Merge tag 'irqchip-fixes-5.10-1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / net / wireless / util.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Wireless utility functions
4  *
5  * Copyright 2007-2009  Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2017       Intel Deutschland GmbH
8  * Copyright (C) 2018-2020 Intel Corporation
9  */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25
26
27 struct ieee80211_rate *
28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29                             u32 basic_rates, int bitrate)
30 {
31         struct ieee80211_rate *result = &sband->bitrates[0];
32         int i;
33
34         for (i = 0; i < sband->n_bitrates; i++) {
35                 if (!(basic_rates & BIT(i)))
36                         continue;
37                 if (sband->bitrates[i].bitrate > bitrate)
38                         continue;
39                 result = &sband->bitrates[i];
40         }
41
42         return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45
46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47                               enum nl80211_bss_scan_width scan_width)
48 {
49         struct ieee80211_rate *bitrates;
50         u32 mandatory_rates = 0;
51         enum ieee80211_rate_flags mandatory_flag;
52         int i;
53
54         if (WARN_ON(!sband))
55                 return 1;
56
57         if (sband->band == NL80211_BAND_2GHZ) {
58                 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59                     scan_width == NL80211_BSS_CHAN_WIDTH_10)
60                         mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61                 else
62                         mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63         } else {
64                 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65         }
66
67         bitrates = sband->bitrates;
68         for (i = 0; i < sband->n_bitrates; i++)
69                 if (bitrates[i].flags & mandatory_flag)
70                         mandatory_rates |= BIT(i);
71         return mandatory_rates;
72 }
73 EXPORT_SYMBOL(ieee80211_mandatory_rates);
74
75 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
76 {
77         /* see 802.11 17.3.8.3.2 and Annex J
78          * there are overlapping channel numbers in 5GHz and 2GHz bands */
79         if (chan <= 0)
80                 return 0; /* not supported */
81         switch (band) {
82         case NL80211_BAND_2GHZ:
83                 if (chan == 14)
84                         return MHZ_TO_KHZ(2484);
85                 else if (chan < 14)
86                         return MHZ_TO_KHZ(2407 + chan * 5);
87                 break;
88         case NL80211_BAND_5GHZ:
89                 if (chan >= 182 && chan <= 196)
90                         return MHZ_TO_KHZ(4000 + chan * 5);
91                 else
92                         return MHZ_TO_KHZ(5000 + chan * 5);
93                 break;
94         case NL80211_BAND_6GHZ:
95                 /* see 802.11ax D6.1 27.3.23.2 */
96                 if (chan == 2)
97                         return MHZ_TO_KHZ(5935);
98                 if (chan <= 253)
99                         return MHZ_TO_KHZ(5950 + chan * 5);
100                 break;
101         case NL80211_BAND_60GHZ:
102                 if (chan < 7)
103                         return MHZ_TO_KHZ(56160 + chan * 2160);
104                 break;
105         case NL80211_BAND_S1GHZ:
106                 return 902000 + chan * 500;
107         default:
108                 ;
109         }
110         return 0; /* not supported */
111 }
112 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
113
114 int ieee80211_freq_khz_to_channel(u32 freq)
115 {
116         /* TODO: just handle MHz for now */
117         freq = KHZ_TO_MHZ(freq);
118
119         /* see 802.11 17.3.8.3.2 and Annex J */
120         if (freq == 2484)
121                 return 14;
122         else if (freq < 2484)
123                 return (freq - 2407) / 5;
124         else if (freq >= 4910 && freq <= 4980)
125                 return (freq - 4000) / 5;
126         else if (freq < 5925)
127                 return (freq - 5000) / 5;
128         else if (freq == 5935)
129                 return 2;
130         else if (freq <= 45000) /* DMG band lower limit */
131                 /* see 802.11ax D6.1 27.3.22.2 */
132                 return (freq - 5950) / 5;
133         else if (freq >= 58320 && freq <= 70200)
134                 return (freq - 56160) / 2160;
135         else
136                 return 0;
137 }
138 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
139
140 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
141                                                     u32 freq)
142 {
143         enum nl80211_band band;
144         struct ieee80211_supported_band *sband;
145         int i;
146
147         for (band = 0; band < NUM_NL80211_BANDS; band++) {
148                 sband = wiphy->bands[band];
149
150                 if (!sband)
151                         continue;
152
153                 for (i = 0; i < sband->n_channels; i++) {
154                         struct ieee80211_channel *chan = &sband->channels[i];
155
156                         if (ieee80211_channel_to_khz(chan) == freq)
157                                 return chan;
158                 }
159         }
160
161         return NULL;
162 }
163 EXPORT_SYMBOL(ieee80211_get_channel_khz);
164
165 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
166 {
167         int i, want;
168
169         switch (sband->band) {
170         case NL80211_BAND_5GHZ:
171         case NL80211_BAND_6GHZ:
172                 want = 3;
173                 for (i = 0; i < sband->n_bitrates; i++) {
174                         if (sband->bitrates[i].bitrate == 60 ||
175                             sband->bitrates[i].bitrate == 120 ||
176                             sband->bitrates[i].bitrate == 240) {
177                                 sband->bitrates[i].flags |=
178                                         IEEE80211_RATE_MANDATORY_A;
179                                 want--;
180                         }
181                 }
182                 WARN_ON(want);
183                 break;
184         case NL80211_BAND_2GHZ:
185                 want = 7;
186                 for (i = 0; i < sband->n_bitrates; i++) {
187                         switch (sband->bitrates[i].bitrate) {
188                         case 10:
189                         case 20:
190                         case 55:
191                         case 110:
192                                 sband->bitrates[i].flags |=
193                                         IEEE80211_RATE_MANDATORY_B |
194                                         IEEE80211_RATE_MANDATORY_G;
195                                 want--;
196                                 break;
197                         case 60:
198                         case 120:
199                         case 240:
200                                 sband->bitrates[i].flags |=
201                                         IEEE80211_RATE_MANDATORY_G;
202                                 want--;
203                                 fallthrough;
204                         default:
205                                 sband->bitrates[i].flags |=
206                                         IEEE80211_RATE_ERP_G;
207                                 break;
208                         }
209                 }
210                 WARN_ON(want != 0 && want != 3);
211                 break;
212         case NL80211_BAND_60GHZ:
213                 /* check for mandatory HT MCS 1..4 */
214                 WARN_ON(!sband->ht_cap.ht_supported);
215                 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
216                 break;
217         case NL80211_BAND_S1GHZ:
218                 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least
219                  * mandatory is ok.
220                  */
221                 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
222                 break;
223         case NUM_NL80211_BANDS:
224         default:
225                 WARN_ON(1);
226                 break;
227         }
228 }
229
230 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
231 {
232         enum nl80211_band band;
233
234         for (band = 0; band < NUM_NL80211_BANDS; band++)
235                 if (wiphy->bands[band])
236                         set_mandatory_flags_band(wiphy->bands[band]);
237 }
238
239 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
240 {
241         int i;
242         for (i = 0; i < wiphy->n_cipher_suites; i++)
243                 if (cipher == wiphy->cipher_suites[i])
244                         return true;
245         return false;
246 }
247
248 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
249                                    struct key_params *params, int key_idx,
250                                    bool pairwise, const u8 *mac_addr)
251 {
252         int max_key_idx = 5;
253
254         if (wiphy_ext_feature_isset(&rdev->wiphy,
255                                     NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
256             wiphy_ext_feature_isset(&rdev->wiphy,
257                                     NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
258                 max_key_idx = 7;
259         if (key_idx < 0 || key_idx > max_key_idx)
260                 return -EINVAL;
261
262         if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
263                 return -EINVAL;
264
265         if (pairwise && !mac_addr)
266                 return -EINVAL;
267
268         switch (params->cipher) {
269         case WLAN_CIPHER_SUITE_TKIP:
270                 /* Extended Key ID can only be used with CCMP/GCMP ciphers */
271                 if ((pairwise && key_idx) ||
272                     params->mode != NL80211_KEY_RX_TX)
273                         return -EINVAL;
274                 break;
275         case WLAN_CIPHER_SUITE_CCMP:
276         case WLAN_CIPHER_SUITE_CCMP_256:
277         case WLAN_CIPHER_SUITE_GCMP:
278         case WLAN_CIPHER_SUITE_GCMP_256:
279                 /* IEEE802.11-2016 allows only 0 and - when supporting
280                  * Extended Key ID - 1 as index for pairwise keys.
281                  * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
282                  * the driver supports Extended Key ID.
283                  * @NL80211_KEY_SET_TX can't be set when installing and
284                  * validating a key.
285                  */
286                 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
287                     params->mode == NL80211_KEY_SET_TX)
288                         return -EINVAL;
289                 if (wiphy_ext_feature_isset(&rdev->wiphy,
290                                             NL80211_EXT_FEATURE_EXT_KEY_ID)) {
291                         if (pairwise && (key_idx < 0 || key_idx > 1))
292                                 return -EINVAL;
293                 } else if (pairwise && key_idx) {
294                         return -EINVAL;
295                 }
296                 break;
297         case WLAN_CIPHER_SUITE_AES_CMAC:
298         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
299         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
300         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
301                 /* Disallow BIP (group-only) cipher as pairwise cipher */
302                 if (pairwise)
303                         return -EINVAL;
304                 if (key_idx < 4)
305                         return -EINVAL;
306                 break;
307         case WLAN_CIPHER_SUITE_WEP40:
308         case WLAN_CIPHER_SUITE_WEP104:
309                 if (key_idx > 3)
310                         return -EINVAL;
311         default:
312                 break;
313         }
314
315         switch (params->cipher) {
316         case WLAN_CIPHER_SUITE_WEP40:
317                 if (params->key_len != WLAN_KEY_LEN_WEP40)
318                         return -EINVAL;
319                 break;
320         case WLAN_CIPHER_SUITE_TKIP:
321                 if (params->key_len != WLAN_KEY_LEN_TKIP)
322                         return -EINVAL;
323                 break;
324         case WLAN_CIPHER_SUITE_CCMP:
325                 if (params->key_len != WLAN_KEY_LEN_CCMP)
326                         return -EINVAL;
327                 break;
328         case WLAN_CIPHER_SUITE_CCMP_256:
329                 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
330                         return -EINVAL;
331                 break;
332         case WLAN_CIPHER_SUITE_GCMP:
333                 if (params->key_len != WLAN_KEY_LEN_GCMP)
334                         return -EINVAL;
335                 break;
336         case WLAN_CIPHER_SUITE_GCMP_256:
337                 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
338                         return -EINVAL;
339                 break;
340         case WLAN_CIPHER_SUITE_WEP104:
341                 if (params->key_len != WLAN_KEY_LEN_WEP104)
342                         return -EINVAL;
343                 break;
344         case WLAN_CIPHER_SUITE_AES_CMAC:
345                 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
346                         return -EINVAL;
347                 break;
348         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
349                 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
350                         return -EINVAL;
351                 break;
352         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
353                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
354                         return -EINVAL;
355                 break;
356         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
357                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
358                         return -EINVAL;
359                 break;
360         default:
361                 /*
362                  * We don't know anything about this algorithm,
363                  * allow using it -- but the driver must check
364                  * all parameters! We still check below whether
365                  * or not the driver supports this algorithm,
366                  * of course.
367                  */
368                 break;
369         }
370
371         if (params->seq) {
372                 switch (params->cipher) {
373                 case WLAN_CIPHER_SUITE_WEP40:
374                 case WLAN_CIPHER_SUITE_WEP104:
375                         /* These ciphers do not use key sequence */
376                         return -EINVAL;
377                 case WLAN_CIPHER_SUITE_TKIP:
378                 case WLAN_CIPHER_SUITE_CCMP:
379                 case WLAN_CIPHER_SUITE_CCMP_256:
380                 case WLAN_CIPHER_SUITE_GCMP:
381                 case WLAN_CIPHER_SUITE_GCMP_256:
382                 case WLAN_CIPHER_SUITE_AES_CMAC:
383                 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
384                 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
385                 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
386                         if (params->seq_len != 6)
387                                 return -EINVAL;
388                         break;
389                 }
390         }
391
392         if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
393                 return -EINVAL;
394
395         return 0;
396 }
397
398 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
399 {
400         unsigned int hdrlen = 24;
401
402         if (ieee80211_is_data(fc)) {
403                 if (ieee80211_has_a4(fc))
404                         hdrlen = 30;
405                 if (ieee80211_is_data_qos(fc)) {
406                         hdrlen += IEEE80211_QOS_CTL_LEN;
407                         if (ieee80211_has_order(fc))
408                                 hdrlen += IEEE80211_HT_CTL_LEN;
409                 }
410                 goto out;
411         }
412
413         if (ieee80211_is_mgmt(fc)) {
414                 if (ieee80211_has_order(fc))
415                         hdrlen += IEEE80211_HT_CTL_LEN;
416                 goto out;
417         }
418
419         if (ieee80211_is_ctl(fc)) {
420                 /*
421                  * ACK and CTS are 10 bytes, all others 16. To see how
422                  * to get this condition consider
423                  *   subtype mask:   0b0000000011110000 (0x00F0)
424                  *   ACK subtype:    0b0000000011010000 (0x00D0)
425                  *   CTS subtype:    0b0000000011000000 (0x00C0)
426                  *   bits that matter:         ^^^      (0x00E0)
427                  *   value of those: 0b0000000011000000 (0x00C0)
428                  */
429                 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
430                         hdrlen = 10;
431                 else
432                         hdrlen = 16;
433         }
434 out:
435         return hdrlen;
436 }
437 EXPORT_SYMBOL(ieee80211_hdrlen);
438
439 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
440 {
441         const struct ieee80211_hdr *hdr =
442                         (const struct ieee80211_hdr *)skb->data;
443         unsigned int hdrlen;
444
445         if (unlikely(skb->len < 10))
446                 return 0;
447         hdrlen = ieee80211_hdrlen(hdr->frame_control);
448         if (unlikely(hdrlen > skb->len))
449                 return 0;
450         return hdrlen;
451 }
452 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
453
454 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
455 {
456         int ae = flags & MESH_FLAGS_AE;
457         /* 802.11-2012, 8.2.4.7.3 */
458         switch (ae) {
459         default:
460         case 0:
461                 return 6;
462         case MESH_FLAGS_AE_A4:
463                 return 12;
464         case MESH_FLAGS_AE_A5_A6:
465                 return 18;
466         }
467 }
468
469 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
470 {
471         return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
472 }
473 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
474
475 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
476                                   const u8 *addr, enum nl80211_iftype iftype,
477                                   u8 data_offset)
478 {
479         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
480         struct {
481                 u8 hdr[ETH_ALEN] __aligned(2);
482                 __be16 proto;
483         } payload;
484         struct ethhdr tmp;
485         u16 hdrlen;
486         u8 mesh_flags = 0;
487
488         if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
489                 return -1;
490
491         hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
492         if (skb->len < hdrlen + 8)
493                 return -1;
494
495         /* convert IEEE 802.11 header + possible LLC headers into Ethernet
496          * header
497          * IEEE 802.11 address fields:
498          * ToDS FromDS Addr1 Addr2 Addr3 Addr4
499          *   0     0   DA    SA    BSSID n/a
500          *   0     1   DA    BSSID SA    n/a
501          *   1     0   BSSID SA    DA    n/a
502          *   1     1   RA    TA    DA    SA
503          */
504         memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
505         memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
506
507         if (iftype == NL80211_IFTYPE_MESH_POINT)
508                 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
509
510         mesh_flags &= MESH_FLAGS_AE;
511
512         switch (hdr->frame_control &
513                 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
514         case cpu_to_le16(IEEE80211_FCTL_TODS):
515                 if (unlikely(iftype != NL80211_IFTYPE_AP &&
516                              iftype != NL80211_IFTYPE_AP_VLAN &&
517                              iftype != NL80211_IFTYPE_P2P_GO))
518                         return -1;
519                 break;
520         case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
521                 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
522                              iftype != NL80211_IFTYPE_MESH_POINT &&
523                              iftype != NL80211_IFTYPE_AP_VLAN &&
524                              iftype != NL80211_IFTYPE_STATION))
525                         return -1;
526                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
527                         if (mesh_flags == MESH_FLAGS_AE_A4)
528                                 return -1;
529                         if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
530                                 skb_copy_bits(skb, hdrlen +
531                                         offsetof(struct ieee80211s_hdr, eaddr1),
532                                         tmp.h_dest, 2 * ETH_ALEN);
533                         }
534                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
535                 }
536                 break;
537         case cpu_to_le16(IEEE80211_FCTL_FROMDS):
538                 if ((iftype != NL80211_IFTYPE_STATION &&
539                      iftype != NL80211_IFTYPE_P2P_CLIENT &&
540                      iftype != NL80211_IFTYPE_MESH_POINT) ||
541                     (is_multicast_ether_addr(tmp.h_dest) &&
542                      ether_addr_equal(tmp.h_source, addr)))
543                         return -1;
544                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
545                         if (mesh_flags == MESH_FLAGS_AE_A5_A6)
546                                 return -1;
547                         if (mesh_flags == MESH_FLAGS_AE_A4)
548                                 skb_copy_bits(skb, hdrlen +
549                                         offsetof(struct ieee80211s_hdr, eaddr1),
550                                         tmp.h_source, ETH_ALEN);
551                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
552                 }
553                 break;
554         case cpu_to_le16(0):
555                 if (iftype != NL80211_IFTYPE_ADHOC &&
556                     iftype != NL80211_IFTYPE_STATION &&
557                     iftype != NL80211_IFTYPE_OCB)
558                                 return -1;
559                 break;
560         }
561
562         skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
563         tmp.h_proto = payload.proto;
564
565         if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
566                     tmp.h_proto != htons(ETH_P_AARP) &&
567                     tmp.h_proto != htons(ETH_P_IPX)) ||
568                    ether_addr_equal(payload.hdr, bridge_tunnel_header)))
569                 /* remove RFC1042 or Bridge-Tunnel encapsulation and
570                  * replace EtherType */
571                 hdrlen += ETH_ALEN + 2;
572         else
573                 tmp.h_proto = htons(skb->len - hdrlen);
574
575         pskb_pull(skb, hdrlen);
576
577         if (!ehdr)
578                 ehdr = skb_push(skb, sizeof(struct ethhdr));
579         memcpy(ehdr, &tmp, sizeof(tmp));
580
581         return 0;
582 }
583 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
584
585 static void
586 __frame_add_frag(struct sk_buff *skb, struct page *page,
587                  void *ptr, int len, int size)
588 {
589         struct skb_shared_info *sh = skb_shinfo(skb);
590         int page_offset;
591
592         get_page(page);
593         page_offset = ptr - page_address(page);
594         skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
595 }
596
597 static void
598 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
599                             int offset, int len)
600 {
601         struct skb_shared_info *sh = skb_shinfo(skb);
602         const skb_frag_t *frag = &sh->frags[0];
603         struct page *frag_page;
604         void *frag_ptr;
605         int frag_len, frag_size;
606         int head_size = skb->len - skb->data_len;
607         int cur_len;
608
609         frag_page = virt_to_head_page(skb->head);
610         frag_ptr = skb->data;
611         frag_size = head_size;
612
613         while (offset >= frag_size) {
614                 offset -= frag_size;
615                 frag_page = skb_frag_page(frag);
616                 frag_ptr = skb_frag_address(frag);
617                 frag_size = skb_frag_size(frag);
618                 frag++;
619         }
620
621         frag_ptr += offset;
622         frag_len = frag_size - offset;
623
624         cur_len = min(len, frag_len);
625
626         __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
627         len -= cur_len;
628
629         while (len > 0) {
630                 frag_len = skb_frag_size(frag);
631                 cur_len = min(len, frag_len);
632                 __frame_add_frag(frame, skb_frag_page(frag),
633                                  skb_frag_address(frag), cur_len, frag_len);
634                 len -= cur_len;
635                 frag++;
636         }
637 }
638
639 static struct sk_buff *
640 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
641                        int offset, int len, bool reuse_frag)
642 {
643         struct sk_buff *frame;
644         int cur_len = len;
645
646         if (skb->len - offset < len)
647                 return NULL;
648
649         /*
650          * When reusing framents, copy some data to the head to simplify
651          * ethernet header handling and speed up protocol header processing
652          * in the stack later.
653          */
654         if (reuse_frag)
655                 cur_len = min_t(int, len, 32);
656
657         /*
658          * Allocate and reserve two bytes more for payload
659          * alignment since sizeof(struct ethhdr) is 14.
660          */
661         frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
662         if (!frame)
663                 return NULL;
664
665         skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
666         skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
667
668         len -= cur_len;
669         if (!len)
670                 return frame;
671
672         offset += cur_len;
673         __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
674
675         return frame;
676 }
677
678 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
679                               const u8 *addr, enum nl80211_iftype iftype,
680                               const unsigned int extra_headroom,
681                               const u8 *check_da, const u8 *check_sa)
682 {
683         unsigned int hlen = ALIGN(extra_headroom, 4);
684         struct sk_buff *frame = NULL;
685         u16 ethertype;
686         u8 *payload;
687         int offset = 0, remaining;
688         struct ethhdr eth;
689         bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
690         bool reuse_skb = false;
691         bool last = false;
692
693         while (!last) {
694                 unsigned int subframe_len;
695                 int len;
696                 u8 padding;
697
698                 skb_copy_bits(skb, offset, &eth, sizeof(eth));
699                 len = ntohs(eth.h_proto);
700                 subframe_len = sizeof(struct ethhdr) + len;
701                 padding = (4 - subframe_len) & 0x3;
702
703                 /* the last MSDU has no padding */
704                 remaining = skb->len - offset;
705                 if (subframe_len > remaining)
706                         goto purge;
707
708                 offset += sizeof(struct ethhdr);
709                 last = remaining <= subframe_len + padding;
710
711                 /* FIXME: should we really accept multicast DA? */
712                 if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
713                      !ether_addr_equal(check_da, eth.h_dest)) ||
714                     (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
715                         offset += len + padding;
716                         continue;
717                 }
718
719                 /* reuse skb for the last subframe */
720                 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
721                         skb_pull(skb, offset);
722                         frame = skb;
723                         reuse_skb = true;
724                 } else {
725                         frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
726                                                        reuse_frag);
727                         if (!frame)
728                                 goto purge;
729
730                         offset += len + padding;
731                 }
732
733                 skb_reset_network_header(frame);
734                 frame->dev = skb->dev;
735                 frame->priority = skb->priority;
736
737                 payload = frame->data;
738                 ethertype = (payload[6] << 8) | payload[7];
739                 if (likely((ether_addr_equal(payload, rfc1042_header) &&
740                             ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
741                            ether_addr_equal(payload, bridge_tunnel_header))) {
742                         eth.h_proto = htons(ethertype);
743                         skb_pull(frame, ETH_ALEN + 2);
744                 }
745
746                 memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
747                 __skb_queue_tail(list, frame);
748         }
749
750         if (!reuse_skb)
751                 dev_kfree_skb(skb);
752
753         return;
754
755  purge:
756         __skb_queue_purge(list);
757         dev_kfree_skb(skb);
758 }
759 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
760
761 /* Given a data frame determine the 802.1p/1d tag to use. */
762 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
763                                     struct cfg80211_qos_map *qos_map)
764 {
765         unsigned int dscp;
766         unsigned char vlan_priority;
767         unsigned int ret;
768
769         /* skb->priority values from 256->263 are magic values to
770          * directly indicate a specific 802.1d priority.  This is used
771          * to allow 802.1d priority to be passed directly in from VLAN
772          * tags, etc.
773          */
774         if (skb->priority >= 256 && skb->priority <= 263) {
775                 ret = skb->priority - 256;
776                 goto out;
777         }
778
779         if (skb_vlan_tag_present(skb)) {
780                 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
781                         >> VLAN_PRIO_SHIFT;
782                 if (vlan_priority > 0) {
783                         ret = vlan_priority;
784                         goto out;
785                 }
786         }
787
788         switch (skb->protocol) {
789         case htons(ETH_P_IP):
790                 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
791                 break;
792         case htons(ETH_P_IPV6):
793                 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
794                 break;
795         case htons(ETH_P_MPLS_UC):
796         case htons(ETH_P_MPLS_MC): {
797                 struct mpls_label mpls_tmp, *mpls;
798
799                 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
800                                           sizeof(*mpls), &mpls_tmp);
801                 if (!mpls)
802                         return 0;
803
804                 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
805                         >> MPLS_LS_TC_SHIFT;
806                 goto out;
807         }
808         case htons(ETH_P_80221):
809                 /* 802.21 is always network control traffic */
810                 return 7;
811         default:
812                 return 0;
813         }
814
815         if (qos_map) {
816                 unsigned int i, tmp_dscp = dscp >> 2;
817
818                 for (i = 0; i < qos_map->num_des; i++) {
819                         if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
820                                 ret = qos_map->dscp_exception[i].up;
821                                 goto out;
822                         }
823                 }
824
825                 for (i = 0; i < 8; i++) {
826                         if (tmp_dscp >= qos_map->up[i].low &&
827                             tmp_dscp <= qos_map->up[i].high) {
828                                 ret = i;
829                                 goto out;
830                         }
831                 }
832         }
833
834         ret = dscp >> 5;
835 out:
836         return array_index_nospec(ret, IEEE80211_NUM_TIDS);
837 }
838 EXPORT_SYMBOL(cfg80211_classify8021d);
839
840 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
841 {
842         const struct cfg80211_bss_ies *ies;
843
844         ies = rcu_dereference(bss->ies);
845         if (!ies)
846                 return NULL;
847
848         return cfg80211_find_elem(id, ies->data, ies->len);
849 }
850 EXPORT_SYMBOL(ieee80211_bss_get_elem);
851
852 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
853 {
854         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
855         struct net_device *dev = wdev->netdev;
856         int i;
857
858         if (!wdev->connect_keys)
859                 return;
860
861         for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
862                 if (!wdev->connect_keys->params[i].cipher)
863                         continue;
864                 if (rdev_add_key(rdev, dev, i, false, NULL,
865                                  &wdev->connect_keys->params[i])) {
866                         netdev_err(dev, "failed to set key %d\n", i);
867                         continue;
868                 }
869                 if (wdev->connect_keys->def == i &&
870                     rdev_set_default_key(rdev, dev, i, true, true)) {
871                         netdev_err(dev, "failed to set defkey %d\n", i);
872                         continue;
873                 }
874         }
875
876         kfree_sensitive(wdev->connect_keys);
877         wdev->connect_keys = NULL;
878 }
879
880 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
881 {
882         struct cfg80211_event *ev;
883         unsigned long flags;
884
885         spin_lock_irqsave(&wdev->event_lock, flags);
886         while (!list_empty(&wdev->event_list)) {
887                 ev = list_first_entry(&wdev->event_list,
888                                       struct cfg80211_event, list);
889                 list_del(&ev->list);
890                 spin_unlock_irqrestore(&wdev->event_lock, flags);
891
892                 wdev_lock(wdev);
893                 switch (ev->type) {
894                 case EVENT_CONNECT_RESULT:
895                         __cfg80211_connect_result(
896                                 wdev->netdev,
897                                 &ev->cr,
898                                 ev->cr.status == WLAN_STATUS_SUCCESS);
899                         break;
900                 case EVENT_ROAMED:
901                         __cfg80211_roamed(wdev, &ev->rm);
902                         break;
903                 case EVENT_DISCONNECTED:
904                         __cfg80211_disconnected(wdev->netdev,
905                                                 ev->dc.ie, ev->dc.ie_len,
906                                                 ev->dc.reason,
907                                                 !ev->dc.locally_generated);
908                         break;
909                 case EVENT_IBSS_JOINED:
910                         __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
911                                                ev->ij.channel);
912                         break;
913                 case EVENT_STOPPED:
914                         __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
915                         break;
916                 case EVENT_PORT_AUTHORIZED:
917                         __cfg80211_port_authorized(wdev, ev->pa.bssid);
918                         break;
919                 }
920                 wdev_unlock(wdev);
921
922                 kfree(ev);
923
924                 spin_lock_irqsave(&wdev->event_lock, flags);
925         }
926         spin_unlock_irqrestore(&wdev->event_lock, flags);
927 }
928
929 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
930 {
931         struct wireless_dev *wdev;
932
933         ASSERT_RTNL();
934
935         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
936                 cfg80211_process_wdev_events(wdev);
937 }
938
939 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
940                           struct net_device *dev, enum nl80211_iftype ntype,
941                           struct vif_params *params)
942 {
943         int err;
944         enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
945
946         ASSERT_RTNL();
947
948         /* don't support changing VLANs, you just re-create them */
949         if (otype == NL80211_IFTYPE_AP_VLAN)
950                 return -EOPNOTSUPP;
951
952         /* cannot change into P2P device or NAN */
953         if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
954             ntype == NL80211_IFTYPE_NAN)
955                 return -EOPNOTSUPP;
956
957         if (!rdev->ops->change_virtual_intf ||
958             !(rdev->wiphy.interface_modes & (1 << ntype)))
959                 return -EOPNOTSUPP;
960
961         /* if it's part of a bridge, reject changing type to station/ibss */
962         if (netif_is_bridge_port(dev) &&
963             (ntype == NL80211_IFTYPE_ADHOC ||
964              ntype == NL80211_IFTYPE_STATION ||
965              ntype == NL80211_IFTYPE_P2P_CLIENT))
966                 return -EBUSY;
967
968         if (ntype != otype) {
969                 dev->ieee80211_ptr->use_4addr = false;
970                 dev->ieee80211_ptr->mesh_id_up_len = 0;
971                 wdev_lock(dev->ieee80211_ptr);
972                 rdev_set_qos_map(rdev, dev, NULL);
973                 wdev_unlock(dev->ieee80211_ptr);
974
975                 switch (otype) {
976                 case NL80211_IFTYPE_AP:
977                         cfg80211_stop_ap(rdev, dev, true);
978                         break;
979                 case NL80211_IFTYPE_ADHOC:
980                         cfg80211_leave_ibss(rdev, dev, false);
981                         break;
982                 case NL80211_IFTYPE_STATION:
983                 case NL80211_IFTYPE_P2P_CLIENT:
984                         wdev_lock(dev->ieee80211_ptr);
985                         cfg80211_disconnect(rdev, dev,
986                                             WLAN_REASON_DEAUTH_LEAVING, true);
987                         wdev_unlock(dev->ieee80211_ptr);
988                         break;
989                 case NL80211_IFTYPE_MESH_POINT:
990                         /* mesh should be handled? */
991                         break;
992                 default:
993                         break;
994                 }
995
996                 cfg80211_process_rdev_events(rdev);
997                 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
998         }
999
1000         err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1001
1002         WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1003
1004         if (!err && params && params->use_4addr != -1)
1005                 dev->ieee80211_ptr->use_4addr = params->use_4addr;
1006
1007         if (!err) {
1008                 dev->priv_flags &= ~IFF_DONT_BRIDGE;
1009                 switch (ntype) {
1010                 case NL80211_IFTYPE_STATION:
1011                         if (dev->ieee80211_ptr->use_4addr)
1012                                 break;
1013                         fallthrough;
1014                 case NL80211_IFTYPE_OCB:
1015                 case NL80211_IFTYPE_P2P_CLIENT:
1016                 case NL80211_IFTYPE_ADHOC:
1017                         dev->priv_flags |= IFF_DONT_BRIDGE;
1018                         break;
1019                 case NL80211_IFTYPE_P2P_GO:
1020                 case NL80211_IFTYPE_AP:
1021                 case NL80211_IFTYPE_AP_VLAN:
1022                 case NL80211_IFTYPE_WDS:
1023                 case NL80211_IFTYPE_MESH_POINT:
1024                         /* bridging OK */
1025                         break;
1026                 case NL80211_IFTYPE_MONITOR:
1027                         /* monitor can't bridge anyway */
1028                         break;
1029                 case NL80211_IFTYPE_UNSPECIFIED:
1030                 case NUM_NL80211_IFTYPES:
1031                         /* not happening */
1032                         break;
1033                 case NL80211_IFTYPE_P2P_DEVICE:
1034                 case NL80211_IFTYPE_NAN:
1035                         WARN_ON(1);
1036                         break;
1037                 }
1038         }
1039
1040         if (!err && ntype != otype && netif_running(dev)) {
1041                 cfg80211_update_iface_num(rdev, ntype, 1);
1042                 cfg80211_update_iface_num(rdev, otype, -1);
1043         }
1044
1045         return err;
1046 }
1047
1048 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1049 {
1050         int modulation, streams, bitrate;
1051
1052         /* the formula below does only work for MCS values smaller than 32 */
1053         if (WARN_ON_ONCE(rate->mcs >= 32))
1054                 return 0;
1055
1056         modulation = rate->mcs & 7;
1057         streams = (rate->mcs >> 3) + 1;
1058
1059         bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1060
1061         if (modulation < 4)
1062                 bitrate *= (modulation + 1);
1063         else if (modulation == 4)
1064                 bitrate *= (modulation + 2);
1065         else
1066                 bitrate *= (modulation + 3);
1067
1068         bitrate *= streams;
1069
1070         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1071                 bitrate = (bitrate / 9) * 10;
1072
1073         /* do NOT round down here */
1074         return (bitrate + 50000) / 100000;
1075 }
1076
1077 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1078 {
1079         static const u32 __mcs2bitrate[] = {
1080                 /* control PHY */
1081                 [0] =   275,
1082                 /* SC PHY */
1083                 [1] =  3850,
1084                 [2] =  7700,
1085                 [3] =  9625,
1086                 [4] = 11550,
1087                 [5] = 12512, /* 1251.25 mbps */
1088                 [6] = 15400,
1089                 [7] = 19250,
1090                 [8] = 23100,
1091                 [9] = 25025,
1092                 [10] = 30800,
1093                 [11] = 38500,
1094                 [12] = 46200,
1095                 /* OFDM PHY */
1096                 [13] =  6930,
1097                 [14] =  8662, /* 866.25 mbps */
1098                 [15] = 13860,
1099                 [16] = 17325,
1100                 [17] = 20790,
1101                 [18] = 27720,
1102                 [19] = 34650,
1103                 [20] = 41580,
1104                 [21] = 45045,
1105                 [22] = 51975,
1106                 [23] = 62370,
1107                 [24] = 67568, /* 6756.75 mbps */
1108                 /* LP-SC PHY */
1109                 [25] =  6260,
1110                 [26] =  8340,
1111                 [27] = 11120,
1112                 [28] = 12510,
1113                 [29] = 16680,
1114                 [30] = 22240,
1115                 [31] = 25030,
1116         };
1117
1118         if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1119                 return 0;
1120
1121         return __mcs2bitrate[rate->mcs];
1122 }
1123
1124 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1125 {
1126         static const u32 __mcs2bitrate[] = {
1127                 /* control PHY */
1128                 [0] =   275,
1129                 /* SC PHY */
1130                 [1] =  3850,
1131                 [2] =  7700,
1132                 [3] =  9625,
1133                 [4] = 11550,
1134                 [5] = 12512, /* 1251.25 mbps */
1135                 [6] = 13475,
1136                 [7] = 15400,
1137                 [8] = 19250,
1138                 [9] = 23100,
1139                 [10] = 25025,
1140                 [11] = 26950,
1141                 [12] = 30800,
1142                 [13] = 38500,
1143                 [14] = 46200,
1144                 [15] = 50050,
1145                 [16] = 53900,
1146                 [17] = 57750,
1147                 [18] = 69300,
1148                 [19] = 75075,
1149                 [20] = 80850,
1150         };
1151
1152         if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1153                 return 0;
1154
1155         return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1156 }
1157
1158 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1159 {
1160         static const u32 base[4][10] = {
1161                 {   6500000,
1162                    13000000,
1163                    19500000,
1164                    26000000,
1165                    39000000,
1166                    52000000,
1167                    58500000,
1168                    65000000,
1169                    78000000,
1170                 /* not in the spec, but some devices use this: */
1171                    86500000,
1172                 },
1173                 {  13500000,
1174                    27000000,
1175                    40500000,
1176                    54000000,
1177                    81000000,
1178                   108000000,
1179                   121500000,
1180                   135000000,
1181                   162000000,
1182                   180000000,
1183                 },
1184                 {  29300000,
1185                    58500000,
1186                    87800000,
1187                   117000000,
1188                   175500000,
1189                   234000000,
1190                   263300000,
1191                   292500000,
1192                   351000000,
1193                   390000000,
1194                 },
1195                 {  58500000,
1196                   117000000,
1197                   175500000,
1198                   234000000,
1199                   351000000,
1200                   468000000,
1201                   526500000,
1202                   585000000,
1203                   702000000,
1204                   780000000,
1205                 },
1206         };
1207         u32 bitrate;
1208         int idx;
1209
1210         if (rate->mcs > 9)
1211                 goto warn;
1212
1213         switch (rate->bw) {
1214         case RATE_INFO_BW_160:
1215                 idx = 3;
1216                 break;
1217         case RATE_INFO_BW_80:
1218                 idx = 2;
1219                 break;
1220         case RATE_INFO_BW_40:
1221                 idx = 1;
1222                 break;
1223         case RATE_INFO_BW_5:
1224         case RATE_INFO_BW_10:
1225         default:
1226                 goto warn;
1227         case RATE_INFO_BW_20:
1228                 idx = 0;
1229         }
1230
1231         bitrate = base[idx][rate->mcs];
1232         bitrate *= rate->nss;
1233
1234         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1235                 bitrate = (bitrate / 9) * 10;
1236
1237         /* do NOT round down here */
1238         return (bitrate + 50000) / 100000;
1239  warn:
1240         WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1241                   rate->bw, rate->mcs, rate->nss);
1242         return 0;
1243 }
1244
1245 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1246 {
1247 #define SCALE 2048
1248         u16 mcs_divisors[12] = {
1249                 34133, /* 16.666666... */
1250                 17067, /*  8.333333... */
1251                 11378, /*  5.555555... */
1252                  8533, /*  4.166666... */
1253                  5689, /*  2.777777... */
1254                  4267, /*  2.083333... */
1255                  3923, /*  1.851851... */
1256                  3413, /*  1.666666... */
1257                  2844, /*  1.388888... */
1258                  2560, /*  1.250000... */
1259                  2276, /*  1.111111... */
1260                  2048, /*  1.000000... */
1261         };
1262         u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1263         u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
1264         u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1265         u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1266         u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1267         u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1268         u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1269         u64 tmp;
1270         u32 result;
1271
1272         if (WARN_ON_ONCE(rate->mcs > 11))
1273                 return 0;
1274
1275         if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1276                 return 0;
1277         if (WARN_ON_ONCE(rate->he_ru_alloc >
1278                          NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1279                 return 0;
1280         if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1281                 return 0;
1282
1283         if (rate->bw == RATE_INFO_BW_160)
1284                 result = rates_160M[rate->he_gi];
1285         else if (rate->bw == RATE_INFO_BW_80 ||
1286                  (rate->bw == RATE_INFO_BW_HE_RU &&
1287                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1288                 result = rates_969[rate->he_gi];
1289         else if (rate->bw == RATE_INFO_BW_40 ||
1290                  (rate->bw == RATE_INFO_BW_HE_RU &&
1291                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1292                 result = rates_484[rate->he_gi];
1293         else if (rate->bw == RATE_INFO_BW_20 ||
1294                  (rate->bw == RATE_INFO_BW_HE_RU &&
1295                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1296                 result = rates_242[rate->he_gi];
1297         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1298                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1299                 result = rates_106[rate->he_gi];
1300         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1301                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1302                 result = rates_52[rate->he_gi];
1303         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1304                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1305                 result = rates_26[rate->he_gi];
1306         else {
1307                 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1308                      rate->bw, rate->he_ru_alloc);
1309                 return 0;
1310         }
1311
1312         /* now scale to the appropriate MCS */
1313         tmp = result;
1314         tmp *= SCALE;
1315         do_div(tmp, mcs_divisors[rate->mcs]);
1316         result = tmp;
1317
1318         /* and take NSS, DCM into account */
1319         result = (result * rate->nss) / 8;
1320         if (rate->he_dcm)
1321                 result /= 2;
1322
1323         return result / 10000;
1324 }
1325
1326 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1327 {
1328         if (rate->flags & RATE_INFO_FLAGS_MCS)
1329                 return cfg80211_calculate_bitrate_ht(rate);
1330         if (rate->flags & RATE_INFO_FLAGS_DMG)
1331                 return cfg80211_calculate_bitrate_dmg(rate);
1332         if (rate->flags & RATE_INFO_FLAGS_EDMG)
1333                 return cfg80211_calculate_bitrate_edmg(rate);
1334         if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1335                 return cfg80211_calculate_bitrate_vht(rate);
1336         if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1337                 return cfg80211_calculate_bitrate_he(rate);
1338
1339         return rate->legacy;
1340 }
1341 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1342
1343 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1344                           enum ieee80211_p2p_attr_id attr,
1345                           u8 *buf, unsigned int bufsize)
1346 {
1347         u8 *out = buf;
1348         u16 attr_remaining = 0;
1349         bool desired_attr = false;
1350         u16 desired_len = 0;
1351
1352         while (len > 0) {
1353                 unsigned int iedatalen;
1354                 unsigned int copy;
1355                 const u8 *iedata;
1356
1357                 if (len < 2)
1358                         return -EILSEQ;
1359                 iedatalen = ies[1];
1360                 if (iedatalen + 2 > len)
1361                         return -EILSEQ;
1362
1363                 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1364                         goto cont;
1365
1366                 if (iedatalen < 4)
1367                         goto cont;
1368
1369                 iedata = ies + 2;
1370
1371                 /* check WFA OUI, P2P subtype */
1372                 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1373                     iedata[2] != 0x9a || iedata[3] != 0x09)
1374                         goto cont;
1375
1376                 iedatalen -= 4;
1377                 iedata += 4;
1378
1379                 /* check attribute continuation into this IE */
1380                 copy = min_t(unsigned int, attr_remaining, iedatalen);
1381                 if (copy && desired_attr) {
1382                         desired_len += copy;
1383                         if (out) {
1384                                 memcpy(out, iedata, min(bufsize, copy));
1385                                 out += min(bufsize, copy);
1386                                 bufsize -= min(bufsize, copy);
1387                         }
1388
1389
1390                         if (copy == attr_remaining)
1391                                 return desired_len;
1392                 }
1393
1394                 attr_remaining -= copy;
1395                 if (attr_remaining)
1396                         goto cont;
1397
1398                 iedatalen -= copy;
1399                 iedata += copy;
1400
1401                 while (iedatalen > 0) {
1402                         u16 attr_len;
1403
1404                         /* P2P attribute ID & size must fit */
1405                         if (iedatalen < 3)
1406                                 return -EILSEQ;
1407                         desired_attr = iedata[0] == attr;
1408                         attr_len = get_unaligned_le16(iedata + 1);
1409                         iedatalen -= 3;
1410                         iedata += 3;
1411
1412                         copy = min_t(unsigned int, attr_len, iedatalen);
1413
1414                         if (desired_attr) {
1415                                 desired_len += copy;
1416                                 if (out) {
1417                                         memcpy(out, iedata, min(bufsize, copy));
1418                                         out += min(bufsize, copy);
1419                                         bufsize -= min(bufsize, copy);
1420                                 }
1421
1422                                 if (copy == attr_len)
1423                                         return desired_len;
1424                         }
1425
1426                         iedata += copy;
1427                         iedatalen -= copy;
1428                         attr_remaining = attr_len - copy;
1429                 }
1430
1431  cont:
1432                 len -= ies[1] + 2;
1433                 ies += ies[1] + 2;
1434         }
1435
1436         if (attr_remaining && desired_attr)
1437                 return -EILSEQ;
1438
1439         return -ENOENT;
1440 }
1441 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1442
1443 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1444 {
1445         int i;
1446
1447         /* Make sure array values are legal */
1448         if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1449                 return false;
1450
1451         i = 0;
1452         while (i < n_ids) {
1453                 if (ids[i] == WLAN_EID_EXTENSION) {
1454                         if (id_ext && (ids[i + 1] == id))
1455                                 return true;
1456
1457                         i += 2;
1458                         continue;
1459                 }
1460
1461                 if (ids[i] == id && !id_ext)
1462                         return true;
1463
1464                 i++;
1465         }
1466         return false;
1467 }
1468
1469 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1470 {
1471         /* we assume a validly formed IEs buffer */
1472         u8 len = ies[pos + 1];
1473
1474         pos += 2 + len;
1475
1476         /* the IE itself must have 255 bytes for fragments to follow */
1477         if (len < 255)
1478                 return pos;
1479
1480         while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1481                 len = ies[pos + 1];
1482                 pos += 2 + len;
1483         }
1484
1485         return pos;
1486 }
1487
1488 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1489                               const u8 *ids, int n_ids,
1490                               const u8 *after_ric, int n_after_ric,
1491                               size_t offset)
1492 {
1493         size_t pos = offset;
1494
1495         while (pos < ielen) {
1496                 u8 ext = 0;
1497
1498                 if (ies[pos] == WLAN_EID_EXTENSION)
1499                         ext = 2;
1500                 if ((pos + ext) >= ielen)
1501                         break;
1502
1503                 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1504                                           ies[pos] == WLAN_EID_EXTENSION))
1505                         break;
1506
1507                 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1508                         pos = skip_ie(ies, ielen, pos);
1509
1510                         while (pos < ielen) {
1511                                 if (ies[pos] == WLAN_EID_EXTENSION)
1512                                         ext = 2;
1513                                 else
1514                                         ext = 0;
1515
1516                                 if ((pos + ext) >= ielen)
1517                                         break;
1518
1519                                 if (!ieee80211_id_in_list(after_ric,
1520                                                           n_after_ric,
1521                                                           ies[pos + ext],
1522                                                           ext == 2))
1523                                         pos = skip_ie(ies, ielen, pos);
1524                                 else
1525                                         break;
1526                         }
1527                 } else {
1528                         pos = skip_ie(ies, ielen, pos);
1529                 }
1530         }
1531
1532         return pos;
1533 }
1534 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1535
1536 bool ieee80211_operating_class_to_band(u8 operating_class,
1537                                        enum nl80211_band *band)
1538 {
1539         switch (operating_class) {
1540         case 112:
1541         case 115 ... 127:
1542         case 128 ... 130:
1543                 *band = NL80211_BAND_5GHZ;
1544                 return true;
1545         case 131 ... 135:
1546                 *band = NL80211_BAND_6GHZ;
1547                 return true;
1548         case 81:
1549         case 82:
1550         case 83:
1551         case 84:
1552                 *band = NL80211_BAND_2GHZ;
1553                 return true;
1554         case 180:
1555                 *band = NL80211_BAND_60GHZ;
1556                 return true;
1557         }
1558
1559         return false;
1560 }
1561 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1562
1563 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1564                                           u8 *op_class)
1565 {
1566         u8 vht_opclass;
1567         u32 freq = chandef->center_freq1;
1568
1569         if (freq >= 2412 && freq <= 2472) {
1570                 if (chandef->width > NL80211_CHAN_WIDTH_40)
1571                         return false;
1572
1573                 /* 2.407 GHz, channels 1..13 */
1574                 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1575                         if (freq > chandef->chan->center_freq)
1576                                 *op_class = 83; /* HT40+ */
1577                         else
1578                                 *op_class = 84; /* HT40- */
1579                 } else {
1580                         *op_class = 81;
1581                 }
1582
1583                 return true;
1584         }
1585
1586         if (freq == 2484) {
1587                 /* channel 14 is only for IEEE 802.11b */
1588                 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1589                         return false;
1590
1591                 *op_class = 82; /* channel 14 */
1592                 return true;
1593         }
1594
1595         switch (chandef->width) {
1596         case NL80211_CHAN_WIDTH_80:
1597                 vht_opclass = 128;
1598                 break;
1599         case NL80211_CHAN_WIDTH_160:
1600                 vht_opclass = 129;
1601                 break;
1602         case NL80211_CHAN_WIDTH_80P80:
1603                 vht_opclass = 130;
1604                 break;
1605         case NL80211_CHAN_WIDTH_10:
1606         case NL80211_CHAN_WIDTH_5:
1607                 return false; /* unsupported for now */
1608         default:
1609                 vht_opclass = 0;
1610                 break;
1611         }
1612
1613         /* 5 GHz, channels 36..48 */
1614         if (freq >= 5180 && freq <= 5240) {
1615                 if (vht_opclass) {
1616                         *op_class = vht_opclass;
1617                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1618                         if (freq > chandef->chan->center_freq)
1619                                 *op_class = 116;
1620                         else
1621                                 *op_class = 117;
1622                 } else {
1623                         *op_class = 115;
1624                 }
1625
1626                 return true;
1627         }
1628
1629         /* 5 GHz, channels 52..64 */
1630         if (freq >= 5260 && freq <= 5320) {
1631                 if (vht_opclass) {
1632                         *op_class = vht_opclass;
1633                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1634                         if (freq > chandef->chan->center_freq)
1635                                 *op_class = 119;
1636                         else
1637                                 *op_class = 120;
1638                 } else {
1639                         *op_class = 118;
1640                 }
1641
1642                 return true;
1643         }
1644
1645         /* 5 GHz, channels 100..144 */
1646         if (freq >= 5500 && freq <= 5720) {
1647                 if (vht_opclass) {
1648                         *op_class = vht_opclass;
1649                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1650                         if (freq > chandef->chan->center_freq)
1651                                 *op_class = 122;
1652                         else
1653                                 *op_class = 123;
1654                 } else {
1655                         *op_class = 121;
1656                 }
1657
1658                 return true;
1659         }
1660
1661         /* 5 GHz, channels 149..169 */
1662         if (freq >= 5745 && freq <= 5845) {
1663                 if (vht_opclass) {
1664                         *op_class = vht_opclass;
1665                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1666                         if (freq > chandef->chan->center_freq)
1667                                 *op_class = 126;
1668                         else
1669                                 *op_class = 127;
1670                 } else if (freq <= 5805) {
1671                         *op_class = 124;
1672                 } else {
1673                         *op_class = 125;
1674                 }
1675
1676                 return true;
1677         }
1678
1679         /* 56.16 GHz, channel 1..4 */
1680         if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1681                 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1682                         return false;
1683
1684                 *op_class = 180;
1685                 return true;
1686         }
1687
1688         /* not supported yet */
1689         return false;
1690 }
1691 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1692
1693 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1694                                        u32 *beacon_int_gcd,
1695                                        bool *beacon_int_different)
1696 {
1697         struct wireless_dev *wdev;
1698
1699         *beacon_int_gcd = 0;
1700         *beacon_int_different = false;
1701
1702         list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1703                 if (!wdev->beacon_interval)
1704                         continue;
1705
1706                 if (!*beacon_int_gcd) {
1707                         *beacon_int_gcd = wdev->beacon_interval;
1708                         continue;
1709                 }
1710
1711                 if (wdev->beacon_interval == *beacon_int_gcd)
1712                         continue;
1713
1714                 *beacon_int_different = true;
1715                 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1716         }
1717
1718         if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1719                 if (*beacon_int_gcd)
1720                         *beacon_int_different = true;
1721                 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1722         }
1723 }
1724
1725 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1726                                  enum nl80211_iftype iftype, u32 beacon_int)
1727 {
1728         /*
1729          * This is just a basic pre-condition check; if interface combinations
1730          * are possible the driver must already be checking those with a call
1731          * to cfg80211_check_combinations(), in which case we'll validate more
1732          * through the cfg80211_calculate_bi_data() call and code in
1733          * cfg80211_iter_combinations().
1734          */
1735
1736         if (beacon_int < 10 || beacon_int > 10000)
1737                 return -EINVAL;
1738
1739         return 0;
1740 }
1741
1742 int cfg80211_iter_combinations(struct wiphy *wiphy,
1743                                struct iface_combination_params *params,
1744                                void (*iter)(const struct ieee80211_iface_combination *c,
1745                                             void *data),
1746                                void *data)
1747 {
1748         const struct ieee80211_regdomain *regdom;
1749         enum nl80211_dfs_regions region = 0;
1750         int i, j, iftype;
1751         int num_interfaces = 0;
1752         u32 used_iftypes = 0;
1753         u32 beacon_int_gcd;
1754         bool beacon_int_different;
1755
1756         /*
1757          * This is a bit strange, since the iteration used to rely only on
1758          * the data given by the driver, but here it now relies on context,
1759          * in form of the currently operating interfaces.
1760          * This is OK for all current users, and saves us from having to
1761          * push the GCD calculations into all the drivers.
1762          * In the future, this should probably rely more on data that's in
1763          * cfg80211 already - the only thing not would appear to be any new
1764          * interfaces (while being brought up) and channel/radar data.
1765          */
1766         cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1767                                    &beacon_int_gcd, &beacon_int_different);
1768
1769         if (params->radar_detect) {
1770                 rcu_read_lock();
1771                 regdom = rcu_dereference(cfg80211_regdomain);
1772                 if (regdom)
1773                         region = regdom->dfs_region;
1774                 rcu_read_unlock();
1775         }
1776
1777         for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1778                 num_interfaces += params->iftype_num[iftype];
1779                 if (params->iftype_num[iftype] > 0 &&
1780                     !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1781                         used_iftypes |= BIT(iftype);
1782         }
1783
1784         for (i = 0; i < wiphy->n_iface_combinations; i++) {
1785                 const struct ieee80211_iface_combination *c;
1786                 struct ieee80211_iface_limit *limits;
1787                 u32 all_iftypes = 0;
1788
1789                 c = &wiphy->iface_combinations[i];
1790
1791                 if (num_interfaces > c->max_interfaces)
1792                         continue;
1793                 if (params->num_different_channels > c->num_different_channels)
1794                         continue;
1795
1796                 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1797                                  GFP_KERNEL);
1798                 if (!limits)
1799                         return -ENOMEM;
1800
1801                 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1802                         if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1803                                 continue;
1804                         for (j = 0; j < c->n_limits; j++) {
1805                                 all_iftypes |= limits[j].types;
1806                                 if (!(limits[j].types & BIT(iftype)))
1807                                         continue;
1808                                 if (limits[j].max < params->iftype_num[iftype])
1809                                         goto cont;
1810                                 limits[j].max -= params->iftype_num[iftype];
1811                         }
1812                 }
1813
1814                 if (params->radar_detect !=
1815                         (c->radar_detect_widths & params->radar_detect))
1816                         goto cont;
1817
1818                 if (params->radar_detect && c->radar_detect_regions &&
1819                     !(c->radar_detect_regions & BIT(region)))
1820                         goto cont;
1821
1822                 /* Finally check that all iftypes that we're currently
1823                  * using are actually part of this combination. If they
1824                  * aren't then we can't use this combination and have
1825                  * to continue to the next.
1826                  */
1827                 if ((all_iftypes & used_iftypes) != used_iftypes)
1828                         goto cont;
1829
1830                 if (beacon_int_gcd) {
1831                         if (c->beacon_int_min_gcd &&
1832                             beacon_int_gcd < c->beacon_int_min_gcd)
1833                                 goto cont;
1834                         if (!c->beacon_int_min_gcd && beacon_int_different)
1835                                 goto cont;
1836                 }
1837
1838                 /* This combination covered all interface types and
1839                  * supported the requested numbers, so we're good.
1840                  */
1841
1842                 (*iter)(c, data);
1843  cont:
1844                 kfree(limits);
1845         }
1846
1847         return 0;
1848 }
1849 EXPORT_SYMBOL(cfg80211_iter_combinations);
1850
1851 static void
1852 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1853                           void *data)
1854 {
1855         int *num = data;
1856         (*num)++;
1857 }
1858
1859 int cfg80211_check_combinations(struct wiphy *wiphy,
1860                                 struct iface_combination_params *params)
1861 {
1862         int err, num = 0;
1863
1864         err = cfg80211_iter_combinations(wiphy, params,
1865                                          cfg80211_iter_sum_ifcombs, &num);
1866         if (err)
1867                 return err;
1868         if (num == 0)
1869                 return -EBUSY;
1870
1871         return 0;
1872 }
1873 EXPORT_SYMBOL(cfg80211_check_combinations);
1874
1875 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1876                            const u8 *rates, unsigned int n_rates,
1877                            u32 *mask)
1878 {
1879         int i, j;
1880
1881         if (!sband)
1882                 return -EINVAL;
1883
1884         if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1885                 return -EINVAL;
1886
1887         *mask = 0;
1888
1889         for (i = 0; i < n_rates; i++) {
1890                 int rate = (rates[i] & 0x7f) * 5;
1891                 bool found = false;
1892
1893                 for (j = 0; j < sband->n_bitrates; j++) {
1894                         if (sband->bitrates[j].bitrate == rate) {
1895                                 found = true;
1896                                 *mask |= BIT(j);
1897                                 break;
1898                         }
1899                 }
1900                 if (!found)
1901                         return -EINVAL;
1902         }
1903
1904         /*
1905          * mask must have at least one bit set here since we
1906          * didn't accept a 0-length rates array nor allowed
1907          * entries in the array that didn't exist
1908          */
1909
1910         return 0;
1911 }
1912
1913 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1914 {
1915         enum nl80211_band band;
1916         unsigned int n_channels = 0;
1917
1918         for (band = 0; band < NUM_NL80211_BANDS; band++)
1919                 if (wiphy->bands[band])
1920                         n_channels += wiphy->bands[band]->n_channels;
1921
1922         return n_channels;
1923 }
1924 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1925
1926 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1927                          struct station_info *sinfo)
1928 {
1929         struct cfg80211_registered_device *rdev;
1930         struct wireless_dev *wdev;
1931
1932         wdev = dev->ieee80211_ptr;
1933         if (!wdev)
1934                 return -EOPNOTSUPP;
1935
1936         rdev = wiphy_to_rdev(wdev->wiphy);
1937         if (!rdev->ops->get_station)
1938                 return -EOPNOTSUPP;
1939
1940         memset(sinfo, 0, sizeof(*sinfo));
1941
1942         return rdev_get_station(rdev, dev, mac_addr, sinfo);
1943 }
1944 EXPORT_SYMBOL(cfg80211_get_station);
1945
1946 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1947 {
1948         int i;
1949
1950         if (!f)
1951                 return;
1952
1953         kfree(f->serv_spec_info);
1954         kfree(f->srf_bf);
1955         kfree(f->srf_macs);
1956         for (i = 0; i < f->num_rx_filters; i++)
1957                 kfree(f->rx_filters[i].filter);
1958
1959         for (i = 0; i < f->num_tx_filters; i++)
1960                 kfree(f->tx_filters[i].filter);
1961
1962         kfree(f->rx_filters);
1963         kfree(f->tx_filters);
1964         kfree(f);
1965 }
1966 EXPORT_SYMBOL(cfg80211_free_nan_func);
1967
1968 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1969                                 u32 center_freq_khz, u32 bw_khz)
1970 {
1971         u32 start_freq_khz, end_freq_khz;
1972
1973         start_freq_khz = center_freq_khz - (bw_khz / 2);
1974         end_freq_khz = center_freq_khz + (bw_khz / 2);
1975
1976         if (start_freq_khz >= freq_range->start_freq_khz &&
1977             end_freq_khz <= freq_range->end_freq_khz)
1978                 return true;
1979
1980         return false;
1981 }
1982
1983 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
1984 {
1985         sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
1986                                 sizeof(*(sinfo->pertid)),
1987                                 gfp);
1988         if (!sinfo->pertid)
1989                 return -ENOMEM;
1990
1991         return 0;
1992 }
1993 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
1994
1995 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1996 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1997 const unsigned char rfc1042_header[] __aligned(2) =
1998         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1999 EXPORT_SYMBOL(rfc1042_header);
2000
2001 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2002 const unsigned char bridge_tunnel_header[] __aligned(2) =
2003         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2004 EXPORT_SYMBOL(bridge_tunnel_header);
2005
2006 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2007 struct iapp_layer2_update {
2008         u8 da[ETH_ALEN];        /* broadcast */
2009         u8 sa[ETH_ALEN];        /* STA addr */
2010         __be16 len;             /* 6 */
2011         u8 dsap;                /* 0 */
2012         u8 ssap;                /* 0 */
2013         u8 control;
2014         u8 xid_info[3];
2015 } __packed;
2016
2017 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2018 {
2019         struct iapp_layer2_update *msg;
2020         struct sk_buff *skb;
2021
2022         /* Send Level 2 Update Frame to update forwarding tables in layer 2
2023          * bridge devices */
2024
2025         skb = dev_alloc_skb(sizeof(*msg));
2026         if (!skb)
2027                 return;
2028         msg = skb_put(skb, sizeof(*msg));
2029
2030         /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2031          * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2032
2033         eth_broadcast_addr(msg->da);
2034         ether_addr_copy(msg->sa, addr);
2035         msg->len = htons(6);
2036         msg->dsap = 0;
2037         msg->ssap = 0x01;       /* NULL LSAP, CR Bit: Response */
2038         msg->control = 0xaf;    /* XID response lsb.1111F101.
2039                                  * F=0 (no poll command; unsolicited frame) */
2040         msg->xid_info[0] = 0x81;        /* XID format identifier */
2041         msg->xid_info[1] = 1;   /* LLC types/classes: Type 1 LLC */
2042         msg->xid_info[2] = 0;   /* XID sender's receive window size (RW) */
2043
2044         skb->dev = dev;
2045         skb->protocol = eth_type_trans(skb, dev);
2046         memset(skb->cb, 0, sizeof(skb->cb));
2047         netif_rx_ni(skb);
2048 }
2049 EXPORT_SYMBOL(cfg80211_send_layer2_update);
2050
2051 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2052                               enum ieee80211_vht_chanwidth bw,
2053                               int mcs, bool ext_nss_bw_capable,
2054                               unsigned int max_vht_nss)
2055 {
2056         u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2057         int ext_nss_bw;
2058         int supp_width;
2059         int i, mcs_encoding;
2060
2061         if (map == 0xffff)
2062                 return 0;
2063
2064         if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2065                 return 0;
2066         if (mcs <= 7)
2067                 mcs_encoding = 0;
2068         else if (mcs == 8)
2069                 mcs_encoding = 1;
2070         else
2071                 mcs_encoding = 2;
2072
2073         if (!max_vht_nss) {
2074                 /* find max_vht_nss for the given MCS */
2075                 for (i = 7; i >= 0; i--) {
2076                         int supp = (map >> (2 * i)) & 3;
2077
2078                         if (supp == 3)
2079                                 continue;
2080
2081                         if (supp >= mcs_encoding) {
2082                                 max_vht_nss = i + 1;
2083                                 break;
2084                         }
2085                 }
2086         }
2087
2088         if (!(cap->supp_mcs.tx_mcs_map &
2089                         cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2090                 return max_vht_nss;
2091
2092         ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2093                                    IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2094         supp_width = le32_get_bits(cap->vht_cap_info,
2095                                    IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2096
2097         /* if not capable, treat ext_nss_bw as 0 */
2098         if (!ext_nss_bw_capable)
2099                 ext_nss_bw = 0;
2100
2101         /* This is invalid */
2102         if (supp_width == 3)
2103                 return 0;
2104
2105         /* This is an invalid combination so pretend nothing is supported */
2106         if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2107                 return 0;
2108
2109         /*
2110          * Cover all the special cases according to IEEE 802.11-2016
2111          * Table 9-250. All other cases are either factor of 1 or not
2112          * valid/supported.
2113          */
2114         switch (bw) {
2115         case IEEE80211_VHT_CHANWIDTH_USE_HT:
2116         case IEEE80211_VHT_CHANWIDTH_80MHZ:
2117                 if ((supp_width == 1 || supp_width == 2) &&
2118                     ext_nss_bw == 3)
2119                         return 2 * max_vht_nss;
2120                 break;
2121         case IEEE80211_VHT_CHANWIDTH_160MHZ:
2122                 if (supp_width == 0 &&
2123                     (ext_nss_bw == 1 || ext_nss_bw == 2))
2124                         return max_vht_nss / 2;
2125                 if (supp_width == 0 &&
2126                     ext_nss_bw == 3)
2127                         return (3 * max_vht_nss) / 4;
2128                 if (supp_width == 1 &&
2129                     ext_nss_bw == 3)
2130                         return 2 * max_vht_nss;
2131                 break;
2132         case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2133                 if (supp_width == 0 && ext_nss_bw == 1)
2134                         return 0; /* not possible */
2135                 if (supp_width == 0 &&
2136                     ext_nss_bw == 2)
2137                         return max_vht_nss / 2;
2138                 if (supp_width == 0 &&
2139                     ext_nss_bw == 3)
2140                         return (3 * max_vht_nss) / 4;
2141                 if (supp_width == 1 &&
2142                     ext_nss_bw == 0)
2143                         return 0; /* not possible */
2144                 if (supp_width == 1 &&
2145                     ext_nss_bw == 1)
2146                         return max_vht_nss / 2;
2147                 if (supp_width == 1 &&
2148                     ext_nss_bw == 2)
2149                         return (3 * max_vht_nss) / 4;
2150                 break;
2151         }
2152
2153         /* not covered or invalid combination received */
2154         return max_vht_nss;
2155 }
2156 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2157
2158 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2159                              bool is_4addr, u8 check_swif)
2160
2161 {
2162         bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2163
2164         switch (check_swif) {
2165         case 0:
2166                 if (is_vlan && is_4addr)
2167                         return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2168                 return wiphy->interface_modes & BIT(iftype);
2169         case 1:
2170                 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2171                         return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2172                 return wiphy->software_iftypes & BIT(iftype);
2173         default:
2174                 break;
2175         }
2176
2177         return false;
2178 }
2179 EXPORT_SYMBOL(cfg80211_iftype_allowed);