196
2197 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2198 {
2199         return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2200 }
2201
2202 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2203                             int size, int flags)
2204 {
2205         return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2206 }
2207
2208 int security_socket_getsockname(struct socket *sock)
2209 {
2210         return call_int_hook(socket_getsockname, 0, sock);
2211 }
2212
2213 int security_socket_getpeername(struct socket *sock)
2214 {
2215         return call_int_hook(socket_getpeername, 0, sock);
2216 }
2217
2218 int security_socket_getsockopt(struct socket *sock, int level, int optname)
2219 {
2220         return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2221 }
2222
2223 int security_socket_setsockopt(struct socket *sock, int level, int optname)
2224 {
2225         return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2226 }
2227
2228 int security_socket_shutdown(struct socket *sock, int how)
2229 {
2230         return call_int_hook(socket_shutdown, 0, sock, how);
2231 }
2232
2233 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2234 {
2235         return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2236 }
2237 EXPORT_SYMBOL(security_sock_rcv_skb);
2238
2239 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2240                                       int __user *optlen, unsigned len)
2241 {
2242         return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2243                                 optval, optlen, len);
2244 }
2245
2246 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2247 {
2248         return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2249                              skb, secid);
2250 }
2251 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2252
2253 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2254 {
2255         return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2256 }
2257
2258 void security_sk_free(struct sock *sk)
2259 {
2260         call_void_hook(sk_free_security, sk);
2261 }
2262
2263 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2264 {
2265         call_void_hook(sk_clone_security, sk, newsk);
2266 }
2267 EXPORT_SYMBOL(security_sk_clone);
2268
2269 void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic)
2270 {
2271         call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
2272 }
2273 EXPORT_SYMBOL(security_sk_classify_flow);
2274
2275 void security_req_classify_flow(const struct request_sock *req,
2276                                 struct flowi_common *flic)
2277 {
2278         call_void_hook(req_classify_flow, req, flic);
2279 }
2280 EXPORT_SYMBOL(security_req_classify_flow);
2281
2282 void security_sock_graft(struct sock *sk, struct socket *parent)
2283 {
2284         call_void_hook(sock_graft, sk, parent);
2285 }
2286 EXPORT_SYMBOL(security_sock_graft);
2287
2288 int security_inet_conn_request(const struct sock *sk,
2289                         struct sk_buff *skb, struct request_sock *req)
2290 {
2291         return call_int_hook(inet_conn_request, 0, sk, skb, req);
2292 }
2293 EXPORT_SYMBOL(security_inet_conn_request);
2294
2295 void security_inet_csk_clone(struct sock *newsk,
2296                         const struct request_sock *req)
2297 {
2298         call_void_hook(inet_csk_clone, newsk, req);
2299 }
2300
2301 void security_inet_conn_established(struct sock *sk,
2302                         struct sk_buff *skb)
2303 {
2304         call_void_hook(inet_conn_established, sk, skb);
2305 }
2306 EXPORT_SYMBOL(security_inet_conn_established);
2307
2308 int security_secmark_relabel_packet(u32 secid)
2309 {
2310         return call_int_hook(secmark_relabel_packet, 0, secid);
2311 }
2312 EXPORT_SYMBOL(security_secmark_relabel_packet);
2313
2314 void security_secmark_refcount_inc(void)
2315 {
2316         call_void_hook(secmark_refcount_inc);
2317 }
2318 EXPORT_SYMBOL(security_secmark_refcount_inc);
2319
2320 void security_secmark_refcount_dec(void)
2321 {
2322         call_void_hook(secmark_refcount_dec);
2323 }
2324 EXPORT_SYMBOL(security_secmark_refcount_dec);
2325
2326 int security_tun_dev_alloc_security(void **security)
2327 {
2328         return call_int_hook(tun_dev_alloc_security, 0, security);
2329 }
2330 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2331
2332 void security_tun_dev_free_security(void *security)
2333 {
2334         call_void_hook(tun_dev_free_security, security);
2335 }
2336 EXPORT_SYMBOL(security_tun_dev_free_security);
2337
2338 int security_tun_dev_create(void)
2339 {
2340         return call_int_hook(tun_dev_create, 0);
2341 }
2342 EXPORT_SYMBOL(security_tun_dev_create);
2343
2344 int security_tun_dev_attach_queue(void *security)
2345 {
2346         return call_int_hook(tun_dev_attach_queue, 0, security);
2347 }
2348 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2349
2350 int security_tun_dev_attach(struct sock *sk, void *security)
2351 {
2352         return call_int_hook(tun_dev_attach, 0, sk, security);
2353 }
2354 EXPORT_SYMBOL(security_tun_dev_attach);
2355
2356 int security_tun_dev_open(void *security)
2357 {
2358         return call_int_hook(tun_dev_open, 0, security);
2359 }
2360 EXPORT_SYMBOL(security_tun_dev_open);
2361
2362 int security_sctp_assoc_request(struct sctp_association *asoc, struct sk_buff *skb)
2363 {
2364         return call_int_hook(sctp_assoc_request, 0, asoc, skb);
2365 }
2366 EXPORT_SYMBOL(security_sctp_assoc_request);
2367
2368 int security_sctp_bind_connect(struct sock *sk, int optname,
2369                                struct sockaddr *address, int addrlen)
2370 {
2371         return call_int_hook(sctp_bind_connect, 0, sk, optname,
2372                              address, addrlen);
2373 }
2374 EXPORT_SYMBOL(security_sctp_bind_connect);
2375
2376 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
2377                             struct sock *newsk)
2378 {
2379         call_void_hook(sctp_sk_clone, asoc, sk, newsk);
2380 }
2381 EXPORT_SYMBOL(security_sctp_sk_clone);
2382
2383 #endif  /* CONFIG_SECURITY_NETWORK */
2384
2385 #ifdef CONFIG_SECURITY_INFINIBAND
2386
2387 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2388 {
2389         return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2390 }
2391 EXPORT_SYMBOL(security_ib_pkey_access);
2392
2393 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2394 {
2395         return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2396 }
2397 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2398
2399 int security_ib_alloc_security(void **sec)
2400 {
2401         return call_int_hook(ib_alloc_security, 0, sec);
2402 }
2403 EXPORT_SYMBOL(security_ib_alloc_security);
2404
2405 void security_ib_free_security(void *sec)
2406 {
2407         call_void_hook(ib_free_security, sec);
2408 }
2409 EXPORT_SYMBOL(security_ib_free_security);
2410 #endif  /* CONFIG_SECURITY_INFINIBAND */
2411
2412 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2413
2414 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2415                                struct xfrm_user_sec_ctx *sec_ctx,
2416                                gfp_t gfp)
2417 {
2418         return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2419 }
2420 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2421
2422 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2423                               struct xfrm_sec_ctx **new_ctxp)
2424 {
2425         return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2426 }
2427
2428 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2429 {
2430         call_void_hook(xfrm_policy_free_security, ctx);
2431 }
2432 EXPORT_SYMBOL(security_xfrm_policy_free);
2433
2434 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2435 {
2436         return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2437 }
2438
2439 int security_xfrm_state_alloc(struct xfrm_state *x,
2440                               struct xfrm_user_sec_ctx *sec_ctx)
2441 {
2442         return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2443 }
2444 EXPORT_SYMBOL(security_xfrm_state_alloc);
2445
2446 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2447                                       struct xfrm_sec_ctx *polsec, u32 secid)
2448 {
2449         return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2450 }
2451
2452 int security_xfrm_state_delete(struct xfrm_state *x)
2453 {
2454         return call_int_hook(xfrm_state_delete_security, 0, x);
2455 }
2456 EXPORT_SYMBOL(security_xfrm_state_delete);
2457
2458 void security_xfrm_state_free(struct xfrm_state *x)
2459 {
2460         call_void_hook(xfrm_state_free_security, x);
2461 }
2462
2463 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
2464 {
2465         return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid);
2466 }
2467
2468 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2469                                        struct xfrm_policy *xp,
2470                                        const struct flowi_common *flic)
2471 {
2472         struct security_hook_list *hp;
2473         int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2474
2475         /*
2476          * Since this function is expected to return 0 or 1, the judgment
2477          * becomes difficult if multiple LSMs supply this call. Fortunately,
2478          * we can use the first LSM's judgment because currently only SELinux
2479          * supplies this call.
2480          *
2481          * For speed optimization, we explicitly break the loop rather than
2482          * using the macro
2483          */
2484         hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2485                                 list) {
2486                 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
2487                 break;
2488         }
2489         return rc;
2490 }
2491
2492 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2493 {
2494         return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2495 }
2496
2497 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
2498 {
2499         int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid,
2500                                 0);
2501
2502         BUG_ON(rc);
2503 }
2504 EXPORT_SYMBOL(security_skb_classify_flow);
2505
2506 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
2507
2508 #ifdef CONFIG_KEYS
2509
2510 int security_key_alloc(struct key *key, const struct cred *cred,
2511                        unsigned long flags)
2512 {
2513         return call_int_hook(key_alloc, 0, key, cred, flags);
2514 }
2515
2516 void security_key_free(struct key *key)
2517 {
2518         call_void_hook(key_free, key);
2519 }
2520
2521 int security_key_permission(key_ref_t key_ref, const struct cred *cred,
2522                             enum key_need_perm need_perm)
2523 {
2524         return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
2525 }
2526
2527 int security_key_getsecurity(struct key *key, char **_buffer)
2528 {
2529         *_buffer = NULL;
2530         return call_int_hook(key_getsecurity, 0, key, _buffer);
2531 }
2532
2533 #endif  /* CONFIG_KEYS */
2534
2535 #ifdef CONFIG_AUDIT
2536
2537 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2538 {
2539         return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2540 }
2541
2542 int security_audit_rule_known(struct audit_krule *krule)
2543 {
2544         return call_int_hook(audit_rule_known, 0, krule);
2545 }
2546
2547 void security_audit_rule_free(void *lsmrule)
2548 {
2549         call_void_hook(audit_rule_free, lsmrule);
2550 }
2551
2552 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2553 {
2554         return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2555 }
2556 #endif /* CONFIG_AUDIT */
2557
2558 #ifdef CONFIG_BPF_SYSCALL
2559 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2560 {
2561         return call_int_hook(bpf, 0, cmd, attr, size);
2562 }
2563 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2564 {
2565         return call_int_hook(bpf_map, 0, map, fmode);
2566 }
2567 int security_bpf_prog(struct bpf_prog *prog)
2568 {
2569         return call_int_hook(bpf_prog, 0, prog);
2570 }
2571 int security_bpf_map_alloc(struct bpf_map *map)
2572 {
2573         return call_int_hook(bpf_map_alloc_security, 0, map);
2574 }
2575 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2576 {
2577         return call_int_hook(bpf_prog_alloc_security, 0, aux);
2578 }
2579 void security_bpf_map_free(struct bpf_map *map)
2580 {
2581         call_void_hook(bpf_map_free_security, map);
2582 }
2583 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2584 {
2585         call_void_hook(bpf_prog_free_security, aux);
2586 }
2587 #endif /* CONFIG_BPF_SYSCALL */
2588
2589 int security_locked_down(enum lockdown_reason what)
2590 {
2591         return call_int_hook(locked_down, 0, what);
2592 }
2593 EXPORT_SYMBOL(security_locked_down);
2594
2595 #ifdef CONFIG_PERF_EVENTS
2596 int security_perf_event_open(struct perf_event_attr *attr, int type)
2597 {
2598         return call_int_hook(perf_event_open, 0, attr, type);
2599 }
2600
2601 int security_perf_event_alloc(struct perf_event *event)
2602 {
2603         return call_int_hook(perf_event_alloc, 0, event);
2604 }
2605
2606 void security_perf_event_free(struct perf_event *event)
2607 {
2608         call_void_hook(perf_event_free, event);
2609 }
2610
2611 int security_perf_event_read(struct perf_event *event)
2612 {
2613         return call_int_hook(perf_event_read, 0, event);
2614 }
2615
2616 int security_perf_event_write(struct perf_event *event)
2617 {
2618         return call_int_hook(perf_event_write, 0, event);
2619 }
2620 #endif /* CONFIG_PERF_EVENTS */
2621
2622 #ifdef CONFIG_IO_URING
2623 int security_uring_override_creds(const struct cred *new)
2624 {
2625         return call_int_hook(uring_override_creds, 0, new);
2626 }
2627
2628 int security_uring_sqpoll(void)
2629 {
2630         return call_int_hook(uring_sqpoll, 0);
2631 }
2632 #endif /* CONFIG_IO_URING */