Merge tag 'staging-5.10-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[linux-2.6-microblaze.git] / net / wireless / util.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Wireless utility functions
4  *
5  * Copyright 2007-2009  Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2017       Intel Deutschland GmbH
8  * Copyright (C) 2018-2020 Intel Corporation
9  */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25
26
27 struct ieee80211_rate *
28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29                             u32 basic_rates, int bitrate)
30 {
31         struct ieee80211_rate *result = &sband->bitrates[0];
32         int i;
33
34         for (i = 0; i < sband->n_bitrates; i++) {
35                 if (!(basic_rates & BIT(i)))
36                         continue;
37                 if (sband->bitrates[i].bitrate > bitrate)
38                         continue;
39                 result = &sband->bitrates[i];
40         }
41
42         return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45
46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47                               enum nl80211_bss_scan_width scan_width)
48 {
49         struct ieee80211_rate *bitrates;
50         u32 mandatory_rates = 0;
51         enum ieee80211_rate_flags mandatory_flag;
52         int i;
53
54         if (WARN_ON(!sband))
55                 return 1;
56
57         if (sband->band == NL80211_BAND_2GHZ) {
58                 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59                     scan_width == NL80211_BSS_CHAN_WIDTH_10)
60                         mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61                 else
62                         mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63         } else {
64                 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65         }
66
67         bitrates = sband->bitrates;
68         for (i = 0; i < sband->n_bitrates; i++)
69                 if (bitrates[i].flags & mandatory_flag)
70                         mandatory_rates |= BIT(i);
71         return mandatory_rates;
72 }
73 EXPORT_SYMBOL(ieee80211_mandatory_rates);
74
75 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
76 {
77         /* see 802.11 17.3.8.3.2 and Annex J
78          * there are overlapping channel numbers in 5GHz and 2GHz bands */
79         if (chan <= 0)
80                 return 0; /* not supported */
81         switch (band) {
82         case NL80211_BAND_2GHZ:
83                 if (chan == 14)
84                         return MHZ_TO_KHZ(2484);
85                 else if (chan < 14)
86                         return MHZ_TO_KHZ(2407 + chan * 5);
87                 break;
88         case NL80211_BAND_5GHZ:
89                 if (chan >= 182 && chan <= 196)
90                         return MHZ_TO_KHZ(4000 + chan * 5);
91                 else
92                         return MHZ_TO_KHZ(5000 + chan * 5);
93                 break;
94         case NL80211_BAND_6GHZ:
95                 /* see 802.11ax D6.1 27.3.23.2 */
96                 if (chan == 2)
97                         return MHZ_TO_KHZ(5935);
98                 if (chan <= 233)
99                         return MHZ_TO_KHZ(5950 + chan * 5);
100                 break;
101         case NL80211_BAND_60GHZ:
102                 if (chan < 7)
103                         return MHZ_TO_KHZ(56160 + chan * 2160);
104                 break;
105         case NL80211_BAND_S1GHZ:
106                 return 902000 + chan * 500;
107         default:
108                 ;
109         }
110         return 0; /* not supported */
111 }
112 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
113
114 enum nl80211_chan_width
115 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
116 {
117         if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
118                 return NL80211_CHAN_WIDTH_20_NOHT;
119
120         /*S1G defines a single allowed channel width per channel.
121          * Extract that width here.
122          */
123         if (chan->flags & IEEE80211_CHAN_1MHZ)
124                 return NL80211_CHAN_WIDTH_1;
125         else if (chan->flags & IEEE80211_CHAN_2MHZ)
126                 return NL80211_CHAN_WIDTH_2;
127         else if (chan->flags & IEEE80211_CHAN_4MHZ)
128                 return NL80211_CHAN_WIDTH_4;
129         else if (chan->flags & IEEE80211_CHAN_8MHZ)
130                 return NL80211_CHAN_WIDTH_8;
131         else if (chan->flags & IEEE80211_CHAN_16MHZ)
132                 return NL80211_CHAN_WIDTH_16;
133
134         pr_err("unknown channel width for channel at %dKHz?\n",
135                ieee80211_channel_to_khz(chan));
136
137         return NL80211_CHAN_WIDTH_1;
138 }
139 EXPORT_SYMBOL(ieee80211_s1g_channel_width);
140
141 int ieee80211_freq_khz_to_channel(u32 freq)
142 {
143         /* TODO: just handle MHz for now */
144         freq = KHZ_TO_MHZ(freq);
145
146         /* see 802.11 17.3.8.3.2 and Annex J */
147         if (freq == 2484)
148                 return 14;
149         else if (freq < 2484)
150                 return (freq - 2407) / 5;
151         else if (freq >= 4910 && freq <= 4980)
152                 return (freq - 4000) / 5;
153         else if (freq < 5925)
154                 return (freq - 5000) / 5;
155         else if (freq == 5935)
156                 return 2;
157         else if (freq <= 45000) /* DMG band lower limit */
158                 /* see 802.11ax D6.1 27.3.22.2 */
159                 return (freq - 5950) / 5;
160         else if (freq >= 58320 && freq <= 70200)
161                 return (freq - 56160) / 2160;
162         else
163                 return 0;
164 }
165 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
166
167 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
168                                                     u32 freq)
169 {
170         enum nl80211_band band;
171         struct ieee80211_supported_band *sband;
172         int i;
173
174         for (band = 0; band < NUM_NL80211_BANDS; band++) {
175                 sband = wiphy->bands[band];
176
177                 if (!sband)
178                         continue;
179
180                 for (i = 0; i < sband->n_channels; i++) {
181                         struct ieee80211_channel *chan = &sband->channels[i];
182
183                         if (ieee80211_channel_to_khz(chan) == freq)
184                                 return chan;
185                 }
186         }
187
188         return NULL;
189 }
190 EXPORT_SYMBOL(ieee80211_get_channel_khz);
191
192 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
193 {
194         int i, want;
195
196         switch (sband->band) {
197         case NL80211_BAND_5GHZ:
198         case NL80211_BAND_6GHZ:
199                 want = 3;
200                 for (i = 0; i < sband->n_bitrates; i++) {
201                         if (sband->bitrates[i].bitrate == 60 ||
202                             sband->bitrates[i].bitrate == 120 ||
203                             sband->bitrates[i].bitrate == 240) {
204                                 sband->bitrates[i].flags |=
205                                         IEEE80211_RATE_MANDATORY_A;
206                                 want--;
207                         }
208                 }
209                 WARN_ON(want);
210                 break;
211         case NL80211_BAND_2GHZ:
212                 want = 7;
213                 for (i = 0; i < sband->n_bitrates; i++) {
214                         switch (sband->bitrates[i].bitrate) {
215                         case 10:
216                         case 20:
217                         case 55:
218                         case 110:
219                                 sband->bitrates[i].flags |=
220                                         IEEE80211_RATE_MANDATORY_B |
221                                         IEEE80211_RATE_MANDATORY_G;
222                                 want--;
223                                 break;
224                         case 60:
225                         case 120:
226                         case 240:
227                                 sband->bitrates[i].flags |=
228                                         IEEE80211_RATE_MANDATORY_G;
229                                 want--;
230                                 fallthrough;
231                         default:
232                                 sband->bitrates[i].flags |=
233                                         IEEE80211_RATE_ERP_G;
234                                 break;
235                         }
236                 }
237                 WARN_ON(want != 0 && want != 3);
238                 break;
239         case NL80211_BAND_60GHZ:
240                 /* check for mandatory HT MCS 1..4 */
241                 WARN_ON(!sband->ht_cap.ht_supported);
242                 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
243                 break;
244         case NL80211_BAND_S1GHZ:
245                 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least
246                  * mandatory is ok.
247                  */
248                 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
249                 break;
250         case NUM_NL80211_BANDS:
251         default:
252                 WARN_ON(1);
253                 break;
254         }
255 }
256
257 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
258 {
259         enum nl80211_band band;
260
261         for (band = 0; band < NUM_NL80211_BANDS; band++)
262                 if (wiphy->bands[band])
263                         set_mandatory_flags_band(wiphy->bands[band]);
264 }
265
266 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
267 {
268         int i;
269         for (i = 0; i < wiphy->n_cipher_suites; i++)
270                 if (cipher == wiphy->cipher_suites[i])
271                         return true;
272         return false;
273 }
274
275 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
276                                    struct key_params *params, int key_idx,
277                                    bool pairwise, const u8 *mac_addr)
278 {
279         int max_key_idx = 5;
280
281         if (wiphy_ext_feature_isset(&rdev->wiphy,
282                                     NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
283             wiphy_ext_feature_isset(&rdev->wiphy,
284                                     NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
285                 max_key_idx = 7;
286         if (key_idx < 0 || key_idx > max_key_idx)
287                 return -EINVAL;
288
289         if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
290                 return -EINVAL;
291
292         if (pairwise && !mac_addr)
293                 return -EINVAL;
294
295         switch (params->cipher) {
296         case WLAN_CIPHER_SUITE_TKIP:
297                 /* Extended Key ID can only be used with CCMP/GCMP ciphers */
298                 if ((pairwise && key_idx) ||
299                     params->mode != NL80211_KEY_RX_TX)
300                         return -EINVAL;
301                 break;
302         case WLAN_CIPHER_SUITE_CCMP:
303         case WLAN_CIPHER_SUITE_CCMP_256:
304         case WLAN_CIPHER_SUITE_GCMP:
305         case WLAN_CIPHER_SUITE_GCMP_256:
306                 /* IEEE802.11-2016 allows only 0 and - when supporting
307                  * Extended Key ID - 1 as index for pairwise keys.
308                  * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
309                  * the driver supports Extended Key ID.
310                  * @NL80211_KEY_SET_TX can't be set when installing and
311                  * validating a key.
312                  */
313                 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
314                     params->mode == NL80211_KEY_SET_TX)
315                         return -EINVAL;
316                 if (wiphy_ext_feature_isset(&rdev->wiphy,
317                                             NL80211_EXT_FEATURE_EXT_KEY_ID)) {
318                         if (pairwise && (key_idx < 0 || key_idx > 1))
319                                 return -EINVAL;
320                 } else if (pairwise && key_idx) {
321                         return -EINVAL;
322                 }
323                 break;
324         case WLAN_CIPHER_SUITE_AES_CMAC:
325         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
326         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
327         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
328                 /* Disallow BIP (group-only) cipher as pairwise cipher */
329                 if (pairwise)
330                         return -EINVAL;
331                 if (key_idx < 4)
332                         return -EINVAL;
333                 break;
334         case WLAN_CIPHER_SUITE_WEP40:
335         case WLAN_CIPHER_SUITE_WEP104:
336                 if (key_idx > 3)
337                         return -EINVAL;
338         default:
339                 break;
340         }
341
342         switch (params->cipher) {
343         case WLAN_CIPHER_SUITE_WEP40:
344                 if (params->key_len != WLAN_KEY_LEN_WEP40)
345                         return -EINVAL;
346                 break;
347         case WLAN_CIPHER_SUITE_TKIP:
348                 if (params->key_len != WLAN_KEY_LEN_TKIP)
349                         return -EINVAL;
350                 break;
351         case WLAN_CIPHER_SUITE_CCMP:
352                 if (params->key_len != WLAN_KEY_LEN_CCMP)
353                         return -EINVAL;
354                 break;
355         case WLAN_CIPHER_SUITE_CCMP_256:
356                 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
357                         return -EINVAL;
358                 break;
359         case WLAN_CIPHER_SUITE_GCMP:
360                 if (params->key_len != WLAN_KEY_LEN_GCMP)
361                         return -EINVAL;
362                 break;
363         case WLAN_CIPHER_SUITE_GCMP_256:
364                 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
365                         return -EINVAL;
366                 break;
367         case WLAN_CIPHER_SUITE_WEP104:
368                 if (params->key_len != WLAN_KEY_LEN_WEP104)
369                         return -EINVAL;
370                 break;
371         case WLAN_CIPHER_SUITE_AES_CMAC:
372                 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
373                         return -EINVAL;
374                 break;
375         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
376                 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
377                         return -EINVAL;
378                 break;
379         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
380                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
381                         return -EINVAL;
382                 break;
383         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
384                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
385                         return -EINVAL;
386                 break;
387         default:
388                 /*
389                  * We don't know anything about this algorithm,
390                  * allow using it -- but the driver must check
391                  * all parameters! We still check below whether
392                  * or not the driver supports this algorithm,
393                  * of course.
394                  */
395                 break;
396         }
397
398         if (params->seq) {
399                 switch (params->cipher) {
400                 case WLAN_CIPHER_SUITE_WEP40:
401                 case WLAN_CIPHER_SUITE_WEP104:
402                         /* These ciphers do not use key sequence */
403                         return -EINVAL;
404                 case WLAN_CIPHER_SUITE_TKIP:
405                 case WLAN_CIPHER_SUITE_CCMP:
406                 case WLAN_CIPHER_SUITE_CCMP_256:
407                 case WLAN_CIPHER_SUITE_GCMP:
408                 case WLAN_CIPHER_SUITE_GCMP_256:
409                 case WLAN_CIPHER_SUITE_AES_CMAC:
410                 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
411                 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
412                 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
413                         if (params->seq_len != 6)
414                                 return -EINVAL;
415                         break;
416                 }
417         }
418
419         if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
420                 return -EINVAL;
421
422         return 0;
423 }
424
425 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
426 {
427         unsigned int hdrlen = 24;
428
429         if (ieee80211_is_ext(fc)) {
430                 hdrlen = 4;
431                 goto out;
432         }
433
434         if (ieee80211_is_data(fc)) {
435                 if (ieee80211_has_a4(fc))
436                         hdrlen = 30;
437                 if (ieee80211_is_data_qos(fc)) {
438                         hdrlen += IEEE80211_QOS_CTL_LEN;
439                         if (ieee80211_has_order(fc))
440                                 hdrlen += IEEE80211_HT_CTL_LEN;
441                 }
442                 goto out;
443         }
444
445         if (ieee80211_is_mgmt(fc)) {
446                 if (ieee80211_has_order(fc))
447                         hdrlen += IEEE80211_HT_CTL_LEN;
448                 goto out;
449         }
450
451         if (ieee80211_is_ctl(fc)) {
452                 /*
453                  * ACK and CTS are 10 bytes, all others 16. To see how
454                  * to get this condition consider
455                  *   subtype mask:   0b0000000011110000 (0x00F0)
456                  *   ACK subtype:    0b0000000011010000 (0x00D0)
457                  *   CTS subtype:    0b0000000011000000 (0x00C0)
458                  *   bits that matter:         ^^^      (0x00E0)
459                  *   value of those: 0b0000000011000000 (0x00C0)
460                  */
461                 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
462                         hdrlen = 10;
463                 else
464                         hdrlen = 16;
465         }
466 out:
467         return hdrlen;
468 }
469 EXPORT_SYMBOL(ieee80211_hdrlen);
470
471 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
472 {
473         const struct ieee80211_hdr *hdr =
474                         (const struct ieee80211_hdr *)skb->data;
475         unsigned int hdrlen;
476
477         if (unlikely(skb->len < 10))
478                 return 0;
479         hdrlen = ieee80211_hdrlen(hdr->frame_control);
480         if (unlikely(hdrlen > skb->len))
481                 return 0;
482         return hdrlen;
483 }
484 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
485
486 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
487 {
488         int ae = flags & MESH_FLAGS_AE;
489         /* 802.11-2012, 8.2.4.7.3 */
490         switch (ae) {
491         default:
492         case 0:
493                 return 6;
494         case MESH_FLAGS_AE_A4:
495                 return 12;
496         case MESH_FLAGS_AE_A5_A6:
497                 return 18;
498         }
499 }
500
501 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
502 {
503         return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
504 }
505 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
506
507 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
508                                   const u8 *addr, enum nl80211_iftype iftype,
509                                   u8 data_offset)
510 {
511         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
512         struct {
513                 u8 hdr[ETH_ALEN] __aligned(2);
514                 __be16 proto;
515         } payload;
516         struct ethhdr tmp;
517         u16 hdrlen;
518         u8 mesh_flags = 0;
519
520         if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
521                 return -1;
522
523         hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
524         if (skb->len < hdrlen + 8)
525                 return -1;
526
527         /* convert IEEE 802.11 header + possible LLC headers into Ethernet
528          * header
529          * IEEE 802.11 address fields:
530          * ToDS FromDS Addr1 Addr2 Addr3 Addr4
531          *   0     0   DA    SA    BSSID n/a
532          *   0     1   DA    BSSID SA    n/a
533          *   1     0   BSSID SA    DA    n/a
534          *   1     1   RA    TA    DA    SA
535          */
536         memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
537         memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
538
539         if (iftype == NL80211_IFTYPE_MESH_POINT)
540                 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
541
542         mesh_flags &= MESH_FLAGS_AE;
543
544         switch (hdr->frame_control &
545                 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
546         case cpu_to_le16(IEEE80211_FCTL_TODS):
547                 if (unlikely(iftype != NL80211_IFTYPE_AP &&
548                              iftype != NL80211_IFTYPE_AP_VLAN &&
549                              iftype != NL80211_IFTYPE_P2P_GO))
550                         return -1;
551                 break;
552         case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
553                 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
554                              iftype != NL80211_IFTYPE_MESH_POINT &&
555                              iftype != NL80211_IFTYPE_AP_VLAN &&
556                              iftype != NL80211_IFTYPE_STATION))
557                         return -1;
558                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
559                         if (mesh_flags == MESH_FLAGS_AE_A4)
560                                 return -1;
561                         if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
562                                 skb_copy_bits(skb, hdrlen +
563                                         offsetof(struct ieee80211s_hdr, eaddr1),
564                                         tmp.h_dest, 2 * ETH_ALEN);
565                         }
566                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
567                 }
568                 break;
569         case cpu_to_le16(IEEE80211_FCTL_FROMDS):
570                 if ((iftype != NL80211_IFTYPE_STATION &&
571                      iftype != NL80211_IFTYPE_P2P_CLIENT &&
572                      iftype != NL80211_IFTYPE_MESH_POINT) ||
573                     (is_multicast_ether_addr(tmp.h_dest) &&
574                      ether_addr_equal(tmp.h_source, addr)))
575                         return -1;
576                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
577                         if (mesh_flags == MESH_FLAGS_AE_A5_A6)
578                                 return -1;
579                         if (mesh_flags == MESH_FLAGS_AE_A4)
580                                 skb_copy_bits(skb, hdrlen +
581                                         offsetof(struct ieee80211s_hdr, eaddr1),
582                                         tmp.h_source, ETH_ALEN);
583                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
584                 }
585                 break;
586         case cpu_to_le16(0):
587                 if (iftype != NL80211_IFTYPE_ADHOC &&
588                     iftype != NL80211_IFTYPE_STATION &&
589                     iftype != NL80211_IFTYPE_OCB)
590                                 return -1;
591                 break;
592         }
593
594         skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
595         tmp.h_proto = payload.proto;
596
597         if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
598                     tmp.h_proto != htons(ETH_P_AARP) &&
599                     tmp.h_proto != htons(ETH_P_IPX)) ||
600                    ether_addr_equal(payload.hdr, bridge_tunnel_header)))
601                 /* remove RFC1042 or Bridge-Tunnel encapsulation and
602                  * replace EtherType */
603                 hdrlen += ETH_ALEN + 2;
604         else
605                 tmp.h_proto = htons(skb->len - hdrlen);
606
607         pskb_pull(skb, hdrlen);
608
609         if (!ehdr)
610                 ehdr = skb_push(skb, sizeof(struct ethhdr));
611         memcpy(ehdr, &tmp, sizeof(tmp));
612
613         return 0;
614 }
615 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
616
617 static void
618 __frame_add_frag(struct sk_buff *skb, struct page *page,
619                  void *ptr, int len, int size)
620 {
621         struct skb_shared_info *sh = skb_shinfo(skb);
622         int page_offset;
623
624         get_page(page);
625         page_offset = ptr - page_address(page);
626         skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
627 }
628
629 static void
630 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
631                             int offset, int len)
632 {
633         struct skb_shared_info *sh = skb_shinfo(skb);
634         const skb_frag_t *frag = &sh->frags[0];
635         struct page *frag_page;
636         void *frag_ptr;
637         int frag_len, frag_size;
638         int head_size = skb->len - skb->data_len;
639         int cur_len;
640
641         frag_page = virt_to_head_page(skb->head);
642         frag_ptr = skb->data;
643         frag_size = head_size;
644
645         while (offset >= frag_size) {
646                 offset -= frag_size;
647                 frag_page = skb_frag_page(frag);
648                 frag_ptr = skb_frag_address(frag);
649                 frag_size = skb_frag_size(frag);
650                 frag++;
651         }
652
653         frag_ptr += offset;
654         frag_len = frag_size - offset;
655
656         cur_len = min(len, frag_len);
657
658         __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
659         len -= cur_len;
660
661         while (len > 0) {
662                 frag_len = skb_frag_size(frag);
663                 cur_len = min(len, frag_len);
664                 __frame_add_frag(frame, skb_frag_page(frag),
665                                  skb_frag_address(frag), cur_len, frag_len);
666                 len -= cur_len;
667                 frag++;
668         }
669 }
670
671 static struct sk_buff *
672 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
673                        int offset, int len, bool reuse_frag)
674 {
675         struct sk_buff *frame;
676         int cur_len = len;
677
678         if (skb->len - offset < len)
679                 return NULL;
680
681         /*
682          * When reusing framents, copy some data to the head to simplify
683          * ethernet header handling and speed up protocol header processing
684          * in the stack later.
685          */
686         if (reuse_frag)
687                 cur_len = min_t(int, len, 32);
688
689         /*
690          * Allocate and reserve two bytes more for payload
691          * alignment since sizeof(struct ethhdr) is 14.
692          */
693         frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
694         if (!frame)
695                 return NULL;
696
697         skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
698         skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
699
700         len -= cur_len;
701         if (!len)
702                 return frame;
703
704         offset += cur_len;
705         __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
706
707         return frame;
708 }
709
710 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
711                               const u8 *addr, enum nl80211_iftype iftype,
712                               const unsigned int extra_headroom,
713                               const u8 *check_da, const u8 *check_sa)
714 {
715         unsigned int hlen = ALIGN(extra_headroom, 4);
716         struct sk_buff *frame = NULL;
717         u16 ethertype;
718         u8 *payload;
719         int offset = 0, remaining;
720         struct ethhdr eth;
721         bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
722         bool reuse_skb = false;
723         bool last = false;
724
725         while (!last) {
726                 unsigned int subframe_len;
727                 int len;
728                 u8 padding;
729
730                 skb_copy_bits(skb, offset, &eth, sizeof(eth));
731                 len = ntohs(eth.h_proto);
732                 subframe_len = sizeof(struct ethhdr) + len;
733                 padding = (4 - subframe_len) & 0x3;
734
735                 /* the last MSDU has no padding */
736                 remaining = skb->len - offset;
737                 if (subframe_len > remaining)
738                         goto purge;
739
740                 offset += sizeof(struct ethhdr);
741                 last = remaining <= subframe_len + padding;
742
743                 /* FIXME: should we really accept multicast DA? */
744                 if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
745                      !ether_addr_equal(check_da, eth.h_dest)) ||
746                     (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
747                         offset += len + padding;
748                         continue;
749                 }
750
751                 /* reuse skb for the last subframe */
752                 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
753                         skb_pull(skb, offset);
754                         frame = skb;
755                         reuse_skb = true;
756                 } else {
757                         frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
758                                                        reuse_frag);
759                         if (!frame)
760                                 goto purge;
761
762                         offset += len + padding;
763                 }
764
765                 skb_reset_network_header(frame);
766                 frame->dev = skb->dev;
767                 frame->priority = skb->priority;
768
769                 payload = frame->data;
770                 ethertype = (payload[6] << 8) | payload[7];
771                 if (likely((ether_addr_equal(payload, rfc1042_header) &&
772                             ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
773                            ether_addr_equal(payload, bridge_tunnel_header))) {
774                         eth.h_proto = htons(ethertype);
775                         skb_pull(frame, ETH_ALEN + 2);
776                 }
777
778                 memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
779                 __skb_queue_tail(list, frame);
780         }
781
782         if (!reuse_skb)
783                 dev_kfree_skb(skb);
784
785         return;
786
787  purge:
788         __skb_queue_purge(list);
789         dev_kfree_skb(skb);
790 }
791 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
792
793 /* Given a data frame determine the 802.1p/1d tag to use. */
794 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
795                                     struct cfg80211_qos_map *qos_map)
796 {
797         unsigned int dscp;
798         unsigned char vlan_priority;
799         unsigned int ret;
800
801         /* skb->priority values from 256->263 are magic values to
802          * directly indicate a specific 802.1d priority.  This is used
803          * to allow 802.1d priority to be passed directly in from VLAN
804          * tags, etc.
805          */
806         if (skb->priority >= 256 && skb->priority <= 263) {
807                 ret = skb->priority - 256;
808                 goto out;
809         }
810
811         if (skb_vlan_tag_present(skb)) {
812                 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
813                         >> VLAN_PRIO_SHIFT;
814                 if (vlan_priority > 0) {
815                         ret = vlan_priority;
816                         goto out;
817                 }
818         }
819
820         switch (skb->protocol) {
821         case htons(ETH_P_IP):
822                 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
823                 break;
824         case htons(ETH_P_IPV6):
825                 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
826                 break;
827         case htons(ETH_P_MPLS_UC):
828         case htons(ETH_P_MPLS_MC): {
829                 struct mpls_label mpls_tmp, *mpls;
830
831                 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
832                                           sizeof(*mpls), &mpls_tmp);
833                 if (!mpls)
834                         return 0;
835
836                 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
837                         >> MPLS_LS_TC_SHIFT;
838                 goto out;
839         }
840         case htons(ETH_P_80221):
841                 /* 802.21 is always network control traffic */
842                 return 7;
843         default:
844                 return 0;
845         }
846
847         if (qos_map) {
848                 unsigned int i, tmp_dscp = dscp >> 2;
849
850                 for (i = 0; i < qos_map->num_des; i++) {
851                         if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
852                                 ret = qos_map->dscp_exception[i].up;
853                                 goto out;
854                         }
855                 }
856
857                 for (i = 0; i < 8; i++) {
858                         if (tmp_dscp >= qos_map->up[i].low &&
859                             tmp_dscp <= qos_map->up[i].high) {
860                                 ret = i;
861                                 goto out;
862                         }
863                 }
864         }
865
866         ret = dscp >> 5;
867 out:
868         return array_index_nospec(ret, IEEE80211_NUM_TIDS);
869 }
870 EXPORT_SYMBOL(cfg80211_classify8021d);
871
872 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
873 {
874         const struct cfg80211_bss_ies *ies;
875
876         ies = rcu_dereference(bss->ies);
877         if (!ies)
878                 return NULL;
879
880         return cfg80211_find_elem(id, ies->data, ies->len);
881 }
882 EXPORT_SYMBOL(ieee80211_bss_get_elem);
883
884 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
885 {
886         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
887         struct net_device *dev = wdev->netdev;
888         int i;
889
890         if (!wdev->connect_keys)
891                 return;
892
893         for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
894                 if (!wdev->connect_keys->params[i].cipher)
895                         continue;
896                 if (rdev_add_key(rdev, dev, i, false, NULL,
897                                  &wdev->connect_keys->params[i])) {
898                         netdev_err(dev, "failed to set key %d\n", i);
899                         continue;
900                 }
901                 if (wdev->connect_keys->def == i &&
902                     rdev_set_default_key(rdev, dev, i, true, true)) {
903                         netdev_err(dev, "failed to set defkey %d\n", i);
904                         continue;
905                 }
906         }
907
908         kfree_sensitive(wdev->connect_keys);
909         wdev->connect_keys = NULL;
910 }
911
912 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
913 {
914         struct cfg80211_event *ev;
915         unsigned long flags;
916
917         spin_lock_irqsave(&wdev->event_lock, flags);
918         while (!list_empty(&wdev->event_list)) {
919                 ev = list_first_entry(&wdev->event_list,
920                                       struct cfg80211_event, list);
921                 list_del(&ev->list);
922                 spin_unlock_irqrestore(&wdev->event_lock, flags);
923
924                 wdev_lock(wdev);
925                 switch (ev->type) {
926                 case EVENT_CONNECT_RESULT:
927                         __cfg80211_connect_result(
928                                 wdev->netdev,
929                                 &ev->cr,
930                                 ev->cr.status == WLAN_STATUS_SUCCESS);
931                         break;
932                 case EVENT_ROAMED:
933                         __cfg80211_roamed(wdev, &ev->rm);
934                         break;
935                 case EVENT_DISCONNECTED:
936                         __cfg80211_disconnected(wdev->netdev,
937                                                 ev->dc.ie, ev->dc.ie_len,
938                                                 ev->dc.reason,
939                                                 !ev->dc.locally_generated);
940                         break;
941                 case EVENT_IBSS_JOINED:
942                         __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
943                                                ev->ij.channel);
944                         break;
945                 case EVENT_STOPPED:
946                         __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
947                         break;
948                 case EVENT_PORT_AUTHORIZED:
949                         __cfg80211_port_authorized(wdev, ev->pa.bssid);
950                         break;
951                 }
952                 wdev_unlock(wdev);
953
954                 kfree(ev);
955
956                 spin_lock_irqsave(&wdev->event_lock, flags);
957         }
958         spin_unlock_irqrestore(&wdev->event_lock, flags);
959 }
960
961 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
962 {
963         struct wireless_dev *wdev;
964
965         ASSERT_RTNL();
966
967         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
968                 cfg80211_process_wdev_events(wdev);
969 }
970
971 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
972                           struct net_device *dev, enum nl80211_iftype ntype,
973                           struct vif_params *params)
974 {
975         int err;
976         enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
977
978         ASSERT_RTNL();
979
980         /* don't support changing VLANs, you just re-create them */
981         if (otype == NL80211_IFTYPE_AP_VLAN)
982                 return -EOPNOTSUPP;
983
984         /* cannot change into P2P device or NAN */
985         if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
986             ntype == NL80211_IFTYPE_NAN)
987                 return -EOPNOTSUPP;
988
989         if (!rdev->ops->change_virtual_intf ||
990             !(rdev->wiphy.interface_modes & (1 << ntype)))
991                 return -EOPNOTSUPP;
992
993         /* if it's part of a bridge, reject changing type to station/ibss */
994         if (netif_is_bridge_port(dev) &&
995             (ntype == NL80211_IFTYPE_ADHOC ||
996              ntype == NL80211_IFTYPE_STATION ||
997              ntype == NL80211_IFTYPE_P2P_CLIENT))
998                 return -EBUSY;
999
1000         if (ntype != otype) {
1001                 dev->ieee80211_ptr->use_4addr = false;
1002                 dev->ieee80211_ptr->mesh_id_up_len = 0;
1003                 wdev_lock(dev->ieee80211_ptr);
1004                 rdev_set_qos_map(rdev, dev, NULL);
1005                 wdev_unlock(dev->ieee80211_ptr);
1006
1007                 switch (otype) {
1008                 case NL80211_IFTYPE_AP:
1009                         cfg80211_stop_ap(rdev, dev, true);
1010                         break;
1011                 case NL80211_IFTYPE_ADHOC:
1012                         cfg80211_leave_ibss(rdev, dev, false);
1013                         break;
1014                 case NL80211_IFTYPE_STATION:
1015                 case NL80211_IFTYPE_P2P_CLIENT:
1016                         wdev_lock(dev->ieee80211_ptr);
1017                         cfg80211_disconnect(rdev, dev,
1018                                             WLAN_REASON_DEAUTH_LEAVING, true);
1019                         wdev_unlock(dev->ieee80211_ptr);
1020                         break;
1021                 case NL80211_IFTYPE_MESH_POINT:
1022                         /* mesh should be handled? */
1023                         break;
1024                 default:
1025                         break;
1026                 }
1027
1028                 cfg80211_process_rdev_events(rdev);
1029                 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1030         }
1031
1032         err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1033
1034         WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1035
1036         if (!err && params && params->use_4addr != -1)
1037                 dev->ieee80211_ptr->use_4addr = params->use_4addr;
1038
1039         if (!err) {
1040                 dev->priv_flags &= ~IFF_DONT_BRIDGE;
1041                 switch (ntype) {
1042                 case NL80211_IFTYPE_STATION:
1043                         if (dev->ieee80211_ptr->use_4addr)
1044                                 break;
1045                         fallthrough;
1046                 case NL80211_IFTYPE_OCB:
1047                 case NL80211_IFTYPE_P2P_CLIENT:
1048                 case NL80211_IFTYPE_ADHOC:
1049                         dev->priv_flags |= IFF_DONT_BRIDGE;
1050                         break;
1051                 case NL80211_IFTYPE_P2P_GO:
1052                 case NL80211_IFTYPE_AP:
1053                 case NL80211_IFTYPE_AP_VLAN:
1054                 case NL80211_IFTYPE_WDS:
1055                 case NL80211_IFTYPE_MESH_POINT:
1056                         /* bridging OK */
1057                         break;
1058                 case NL80211_IFTYPE_MONITOR:
1059                         /* monitor can't bridge anyway */
1060                         break;
1061                 case NL80211_IFTYPE_UNSPECIFIED:
1062                 case NUM_NL80211_IFTYPES:
1063                         /* not happening */
1064                         break;
1065                 case NL80211_IFTYPE_P2P_DEVICE:
1066                 case NL80211_IFTYPE_NAN:
1067                         WARN_ON(1);
1068                         break;
1069                 }
1070         }
1071
1072         if (!err && ntype != otype && netif_running(dev)) {
1073                 cfg80211_update_iface_num(rdev, ntype, 1);
1074                 cfg80211_update_iface_num(rdev, otype, -1);
1075         }
1076
1077         return err;
1078 }
1079
1080 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1081 {
1082         int modulation, streams, bitrate;
1083
1084         /* the formula below does only work for MCS values smaller than 32 */
1085         if (WARN_ON_ONCE(rate->mcs >= 32))
1086                 return 0;
1087
1088         modulation = rate->mcs & 7;
1089         streams = (rate->mcs >> 3) + 1;
1090
1091         bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1092
1093         if (modulation < 4)
1094                 bitrate *= (modulation + 1);
1095         else if (modulation == 4)
1096                 bitrate *= (modulation + 2);
1097         else
1098                 bitrate *= (modulation + 3);
1099
1100         bitrate *= streams;
1101
1102         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1103                 bitrate = (bitrate / 9) * 10;
1104
1105         /* do NOT round down here */
1106         return (bitrate + 50000) / 100000;
1107 }
1108
1109 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1110 {
1111         static const u32 __mcs2bitrate[] = {
1112                 /* control PHY */
1113                 [0] =   275,
1114                 /* SC PHY */
1115                 [1] =  3850,
1116                 [2] =  7700,
1117                 [3] =  9625,
1118                 [4] = 11550,
1119                 [5] = 12512, /* 1251.25 mbps */
1120                 [6] = 15400,
1121                 [7] = 19250,
1122                 [8] = 23100,
1123                 [9] = 25025,
1124                 [10] = 30800,
1125                 [11] = 38500,
1126                 [12] = 46200,
1127                 /* OFDM PHY */
1128                 [13] =  6930,
1129                 [14] =  8662, /* 866.25 mbps */
1130                 [15] = 13860,
1131                 [16] = 17325,
1132                 [17] = 20790,
1133                 [18] = 27720,
1134                 [19] = 34650,
1135                 [20] = 41580,
1136                 [21] = 45045,
1137                 [22] = 51975,
1138                 [23] = 62370,
1139                 [24] = 67568, /* 6756.75 mbps */
1140                 /* LP-SC PHY */
1141                 [25] =  6260,
1142                 [26] =  8340,
1143                 [27] = 11120,
1144                 [28] = 12510,
1145                 [29] = 16680,
1146                 [30] = 22240,
1147                 [31] = 25030,
1148         };
1149
1150         if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1151                 return 0;
1152
1153         return __mcs2bitrate[rate->mcs];
1154 }
1155
1156 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1157 {
1158         static const u32 __mcs2bitrate[] = {
1159                 /* control PHY */
1160                 [0] =   275,
1161                 /* SC PHY */
1162                 [1] =  3850,
1163                 [2] =  7700,
1164                 [3] =  9625,
1165                 [4] = 11550,
1166                 [5] = 12512, /* 1251.25 mbps */
1167                 [6] = 13475,
1168                 [7] = 15400,
1169                 [8] = 19250,
1170                 [9] = 23100,
1171                 [10] = 25025,
1172                 [11] = 26950,
1173                 [12] = 30800,
1174                 [13] = 38500,
1175                 [14] = 46200,
1176                 [15] = 50050,
1177                 [16] = 53900,
1178                 [17] = 57750,
1179                 [18] = 69300,
1180                 [19] = 75075,
1181                 [20] = 80850,
1182         };
1183
1184         if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1185                 return 0;
1186
1187         return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1188 }
1189
1190 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1191 {
1192         static const u32 base[4][10] = {
1193                 {   6500000,
1194                    13000000,
1195                    19500000,
1196                    26000000,
1197                    39000000,
1198                    52000000,
1199                    58500000,
1200                    65000000,
1201                    78000000,
1202                 /* not in the spec, but some devices use this: */
1203                    86500000,
1204                 },
1205                 {  13500000,
1206                    27000000,
1207                    40500000,
1208                    54000000,
1209                    81000000,
1210                   108000000,
1211                   121500000,
1212                   135000000,
1213                   162000000,
1214                   180000000,
1215                 },
1216                 {  29300000,
1217                    58500000,
1218                    87800000,
1219                   117000000,
1220                   175500000,
1221                   234000000,
1222                   263300000,
1223                   292500000,
1224                   351000000,
1225                   390000000,
1226                 },
1227                 {  58500000,
1228                   117000000,
1229                   175500000,
1230                   234000000,
1231                   351000000,
1232                   468000000,
1233                   526500000,
1234                   585000000,
1235                   702000000,
1236                   780000000,
1237                 },
1238         };
1239         u32 bitrate;
1240         int idx;
1241
1242         if (rate->mcs > 9)
1243                 goto warn;
1244
1245         switch (rate->bw) {
1246         case RATE_INFO_BW_160:
1247                 idx = 3;
1248                 break;
1249         case RATE_INFO_BW_80:
1250                 idx = 2;
1251                 break;
1252         case RATE_INFO_BW_40:
1253                 idx = 1;
1254                 break;
1255         case RATE_INFO_BW_5:
1256         case RATE_INFO_BW_10:
1257         default:
1258                 goto warn;
1259         case RATE_INFO_BW_20:
1260                 idx = 0;
1261         }
1262
1263         bitrate = base[idx][rate->mcs];
1264         bitrate *= rate->nss;
1265
1266         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1267                 bitrate = (bitrate / 9) * 10;
1268
1269         /* do NOT round down here */
1270         return (bitrate + 50000) / 100000;
1271  warn:
1272         WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1273                   rate->bw, rate->mcs, rate->nss);
1274         return 0;
1275 }
1276
1277 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1278 {
1279 #define SCALE 2048
1280         u16 mcs_divisors[12] = {
1281                 34133, /* 16.666666... */
1282                 17067, /*  8.333333... */
1283                 11378, /*  5.555555... */
1284                  8533, /*  4.166666... */
1285                  5689, /*  2.777777... */
1286                  4267, /*  2.083333... */
1287                  3923, /*  1.851851... */
1288                  3413, /*  1.666666... */
1289                  2844, /*  1.388888... */
1290                  2560, /*  1.250000... */
1291                  2276, /*  1.111111... */
1292                  2048, /*  1.000000... */
1293         };
1294         u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1295         u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
1296         u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1297         u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1298         u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1299         u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1300         u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1301         u64 tmp;
1302         u32 result;
1303
1304         if (WARN_ON_ONCE(rate->mcs > 11))
1305                 return 0;
1306
1307         if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1308                 return 0;
1309         if (WARN_ON_ONCE(rate->he_ru_alloc >
1310                          NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1311                 return 0;
1312         if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1313                 return 0;
1314
1315         if (rate->bw == RATE_INFO_BW_160)
1316                 result = rates_160M[rate->he_gi];
1317         else if (rate->bw == RATE_INFO_BW_80 ||
1318                  (rate->bw == RATE_INFO_BW_HE_RU &&
1319                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1320                 result = rates_969[rate->he_gi];
1321         else if (rate->bw == RATE_INFO_BW_40 ||
1322                  (rate->bw == RATE_INFO_BW_HE_RU &&
1323                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1324                 result = rates_484[rate->he_gi];
1325         else if (rate->bw == RATE_INFO_BW_20 ||
1326                  (rate->bw == RATE_INFO_BW_HE_RU &&
1327                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1328                 result = rates_242[rate->he_gi];
1329         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1330                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1331                 result = rates_106[rate->he_gi];
1332         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1333                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1334                 result = rates_52[rate->he_gi];
1335         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1336                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1337                 result = rates_26[rate->he_gi];
1338         else {
1339                 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1340                      rate->bw, rate->he_ru_alloc);
1341                 return 0;
1342         }
1343
1344         /* now scale to the appropriate MCS */
1345         tmp = result;
1346         tmp *= SCALE;
1347         do_div(tmp, mcs_divisors[rate->mcs]);
1348         result = tmp;
1349
1350         /* and take NSS, DCM into account */
1351         result = (result * rate->nss) / 8;
1352         if (rate->he_dcm)
1353                 result /= 2;
1354
1355         return result / 10000;
1356 }
1357
1358 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1359 {
1360         if (rate->flags & RATE_INFO_FLAGS_MCS)
1361                 return cfg80211_calculate_bitrate_ht(rate);
1362         if (rate->flags & RATE_INFO_FLAGS_DMG)
1363                 return cfg80211_calculate_bitrate_dmg(rate);
1364         if (rate->flags & RATE_INFO_FLAGS_EDMG)
1365                 return cfg80211_calculate_bitrate_edmg(rate);
1366         if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1367                 return cfg80211_calculate_bitrate_vht(rate);
1368         if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1369                 return cfg80211_calculate_bitrate_he(rate);
1370
1371         return rate->legacy;
1372 }
1373 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1374
1375 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1376                           enum ieee80211_p2p_attr_id attr,
1377                           u8 *buf, unsigned int bufsize)
1378 {
1379         u8 *out = buf;
1380         u16 attr_remaining = 0;
1381         bool desired_attr = false;
1382         u16 desired_len = 0;
1383
1384         while (len > 0) {
1385                 unsigned int iedatalen;
1386                 unsigned int copy;
1387                 const u8 *iedata;
1388
1389                 if (len < 2)
1390                         return -EILSEQ;
1391                 iedatalen = ies[1];
1392                 if (iedatalen + 2 > len)
1393                         return -EILSEQ;
1394
1395                 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1396                         goto cont;
1397
1398                 if (iedatalen < 4)
1399                         goto cont;
1400
1401                 iedata = ies + 2;
1402
1403                 /* check WFA OUI, P2P subtype */
1404                 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1405                     iedata[2] != 0x9a || iedata[3] != 0x09)
1406                         goto cont;
1407
1408                 iedatalen -= 4;
1409                 iedata += 4;
1410
1411                 /* check attribute continuation into this IE */
1412                 copy = min_t(unsigned int, attr_remaining, iedatalen);
1413                 if (copy && desired_attr) {
1414                         desired_len += copy;
1415                         if (out) {
1416                                 memcpy(out, iedata, min(bufsize, copy));
1417                                 out += min(bufsize, copy);
1418                                 bufsize -= min(bufsize, copy);
1419                         }
1420
1421
1422                         if (copy == attr_remaining)
1423                                 return desired_len;
1424                 }
1425
1426                 attr_remaining -= copy;
1427                 if (attr_remaining)
1428                         goto cont;
1429
1430                 iedatalen -= copy;
1431                 iedata += copy;
1432
1433                 while (iedatalen > 0) {
1434                         u16 attr_len;
1435
1436                         /* P2P attribute ID & size must fit */
1437                         if (iedatalen < 3)
1438                                 return -EILSEQ;
1439                         desired_attr = iedata[0] == attr;
1440                         attr_len = get_unaligned_le16(iedata + 1);
1441                         iedatalen -= 3;
1442                         iedata += 3;
1443
1444                         copy = min_t(unsigned int, attr_len, iedatalen);
1445
1446                         if (desired_attr) {
1447                                 desired_len += copy;
1448                                 if (out) {
1449                                         memcpy(out, iedata, min(bufsize, copy));
1450                                         out += min(bufsize, copy);
1451                                         bufsize -= min(bufsize, copy);
1452                                 }
1453
1454                                 if (copy == attr_len)
1455                                         return desired_len;
1456                         }
1457
1458                         iedata += copy;
1459                         iedatalen -= copy;
1460                         attr_remaining = attr_len - copy;
1461                 }
1462
1463  cont:
1464                 len -= ies[1] + 2;
1465                 ies += ies[1] + 2;
1466         }
1467
1468         if (attr_remaining && desired_attr)
1469                 return -EILSEQ;
1470
1471         return -ENOENT;
1472 }
1473 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1474
1475 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1476 {
1477         int i;
1478
1479         /* Make sure array values are legal */
1480         if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1481                 return false;
1482
1483         i = 0;
1484         while (i < n_ids) {
1485                 if (ids[i] == WLAN_EID_EXTENSION) {
1486                         if (id_ext && (ids[i + 1] == id))
1487                                 return true;
1488
1489                         i += 2;
1490                         continue;
1491                 }
1492
1493                 if (ids[i] == id && !id_ext)
1494                         return true;
1495
1496                 i++;
1497         }
1498         return false;
1499 }
1500
1501 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1502 {
1503         /* we assume a validly formed IEs buffer */
1504         u8 len = ies[pos + 1];
1505
1506         pos += 2 + len;
1507
1508         /* the IE itself must have 255 bytes for fragments to follow */
1509         if (len < 255)
1510                 return pos;
1511
1512         while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1513                 len = ies[pos + 1];
1514                 pos += 2 + len;
1515         }
1516
1517         return pos;
1518 }
1519
1520 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1521                               const u8 *ids, int n_ids,
1522                               const u8 *after_ric, int n_after_ric,
1523                               size_t offset)
1524 {
1525         size_t pos = offset;
1526
1527         while (pos < ielen) {
1528                 u8 ext = 0;
1529
1530                 if (ies[pos] == WLAN_EID_EXTENSION)
1531                         ext = 2;
1532                 if ((pos + ext) >= ielen)
1533                         break;
1534
1535                 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1536                                           ies[pos] == WLAN_EID_EXTENSION))
1537                         break;
1538
1539                 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1540                         pos = skip_ie(ies, ielen, pos);
1541
1542                         while (pos < ielen) {
1543                                 if (ies[pos] == WLAN_EID_EXTENSION)
1544                                         ext = 2;
1545                                 else
1546                                         ext = 0;
1547
1548                                 if ((pos + ext) >= ielen)
1549                                         break;
1550
1551                                 if (!ieee80211_id_in_list(after_ric,
1552                                                           n_after_ric,
1553                                                           ies[pos + ext],
1554                                                           ext == 2))
1555                                         pos = skip_ie(ies, ielen, pos);
1556                                 else
1557                                         break;
1558                         }
1559                 } else {
1560                         pos = skip_ie(ies, ielen, pos);
1561                 }
1562         }
1563
1564         return pos;
1565 }
1566 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1567
1568 bool ieee80211_operating_class_to_band(u8 operating_class,
1569                                        enum nl80211_band *band)
1570 {
1571         switch (operating_class) {
1572         case 112:
1573         case 115 ... 127:
1574         case 128 ... 130:
1575                 *band = NL80211_BAND_5GHZ;
1576                 return true;
1577         case 131 ... 135:
1578                 *band = NL80211_BAND_6GHZ;
1579                 return true;
1580         case 81:
1581         case 82:
1582         case 83:
1583         case 84:
1584                 *band = NL80211_BAND_2GHZ;
1585                 return true;
1586         case 180:
1587                 *band = NL80211_BAND_60GHZ;
1588                 return true;
1589         }
1590
1591         return false;
1592 }
1593 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1594
1595 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1596                                           u8 *op_class)
1597 {
1598         u8 vht_opclass;
1599         u32 freq = chandef->center_freq1;
1600
1601         if (freq >= 2412 && freq <= 2472) {
1602                 if (chandef->width > NL80211_CHAN_WIDTH_40)
1603                         return false;
1604
1605                 /* 2.407 GHz, channels 1..13 */
1606                 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1607                         if (freq > chandef->chan->center_freq)
1608                                 *op_class = 83; /* HT40+ */
1609                         else
1610                                 *op_class = 84; /* HT40- */
1611                 } else {
1612                         *op_class = 81;
1613                 }
1614
1615                 return true;
1616         }
1617
1618         if (freq == 2484) {
1619                 /* channel 14 is only for IEEE 802.11b */
1620                 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1621                         return false;
1622
1623                 *op_class = 82; /* channel 14 */
1624                 return true;
1625         }
1626
1627         switch (chandef->width) {
1628         case NL80211_CHAN_WIDTH_80:
1629                 vht_opclass = 128;
1630                 break;
1631         case NL80211_CHAN_WIDTH_160:
1632                 vht_opclass = 129;
1633                 break;
1634         case NL80211_CHAN_WIDTH_80P80:
1635                 vht_opclass = 130;
1636                 break;
1637         case NL80211_CHAN_WIDTH_10:
1638         case NL80211_CHAN_WIDTH_5:
1639                 return false; /* unsupported for now */
1640         default:
1641                 vht_opclass = 0;
1642                 break;
1643         }
1644
1645         /* 5 GHz, channels 36..48 */
1646         if (freq >= 5180 && freq <= 5240) {
1647                 if (vht_opclass) {
1648                         *op_class = vht_opclass;
1649                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1650                         if (freq > chandef->chan->center_freq)
1651                                 *op_class = 116;
1652                         else
1653                                 *op_class = 117;
1654                 } else {
1655                         *op_class = 115;
1656                 }
1657
1658                 return true;
1659         }
1660
1661         /* 5 GHz, channels 52..64 */
1662         if (freq >= 5260 && freq <= 5320) {
1663                 if (vht_opclass) {
1664                         *op_class = vht_opclass;
1665                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1666                         if (freq > chandef->chan->center_freq)
1667                                 *op_class = 119;
1668                         else
1669                                 *op_class = 120;
1670                 } else {
1671                         *op_class = 118;
1672                 }
1673
1674                 return true;
1675         }
1676
1677         /* 5 GHz, channels 100..144 */
1678         if (freq >= 5500 && freq <= 5720) {
1679                 if (vht_opclass) {
1680                         *op_class = vht_opclass;
1681                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1682                         if (freq > chandef->chan->center_freq)
1683                                 *op_class = 122;
1684                         else
1685                                 *op_class = 123;
1686                 } else {
1687                         *op_class = 121;
1688                 }
1689
1690                 return true;
1691         }
1692
1693         /* 5 GHz, channels 149..169 */
1694         if (freq >= 5745 && freq <= 5845) {
1695                 if (vht_opclass) {
1696                         *op_class = vht_opclass;
1697                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1698                         if (freq > chandef->chan->center_freq)
1699                                 *op_class = 126;
1700                         else
1701                                 *op_class = 127;
1702                 } else if (freq <= 5805) {
1703                         *op_class = 124;
1704                 } else {
1705                         *op_class = 125;
1706                 }
1707
1708                 return true;
1709         }
1710
1711         /* 56.16 GHz, channel 1..4 */
1712         if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1713                 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1714                         return false;
1715
1716                 *op_class = 180;
1717                 return true;
1718         }
1719
1720         /* not supported yet */
1721         return false;
1722 }
1723 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1724
1725 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1726                                        u32 *beacon_int_gcd,
1727                                        bool *beacon_int_different)
1728 {
1729         struct wireless_dev *wdev;
1730
1731         *beacon_int_gcd = 0;
1732         *beacon_int_different = false;
1733
1734         list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1735                 if (!wdev->beacon_interval)
1736                         continue;
1737
1738                 if (!*beacon_int_gcd) {
1739                         *beacon_int_gcd = wdev->beacon_interval;
1740                         continue;
1741                 }
1742
1743                 if (wdev->beacon_interval == *beacon_int_gcd)
1744                         continue;
1745
1746                 *beacon_int_different = true;
1747                 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1748         }
1749
1750         if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1751                 if (*beacon_int_gcd)
1752                         *beacon_int_different = true;
1753                 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1754         }
1755 }
1756
1757 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1758                                  enum nl80211_iftype iftype, u32 beacon_int)
1759 {
1760         /*
1761          * This is just a basic pre-condition check; if interface combinations
1762          * are possible the driver must already be checking those with a call
1763          * to cfg80211_check_combinations(), in which case we'll validate more
1764          * through the cfg80211_calculate_bi_data() call and code in
1765          * cfg80211_iter_combinations().
1766          */
1767
1768         if (beacon_int < 10 || beacon_int > 10000)
1769                 return -EINVAL;
1770
1771         return 0;
1772 }
1773
1774 int cfg80211_iter_combinations(struct wiphy *wiphy,
1775                                struct iface_combination_params *params,
1776                                void (*iter)(const struct ieee80211_iface_combination *c,
1777                                             void *data),
1778                                void *data)
1779 {
1780         const struct ieee80211_regdomain *regdom;
1781         enum nl80211_dfs_regions region = 0;
1782         int i, j, iftype;
1783         int num_interfaces = 0;
1784         u32 used_iftypes = 0;
1785         u32 beacon_int_gcd;
1786         bool beacon_int_different;
1787
1788         /*
1789          * This is a bit strange, since the iteration used to rely only on
1790          * the data given by the driver, but here it now relies on context,
1791          * in form of the currently operating interfaces.
1792          * This is OK for all current users, and saves us from having to
1793          * push the GCD calculations into all the drivers.
1794          * In the future, this should probably rely more on data that's in
1795          * cfg80211 already - the only thing not would appear to be any new
1796          * interfaces (while being brought up) and channel/radar data.
1797          */
1798         cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1799                                    &beacon_int_gcd, &beacon_int_different);
1800
1801         if (params->radar_detect) {
1802                 rcu_read_lock();
1803                 regdom = rcu_dereference(cfg80211_regdomain);
1804                 if (regdom)
1805                         region = regdom->dfs_region;
1806                 rcu_read_unlock();
1807         }
1808
1809         for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1810                 num_interfaces += params->iftype_num[iftype];
1811                 if (params->iftype_num[iftype] > 0 &&
1812                     !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1813                         used_iftypes |= BIT(iftype);
1814         }
1815
1816         for (i = 0; i < wiphy->n_iface_combinations; i++) {
1817                 const struct ieee80211_iface_combination *c;
1818                 struct ieee80211_iface_limit *limits;
1819                 u32 all_iftypes = 0;
1820
1821                 c = &wiphy->iface_combinations[i];
1822
1823                 if (num_interfaces > c->max_interfaces)
1824                         continue;
1825                 if (params->num_different_channels > c->num_different_channels)
1826                         continue;
1827
1828                 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1829                                  GFP_KERNEL);
1830                 if (!limits)
1831                         return -ENOMEM;
1832
1833                 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1834                         if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1835                                 continue;
1836                         for (j = 0; j < c->n_limits; j++) {
1837                                 all_iftypes |= limits[j].types;
1838                                 if (!(limits[j].types & BIT(iftype)))
1839                                         continue;
1840                                 if (limits[j].max < params->iftype_num[iftype])
1841                                         goto cont;
1842                                 limits[j].max -= params->iftype_num[iftype];
1843                         }
1844                 }
1845
1846                 if (params->radar_detect !=
1847                         (c->radar_detect_widths & params->radar_detect))
1848                         goto cont;
1849
1850                 if (params->radar_detect && c->radar_detect_regions &&
1851                     !(c->radar_detect_regions & BIT(region)))
1852                         goto cont;
1853
1854                 /* Finally check that all iftypes that we're currently
1855                  * using are actually part of this combination. If they
1856                  * aren't then we can't use this combination and have
1857                  * to continue to the next.
1858                  */
1859                 if ((all_iftypes & used_iftypes) != used_iftypes)
1860                         goto cont;
1861
1862                 if (beacon_int_gcd) {
1863                         if (c->beacon_int_min_gcd &&
1864                             beacon_int_gcd < c->beacon_int_min_gcd)
1865                                 goto cont;
1866                         if (!c->beacon_int_min_gcd && beacon_int_different)
1867                                 goto cont;
1868                 }
1869
1870                 /* This combination covered all interface types and
1871                  * supported the requested numbers, so we're good.
1872                  */
1873
1874                 (*iter)(c, data);
1875  cont:
1876                 kfree(limits);
1877         }
1878
1879         return 0;
1880 }
1881 EXPORT_SYMBOL(cfg80211_iter_combinations);
1882
1883 static void
1884 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1885                           void *data)
1886 {
1887         int *num = data;
1888         (*num)++;
1889 }
1890
1891 int cfg80211_check_combinations(struct wiphy *wiphy,
1892                                 struct iface_combination_params *params)
1893 {
1894         int err, num = 0;
1895
1896         err = cfg80211_iter_combinations(wiphy, params,
1897                                          cfg80211_iter_sum_ifcombs, &num);
1898         if (err)
1899                 return err;
1900         if (num == 0)
1901                 return -EBUSY;
1902
1903         return 0;
1904 }
1905 EXPORT_SYMBOL(cfg80211_check_combinations);
1906
1907 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1908                            const u8 *rates, unsigned int n_rates,
1909                            u32 *mask)
1910 {
1911         int i, j;
1912
1913         if (!sband)
1914                 return -EINVAL;
1915
1916         if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1917                 return -EINVAL;
1918
1919         *mask = 0;
1920
1921         for (i = 0; i < n_rates; i++) {
1922                 int rate = (rates[i] & 0x7f) * 5;
1923                 bool found = false;
1924
1925                 for (j = 0; j < sband->n_bitrates; j++) {
1926                         if (sband->bitrates[j].bitrate == rate) {
1927                                 found = true;
1928                                 *mask |= BIT(j);
1929                                 break;
1930                         }
1931                 }
1932                 if (!found)
1933                         return -EINVAL;
1934         }
1935
1936         /*
1937          * mask must have at least one bit set here since we
1938          * didn't accept a 0-length rates array nor allowed
1939          * entries in the array that didn't exist
1940          */
1941
1942         return 0;
1943 }
1944
1945 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1946 {
1947         enum nl80211_band band;
1948         unsigned int n_channels = 0;
1949
1950         for (band = 0; band < NUM_NL80211_BANDS; band++)
1951                 if (wiphy->bands[band])
1952                         n_channels += wiphy->bands[band]->n_channels;
1953
1954         return n_channels;
1955 }
1956 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1957
1958 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1959                          struct station_info *sinfo)
1960 {
1961         struct cfg80211_registered_device *rdev;
1962         struct wireless_dev *wdev;
1963
1964         wdev = dev->ieee80211_ptr;
1965         if (!wdev)
1966                 return -EOPNOTSUPP;
1967
1968         rdev = wiphy_to_rdev(wdev->wiphy);
1969         if (!rdev->ops->get_station)
1970                 return -EOPNOTSUPP;
1971
1972         memset(sinfo, 0, sizeof(*sinfo));
1973
1974         return rdev_get_station(rdev, dev, mac_addr, sinfo);
1975 }
1976 EXPORT_SYMBOL(cfg80211_get_station);
1977
1978 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1979 {
1980         int i;
1981
1982         if (!f)
1983                 return;
1984
1985         kfree(f->serv_spec_info);
1986         kfree(f->srf_bf);
1987         kfree(f->srf_macs);
1988         for (i = 0; i < f->num_rx_filters; i++)
1989                 kfree(f->rx_filters[i].filter);
1990
1991         for (i = 0; i < f->num_tx_filters; i++)
1992                 kfree(f->tx_filters[i].filter);
1993
1994         kfree(f->rx_filters);
1995         kfree(f->tx_filters);
1996         kfree(f);
1997 }
1998 EXPORT_SYMBOL(cfg80211_free_nan_func);
1999
2000 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2001                                 u32 center_freq_khz, u32 bw_khz)
2002 {
2003         u32 start_freq_khz, end_freq_khz;
2004
2005         start_freq_khz = center_freq_khz - (bw_khz / 2);
2006         end_freq_khz = center_freq_khz + (bw_khz / 2);
2007
2008         if (start_freq_khz >= freq_range->start_freq_khz &&
2009             end_freq_khz <= freq_range->end_freq_khz)
2010                 return true;
2011
2012         return false;
2013 }
2014
2015 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2016 {
2017         sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2018                                 sizeof(*(sinfo->pertid)),
2019                                 gfp);
2020         if (!sinfo->pertid)
2021                 return -ENOMEM;
2022
2023         return 0;
2024 }
2025 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2026
2027 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2028 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2029 const unsigned char rfc1042_header[] __aligned(2) =
2030         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2031 EXPORT_SYMBOL(rfc1042_header);
2032
2033 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2034 const unsigned char bridge_tunnel_header[] __aligned(2) =
2035         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2036 EXPORT_SYMBOL(bridge_tunnel_header);
2037
2038 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2039 struct iapp_layer2_update {
2040         u8 da[ETH_ALEN];        /* broadcast */
2041         u8 sa[ETH_ALEN];        /* STA addr */
2042         __be16 len;             /* 6 */
2043         u8 dsap;                /* 0 */
2044         u8 ssap;                /* 0 */
2045         u8 control;
2046         u8 xid_info[3];
2047 } __packed;
2048
2049 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2050 {
2051         struct iapp_layer2_update *msg;
2052         struct sk_buff *skb;
2053
2054         /* Send Level 2 Update Frame to update forwarding tables in layer 2
2055          * bridge devices */
2056
2057         skb = dev_alloc_skb(sizeof(*msg));
2058         if (!skb)
2059                 return;
2060         msg = skb_put(skb, sizeof(*msg));
2061
2062         /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2063          * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2064
2065         eth_broadcast_addr(msg->da);
2066         ether_addr_copy(msg->sa, addr);
2067         msg->len = htons(6);
2068         msg->dsap = 0;
2069         msg->ssap = 0x01;       /* NULL LSAP, CR Bit: Response */
2070         msg->control = 0xaf;    /* XID response lsb.1111F101.
2071                                  * F=0 (no poll command; unsolicited frame) */
2072         msg->xid_info[0] = 0x81;        /* XID format identifier */
2073         msg->xid_info[1] = 1;   /* LLC types/classes: Type 1 LLC */
2074         msg->xid_info[2] = 0;   /* XID sender's receive window size (RW) */
2075
2076         skb->dev = dev;
2077         skb->protocol = eth_type_trans(skb, dev);
2078         memset(skb->cb, 0, sizeof(skb->cb));
2079         netif_rx_ni(skb);
2080 }
2081 EXPORT_SYMBOL(cfg80211_send_layer2_update);
2082
2083 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2084                               enum ieee80211_vht_chanwidth bw,
2085                               int mcs, bool ext_nss_bw_capable,
2086                               unsigned int max_vht_nss)
2087 {
2088         u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2089         int ext_nss_bw;
2090         int supp_width;
2091         int i, mcs_encoding;
2092
2093         if (map == 0xffff)
2094                 return 0;
2095
2096         if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2097                 return 0;
2098         if (mcs <= 7)
2099                 mcs_encoding = 0;
2100         else if (mcs == 8)
2101                 mcs_encoding = 1;
2102         else
2103                 mcs_encoding = 2;
2104
2105         if (!max_vht_nss) {
2106                 /* find max_vht_nss for the given MCS */
2107                 for (i = 7; i >= 0; i--) {
2108                         int supp = (map >> (2 * i)) & 3;
2109
2110                         if (supp == 3)
2111                                 continue;
2112
2113                         if (supp >= mcs_encoding) {
2114                                 max_vht_nss = i + 1;
2115                                 break;
2116                         }
2117                 }
2118         }
2119
2120         if (!(cap->supp_mcs.tx_mcs_map &
2121                         cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2122                 return max_vht_nss;
2123
2124         ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2125                                    IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2126         supp_width = le32_get_bits(cap->vht_cap_info,
2127                                    IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2128
2129         /* if not capable, treat ext_nss_bw as 0 */
2130         if (!ext_nss_bw_capable)
2131                 ext_nss_bw = 0;
2132
2133         /* This is invalid */
2134         if (supp_width == 3)
2135                 return 0;
2136
2137         /* This is an invalid combination so pretend nothing is supported */
2138         if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2139                 return 0;
2140
2141         /*
2142          * Cover all the special cases according to IEEE 802.11-2016
2143          * Table 9-250. All other cases are either factor of 1 or not
2144          * valid/supported.
2145          */
2146         switch (bw) {
2147         case IEEE80211_VHT_CHANWIDTH_USE_HT:
2148         case IEEE80211_VHT_CHANWIDTH_80MHZ:
2149                 if ((supp_width == 1 || supp_width == 2) &&
2150                     ext_nss_bw == 3)
2151                         return 2 * max_vht_nss;
2152                 break;
2153         case IEEE80211_VHT_CHANWIDTH_160MHZ:
2154                 if (supp_width == 0 &&
2155                     (ext_nss_bw == 1 || ext_nss_bw == 2))
2156                         return max_vht_nss / 2;
2157                 if (supp_width == 0 &&
2158                     ext_nss_bw == 3)
2159                         return (3 * max_vht_nss) / 4;
2160                 if (supp_width == 1 &&
2161                     ext_nss_bw == 3)
2162                         return 2 * max_vht_nss;
2163                 break;
2164         case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2165                 if (supp_width == 0 && ext_nss_bw == 1)
2166                         return 0; /* not possible */
2167                 if (supp_width == 0 &&
2168                     ext_nss_bw == 2)
2169                         return max_vht_nss / 2;
2170                 if (supp_width == 0 &&
2171                     ext_nss_bw == 3)
2172                         return (3 * max_vht_nss) / 4;
2173                 if (supp_width == 1 &&
2174                     ext_nss_bw == 0)
2175                         return 0; /* not possible */
2176                 if (supp_width == 1 &&
2177                     ext_nss_bw == 1)
2178                         return max_vht_nss / 2;
2179                 if (supp_width == 1 &&
2180                     ext_nss_bw == 2)
2181                         return (3 * max_vht_nss) / 4;
2182                 break;
2183         }
2184
2185         /* not covered or invalid combination received */
2186         return max_vht_nss;
2187 }
2188 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2189
2190 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2191                              bool is_4addr, u8 check_swif)
2192
2193 {
2194         bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2195
2196         switch (check_swif) {
2197         case 0:
2198                 if (is_vlan && is_4addr)
2199                         return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2200                 return wiphy->interface_modes & BIT(iftype);
2201         case 1:
2202                 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2203                         return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2204                 return wiphy->software_iftypes & BIT(iftype);
2205         default:
2206                 break;
2207         }
2208
2209         return false;
2210 }
2211 EXPORT_SYMBOL(cfg80211_iftype_allowed);