Merge tag 'clk-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / net / wireless / util.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Wireless utility functions
4  *
5  * Copyright 2007-2009  Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2017       Intel Deutschland GmbH
8  * Copyright (C) 2018-2020 Intel Corporation
9  */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25
26
27 struct ieee80211_rate *
28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29                             u32 basic_rates, int bitrate)
30 {
31         struct ieee80211_rate *result = &sband->bitrates[0];
32         int i;
33
34         for (i = 0; i < sband->n_bitrates; i++) {
35                 if (!(basic_rates & BIT(i)))
36                         continue;
37                 if (sband->bitrates[i].bitrate > bitrate)
38                         continue;
39                 result = &sband->bitrates[i];
40         }
41
42         return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45
46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47                               enum nl80211_bss_scan_width scan_width)
48 {
49         struct ieee80211_rate *bitrates;
50         u32 mandatory_rates = 0;
51         enum ieee80211_rate_flags mandatory_flag;
52         int i;
53
54         if (WARN_ON(!sband))
55                 return 1;
56
57         if (sband->band == NL80211_BAND_2GHZ) {
58                 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59                     scan_width == NL80211_BSS_CHAN_WIDTH_10)
60                         mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61                 else
62                         mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63         } else {
64                 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65         }
66
67         bitrates = sband->bitrates;
68         for (i = 0; i < sband->n_bitrates; i++)
69                 if (bitrates[i].flags & mandatory_flag)
70                         mandatory_rates |= BIT(i);
71         return mandatory_rates;
72 }
73 EXPORT_SYMBOL(ieee80211_mandatory_rates);
74
75 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
76 {
77         /* see 802.11 17.3.8.3.2 and Annex J
78          * there are overlapping channel numbers in 5GHz and 2GHz bands */
79         if (chan <= 0)
80                 return 0; /* not supported */
81         switch (band) {
82         case NL80211_BAND_2GHZ:
83                 if (chan == 14)
84                         return MHZ_TO_KHZ(2484);
85                 else if (chan < 14)
86                         return MHZ_TO_KHZ(2407 + chan * 5);
87                 break;
88         case NL80211_BAND_5GHZ:
89                 if (chan >= 182 && chan <= 196)
90                         return MHZ_TO_KHZ(4000 + chan * 5);
91                 else
92                         return MHZ_TO_KHZ(5000 + chan * 5);
93                 break;
94         case NL80211_BAND_6GHZ:
95                 /* see 802.11ax D6.1 27.3.23.2 */
96                 if (chan == 2)
97                         return MHZ_TO_KHZ(5935);
98                 if (chan <= 233)
99                         return MHZ_TO_KHZ(5950 + chan * 5);
100                 break;
101         case NL80211_BAND_60GHZ:
102                 if (chan < 7)
103                         return MHZ_TO_KHZ(56160 + chan * 2160);
104                 break;
105         case NL80211_BAND_S1GHZ:
106                 return 902000 + chan * 500;
107         default:
108                 ;
109         }
110         return 0; /* not supported */
111 }
112 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
113
114 enum nl80211_chan_width
115 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
116 {
117         if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
118                 return NL80211_CHAN_WIDTH_20_NOHT;
119
120         /*S1G defines a single allowed channel width per channel.
121          * Extract that width here.
122          */
123         if (chan->flags & IEEE80211_CHAN_1MHZ)
124                 return NL80211_CHAN_WIDTH_1;
125         else if (chan->flags & IEEE80211_CHAN_2MHZ)
126                 return NL80211_CHAN_WIDTH_2;
127         else if (chan->flags & IEEE80211_CHAN_4MHZ)
128                 return NL80211_CHAN_WIDTH_4;
129         else if (chan->flags & IEEE80211_CHAN_8MHZ)
130                 return NL80211_CHAN_WIDTH_8;
131         else if (chan->flags & IEEE80211_CHAN_16MHZ)
132                 return NL80211_CHAN_WIDTH_16;
133
134         pr_err("unknown channel width for channel at %dKHz?\n",
135                ieee80211_channel_to_khz(chan));
136
137         return NL80211_CHAN_WIDTH_1;
138 }
139 EXPORT_SYMBOL(ieee80211_s1g_channel_width);
140
141 int ieee80211_freq_khz_to_channel(u32 freq)
142 {
143         /* TODO: just handle MHz for now */
144         freq = KHZ_TO_MHZ(freq);
145
146         /* see 802.11 17.3.8.3.2 and Annex J */
147         if (freq == 2484)
148                 return 14;
149         else if (freq < 2484)
150                 return (freq - 2407) / 5;
151         else if (freq >= 4910 && freq <= 4980)
152                 return (freq - 4000) / 5;
153         else if (freq < 5925)
154                 return (freq - 5000) / 5;
155         else if (freq == 5935)
156                 return 2;
157         else if (freq <= 45000) /* DMG band lower limit */
158                 /* see 802.11ax D6.1 27.3.22.2 */
159                 return (freq - 5950) / 5;
160         else if (freq >= 58320 && freq <= 70200)
161                 return (freq - 56160) / 2160;
162         else
163                 return 0;
164 }
165 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
166
167 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
168                                                     u32 freq)
169 {
170         enum nl80211_band band;
171         struct ieee80211_supported_band *sband;
172         int i;
173
174         for (band = 0; band < NUM_NL80211_BANDS; band++) {
175                 sband = wiphy->bands[band];
176
177                 if (!sband)
178                         continue;
179
180                 for (i = 0; i < sband->n_channels; i++) {
181                         struct ieee80211_channel *chan = &sband->channels[i];
182
183                         if (ieee80211_channel_to_khz(chan) == freq)
184                                 return chan;
185                 }
186         }
187
188         return NULL;
189 }
190 EXPORT_SYMBOL(ieee80211_get_channel_khz);
191
192 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
193 {
194         int i, want;
195
196         switch (sband->band) {
197         case NL80211_BAND_5GHZ:
198         case NL80211_BAND_6GHZ:
199                 want = 3;
200                 for (i = 0; i < sband->n_bitrates; i++) {
201                         if (sband->bitrates[i].bitrate == 60 ||
202                             sband->bitrates[i].bitrate == 120 ||
203                             sband->bitrates[i].bitrate == 240) {
204                                 sband->bitrates[i].flags |=
205                                         IEEE80211_RATE_MANDATORY_A;
206                                 want--;
207                         }
208                 }
209                 WARN_ON(want);
210                 break;
211         case NL80211_BAND_2GHZ:
212                 want = 7;
213                 for (i = 0; i < sband->n_bitrates; i++) {
214                         switch (sband->bitrates[i].bitrate) {
215                         case 10:
216                         case 20:
217                         case 55:
218                         case 110:
219                                 sband->bitrates[i].flags |=
220                                         IEEE80211_RATE_MANDATORY_B |
221                                         IEEE80211_RATE_MANDATORY_G;
222                                 want--;
223                                 break;
224                         case 60:
225                         case 120:
226                         case 240:
227                                 sband->bitrates[i].flags |=
228                                         IEEE80211_RATE_MANDATORY_G;
229                                 want--;
230                                 fallthrough;
231                         default:
232                                 sband->bitrates[i].flags |=
233                                         IEEE80211_RATE_ERP_G;
234                                 break;
235                         }
236                 }
237                 WARN_ON(want != 0 && want != 3);
238                 break;
239         case NL80211_BAND_60GHZ:
240                 /* check for mandatory HT MCS 1..4 */
241                 WARN_ON(!sband->ht_cap.ht_supported);
242                 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
243                 break;
244         case NL80211_BAND_S1GHZ:
245                 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least
246                  * mandatory is ok.
247                  */
248                 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
249                 break;
250         case NUM_NL80211_BANDS:
251         default:
252                 WARN_ON(1);
253                 break;
254         }
255 }
256
257 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
258 {
259         enum nl80211_band band;
260
261         for (band = 0; band < NUM_NL80211_BANDS; band++)
262                 if (wiphy->bands[band])
263                         set_mandatory_flags_band(wiphy->bands[band]);
264 }
265
266 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
267 {
268         int i;
269         for (i = 0; i < wiphy->n_cipher_suites; i++)
270                 if (cipher == wiphy->cipher_suites[i])
271                         return true;
272         return false;
273 }
274
275 static bool
276 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
277 {
278         struct wiphy *wiphy = &rdev->wiphy;
279         int i;
280
281         for (i = 0; i < wiphy->n_cipher_suites; i++) {
282                 switch (wiphy->cipher_suites[i]) {
283                 case WLAN_CIPHER_SUITE_AES_CMAC:
284                 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
285                 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
286                 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
287                         return true;
288                 }
289         }
290
291         return false;
292 }
293
294 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
295                             int key_idx, bool pairwise)
296 {
297         int max_key_idx;
298
299         if (pairwise)
300                 max_key_idx = 3;
301         else if (wiphy_ext_feature_isset(&rdev->wiphy,
302                                          NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
303                  wiphy_ext_feature_isset(&rdev->wiphy,
304                                          NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
305                 max_key_idx = 7;
306         else if (cfg80211_igtk_cipher_supported(rdev))
307                 max_key_idx = 5;
308         else
309                 max_key_idx = 3;
310
311         if (key_idx < 0 || key_idx > max_key_idx)
312                 return false;
313
314         return true;
315 }
316
317 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
318                                    struct key_params *params, int key_idx,
319                                    bool pairwise, const u8 *mac_addr)
320 {
321         if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
322                 return -EINVAL;
323
324         if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
325                 return -EINVAL;
326
327         if (pairwise && !mac_addr)
328                 return -EINVAL;
329
330         switch (params->cipher) {
331         case WLAN_CIPHER_SUITE_TKIP:
332                 /* Extended Key ID can only be used with CCMP/GCMP ciphers */
333                 if ((pairwise && key_idx) ||
334                     params->mode != NL80211_KEY_RX_TX)
335                         return -EINVAL;
336                 break;
337         case WLAN_CIPHER_SUITE_CCMP:
338         case WLAN_CIPHER_SUITE_CCMP_256:
339         case WLAN_CIPHER_SUITE_GCMP:
340         case WLAN_CIPHER_SUITE_GCMP_256:
341                 /* IEEE802.11-2016 allows only 0 and - when supporting
342                  * Extended Key ID - 1 as index for pairwise keys.
343                  * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
344                  * the driver supports Extended Key ID.
345                  * @NL80211_KEY_SET_TX can't be set when installing and
346                  * validating a key.
347                  */
348                 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
349                     params->mode == NL80211_KEY_SET_TX)
350                         return -EINVAL;
351                 if (wiphy_ext_feature_isset(&rdev->wiphy,
352                                             NL80211_EXT_FEATURE_EXT_KEY_ID)) {
353                         if (pairwise && (key_idx < 0 || key_idx > 1))
354                                 return -EINVAL;
355                 } else if (pairwise && key_idx) {
356                         return -EINVAL;
357                 }
358                 break;
359         case WLAN_CIPHER_SUITE_AES_CMAC:
360         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
361         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
362         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
363                 /* Disallow BIP (group-only) cipher as pairwise cipher */
364                 if (pairwise)
365                         return -EINVAL;
366                 if (key_idx < 4)
367                         return -EINVAL;
368                 break;
369         case WLAN_CIPHER_SUITE_WEP40:
370         case WLAN_CIPHER_SUITE_WEP104:
371                 if (key_idx > 3)
372                         return -EINVAL;
373                 break;
374         default:
375                 break;
376         }
377
378         switch (params->cipher) {
379         case WLAN_CIPHER_SUITE_WEP40:
380                 if (params->key_len != WLAN_KEY_LEN_WEP40)
381                         return -EINVAL;
382                 break;
383         case WLAN_CIPHER_SUITE_TKIP:
384                 if (params->key_len != WLAN_KEY_LEN_TKIP)
385                         return -EINVAL;
386                 break;
387         case WLAN_CIPHER_SUITE_CCMP:
388                 if (params->key_len != WLAN_KEY_LEN_CCMP)
389                         return -EINVAL;
390                 break;
391         case WLAN_CIPHER_SUITE_CCMP_256:
392                 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
393                         return -EINVAL;
394                 break;
395         case WLAN_CIPHER_SUITE_GCMP:
396                 if (params->key_len != WLAN_KEY_LEN_GCMP)
397                         return -EINVAL;
398                 break;
399         case WLAN_CIPHER_SUITE_GCMP_256:
400                 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
401                         return -EINVAL;
402                 break;
403         case WLAN_CIPHER_SUITE_WEP104:
404                 if (params->key_len != WLAN_KEY_LEN_WEP104)
405                         return -EINVAL;
406                 break;
407         case WLAN_CIPHER_SUITE_AES_CMAC:
408                 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
409                         return -EINVAL;
410                 break;
411         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
412                 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
413                         return -EINVAL;
414                 break;
415         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
416                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
417                         return -EINVAL;
418                 break;
419         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
420                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
421                         return -EINVAL;
422                 break;
423         default:
424                 /*
425                  * We don't know anything about this algorithm,
426                  * allow using it -- but the driver must check
427                  * all parameters! We still check below whether
428                  * or not the driver supports this algorithm,
429                  * of course.
430                  */
431                 break;
432         }
433
434         if (params->seq) {
435                 switch (params->cipher) {
436                 case WLAN_CIPHER_SUITE_WEP40:
437                 case WLAN_CIPHER_SUITE_WEP104:
438                         /* These ciphers do not use key sequence */
439                         return -EINVAL;
440                 case WLAN_CIPHER_SUITE_TKIP:
441                 case WLAN_CIPHER_SUITE_CCMP:
442                 case WLAN_CIPHER_SUITE_CCMP_256:
443                 case WLAN_CIPHER_SUITE_GCMP:
444                 case WLAN_CIPHER_SUITE_GCMP_256:
445                 case WLAN_CIPHER_SUITE_AES_CMAC:
446                 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
447                 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
448                 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
449                         if (params->seq_len != 6)
450                                 return -EINVAL;
451                         break;
452                 }
453         }
454
455         if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
456                 return -EINVAL;
457
458         return 0;
459 }
460
461 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
462 {
463         unsigned int hdrlen = 24;
464
465         if (ieee80211_is_ext(fc)) {
466                 hdrlen = 4;
467                 goto out;
468         }
469
470         if (ieee80211_is_data(fc)) {
471                 if (ieee80211_has_a4(fc))
472                         hdrlen = 30;
473                 if (ieee80211_is_data_qos(fc)) {
474                         hdrlen += IEEE80211_QOS_CTL_LEN;
475                         if (ieee80211_has_order(fc))
476                                 hdrlen += IEEE80211_HT_CTL_LEN;
477                 }
478                 goto out;
479         }
480
481         if (ieee80211_is_mgmt(fc)) {
482                 if (ieee80211_has_order(fc))
483                         hdrlen += IEEE80211_HT_CTL_LEN;
484                 goto out;
485         }
486
487         if (ieee80211_is_ctl(fc)) {
488                 /*
489                  * ACK and CTS are 10 bytes, all others 16. To see how
490                  * to get this condition consider
491                  *   subtype mask:   0b0000000011110000 (0x00F0)
492                  *   ACK subtype:    0b0000000011010000 (0x00D0)
493                  *   CTS subtype:    0b0000000011000000 (0x00C0)
494                  *   bits that matter:         ^^^      (0x00E0)
495                  *   value of those: 0b0000000011000000 (0x00C0)
496                  */
497                 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
498                         hdrlen = 10;
499                 else
500                         hdrlen = 16;
501         }
502 out:
503         return hdrlen;
504 }
505 EXPORT_SYMBOL(ieee80211_hdrlen);
506
507 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
508 {
509         const struct ieee80211_hdr *hdr =
510                         (const struct ieee80211_hdr *)skb->data;
511         unsigned int hdrlen;
512
513         if (unlikely(skb->len < 10))
514                 return 0;
515         hdrlen = ieee80211_hdrlen(hdr->frame_control);
516         if (unlikely(hdrlen > skb->len))
517                 return 0;
518         return hdrlen;
519 }
520 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
521
522 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
523 {
524         int ae = flags & MESH_FLAGS_AE;
525         /* 802.11-2012, 8.2.4.7.3 */
526         switch (ae) {
527         default:
528         case 0:
529                 return 6;
530         case MESH_FLAGS_AE_A4:
531                 return 12;
532         case MESH_FLAGS_AE_A5_A6:
533                 return 18;
534         }
535 }
536
537 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
538 {
539         return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
540 }
541 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
542
543 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
544                                   const u8 *addr, enum nl80211_iftype iftype,
545                                   u8 data_offset)
546 {
547         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
548         struct {
549                 u8 hdr[ETH_ALEN] __aligned(2);
550                 __be16 proto;
551         } payload;
552         struct ethhdr tmp;
553         u16 hdrlen;
554         u8 mesh_flags = 0;
555
556         if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
557                 return -1;
558
559         hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
560         if (skb->len < hdrlen + 8)
561                 return -1;
562
563         /* convert IEEE 802.11 header + possible LLC headers into Ethernet
564          * header
565          * IEEE 802.11 address fields:
566          * ToDS FromDS Addr1 Addr2 Addr3 Addr4
567          *   0     0   DA    SA    BSSID n/a
568          *   0     1   DA    BSSID SA    n/a
569          *   1     0   BSSID SA    DA    n/a
570          *   1     1   RA    TA    DA    SA
571          */
572         memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
573         memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
574
575         if (iftype == NL80211_IFTYPE_MESH_POINT)
576                 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
577
578         mesh_flags &= MESH_FLAGS_AE;
579
580         switch (hdr->frame_control &
581                 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
582         case cpu_to_le16(IEEE80211_FCTL_TODS):
583                 if (unlikely(iftype != NL80211_IFTYPE_AP &&
584                              iftype != NL80211_IFTYPE_AP_VLAN &&
585                              iftype != NL80211_IFTYPE_P2P_GO))
586                         return -1;
587                 break;
588         case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
589                 if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT &&
590                              iftype != NL80211_IFTYPE_AP_VLAN &&
591                              iftype != NL80211_IFTYPE_STATION))
592                         return -1;
593                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
594                         if (mesh_flags == MESH_FLAGS_AE_A4)
595                                 return -1;
596                         if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
597                                 skb_copy_bits(skb, hdrlen +
598                                         offsetof(struct ieee80211s_hdr, eaddr1),
599                                         tmp.h_dest, 2 * ETH_ALEN);
600                         }
601                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
602                 }
603                 break;
604         case cpu_to_le16(IEEE80211_FCTL_FROMDS):
605                 if ((iftype != NL80211_IFTYPE_STATION &&
606                      iftype != NL80211_IFTYPE_P2P_CLIENT &&
607                      iftype != NL80211_IFTYPE_MESH_POINT) ||
608                     (is_multicast_ether_addr(tmp.h_dest) &&
609                      ether_addr_equal(tmp.h_source, addr)))
610                         return -1;
611                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
612                         if (mesh_flags == MESH_FLAGS_AE_A5_A6)
613                                 return -1;
614                         if (mesh_flags == MESH_FLAGS_AE_A4)
615                                 skb_copy_bits(skb, hdrlen +
616                                         offsetof(struct ieee80211s_hdr, eaddr1),
617                                         tmp.h_source, ETH_ALEN);
618                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
619                 }
620                 break;
621         case cpu_to_le16(0):
622                 if (iftype != NL80211_IFTYPE_ADHOC &&
623                     iftype != NL80211_IFTYPE_STATION &&
624                     iftype != NL80211_IFTYPE_OCB)
625                                 return -1;
626                 break;
627         }
628
629         skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
630         tmp.h_proto = payload.proto;
631
632         if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
633                     tmp.h_proto != htons(ETH_P_AARP) &&
634                     tmp.h_proto != htons(ETH_P_IPX)) ||
635                    ether_addr_equal(payload.hdr, bridge_tunnel_header)))
636                 /* remove RFC1042 or Bridge-Tunnel encapsulation and
637                  * replace EtherType */
638                 hdrlen += ETH_ALEN + 2;
639         else
640                 tmp.h_proto = htons(skb->len - hdrlen);
641
642         pskb_pull(skb, hdrlen);
643
644         if (!ehdr)
645                 ehdr = skb_push(skb, sizeof(struct ethhdr));
646         memcpy(ehdr, &tmp, sizeof(tmp));
647
648         return 0;
649 }
650 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
651
652 static void
653 __frame_add_frag(struct sk_buff *skb, struct page *page,
654                  void *ptr, int len, int size)
655 {
656         struct skb_shared_info *sh = skb_shinfo(skb);
657         int page_offset;
658
659         get_page(page);
660         page_offset = ptr - page_address(page);
661         skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
662 }
663
664 static void
665 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
666                             int offset, int len)
667 {
668         struct skb_shared_info *sh = skb_shinfo(skb);
669         const skb_frag_t *frag = &sh->frags[0];
670         struct page *frag_page;
671         void *frag_ptr;
672         int frag_len, frag_size;
673         int head_size = skb->len - skb->data_len;
674         int cur_len;
675
676         frag_page = virt_to_head_page(skb->head);
677         frag_ptr = skb->data;
678         frag_size = head_size;
679
680         while (offset >= frag_size) {
681                 offset -= frag_size;
682                 frag_page = skb_frag_page(frag);
683                 frag_ptr = skb_frag_address(frag);
684                 frag_size = skb_frag_size(frag);
685                 frag++;
686         }
687
688         frag_ptr += offset;
689         frag_len = frag_size - offset;
690
691         cur_len = min(len, frag_len);
692
693         __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
694         len -= cur_len;
695
696         while (len > 0) {
697                 frag_len = skb_frag_size(frag);
698                 cur_len = min(len, frag_len);
699                 __frame_add_frag(frame, skb_frag_page(frag),
700                                  skb_frag_address(frag), cur_len, frag_len);
701                 len -= cur_len;
702                 frag++;
703         }
704 }
705
706 static struct sk_buff *
707 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
708                        int offset, int len, bool reuse_frag)
709 {
710         struct sk_buff *frame;
711         int cur_len = len;
712
713         if (skb->len - offset < len)
714                 return NULL;
715
716         /*
717          * When reusing framents, copy some data to the head to simplify
718          * ethernet header handling and speed up protocol header processing
719          * in the stack later.
720          */
721         if (reuse_frag)
722                 cur_len = min_t(int, len, 32);
723
724         /*
725          * Allocate and reserve two bytes more for payload
726          * alignment since sizeof(struct ethhdr) is 14.
727          */
728         frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
729         if (!frame)
730                 return NULL;
731
732         skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
733         skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
734
735         len -= cur_len;
736         if (!len)
737                 return frame;
738
739         offset += cur_len;
740         __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
741
742         return frame;
743 }
744
745 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
746                               const u8 *addr, enum nl80211_iftype iftype,
747                               const unsigned int extra_headroom,
748                               const u8 *check_da, const u8 *check_sa)
749 {
750         unsigned int hlen = ALIGN(extra_headroom, 4);
751         struct sk_buff *frame = NULL;
752         u16 ethertype;
753         u8 *payload;
754         int offset = 0, remaining;
755         struct ethhdr eth;
756         bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
757         bool reuse_skb = false;
758         bool last = false;
759
760         while (!last) {
761                 unsigned int subframe_len;
762                 int len;
763                 u8 padding;
764
765                 skb_copy_bits(skb, offset, &eth, sizeof(eth));
766                 len = ntohs(eth.h_proto);
767                 subframe_len = sizeof(struct ethhdr) + len;
768                 padding = (4 - subframe_len) & 0x3;
769
770                 /* the last MSDU has no padding */
771                 remaining = skb->len - offset;
772                 if (subframe_len > remaining)
773                         goto purge;
774
775                 offset += sizeof(struct ethhdr);
776                 last = remaining <= subframe_len + padding;
777
778                 /* FIXME: should we really accept multicast DA? */
779                 if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
780                      !ether_addr_equal(check_da, eth.h_dest)) ||
781                     (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
782                         offset += len + padding;
783                         continue;
784                 }
785
786                 /* reuse skb for the last subframe */
787                 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
788                         skb_pull(skb, offset);
789                         frame = skb;
790                         reuse_skb = true;
791                 } else {
792                         frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
793                                                        reuse_frag);
794                         if (!frame)
795                                 goto purge;
796
797                         offset += len + padding;
798                 }
799
800                 skb_reset_network_header(frame);
801                 frame->dev = skb->dev;
802                 frame->priority = skb->priority;
803
804                 payload = frame->data;
805                 ethertype = (payload[6] << 8) | payload[7];
806                 if (likely((ether_addr_equal(payload, rfc1042_header) &&
807                             ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
808                            ether_addr_equal(payload, bridge_tunnel_header))) {
809                         eth.h_proto = htons(ethertype);
810                         skb_pull(frame, ETH_ALEN + 2);
811                 }
812
813                 memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
814                 __skb_queue_tail(list, frame);
815         }
816
817         if (!reuse_skb)
818                 dev_kfree_skb(skb);
819
820         return;
821
822  purge:
823         __skb_queue_purge(list);
824         dev_kfree_skb(skb);
825 }
826 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
827
828 /* Given a data frame determine the 802.1p/1d tag to use. */
829 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
830                                     struct cfg80211_qos_map *qos_map)
831 {
832         unsigned int dscp;
833         unsigned char vlan_priority;
834         unsigned int ret;
835
836         /* skb->priority values from 256->263 are magic values to
837          * directly indicate a specific 802.1d priority.  This is used
838          * to allow 802.1d priority to be passed directly in from VLAN
839          * tags, etc.
840          */
841         if (skb->priority >= 256 && skb->priority <= 263) {
842                 ret = skb->priority - 256;
843                 goto out;
844         }
845
846         if (skb_vlan_tag_present(skb)) {
847                 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
848                         >> VLAN_PRIO_SHIFT;
849                 if (vlan_priority > 0) {
850                         ret = vlan_priority;
851                         goto out;
852                 }
853         }
854
855         switch (skb->protocol) {
856         case htons(ETH_P_IP):
857                 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
858                 break;
859         case htons(ETH_P_IPV6):
860                 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
861                 break;
862         case htons(ETH_P_MPLS_UC):
863         case htons(ETH_P_MPLS_MC): {
864                 struct mpls_label mpls_tmp, *mpls;
865
866                 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
867                                           sizeof(*mpls), &mpls_tmp);
868                 if (!mpls)
869                         return 0;
870
871                 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
872                         >> MPLS_LS_TC_SHIFT;
873                 goto out;
874         }
875         case htons(ETH_P_80221):
876                 /* 802.21 is always network control traffic */
877                 return 7;
878         default:
879                 return 0;
880         }
881
882         if (qos_map) {
883                 unsigned int i, tmp_dscp = dscp >> 2;
884
885                 for (i = 0; i < qos_map->num_des; i++) {
886                         if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
887                                 ret = qos_map->dscp_exception[i].up;
888                                 goto out;
889                         }
890                 }
891
892                 for (i = 0; i < 8; i++) {
893                         if (tmp_dscp >= qos_map->up[i].low &&
894                             tmp_dscp <= qos_map->up[i].high) {
895                                 ret = i;
896                                 goto out;
897                         }
898                 }
899         }
900
901         ret = dscp >> 5;
902 out:
903         return array_index_nospec(ret, IEEE80211_NUM_TIDS);
904 }
905 EXPORT_SYMBOL(cfg80211_classify8021d);
906
907 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
908 {
909         const struct cfg80211_bss_ies *ies;
910
911         ies = rcu_dereference(bss->ies);
912         if (!ies)
913                 return NULL;
914
915         return cfg80211_find_elem(id, ies->data, ies->len);
916 }
917 EXPORT_SYMBOL(ieee80211_bss_get_elem);
918
919 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
920 {
921         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
922         struct net_device *dev = wdev->netdev;
923         int i;
924
925         if (!wdev->connect_keys)
926                 return;
927
928         for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
929                 if (!wdev->connect_keys->params[i].cipher)
930                         continue;
931                 if (rdev_add_key(rdev, dev, i, false, NULL,
932                                  &wdev->connect_keys->params[i])) {
933                         netdev_err(dev, "failed to set key %d\n", i);
934                         continue;
935                 }
936                 if (wdev->connect_keys->def == i &&
937                     rdev_set_default_key(rdev, dev, i, true, true)) {
938                         netdev_err(dev, "failed to set defkey %d\n", i);
939                         continue;
940                 }
941         }
942
943         kfree_sensitive(wdev->connect_keys);
944         wdev->connect_keys = NULL;
945 }
946
947 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
948 {
949         struct cfg80211_event *ev;
950         unsigned long flags;
951
952         spin_lock_irqsave(&wdev->event_lock, flags);
953         while (!list_empty(&wdev->event_list)) {
954                 ev = list_first_entry(&wdev->event_list,
955                                       struct cfg80211_event, list);
956                 list_del(&ev->list);
957                 spin_unlock_irqrestore(&wdev->event_lock, flags);
958
959                 wdev_lock(wdev);
960                 switch (ev->type) {
961                 case EVENT_CONNECT_RESULT:
962                         __cfg80211_connect_result(
963                                 wdev->netdev,
964                                 &ev->cr,
965                                 ev->cr.status == WLAN_STATUS_SUCCESS);
966                         break;
967                 case EVENT_ROAMED:
968                         __cfg80211_roamed(wdev, &ev->rm);
969                         break;
970                 case EVENT_DISCONNECTED:
971                         __cfg80211_disconnected(wdev->netdev,
972                                                 ev->dc.ie, ev->dc.ie_len,
973                                                 ev->dc.reason,
974                                                 !ev->dc.locally_generated);
975                         break;
976                 case EVENT_IBSS_JOINED:
977                         __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
978                                                ev->ij.channel);
979                         break;
980                 case EVENT_STOPPED:
981                         __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
982                         break;
983                 case EVENT_PORT_AUTHORIZED:
984                         __cfg80211_port_authorized(wdev, ev->pa.bssid);
985                         break;
986                 }
987                 wdev_unlock(wdev);
988
989                 kfree(ev);
990
991                 spin_lock_irqsave(&wdev->event_lock, flags);
992         }
993         spin_unlock_irqrestore(&wdev->event_lock, flags);
994 }
995
996 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
997 {
998         struct wireless_dev *wdev;
999
1000         ASSERT_RTNL();
1001
1002         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1003                 cfg80211_process_wdev_events(wdev);
1004 }
1005
1006 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
1007                           struct net_device *dev, enum nl80211_iftype ntype,
1008                           struct vif_params *params)
1009 {
1010         int err;
1011         enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1012
1013         ASSERT_RTNL();
1014
1015         /* don't support changing VLANs, you just re-create them */
1016         if (otype == NL80211_IFTYPE_AP_VLAN)
1017                 return -EOPNOTSUPP;
1018
1019         /* cannot change into P2P device or NAN */
1020         if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1021             ntype == NL80211_IFTYPE_NAN)
1022                 return -EOPNOTSUPP;
1023
1024         if (!rdev->ops->change_virtual_intf ||
1025             !(rdev->wiphy.interface_modes & (1 << ntype)))
1026                 return -EOPNOTSUPP;
1027
1028         /* if it's part of a bridge, reject changing type to station/ibss */
1029         if (netif_is_bridge_port(dev) &&
1030             (ntype == NL80211_IFTYPE_ADHOC ||
1031              ntype == NL80211_IFTYPE_STATION ||
1032              ntype == NL80211_IFTYPE_P2P_CLIENT))
1033                 return -EBUSY;
1034
1035         if (ntype != otype) {
1036                 dev->ieee80211_ptr->use_4addr = false;
1037                 dev->ieee80211_ptr->mesh_id_up_len = 0;
1038                 wdev_lock(dev->ieee80211_ptr);
1039                 rdev_set_qos_map(rdev, dev, NULL);
1040                 wdev_unlock(dev->ieee80211_ptr);
1041
1042                 switch (otype) {
1043                 case NL80211_IFTYPE_AP:
1044                         cfg80211_stop_ap(rdev, dev, true);
1045                         break;
1046                 case NL80211_IFTYPE_ADHOC:
1047                         cfg80211_leave_ibss(rdev, dev, false);
1048                         break;
1049                 case NL80211_IFTYPE_STATION:
1050                 case NL80211_IFTYPE_P2P_CLIENT:
1051                         wdev_lock(dev->ieee80211_ptr);
1052                         cfg80211_disconnect(rdev, dev,
1053                                             WLAN_REASON_DEAUTH_LEAVING, true);
1054                         wdev_unlock(dev->ieee80211_ptr);
1055                         break;
1056                 case NL80211_IFTYPE_MESH_POINT:
1057                         /* mesh should be handled? */
1058                         break;
1059                 default:
1060                         break;
1061                 }
1062
1063                 cfg80211_process_rdev_events(rdev);
1064                 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1065         }
1066
1067         err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1068
1069         WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1070
1071         if (!err && params && params->use_4addr != -1)
1072                 dev->ieee80211_ptr->use_4addr = params->use_4addr;
1073
1074         if (!err) {
1075                 dev->priv_flags &= ~IFF_DONT_BRIDGE;
1076                 switch (ntype) {
1077                 case NL80211_IFTYPE_STATION:
1078                         if (dev->ieee80211_ptr->use_4addr)
1079                                 break;
1080                         fallthrough;
1081                 case NL80211_IFTYPE_OCB:
1082                 case NL80211_IFTYPE_P2P_CLIENT:
1083                 case NL80211_IFTYPE_ADHOC:
1084                         dev->priv_flags |= IFF_DONT_BRIDGE;
1085                         break;
1086                 case NL80211_IFTYPE_P2P_GO:
1087                 case NL80211_IFTYPE_AP:
1088                 case NL80211_IFTYPE_AP_VLAN:
1089                 case NL80211_IFTYPE_MESH_POINT:
1090                         /* bridging OK */
1091                         break;
1092                 case NL80211_IFTYPE_MONITOR:
1093                         /* monitor can't bridge anyway */
1094                         break;
1095                 case NL80211_IFTYPE_UNSPECIFIED:
1096                 case NUM_NL80211_IFTYPES:
1097                         /* not happening */
1098                         break;
1099                 case NL80211_IFTYPE_P2P_DEVICE:
1100                 case NL80211_IFTYPE_WDS:
1101                 case NL80211_IFTYPE_NAN:
1102                         WARN_ON(1);
1103                         break;
1104                 }
1105         }
1106
1107         if (!err && ntype != otype && netif_running(dev)) {
1108                 cfg80211_update_iface_num(rdev, ntype, 1);
1109                 cfg80211_update_iface_num(rdev, otype, -1);
1110         }
1111
1112         return err;
1113 }
1114
1115 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1116 {
1117         int modulation, streams, bitrate;
1118
1119         /* the formula below does only work for MCS values smaller than 32 */
1120         if (WARN_ON_ONCE(rate->mcs >= 32))
1121                 return 0;
1122
1123         modulation = rate->mcs & 7;
1124         streams = (rate->mcs >> 3) + 1;
1125
1126         bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1127
1128         if (modulation < 4)
1129                 bitrate *= (modulation + 1);
1130         else if (modulation == 4)
1131                 bitrate *= (modulation + 2);
1132         else
1133                 bitrate *= (modulation + 3);
1134
1135         bitrate *= streams;
1136
1137         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1138                 bitrate = (bitrate / 9) * 10;
1139
1140         /* do NOT round down here */
1141         return (bitrate + 50000) / 100000;
1142 }
1143
1144 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1145 {
1146         static const u32 __mcs2bitrate[] = {
1147                 /* control PHY */
1148                 [0] =   275,
1149                 /* SC PHY */
1150                 [1] =  3850,
1151                 [2] =  7700,
1152                 [3] =  9625,
1153                 [4] = 11550,
1154                 [5] = 12512, /* 1251.25 mbps */
1155                 [6] = 15400,
1156                 [7] = 19250,
1157                 [8] = 23100,
1158                 [9] = 25025,
1159                 [10] = 30800,
1160                 [11] = 38500,
1161                 [12] = 46200,
1162                 /* OFDM PHY */
1163                 [13] =  6930,
1164                 [14] =  8662, /* 866.25 mbps */
1165                 [15] = 13860,
1166                 [16] = 17325,
1167                 [17] = 20790,
1168                 [18] = 27720,
1169                 [19] = 34650,
1170                 [20] = 41580,
1171                 [21] = 45045,
1172                 [22] = 51975,
1173                 [23] = 62370,
1174                 [24] = 67568, /* 6756.75 mbps */
1175                 /* LP-SC PHY */
1176                 [25] =  6260,
1177                 [26] =  8340,
1178                 [27] = 11120,
1179                 [28] = 12510,
1180                 [29] = 16680,
1181                 [30] = 22240,
1182                 [31] = 25030,
1183         };
1184
1185         if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1186                 return 0;
1187
1188         return __mcs2bitrate[rate->mcs];
1189 }
1190
1191 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1192 {
1193         static const u32 __mcs2bitrate[] = {
1194                 /* control PHY */
1195                 [0] =   275,
1196                 /* SC PHY */
1197                 [1] =  3850,
1198                 [2] =  7700,
1199                 [3] =  9625,
1200                 [4] = 11550,
1201                 [5] = 12512, /* 1251.25 mbps */
1202                 [6] = 13475,
1203                 [7] = 15400,
1204                 [8] = 19250,
1205                 [9] = 23100,
1206                 [10] = 25025,
1207                 [11] = 26950,
1208                 [12] = 30800,
1209                 [13] = 38500,
1210                 [14] = 46200,
1211                 [15] = 50050,
1212                 [16] = 53900,
1213                 [17] = 57750,
1214                 [18] = 69300,
1215                 [19] = 75075,
1216                 [20] = 80850,
1217         };
1218
1219         if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1220                 return 0;
1221
1222         return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1223 }
1224
1225 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1226 {
1227         static const u32 base[4][10] = {
1228                 {   6500000,
1229                    13000000,
1230                    19500000,
1231                    26000000,
1232                    39000000,
1233                    52000000,
1234                    58500000,
1235                    65000000,
1236                    78000000,
1237                 /* not in the spec, but some devices use this: */
1238                    86500000,
1239                 },
1240                 {  13500000,
1241                    27000000,
1242                    40500000,
1243                    54000000,
1244                    81000000,
1245                   108000000,
1246                   121500000,
1247                   135000000,
1248                   162000000,
1249                   180000000,
1250                 },
1251                 {  29300000,
1252                    58500000,
1253                    87800000,
1254                   117000000,
1255                   175500000,
1256                   234000000,
1257                   263300000,
1258                   292500000,
1259                   351000000,
1260                   390000000,
1261                 },
1262                 {  58500000,
1263                   117000000,
1264                   175500000,
1265                   234000000,
1266                   351000000,
1267                   468000000,
1268                   526500000,
1269                   585000000,
1270                   702000000,
1271                   780000000,
1272                 },
1273         };
1274         u32 bitrate;
1275         int idx;
1276
1277         if (rate->mcs > 9)
1278                 goto warn;
1279
1280         switch (rate->bw) {
1281         case RATE_INFO_BW_160:
1282                 idx = 3;
1283                 break;
1284         case RATE_INFO_BW_80:
1285                 idx = 2;
1286                 break;
1287         case RATE_INFO_BW_40:
1288                 idx = 1;
1289                 break;
1290         case RATE_INFO_BW_5:
1291         case RATE_INFO_BW_10:
1292         default:
1293                 goto warn;
1294         case RATE_INFO_BW_20:
1295                 idx = 0;
1296         }
1297
1298         bitrate = base[idx][rate->mcs];
1299         bitrate *= rate->nss;
1300
1301         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1302                 bitrate = (bitrate / 9) * 10;
1303
1304         /* do NOT round down here */
1305         return (bitrate + 50000) / 100000;
1306  warn:
1307         WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1308                   rate->bw, rate->mcs, rate->nss);
1309         return 0;
1310 }
1311
1312 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1313 {
1314 #define SCALE 6144
1315         u32 mcs_divisors[14] = {
1316                 102399, /* 16.666666... */
1317                  51201, /*  8.333333... */
1318                  34134, /*  5.555555... */
1319                  25599, /*  4.166666... */
1320                  17067, /*  2.777777... */
1321                  12801, /*  2.083333... */
1322                  11769, /*  1.851851... */
1323                  10239, /*  1.666666... */
1324                   8532, /*  1.388888... */
1325                   7680, /*  1.250000... */
1326                   6828, /*  1.111111... */
1327                   6144, /*  1.000000... */
1328                   5690, /*  0.926106... */
1329                   5120, /*  0.833333... */
1330         };
1331         u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1332         u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
1333         u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1334         u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1335         u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1336         u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1337         u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1338         u64 tmp;
1339         u32 result;
1340
1341         if (WARN_ON_ONCE(rate->mcs > 13))
1342                 return 0;
1343
1344         if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1345                 return 0;
1346         if (WARN_ON_ONCE(rate->he_ru_alloc >
1347                          NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1348                 return 0;
1349         if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1350                 return 0;
1351
1352         if (rate->bw == RATE_INFO_BW_160)
1353                 result = rates_160M[rate->he_gi];
1354         else if (rate->bw == RATE_INFO_BW_80 ||
1355                  (rate->bw == RATE_INFO_BW_HE_RU &&
1356                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1357                 result = rates_969[rate->he_gi];
1358         else if (rate->bw == RATE_INFO_BW_40 ||
1359                  (rate->bw == RATE_INFO_BW_HE_RU &&
1360                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1361                 result = rates_484[rate->he_gi];
1362         else if (rate->bw == RATE_INFO_BW_20 ||
1363                  (rate->bw == RATE_INFO_BW_HE_RU &&
1364                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1365                 result = rates_242[rate->he_gi];
1366         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1367                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1368                 result = rates_106[rate->he_gi];
1369         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1370                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1371                 result = rates_52[rate->he_gi];
1372         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1373                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1374                 result = rates_26[rate->he_gi];
1375         else {
1376                 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1377                      rate->bw, rate->he_ru_alloc);
1378                 return 0;
1379         }
1380
1381         /* now scale to the appropriate MCS */
1382         tmp = result;
1383         tmp *= SCALE;
1384         do_div(tmp, mcs_divisors[rate->mcs]);
1385         result = tmp;
1386
1387         /* and take NSS, DCM into account */
1388         result = (result * rate->nss) / 8;
1389         if (rate->he_dcm)
1390                 result /= 2;
1391
1392         return result / 10000;
1393 }
1394
1395 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1396 {
1397         if (rate->flags & RATE_INFO_FLAGS_MCS)
1398                 return cfg80211_calculate_bitrate_ht(rate);
1399         if (rate->flags & RATE_INFO_FLAGS_DMG)
1400                 return cfg80211_calculate_bitrate_dmg(rate);
1401         if (rate->flags & RATE_INFO_FLAGS_EDMG)
1402                 return cfg80211_calculate_bitrate_edmg(rate);
1403         if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1404                 return cfg80211_calculate_bitrate_vht(rate);
1405         if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1406                 return cfg80211_calculate_bitrate_he(rate);
1407
1408         return rate->legacy;
1409 }
1410 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1411
1412 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1413                           enum ieee80211_p2p_attr_id attr,
1414                           u8 *buf, unsigned int bufsize)
1415 {
1416         u8 *out = buf;
1417         u16 attr_remaining = 0;
1418         bool desired_attr = false;
1419         u16 desired_len = 0;
1420
1421         while (len > 0) {
1422                 unsigned int iedatalen;
1423                 unsigned int copy;
1424                 const u8 *iedata;
1425
1426                 if (len < 2)
1427                         return -EILSEQ;
1428                 iedatalen = ies[1];
1429                 if (iedatalen + 2 > len)
1430                         return -EILSEQ;
1431
1432                 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1433                         goto cont;
1434
1435                 if (iedatalen < 4)
1436                         goto cont;
1437
1438                 iedata = ies + 2;
1439
1440                 /* check WFA OUI, P2P subtype */
1441                 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1442                     iedata[2] != 0x9a || iedata[3] != 0x09)
1443                         goto cont;
1444
1445                 iedatalen -= 4;
1446                 iedata += 4;
1447
1448                 /* check attribute continuation into this IE */
1449                 copy = min_t(unsigned int, attr_remaining, iedatalen);
1450                 if (copy && desired_attr) {
1451                         desired_len += copy;
1452                         if (out) {
1453                                 memcpy(out, iedata, min(bufsize, copy));
1454                                 out += min(bufsize, copy);
1455                                 bufsize -= min(bufsize, copy);
1456                         }
1457
1458
1459                         if (copy == attr_remaining)
1460                                 return desired_len;
1461                 }
1462
1463                 attr_remaining -= copy;
1464                 if (attr_remaining)
1465                         goto cont;
1466
1467                 iedatalen -= copy;
1468                 iedata += copy;
1469
1470                 while (iedatalen > 0) {
1471                         u16 attr_len;
1472
1473                         /* P2P attribute ID & size must fit */
1474                         if (iedatalen < 3)
1475                                 return -EILSEQ;
1476                         desired_attr = iedata[0] == attr;
1477                         attr_len = get_unaligned_le16(iedata + 1);
1478                         iedatalen -= 3;
1479                         iedata += 3;
1480
1481                         copy = min_t(unsigned int, attr_len, iedatalen);
1482
1483                         if (desired_attr) {
1484                                 desired_len += copy;
1485                                 if (out) {
1486                                         memcpy(out, iedata, min(bufsize, copy));
1487                                         out += min(bufsize, copy);
1488                                         bufsize -= min(bufsize, copy);
1489                                 }
1490
1491                                 if (copy == attr_len)
1492                                         return desired_len;
1493                         }
1494
1495                         iedata += copy;
1496                         iedatalen -= copy;
1497                         attr_remaining = attr_len - copy;
1498                 }
1499
1500  cont:
1501                 len -= ies[1] + 2;
1502                 ies += ies[1] + 2;
1503         }
1504
1505         if (attr_remaining && desired_attr)
1506                 return -EILSEQ;
1507
1508         return -ENOENT;
1509 }
1510 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1511
1512 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1513 {
1514         int i;
1515
1516         /* Make sure array values are legal */
1517         if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1518                 return false;
1519
1520         i = 0;
1521         while (i < n_ids) {
1522                 if (ids[i] == WLAN_EID_EXTENSION) {
1523                         if (id_ext && (ids[i + 1] == id))
1524                                 return true;
1525
1526                         i += 2;
1527                         continue;
1528                 }
1529
1530                 if (ids[i] == id && !id_ext)
1531                         return true;
1532
1533                 i++;
1534         }
1535         return false;
1536 }
1537
1538 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1539 {
1540         /* we assume a validly formed IEs buffer */
1541         u8 len = ies[pos + 1];
1542
1543         pos += 2 + len;
1544
1545         /* the IE itself must have 255 bytes for fragments to follow */
1546         if (len < 255)
1547                 return pos;
1548
1549         while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1550                 len = ies[pos + 1];
1551                 pos += 2 + len;
1552         }
1553
1554         return pos;
1555 }
1556
1557 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1558                               const u8 *ids, int n_ids,
1559                               const u8 *after_ric, int n_after_ric,
1560                               size_t offset)
1561 {
1562         size_t pos = offset;
1563
1564         while (pos < ielen) {
1565                 u8 ext = 0;
1566
1567                 if (ies[pos] == WLAN_EID_EXTENSION)
1568                         ext = 2;
1569                 if ((pos + ext) >= ielen)
1570                         break;
1571
1572                 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1573                                           ies[pos] == WLAN_EID_EXTENSION))
1574                         break;
1575
1576                 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1577                         pos = skip_ie(ies, ielen, pos);
1578
1579                         while (pos < ielen) {
1580                                 if (ies[pos] == WLAN_EID_EXTENSION)
1581                                         ext = 2;
1582                                 else
1583                                         ext = 0;
1584
1585                                 if ((pos + ext) >= ielen)
1586                                         break;
1587
1588                                 if (!ieee80211_id_in_list(after_ric,
1589                                                           n_after_ric,
1590                                                           ies[pos + ext],
1591                                                           ext == 2))
1592                                         pos = skip_ie(ies, ielen, pos);
1593                                 else
1594                                         break;
1595                         }
1596                 } else {
1597                         pos = skip_ie(ies, ielen, pos);
1598                 }
1599         }
1600
1601         return pos;
1602 }
1603 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1604
1605 bool ieee80211_operating_class_to_band(u8 operating_class,
1606                                        enum nl80211_band *band)
1607 {
1608         switch (operating_class) {
1609         case 112:
1610         case 115 ... 127:
1611         case 128 ... 130:
1612                 *band = NL80211_BAND_5GHZ;
1613                 return true;
1614         case 131 ... 135:
1615                 *band = NL80211_BAND_6GHZ;
1616                 return true;
1617         case 81:
1618         case 82:
1619         case 83:
1620         case 84:
1621                 *band = NL80211_BAND_2GHZ;
1622                 return true;
1623         case 180:
1624                 *band = NL80211_BAND_60GHZ;
1625                 return true;
1626         }
1627
1628         return false;
1629 }
1630 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1631
1632 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1633                                           u8 *op_class)
1634 {
1635         u8 vht_opclass;
1636         u32 freq = chandef->center_freq1;
1637
1638         if (freq >= 2412 && freq <= 2472) {
1639                 if (chandef->width > NL80211_CHAN_WIDTH_40)
1640                         return false;
1641
1642                 /* 2.407 GHz, channels 1..13 */
1643                 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1644                         if (freq > chandef->chan->center_freq)
1645                                 *op_class = 83; /* HT40+ */
1646                         else
1647                                 *op_class = 84; /* HT40- */
1648                 } else {
1649                         *op_class = 81;
1650                 }
1651
1652                 return true;
1653         }
1654
1655         if (freq == 2484) {
1656                 /* channel 14 is only for IEEE 802.11b */
1657                 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1658                         return false;
1659
1660                 *op_class = 82; /* channel 14 */
1661                 return true;
1662         }
1663
1664         switch (chandef->width) {
1665         case NL80211_CHAN_WIDTH_80:
1666                 vht_opclass = 128;
1667                 break;
1668         case NL80211_CHAN_WIDTH_160:
1669                 vht_opclass = 129;
1670                 break;
1671         case NL80211_CHAN_WIDTH_80P80:
1672                 vht_opclass = 130;
1673                 break;
1674         case NL80211_CHAN_WIDTH_10:
1675         case NL80211_CHAN_WIDTH_5:
1676                 return false; /* unsupported for now */
1677         default:
1678                 vht_opclass = 0;
1679                 break;
1680         }
1681
1682         /* 5 GHz, channels 36..48 */
1683         if (freq >= 5180 && freq <= 5240) {
1684                 if (vht_opclass) {
1685                         *op_class = vht_opclass;
1686                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1687                         if (freq > chandef->chan->center_freq)
1688                                 *op_class = 116;
1689                         else
1690                                 *op_class = 117;
1691                 } else {
1692                         *op_class = 115;
1693                 }
1694
1695                 return true;
1696         }
1697
1698         /* 5 GHz, channels 52..64 */
1699         if (freq >= 5260 && freq <= 5320) {
1700                 if (vht_opclass) {
1701                         *op_class = vht_opclass;
1702                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1703                         if (freq > chandef->chan->center_freq)
1704                                 *op_class = 119;
1705                         else
1706                                 *op_class = 120;
1707                 } else {
1708                         *op_class = 118;
1709                 }
1710
1711                 return true;
1712         }
1713
1714         /* 5 GHz, channels 100..144 */
1715         if (freq >= 5500 && freq <= 5720) {
1716                 if (vht_opclass) {
1717                         *op_class = vht_opclass;
1718                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1719                         if (freq > chandef->chan->center_freq)
1720                                 *op_class = 122;
1721                         else
1722                                 *op_class = 123;
1723                 } else {
1724                         *op_class = 121;
1725                 }
1726
1727                 return true;
1728         }
1729
1730         /* 5 GHz, channels 149..169 */
1731         if (freq >= 5745 && freq <= 5845) {
1732                 if (vht_opclass) {
1733                         *op_class = vht_opclass;
1734                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1735                         if (freq > chandef->chan->center_freq)
1736                                 *op_class = 126;
1737                         else
1738                                 *op_class = 127;
1739                 } else if (freq <= 5805) {
1740                         *op_class = 124;
1741                 } else {
1742                         *op_class = 125;
1743                 }
1744
1745                 return true;
1746         }
1747
1748         /* 56.16 GHz, channel 1..4 */
1749         if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1750                 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1751                         return false;
1752
1753                 *op_class = 180;
1754                 return true;
1755         }
1756
1757         /* not supported yet */
1758         return false;
1759 }
1760 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1761
1762 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1763                                        u32 *beacon_int_gcd,
1764                                        bool *beacon_int_different)
1765 {
1766         struct wireless_dev *wdev;
1767
1768         *beacon_int_gcd = 0;
1769         *beacon_int_different = false;
1770
1771         list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1772                 if (!wdev->beacon_interval)
1773                         continue;
1774
1775                 if (!*beacon_int_gcd) {
1776                         *beacon_int_gcd = wdev->beacon_interval;
1777                         continue;
1778                 }
1779
1780                 if (wdev->beacon_interval == *beacon_int_gcd)
1781                         continue;
1782
1783                 *beacon_int_different = true;
1784                 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1785         }
1786
1787         if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1788                 if (*beacon_int_gcd)
1789                         *beacon_int_different = true;
1790                 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1791         }
1792 }
1793
1794 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1795                                  enum nl80211_iftype iftype, u32 beacon_int)
1796 {
1797         /*
1798          * This is just a basic pre-condition check; if interface combinations
1799          * are possible the driver must already be checking those with a call
1800          * to cfg80211_check_combinations(), in which case we'll validate more
1801          * through the cfg80211_calculate_bi_data() call and code in
1802          * cfg80211_iter_combinations().
1803          */
1804
1805         if (beacon_int < 10 || beacon_int > 10000)
1806                 return -EINVAL;
1807
1808         return 0;
1809 }
1810
1811 int cfg80211_iter_combinations(struct wiphy *wiphy,
1812                                struct iface_combination_params *params,
1813                                void (*iter)(const struct ieee80211_iface_combination *c,
1814                                             void *data),
1815                                void *data)
1816 {
1817         const struct ieee80211_regdomain *regdom;
1818         enum nl80211_dfs_regions region = 0;
1819         int i, j, iftype;
1820         int num_interfaces = 0;
1821         u32 used_iftypes = 0;
1822         u32 beacon_int_gcd;
1823         bool beacon_int_different;
1824
1825         /*
1826          * This is a bit strange, since the iteration used to rely only on
1827          * the data given by the driver, but here it now relies on context,
1828          * in form of the currently operating interfaces.
1829          * This is OK for all current users, and saves us from having to
1830          * push the GCD calculations into all the drivers.
1831          * In the future, this should probably rely more on data that's in
1832          * cfg80211 already - the only thing not would appear to be any new
1833          * interfaces (while being brought up) and channel/radar data.
1834          */
1835         cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1836                                    &beacon_int_gcd, &beacon_int_different);
1837
1838         if (params->radar_detect) {
1839                 rcu_read_lock();
1840                 regdom = rcu_dereference(cfg80211_regdomain);
1841                 if (regdom)
1842                         region = regdom->dfs_region;
1843                 rcu_read_unlock();
1844         }
1845
1846         for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1847                 num_interfaces += params->iftype_num[iftype];
1848                 if (params->iftype_num[iftype] > 0 &&
1849                     !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1850                         used_iftypes |= BIT(iftype);
1851         }
1852
1853         for (i = 0; i < wiphy->n_iface_combinations; i++) {
1854                 const struct ieee80211_iface_combination *c;
1855                 struct ieee80211_iface_limit *limits;
1856                 u32 all_iftypes = 0;
1857
1858                 c = &wiphy->iface_combinations[i];
1859
1860                 if (num_interfaces > c->max_interfaces)
1861                         continue;
1862                 if (params->num_different_channels > c->num_different_channels)
1863                         continue;
1864
1865                 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1866                                  GFP_KERNEL);
1867                 if (!limits)
1868                         return -ENOMEM;
1869
1870                 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1871                         if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1872                                 continue;
1873                         for (j = 0; j < c->n_limits; j++) {
1874                                 all_iftypes |= limits[j].types;
1875                                 if (!(limits[j].types & BIT(iftype)))
1876                                         continue;
1877                                 if (limits[j].max < params->iftype_num[iftype])
1878                                         goto cont;
1879                                 limits[j].max -= params->iftype_num[iftype];
1880                         }
1881                 }
1882
1883                 if (params->radar_detect !=
1884                         (c->radar_detect_widths & params->radar_detect))
1885                         goto cont;
1886
1887                 if (params->radar_detect && c->radar_detect_regions &&
1888                     !(c->radar_detect_regions & BIT(region)))
1889                         goto cont;
1890
1891                 /* Finally check that all iftypes that we're currently
1892                  * using are actually part of this combination. If they
1893                  * aren't then we can't use this combination and have
1894                  * to continue to the next.
1895                  */
1896                 if ((all_iftypes & used_iftypes) != used_iftypes)
1897                         goto cont;
1898
1899                 if (beacon_int_gcd) {
1900                         if (c->beacon_int_min_gcd &&
1901                             beacon_int_gcd < c->beacon_int_min_gcd)
1902                                 goto cont;
1903                         if (!c->beacon_int_min_gcd && beacon_int_different)
1904                                 goto cont;
1905                 }
1906
1907                 /* This combination covered all interface types and
1908                  * supported the requested numbers, so we're good.
1909                  */
1910
1911                 (*iter)(c, data);
1912  cont:
1913                 kfree(limits);
1914         }
1915
1916         return 0;
1917 }
1918 EXPORT_SYMBOL(cfg80211_iter_combinations);
1919
1920 static void
1921 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1922                           void *data)
1923 {
1924         int *num = data;
1925         (*num)++;
1926 }
1927
1928 int cfg80211_check_combinations(struct wiphy *wiphy,
1929                                 struct iface_combination_params *params)
1930 {
1931         int err, num = 0;
1932
1933         err = cfg80211_iter_combinations(wiphy, params,
1934                                          cfg80211_iter_sum_ifcombs, &num);
1935         if (err)
1936                 return err;
1937         if (num == 0)
1938                 return -EBUSY;
1939
1940         return 0;
1941 }
1942 EXPORT_SYMBOL(cfg80211_check_combinations);
1943
1944 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1945                            const u8 *rates, unsigned int n_rates,
1946                            u32 *mask)
1947 {
1948         int i, j;
1949
1950         if (!sband)
1951                 return -EINVAL;
1952
1953         if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1954                 return -EINVAL;
1955
1956         *mask = 0;
1957
1958         for (i = 0; i < n_rates; i++) {
1959                 int rate = (rates[i] & 0x7f) * 5;
1960                 bool found = false;
1961
1962                 for (j = 0; j < sband->n_bitrates; j++) {
1963                         if (sband->bitrates[j].bitrate == rate) {
1964                                 found = true;
1965                                 *mask |= BIT(j);
1966                                 break;
1967                         }
1968                 }
1969                 if (!found)
1970                         return -EINVAL;
1971         }
1972
1973         /*
1974          * mask must have at least one bit set here since we
1975          * didn't accept a 0-length rates array nor allowed
1976          * entries in the array that didn't exist
1977          */
1978
1979         return 0;
1980 }
1981
1982 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1983 {
1984         enum nl80211_band band;
1985         unsigned int n_channels = 0;
1986
1987         for (band = 0; band < NUM_NL80211_BANDS; band++)
1988                 if (wiphy->bands[band])
1989                         n_channels += wiphy->bands[band]->n_channels;
1990
1991         return n_channels;
1992 }
1993 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1994
1995 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1996                          struct station_info *sinfo)
1997 {
1998         struct cfg80211_registered_device *rdev;
1999         struct wireless_dev *wdev;
2000
2001         wdev = dev->ieee80211_ptr;
2002         if (!wdev)
2003                 return -EOPNOTSUPP;
2004
2005         rdev = wiphy_to_rdev(wdev->wiphy);
2006         if (!rdev->ops->get_station)
2007                 return -EOPNOTSUPP;
2008
2009         memset(sinfo, 0, sizeof(*sinfo));
2010
2011         return rdev_get_station(rdev, dev, mac_addr, sinfo);
2012 }
2013 EXPORT_SYMBOL(cfg80211_get_station);
2014
2015 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
2016 {
2017         int i;
2018
2019         if (!f)
2020                 return;
2021
2022         kfree(f->serv_spec_info);
2023         kfree(f->srf_bf);
2024         kfree(f->srf_macs);
2025         for (i = 0; i < f->num_rx_filters; i++)
2026                 kfree(f->rx_filters[i].filter);
2027
2028         for (i = 0; i < f->num_tx_filters; i++)
2029                 kfree(f->tx_filters[i].filter);
2030
2031         kfree(f->rx_filters);
2032         kfree(f->tx_filters);
2033         kfree(f);
2034 }
2035 EXPORT_SYMBOL(cfg80211_free_nan_func);
2036
2037 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2038                                 u32 center_freq_khz, u32 bw_khz)
2039 {
2040         u32 start_freq_khz, end_freq_khz;
2041
2042         start_freq_khz = center_freq_khz - (bw_khz / 2);
2043         end_freq_khz = center_freq_khz + (bw_khz / 2);
2044
2045         if (start_freq_khz >= freq_range->start_freq_khz &&
2046             end_freq_khz <= freq_range->end_freq_khz)
2047                 return true;
2048
2049         return false;
2050 }
2051
2052 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2053 {
2054         sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2055                                 sizeof(*(sinfo->pertid)),
2056                                 gfp);
2057         if (!sinfo->pertid)
2058                 return -ENOMEM;
2059
2060         return 0;
2061 }
2062 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2063
2064 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2065 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2066 const unsigned char rfc1042_header[] __aligned(2) =
2067         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2068 EXPORT_SYMBOL(rfc1042_header);
2069
2070 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2071 const unsigned char bridge_tunnel_header[] __aligned(2) =
2072         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2073 EXPORT_SYMBOL(bridge_tunnel_header);
2074
2075 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2076 struct iapp_layer2_update {
2077         u8 da[ETH_ALEN];        /* broadcast */
2078         u8 sa[ETH_ALEN];        /* STA addr */
2079         __be16 len;             /* 6 */
2080         u8 dsap;                /* 0 */
2081         u8 ssap;                /* 0 */
2082         u8 control;
2083         u8 xid_info[3];
2084 } __packed;
2085
2086 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2087 {
2088         struct iapp_layer2_update *msg;
2089         struct sk_buff *skb;
2090
2091         /* Send Level 2 Update Frame to update forwarding tables in layer 2
2092          * bridge devices */
2093
2094         skb = dev_alloc_skb(sizeof(*msg));
2095         if (!skb)
2096                 return;
2097         msg = skb_put(skb, sizeof(*msg));
2098
2099         /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2100          * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2101
2102         eth_broadcast_addr(msg->da);
2103         ether_addr_copy(msg->sa, addr);
2104         msg->len = htons(6);
2105         msg->dsap = 0;
2106         msg->ssap = 0x01;       /* NULL LSAP, CR Bit: Response */
2107         msg->control = 0xaf;    /* XID response lsb.1111F101.
2108                                  * F=0 (no poll command; unsolicited frame) */
2109         msg->xid_info[0] = 0x81;        /* XID format identifier */
2110         msg->xid_info[1] = 1;   /* LLC types/classes: Type 1 LLC */
2111         msg->xid_info[2] = 0;   /* XID sender's receive window size (RW) */
2112
2113         skb->dev = dev;
2114         skb->protocol = eth_type_trans(skb, dev);
2115         memset(skb->cb, 0, sizeof(skb->cb));
2116         netif_rx_ni(skb);
2117 }
2118 EXPORT_SYMBOL(cfg80211_send_layer2_update);
2119
2120 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2121                               enum ieee80211_vht_chanwidth bw,
2122                               int mcs, bool ext_nss_bw_capable,
2123                               unsigned int max_vht_nss)
2124 {
2125         u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2126         int ext_nss_bw;
2127         int supp_width;
2128         int i, mcs_encoding;
2129
2130         if (map == 0xffff)
2131                 return 0;
2132
2133         if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2134                 return 0;
2135         if (mcs <= 7)
2136                 mcs_encoding = 0;
2137         else if (mcs == 8)
2138                 mcs_encoding = 1;
2139         else
2140                 mcs_encoding = 2;
2141
2142         if (!max_vht_nss) {
2143                 /* find max_vht_nss for the given MCS */
2144                 for (i = 7; i >= 0; i--) {
2145                         int supp = (map >> (2 * i)) & 3;
2146
2147                         if (supp == 3)
2148                                 continue;
2149
2150                         if (supp >= mcs_encoding) {
2151                                 max_vht_nss = i + 1;
2152                                 break;
2153                         }
2154                 }
2155         }
2156
2157         if (!(cap->supp_mcs.tx_mcs_map &
2158                         cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2159                 return max_vht_nss;
2160
2161         ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2162                                    IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2163         supp_width = le32_get_bits(cap->vht_cap_info,
2164                                    IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2165
2166         /* if not capable, treat ext_nss_bw as 0 */
2167         if (!ext_nss_bw_capable)
2168                 ext_nss_bw = 0;
2169
2170         /* This is invalid */
2171         if (supp_width == 3)
2172                 return 0;
2173
2174         /* This is an invalid combination so pretend nothing is supported */
2175         if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2176                 return 0;
2177
2178         /*
2179          * Cover all the special cases according to IEEE 802.11-2016
2180          * Table 9-250. All other cases are either factor of 1 or not
2181          * valid/supported.
2182          */
2183         switch (bw) {
2184         case IEEE80211_VHT_CHANWIDTH_USE_HT:
2185         case IEEE80211_VHT_CHANWIDTH_80MHZ:
2186                 if ((supp_width == 1 || supp_width == 2) &&
2187                     ext_nss_bw == 3)
2188                         return 2 * max_vht_nss;
2189                 break;
2190         case IEEE80211_VHT_CHANWIDTH_160MHZ:
2191                 if (supp_width == 0 &&
2192                     (ext_nss_bw == 1 || ext_nss_bw == 2))
2193                         return max_vht_nss / 2;
2194                 if (supp_width == 0 &&
2195                     ext_nss_bw == 3)
2196                         return (3 * max_vht_nss) / 4;
2197                 if (supp_width == 1 &&
2198                     ext_nss_bw == 3)
2199                         return 2 * max_vht_nss;
2200                 break;
2201         case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2202                 if (supp_width == 0 && ext_nss_bw == 1)
2203                         return 0; /* not possible */
2204                 if (supp_width == 0 &&
2205                     ext_nss_bw == 2)
2206                         return max_vht_nss / 2;
2207                 if (supp_width == 0 &&
2208                     ext_nss_bw == 3)
2209                         return (3 * max_vht_nss) / 4;
2210                 if (supp_width == 1 &&
2211                     ext_nss_bw == 0)
2212                         return 0; /* not possible */
2213                 if (supp_width == 1 &&
2214                     ext_nss_bw == 1)
2215                         return max_vht_nss / 2;
2216                 if (supp_width == 1 &&
2217                     ext_nss_bw == 2)
2218                         return (3 * max_vht_nss) / 4;
2219                 break;
2220         }
2221
2222         /* not covered or invalid combination received */
2223         return max_vht_nss;
2224 }
2225 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2226
2227 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2228                              bool is_4addr, u8 check_swif)
2229
2230 {
2231         bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2232
2233         switch (check_swif) {
2234         case 0:
2235                 if (is_vlan && is_4addr)
2236                         return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2237                 return wiphy->interface_modes & BIT(iftype);
2238         case 1:
2239                 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2240                         return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2241                 return wiphy->software_iftypes & BIT(iftype);
2242         default:
2243                 break;
2244         }
2245
2246         return false;
2247 }
2248 EXPORT_SYMBOL(cfg80211_iftype_allowed);