ethtool: Fix check in ethtool_rx_flow_rule_create
[linux-2.6-microblaze.git] / net / wireless / util.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Wireless utility functions
4  *
5  * Copyright 2007-2009  Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2017       Intel Deutschland GmbH
8  * Copyright (C) 2018-2020 Intel Corporation
9  */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25
26
27 struct ieee80211_rate *
28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29                             u32 basic_rates, int bitrate)
30 {
31         struct ieee80211_rate *result = &sband->bitrates[0];
32         int i;
33
34         for (i = 0; i < sband->n_bitrates; i++) {
35                 if (!(basic_rates & BIT(i)))
36                         continue;
37                 if (sband->bitrates[i].bitrate > bitrate)
38                         continue;
39                 result = &sband->bitrates[i];
40         }
41
42         return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45
46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47                               enum nl80211_bss_scan_width scan_width)
48 {
49         struct ieee80211_rate *bitrates;
50         u32 mandatory_rates = 0;
51         enum ieee80211_rate_flags mandatory_flag;
52         int i;
53
54         if (WARN_ON(!sband))
55                 return 1;
56
57         if (sband->band == NL80211_BAND_2GHZ) {
58                 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59                     scan_width == NL80211_BSS_CHAN_WIDTH_10)
60                         mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61                 else
62                         mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63         } else {
64                 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65         }
66
67         bitrates = sband->bitrates;
68         for (i = 0; i < sband->n_bitrates; i++)
69                 if (bitrates[i].flags & mandatory_flag)
70                         mandatory_rates |= BIT(i);
71         return mandatory_rates;
72 }
73 EXPORT_SYMBOL(ieee80211_mandatory_rates);
74
75 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
76 {
77         /* see 802.11 17.3.8.3.2 and Annex J
78          * there are overlapping channel numbers in 5GHz and 2GHz bands */
79         if (chan <= 0)
80                 return 0; /* not supported */
81         switch (band) {
82         case NL80211_BAND_2GHZ:
83                 if (chan == 14)
84                         return MHZ_TO_KHZ(2484);
85                 else if (chan < 14)
86                         return MHZ_TO_KHZ(2407 + chan * 5);
87                 break;
88         case NL80211_BAND_5GHZ:
89                 if (chan >= 182 && chan <= 196)
90                         return MHZ_TO_KHZ(4000 + chan * 5);
91                 else
92                         return MHZ_TO_KHZ(5000 + chan * 5);
93                 break;
94         case NL80211_BAND_6GHZ:
95                 /* see 802.11ax D6.1 27.3.23.2 */
96                 if (chan == 2)
97                         return MHZ_TO_KHZ(5935);
98                 if (chan <= 253)
99                         return MHZ_TO_KHZ(5950 + chan * 5);
100                 break;
101         case NL80211_BAND_60GHZ:
102                 if (chan < 7)
103                         return MHZ_TO_KHZ(56160 + chan * 2160);
104                 break;
105         default:
106                 ;
107         }
108         return 0; /* not supported */
109 }
110 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
111
112 int ieee80211_freq_khz_to_channel(u32 freq)
113 {
114         /* TODO: just handle MHz for now */
115         freq = KHZ_TO_MHZ(freq);
116
117         /* see 802.11 17.3.8.3.2 and Annex J */
118         if (freq == 2484)
119                 return 14;
120         else if (freq < 2484)
121                 return (freq - 2407) / 5;
122         else if (freq >= 4910 && freq <= 4980)
123                 return (freq - 4000) / 5;
124         else if (freq < 5945)
125                 return (freq - 5000) / 5;
126         else if (freq <= 45000) /* DMG band lower limit */
127                 /* see 802.11ax D4.1 27.3.22.2 */
128                 return (freq - 5940) / 5;
129         else if (freq >= 58320 && freq <= 70200)
130                 return (freq - 56160) / 2160;
131         else
132                 return 0;
133 }
134 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
135
136 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
137                                                     u32 freq)
138 {
139         enum nl80211_band band;
140         struct ieee80211_supported_band *sband;
141         int i;
142
143         for (band = 0; band < NUM_NL80211_BANDS; band++) {
144                 sband = wiphy->bands[band];
145
146                 if (!sband)
147                         continue;
148
149                 for (i = 0; i < sband->n_channels; i++) {
150                         struct ieee80211_channel *chan = &sband->channels[i];
151
152                         if (ieee80211_channel_to_khz(chan) == freq)
153                                 return chan;
154                 }
155         }
156
157         return NULL;
158 }
159 EXPORT_SYMBOL(ieee80211_get_channel_khz);
160
161 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
162 {
163         int i, want;
164
165         switch (sband->band) {
166         case NL80211_BAND_5GHZ:
167         case NL80211_BAND_6GHZ:
168                 want = 3;
169                 for (i = 0; i < sband->n_bitrates; i++) {
170                         if (sband->bitrates[i].bitrate == 60 ||
171                             sband->bitrates[i].bitrate == 120 ||
172                             sband->bitrates[i].bitrate == 240) {
173                                 sband->bitrates[i].flags |=
174                                         IEEE80211_RATE_MANDATORY_A;
175                                 want--;
176                         }
177                 }
178                 WARN_ON(want);
179                 break;
180         case NL80211_BAND_2GHZ:
181                 want = 7;
182                 for (i = 0; i < sband->n_bitrates; i++) {
183                         switch (sband->bitrates[i].bitrate) {
184                         case 10:
185                         case 20:
186                         case 55:
187                         case 110:
188                                 sband->bitrates[i].flags |=
189                                         IEEE80211_RATE_MANDATORY_B |
190                                         IEEE80211_RATE_MANDATORY_G;
191                                 want--;
192                                 break;
193                         case 60:
194                         case 120:
195                         case 240:
196                                 sband->bitrates[i].flags |=
197                                         IEEE80211_RATE_MANDATORY_G;
198                                 want--;
199                                 /* fall through */
200                         default:
201                                 sband->bitrates[i].flags |=
202                                         IEEE80211_RATE_ERP_G;
203                                 break;
204                         }
205                 }
206                 WARN_ON(want != 0 && want != 3);
207                 break;
208         case NL80211_BAND_60GHZ:
209                 /* check for mandatory HT MCS 1..4 */
210                 WARN_ON(!sband->ht_cap.ht_supported);
211                 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
212                 break;
213         case NUM_NL80211_BANDS:
214         default:
215                 WARN_ON(1);
216                 break;
217         }
218 }
219
220 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
221 {
222         enum nl80211_band band;
223
224         for (band = 0; band < NUM_NL80211_BANDS; band++)
225                 if (wiphy->bands[band])
226                         set_mandatory_flags_band(wiphy->bands[band]);
227 }
228
229 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
230 {
231         int i;
232         for (i = 0; i < wiphy->n_cipher_suites; i++)
233                 if (cipher == wiphy->cipher_suites[i])
234                         return true;
235         return false;
236 }
237
238 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
239                                    struct key_params *params, int key_idx,
240                                    bool pairwise, const u8 *mac_addr)
241 {
242         int max_key_idx = 5;
243
244         if (wiphy_ext_feature_isset(&rdev->wiphy,
245                                     NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
246             wiphy_ext_feature_isset(&rdev->wiphy,
247                                     NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
248                 max_key_idx = 7;
249         if (key_idx < 0 || key_idx > max_key_idx)
250                 return -EINVAL;
251
252         if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
253                 return -EINVAL;
254
255         if (pairwise && !mac_addr)
256                 return -EINVAL;
257
258         switch (params->cipher) {
259         case WLAN_CIPHER_SUITE_TKIP:
260                 /* Extended Key ID can only be used with CCMP/GCMP ciphers */
261                 if ((pairwise && key_idx) ||
262                     params->mode != NL80211_KEY_RX_TX)
263                         return -EINVAL;
264                 break;
265         case WLAN_CIPHER_SUITE_CCMP:
266         case WLAN_CIPHER_SUITE_CCMP_256:
267         case WLAN_CIPHER_SUITE_GCMP:
268         case WLAN_CIPHER_SUITE_GCMP_256:
269                 /* IEEE802.11-2016 allows only 0 and - when supporting
270                  * Extended Key ID - 1 as index for pairwise keys.
271                  * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
272                  * the driver supports Extended Key ID.
273                  * @NL80211_KEY_SET_TX can't be set when installing and
274                  * validating a key.
275                  */
276                 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
277                     params->mode == NL80211_KEY_SET_TX)
278                         return -EINVAL;
279                 if (wiphy_ext_feature_isset(&rdev->wiphy,
280                                             NL80211_EXT_FEATURE_EXT_KEY_ID)) {
281                         if (pairwise && (key_idx < 0 || key_idx > 1))
282                                 return -EINVAL;
283                 } else if (pairwise && key_idx) {
284                         return -EINVAL;
285                 }
286                 break;
287         case WLAN_CIPHER_SUITE_AES_CMAC:
288         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
289         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
290         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
291                 /* Disallow BIP (group-only) cipher as pairwise cipher */
292                 if (pairwise)
293                         return -EINVAL;
294                 if (key_idx < 4)
295                         return -EINVAL;
296                 break;
297         case WLAN_CIPHER_SUITE_WEP40:
298         case WLAN_CIPHER_SUITE_WEP104:
299                 if (key_idx > 3)
300                         return -EINVAL;
301         default:
302                 break;
303         }
304
305         switch (params->cipher) {
306         case WLAN_CIPHER_SUITE_WEP40:
307                 if (params->key_len != WLAN_KEY_LEN_WEP40)
308                         return -EINVAL;
309                 break;
310         case WLAN_CIPHER_SUITE_TKIP:
311                 if (params->key_len != WLAN_KEY_LEN_TKIP)
312                         return -EINVAL;
313                 break;
314         case WLAN_CIPHER_SUITE_CCMP:
315                 if (params->key_len != WLAN_KEY_LEN_CCMP)
316                         return -EINVAL;
317                 break;
318         case WLAN_CIPHER_SUITE_CCMP_256:
319                 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
320                         return -EINVAL;
321                 break;
322         case WLAN_CIPHER_SUITE_GCMP:
323                 if (params->key_len != WLAN_KEY_LEN_GCMP)
324                         return -EINVAL;
325                 break;
326         case WLAN_CIPHER_SUITE_GCMP_256:
327                 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
328                         return -EINVAL;
329                 break;
330         case WLAN_CIPHER_SUITE_WEP104:
331                 if (params->key_len != WLAN_KEY_LEN_WEP104)
332                         return -EINVAL;
333                 break;
334         case WLAN_CIPHER_SUITE_AES_CMAC:
335                 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
336                         return -EINVAL;
337                 break;
338         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
339                 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
340                         return -EINVAL;
341                 break;
342         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
343                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
344                         return -EINVAL;
345                 break;
346         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
347                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
348                         return -EINVAL;
349                 break;
350         default:
351                 /*
352                  * We don't know anything about this algorithm,
353                  * allow using it -- but the driver must check
354                  * all parameters! We still check below whether
355                  * or not the driver supports this algorithm,
356                  * of course.
357                  */
358                 break;
359         }
360
361         if (params->seq) {
362                 switch (params->cipher) {
363                 case WLAN_CIPHER_SUITE_WEP40:
364                 case WLAN_CIPHER_SUITE_WEP104:
365                         /* These ciphers do not use key sequence */
366                         return -EINVAL;
367                 case WLAN_CIPHER_SUITE_TKIP:
368                 case WLAN_CIPHER_SUITE_CCMP:
369                 case WLAN_CIPHER_SUITE_CCMP_256:
370                 case WLAN_CIPHER_SUITE_GCMP:
371                 case WLAN_CIPHER_SUITE_GCMP_256:
372                 case WLAN_CIPHER_SUITE_AES_CMAC:
373                 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
374                 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
375                 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
376                         if (params->seq_len != 6)
377                                 return -EINVAL;
378                         break;
379                 }
380         }
381
382         if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
383                 return -EINVAL;
384
385         return 0;
386 }
387
388 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
389 {
390         unsigned int hdrlen = 24;
391
392         if (ieee80211_is_data(fc)) {
393                 if (ieee80211_has_a4(fc))
394                         hdrlen = 30;
395                 if (ieee80211_is_data_qos(fc)) {
396                         hdrlen += IEEE80211_QOS_CTL_LEN;
397                         if (ieee80211_has_order(fc))
398                                 hdrlen += IEEE80211_HT_CTL_LEN;
399                 }
400                 goto out;
401         }
402
403         if (ieee80211_is_mgmt(fc)) {
404                 if (ieee80211_has_order(fc))
405                         hdrlen += IEEE80211_HT_CTL_LEN;
406                 goto out;
407         }
408
409         if (ieee80211_is_ctl(fc)) {
410                 /*
411                  * ACK and CTS are 10 bytes, all others 16. To see how
412                  * to get this condition consider
413                  *   subtype mask:   0b0000000011110000 (0x00F0)
414                  *   ACK subtype:    0b0000000011010000 (0x00D0)
415                  *   CTS subtype:    0b0000000011000000 (0x00C0)
416                  *   bits that matter:         ^^^      (0x00E0)
417                  *   value of those: 0b0000000011000000 (0x00C0)
418                  */
419                 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
420                         hdrlen = 10;
421                 else
422                         hdrlen = 16;
423         }
424 out:
425         return hdrlen;
426 }
427 EXPORT_SYMBOL(ieee80211_hdrlen);
428
429 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
430 {
431         const struct ieee80211_hdr *hdr =
432                         (const struct ieee80211_hdr *)skb->data;
433         unsigned int hdrlen;
434
435         if (unlikely(skb->len < 10))
436                 return 0;
437         hdrlen = ieee80211_hdrlen(hdr->frame_control);
438         if (unlikely(hdrlen > skb->len))
439                 return 0;
440         return hdrlen;
441 }
442 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
443
444 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
445 {
446         int ae = flags & MESH_FLAGS_AE;
447         /* 802.11-2012, 8.2.4.7.3 */
448         switch (ae) {
449         default:
450         case 0:
451                 return 6;
452         case MESH_FLAGS_AE_A4:
453                 return 12;
454         case MESH_FLAGS_AE_A5_A6:
455                 return 18;
456         }
457 }
458
459 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
460 {
461         return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
462 }
463 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
464
465 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
466                                   const u8 *addr, enum nl80211_iftype iftype,
467                                   u8 data_offset)
468 {
469         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
470         struct {
471                 u8 hdr[ETH_ALEN] __aligned(2);
472                 __be16 proto;
473         } payload;
474         struct ethhdr tmp;
475         u16 hdrlen;
476         u8 mesh_flags = 0;
477
478         if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
479                 return -1;
480
481         hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
482         if (skb->len < hdrlen + 8)
483                 return -1;
484
485         /* convert IEEE 802.11 header + possible LLC headers into Ethernet
486          * header
487          * IEEE 802.11 address fields:
488          * ToDS FromDS Addr1 Addr2 Addr3 Addr4
489          *   0     0   DA    SA    BSSID n/a
490          *   0     1   DA    BSSID SA    n/a
491          *   1     0   BSSID SA    DA    n/a
492          *   1     1   RA    TA    DA    SA
493          */
494         memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
495         memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
496
497         if (iftype == NL80211_IFTYPE_MESH_POINT)
498                 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
499
500         mesh_flags &= MESH_FLAGS_AE;
501
502         switch (hdr->frame_control &
503                 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
504         case cpu_to_le16(IEEE80211_FCTL_TODS):
505                 if (unlikely(iftype != NL80211_IFTYPE_AP &&
506                              iftype != NL80211_IFTYPE_AP_VLAN &&
507                              iftype != NL80211_IFTYPE_P2P_GO))
508                         return -1;
509                 break;
510         case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
511                 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
512                              iftype != NL80211_IFTYPE_MESH_POINT &&
513                              iftype != NL80211_IFTYPE_AP_VLAN &&
514                              iftype != NL80211_IFTYPE_STATION))
515                         return -1;
516                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
517                         if (mesh_flags == MESH_FLAGS_AE_A4)
518                                 return -1;
519                         if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
520                                 skb_copy_bits(skb, hdrlen +
521                                         offsetof(struct ieee80211s_hdr, eaddr1),
522                                         tmp.h_dest, 2 * ETH_ALEN);
523                         }
524                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
525                 }
526                 break;
527         case cpu_to_le16(IEEE80211_FCTL_FROMDS):
528                 if ((iftype != NL80211_IFTYPE_STATION &&
529                      iftype != NL80211_IFTYPE_P2P_CLIENT &&
530                      iftype != NL80211_IFTYPE_MESH_POINT) ||
531                     (is_multicast_ether_addr(tmp.h_dest) &&
532                      ether_addr_equal(tmp.h_source, addr)))
533                         return -1;
534                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
535                         if (mesh_flags == MESH_FLAGS_AE_A5_A6)
536                                 return -1;
537                         if (mesh_flags == MESH_FLAGS_AE_A4)
538                                 skb_copy_bits(skb, hdrlen +
539                                         offsetof(struct ieee80211s_hdr, eaddr1),
540                                         tmp.h_source, ETH_ALEN);
541                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
542                 }
543                 break;
544         case cpu_to_le16(0):
545                 if (iftype != NL80211_IFTYPE_ADHOC &&
546                     iftype != NL80211_IFTYPE_STATION &&
547                     iftype != NL80211_IFTYPE_OCB)
548                                 return -1;
549                 break;
550         }
551
552         skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
553         tmp.h_proto = payload.proto;
554
555         if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
556                     tmp.h_proto != htons(ETH_P_AARP) &&
557                     tmp.h_proto != htons(ETH_P_IPX)) ||
558                    ether_addr_equal(payload.hdr, bridge_tunnel_header)))
559                 /* remove RFC1042 or Bridge-Tunnel encapsulation and
560                  * replace EtherType */
561                 hdrlen += ETH_ALEN + 2;
562         else
563                 tmp.h_proto = htons(skb->len - hdrlen);
564
565         pskb_pull(skb, hdrlen);
566
567         if (!ehdr)
568                 ehdr = skb_push(skb, sizeof(struct ethhdr));
569         memcpy(ehdr, &tmp, sizeof(tmp));
570
571         return 0;
572 }
573 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
574
575 static void
576 __frame_add_frag(struct sk_buff *skb, struct page *page,
577                  void *ptr, int len, int size)
578 {
579         struct skb_shared_info *sh = skb_shinfo(skb);
580         int page_offset;
581
582         get_page(page);
583         page_offset = ptr - page_address(page);
584         skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
585 }
586
587 static void
588 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
589                             int offset, int len)
590 {
591         struct skb_shared_info *sh = skb_shinfo(skb);
592         const skb_frag_t *frag = &sh->frags[0];
593         struct page *frag_page;
594         void *frag_ptr;
595         int frag_len, frag_size;
596         int head_size = skb->len - skb->data_len;
597         int cur_len;
598
599         frag_page = virt_to_head_page(skb->head);
600         frag_ptr = skb->data;
601         frag_size = head_size;
602
603         while (offset >= frag_size) {
604                 offset -= frag_size;
605                 frag_page = skb_frag_page(frag);
606                 frag_ptr = skb_frag_address(frag);
607                 frag_size = skb_frag_size(frag);
608                 frag++;
609         }
610
611         frag_ptr += offset;
612         frag_len = frag_size - offset;
613
614         cur_len = min(len, frag_len);
615
616         __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
617         len -= cur_len;
618
619         while (len > 0) {
620                 frag_len = skb_frag_size(frag);
621                 cur_len = min(len, frag_len);
622                 __frame_add_frag(frame, skb_frag_page(frag),
623                                  skb_frag_address(frag), cur_len, frag_len);
624                 len -= cur_len;
625                 frag++;
626         }
627 }
628
629 static struct sk_buff *
630 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
631                        int offset, int len, bool reuse_frag)
632 {
633         struct sk_buff *frame;
634         int cur_len = len;
635
636         if (skb->len - offset < len)
637                 return NULL;
638
639         /*
640          * When reusing framents, copy some data to the head to simplify
641          * ethernet header handling and speed up protocol header processing
642          * in the stack later.
643          */
644         if (reuse_frag)
645                 cur_len = min_t(int, len, 32);
646
647         /*
648          * Allocate and reserve two bytes more for payload
649          * alignment since sizeof(struct ethhdr) is 14.
650          */
651         frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
652         if (!frame)
653                 return NULL;
654
655         skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
656         skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
657
658         len -= cur_len;
659         if (!len)
660                 return frame;
661
662         offset += cur_len;
663         __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
664
665         return frame;
666 }
667
668 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
669                               const u8 *addr, enum nl80211_iftype iftype,
670                               const unsigned int extra_headroom,
671                               const u8 *check_da, const u8 *check_sa)
672 {
673         unsigned int hlen = ALIGN(extra_headroom, 4);
674         struct sk_buff *frame = NULL;
675         u16 ethertype;
676         u8 *payload;
677         int offset = 0, remaining;
678         struct ethhdr eth;
679         bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
680         bool reuse_skb = false;
681         bool last = false;
682
683         while (!last) {
684                 unsigned int subframe_len;
685                 int len;
686                 u8 padding;
687
688                 skb_copy_bits(skb, offset, &eth, sizeof(eth));
689                 len = ntohs(eth.h_proto);
690                 subframe_len = sizeof(struct ethhdr) + len;
691                 padding = (4 - subframe_len) & 0x3;
692
693                 /* the last MSDU has no padding */
694                 remaining = skb->len - offset;
695                 if (subframe_len > remaining)
696                         goto purge;
697
698                 offset += sizeof(struct ethhdr);
699                 last = remaining <= subframe_len + padding;
700
701                 /* FIXME: should we really accept multicast DA? */
702                 if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
703                      !ether_addr_equal(check_da, eth.h_dest)) ||
704                     (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
705                         offset += len + padding;
706                         continue;
707                 }
708
709                 /* reuse skb for the last subframe */
710                 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
711                         skb_pull(skb, offset);
712                         frame = skb;
713                         reuse_skb = true;
714                 } else {
715                         frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
716                                                        reuse_frag);
717                         if (!frame)
718                                 goto purge;
719
720                         offset += len + padding;
721                 }
722
723                 skb_reset_network_header(frame);
724                 frame->dev = skb->dev;
725                 frame->priority = skb->priority;
726
727                 payload = frame->data;
728                 ethertype = (payload[6] << 8) | payload[7];
729                 if (likely((ether_addr_equal(payload, rfc1042_header) &&
730                             ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
731                            ether_addr_equal(payload, bridge_tunnel_header))) {
732                         eth.h_proto = htons(ethertype);
733                         skb_pull(frame, ETH_ALEN + 2);
734                 }
735
736                 memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
737                 __skb_queue_tail(list, frame);
738         }
739
740         if (!reuse_skb)
741                 dev_kfree_skb(skb);
742
743         return;
744
745  purge:
746         __skb_queue_purge(list);
747         dev_kfree_skb(skb);
748 }
749 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
750
751 /* Given a data frame determine the 802.1p/1d tag to use. */
752 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
753                                     struct cfg80211_qos_map *qos_map)
754 {
755         unsigned int dscp;
756         unsigned char vlan_priority;
757         unsigned int ret;
758
759         /* skb->priority values from 256->263 are magic values to
760          * directly indicate a specific 802.1d priority.  This is used
761          * to allow 802.1d priority to be passed directly in from VLAN
762          * tags, etc.
763          */
764         if (skb->priority >= 256 && skb->priority <= 263) {
765                 ret = skb->priority - 256;
766                 goto out;
767         }
768
769         if (skb_vlan_tag_present(skb)) {
770                 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
771                         >> VLAN_PRIO_SHIFT;
772                 if (vlan_priority > 0) {
773                         ret = vlan_priority;
774                         goto out;
775                 }
776         }
777
778         switch (skb->protocol) {
779         case htons(ETH_P_IP):
780                 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
781                 break;
782         case htons(ETH_P_IPV6):
783                 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
784                 break;
785         case htons(ETH_P_MPLS_UC):
786         case htons(ETH_P_MPLS_MC): {
787                 struct mpls_label mpls_tmp, *mpls;
788
789                 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
790                                           sizeof(*mpls), &mpls_tmp);
791                 if (!mpls)
792                         return 0;
793
794                 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
795                         >> MPLS_LS_TC_SHIFT;
796                 goto out;
797         }
798         case htons(ETH_P_80221):
799                 /* 802.21 is always network control traffic */
800                 return 7;
801         default:
802                 return 0;
803         }
804
805         if (qos_map) {
806                 unsigned int i, tmp_dscp = dscp >> 2;
807
808                 for (i = 0; i < qos_map->num_des; i++) {
809                         if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
810                                 ret = qos_map->dscp_exception[i].up;
811                                 goto out;
812                         }
813                 }
814
815                 for (i = 0; i < 8; i++) {
816                         if (tmp_dscp >= qos_map->up[i].low &&
817                             tmp_dscp <= qos_map->up[i].high) {
818                                 ret = i;
819                                 goto out;
820                         }
821                 }
822         }
823
824         ret = dscp >> 5;
825 out:
826         return array_index_nospec(ret, IEEE80211_NUM_TIDS);
827 }
828 EXPORT_SYMBOL(cfg80211_classify8021d);
829
830 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
831 {
832         const struct cfg80211_bss_ies *ies;
833
834         ies = rcu_dereference(bss->ies);
835         if (!ies)
836                 return NULL;
837
838         return cfg80211_find_elem(id, ies->data, ies->len);
839 }
840 EXPORT_SYMBOL(ieee80211_bss_get_elem);
841
842 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
843 {
844         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
845         struct net_device *dev = wdev->netdev;
846         int i;
847
848         if (!wdev->connect_keys)
849                 return;
850
851         for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
852                 if (!wdev->connect_keys->params[i].cipher)
853                         continue;
854                 if (rdev_add_key(rdev, dev, i, false, NULL,
855                                  &wdev->connect_keys->params[i])) {
856                         netdev_err(dev, "failed to set key %d\n", i);
857                         continue;
858                 }
859                 if (wdev->connect_keys->def == i &&
860                     rdev_set_default_key(rdev, dev, i, true, true)) {
861                         netdev_err(dev, "failed to set defkey %d\n", i);
862                         continue;
863                 }
864         }
865
866         kzfree(wdev->connect_keys);
867         wdev->connect_keys = NULL;
868 }
869
870 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
871 {
872         struct cfg80211_event *ev;
873         unsigned long flags;
874
875         spin_lock_irqsave(&wdev->event_lock, flags);
876         while (!list_empty(&wdev->event_list)) {
877                 ev = list_first_entry(&wdev->event_list,
878                                       struct cfg80211_event, list);
879                 list_del(&ev->list);
880                 spin_unlock_irqrestore(&wdev->event_lock, flags);
881
882                 wdev_lock(wdev);
883                 switch (ev->type) {
884                 case EVENT_CONNECT_RESULT:
885                         __cfg80211_connect_result(
886                                 wdev->netdev,
887                                 &ev->cr,
888                                 ev->cr.status == WLAN_STATUS_SUCCESS);
889                         break;
890                 case EVENT_ROAMED:
891                         __cfg80211_roamed(wdev, &ev->rm);
892                         break;
893                 case EVENT_DISCONNECTED:
894                         __cfg80211_disconnected(wdev->netdev,
895                                                 ev->dc.ie, ev->dc.ie_len,
896                                                 ev->dc.reason,
897                                                 !ev->dc.locally_generated);
898                         break;
899                 case EVENT_IBSS_JOINED:
900                         __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
901                                                ev->ij.channel);
902                         break;
903                 case EVENT_STOPPED:
904                         __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
905                         break;
906                 case EVENT_PORT_AUTHORIZED:
907                         __cfg80211_port_authorized(wdev, ev->pa.bssid);
908                         break;
909                 }
910                 wdev_unlock(wdev);
911
912                 kfree(ev);
913
914                 spin_lock_irqsave(&wdev->event_lock, flags);
915         }
916         spin_unlock_irqrestore(&wdev->event_lock, flags);
917 }
918
919 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
920 {
921         struct wireless_dev *wdev;
922
923         ASSERT_RTNL();
924
925         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
926                 cfg80211_process_wdev_events(wdev);
927 }
928
929 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
930                           struct net_device *dev, enum nl80211_iftype ntype,
931                           struct vif_params *params)
932 {
933         int err;
934         enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
935
936         ASSERT_RTNL();
937
938         /* don't support changing VLANs, you just re-create them */
939         if (otype == NL80211_IFTYPE_AP_VLAN)
940                 return -EOPNOTSUPP;
941
942         /* cannot change into P2P device or NAN */
943         if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
944             ntype == NL80211_IFTYPE_NAN)
945                 return -EOPNOTSUPP;
946
947         if (!rdev->ops->change_virtual_intf ||
948             !(rdev->wiphy.interface_modes & (1 << ntype)))
949                 return -EOPNOTSUPP;
950
951         /* if it's part of a bridge, reject changing type to station/ibss */
952         if (netif_is_bridge_port(dev) &&
953             (ntype == NL80211_IFTYPE_ADHOC ||
954              ntype == NL80211_IFTYPE_STATION ||
955              ntype == NL80211_IFTYPE_P2P_CLIENT))
956                 return -EBUSY;
957
958         if (ntype != otype) {
959                 dev->ieee80211_ptr->use_4addr = false;
960                 dev->ieee80211_ptr->mesh_id_up_len = 0;
961                 wdev_lock(dev->ieee80211_ptr);
962                 rdev_set_qos_map(rdev, dev, NULL);
963                 wdev_unlock(dev->ieee80211_ptr);
964
965                 switch (otype) {
966                 case NL80211_IFTYPE_AP:
967                         cfg80211_stop_ap(rdev, dev, true);
968                         break;
969                 case NL80211_IFTYPE_ADHOC:
970                         cfg80211_leave_ibss(rdev, dev, false);
971                         break;
972                 case NL80211_IFTYPE_STATION:
973                 case NL80211_IFTYPE_P2P_CLIENT:
974                         wdev_lock(dev->ieee80211_ptr);
975                         cfg80211_disconnect(rdev, dev,
976                                             WLAN_REASON_DEAUTH_LEAVING, true);
977                         wdev_unlock(dev->ieee80211_ptr);
978                         break;
979                 case NL80211_IFTYPE_MESH_POINT:
980                         /* mesh should be handled? */
981                         break;
982                 default:
983                         break;
984                 }
985
986                 cfg80211_process_rdev_events(rdev);
987                 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
988         }
989
990         err = rdev_change_virtual_intf(rdev, dev, ntype, params);
991
992         WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
993
994         if (!err && params && params->use_4addr != -1)
995                 dev->ieee80211_ptr->use_4addr = params->use_4addr;
996
997         if (!err) {
998                 dev->priv_flags &= ~IFF_DONT_BRIDGE;
999                 switch (ntype) {
1000                 case NL80211_IFTYPE_STATION:
1001                         if (dev->ieee80211_ptr->use_4addr)
1002                                 break;
1003                         /* fall through */
1004                 case NL80211_IFTYPE_OCB:
1005                 case NL80211_IFTYPE_P2P_CLIENT:
1006                 case NL80211_IFTYPE_ADHOC:
1007                         dev->priv_flags |= IFF_DONT_BRIDGE;
1008                         break;
1009                 case NL80211_IFTYPE_P2P_GO:
1010                 case NL80211_IFTYPE_AP:
1011                 case NL80211_IFTYPE_AP_VLAN:
1012                 case NL80211_IFTYPE_WDS:
1013                 case NL80211_IFTYPE_MESH_POINT:
1014                         /* bridging OK */
1015                         break;
1016                 case NL80211_IFTYPE_MONITOR:
1017                         /* monitor can't bridge anyway */
1018                         break;
1019                 case NL80211_IFTYPE_UNSPECIFIED:
1020                 case NUM_NL80211_IFTYPES:
1021                         /* not happening */
1022                         break;
1023                 case NL80211_IFTYPE_P2P_DEVICE:
1024                 case NL80211_IFTYPE_NAN:
1025                         WARN_ON(1);
1026                         break;
1027                 }
1028         }
1029
1030         if (!err && ntype != otype && netif_running(dev)) {
1031                 cfg80211_update_iface_num(rdev, ntype, 1);
1032                 cfg80211_update_iface_num(rdev, otype, -1);
1033         }
1034
1035         return err;
1036 }
1037
1038 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1039 {
1040         int modulation, streams, bitrate;
1041
1042         /* the formula below does only work for MCS values smaller than 32 */
1043         if (WARN_ON_ONCE(rate->mcs >= 32))
1044                 return 0;
1045
1046         modulation = rate->mcs & 7;
1047         streams = (rate->mcs >> 3) + 1;
1048
1049         bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1050
1051         if (modulation < 4)
1052                 bitrate *= (modulation + 1);
1053         else if (modulation == 4)
1054                 bitrate *= (modulation + 2);
1055         else
1056                 bitrate *= (modulation + 3);
1057
1058         bitrate *= streams;
1059
1060         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1061                 bitrate = (bitrate / 9) * 10;
1062
1063         /* do NOT round down here */
1064         return (bitrate + 50000) / 100000;
1065 }
1066
1067 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1068 {
1069         static const u32 __mcs2bitrate[] = {
1070                 /* control PHY */
1071                 [0] =   275,
1072                 /* SC PHY */
1073                 [1] =  3850,
1074                 [2] =  7700,
1075                 [3] =  9625,
1076                 [4] = 11550,
1077                 [5] = 12512, /* 1251.25 mbps */
1078                 [6] = 15400,
1079                 [7] = 19250,
1080                 [8] = 23100,
1081                 [9] = 25025,
1082                 [10] = 30800,
1083                 [11] = 38500,
1084                 [12] = 46200,
1085                 /* OFDM PHY */
1086                 [13] =  6930,
1087                 [14] =  8662, /* 866.25 mbps */
1088                 [15] = 13860,
1089                 [16] = 17325,
1090                 [17] = 20790,
1091                 [18] = 27720,
1092                 [19] = 34650,
1093                 [20] = 41580,
1094                 [21] = 45045,
1095                 [22] = 51975,
1096                 [23] = 62370,
1097                 [24] = 67568, /* 6756.75 mbps */
1098                 /* LP-SC PHY */
1099                 [25] =  6260,
1100                 [26] =  8340,
1101                 [27] = 11120,
1102                 [28] = 12510,
1103                 [29] = 16680,
1104                 [30] = 22240,
1105                 [31] = 25030,
1106         };
1107
1108         if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1109                 return 0;
1110
1111         return __mcs2bitrate[rate->mcs];
1112 }
1113
1114 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1115 {
1116         static const u32 __mcs2bitrate[] = {
1117                 /* control PHY */
1118                 [0] =   275,
1119                 /* SC PHY */
1120                 [1] =  3850,
1121                 [2] =  7700,
1122                 [3] =  9625,
1123                 [4] = 11550,
1124                 [5] = 12512, /* 1251.25 mbps */
1125                 [6] = 13475,
1126                 [7] = 15400,
1127                 [8] = 19250,
1128                 [9] = 23100,
1129                 [10] = 25025,
1130                 [11] = 26950,
1131                 [12] = 30800,
1132                 [13] = 38500,
1133                 [14] = 46200,
1134                 [15] = 50050,
1135                 [16] = 53900,
1136                 [17] = 57750,
1137                 [18] = 69300,
1138                 [19] = 75075,
1139                 [20] = 80850,
1140         };
1141
1142         if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1143                 return 0;
1144
1145         return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1146 }
1147
1148 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1149 {
1150         static const u32 base[4][10] = {
1151                 {   6500000,
1152                    13000000,
1153                    19500000,
1154                    26000000,
1155                    39000000,
1156                    52000000,
1157                    58500000,
1158                    65000000,
1159                    78000000,
1160                 /* not in the spec, but some devices use this: */
1161                    86500000,
1162                 },
1163                 {  13500000,
1164                    27000000,
1165                    40500000,
1166                    54000000,
1167                    81000000,
1168                   108000000,
1169                   121500000,
1170                   135000000,
1171                   162000000,
1172                   180000000,
1173                 },
1174                 {  29300000,
1175                    58500000,
1176                    87800000,
1177                   117000000,
1178                   175500000,
1179                   234000000,
1180                   263300000,
1181                   292500000,
1182                   351000000,
1183                   390000000,
1184                 },
1185                 {  58500000,
1186                   117000000,
1187                   175500000,
1188                   234000000,
1189                   351000000,
1190                   468000000,
1191                   526500000,
1192                   585000000,
1193                   702000000,
1194                   780000000,
1195                 },
1196         };
1197         u32 bitrate;
1198         int idx;
1199
1200         if (rate->mcs > 9)
1201                 goto warn;
1202
1203         switch (rate->bw) {
1204         case RATE_INFO_BW_160:
1205                 idx = 3;
1206                 break;
1207         case RATE_INFO_BW_80:
1208                 idx = 2;
1209                 break;
1210         case RATE_INFO_BW_40:
1211                 idx = 1;
1212                 break;
1213         case RATE_INFO_BW_5:
1214         case RATE_INFO_BW_10:
1215         default:
1216                 goto warn;
1217         case RATE_INFO_BW_20:
1218                 idx = 0;
1219         }
1220
1221         bitrate = base[idx][rate->mcs];
1222         bitrate *= rate->nss;
1223
1224         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1225                 bitrate = (bitrate / 9) * 10;
1226
1227         /* do NOT round down here */
1228         return (bitrate + 50000) / 100000;
1229  warn:
1230         WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1231                   rate->bw, rate->mcs, rate->nss);
1232         return 0;
1233 }
1234
1235 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1236 {
1237 #define SCALE 2048
1238         u16 mcs_divisors[12] = {
1239                 34133, /* 16.666666... */
1240                 17067, /*  8.333333... */
1241                 11378, /*  5.555555... */
1242                  8533, /*  4.166666... */
1243                  5689, /*  2.777777... */
1244                  4267, /*  2.083333... */
1245                  3923, /*  1.851851... */
1246                  3413, /*  1.666666... */
1247                  2844, /*  1.388888... */
1248                  2560, /*  1.250000... */
1249                  2276, /*  1.111111... */
1250                  2048, /*  1.000000... */
1251         };
1252         u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1253         u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
1254         u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1255         u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1256         u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1257         u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1258         u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1259         u64 tmp;
1260         u32 result;
1261
1262         if (WARN_ON_ONCE(rate->mcs > 11))
1263                 return 0;
1264
1265         if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1266                 return 0;
1267         if (WARN_ON_ONCE(rate->he_ru_alloc >
1268                          NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1269                 return 0;
1270         if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1271                 return 0;
1272
1273         if (rate->bw == RATE_INFO_BW_160)
1274                 result = rates_160M[rate->he_gi];
1275         else if (rate->bw == RATE_INFO_BW_80 ||
1276                  (rate->bw == RATE_INFO_BW_HE_RU &&
1277                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1278                 result = rates_969[rate->he_gi];
1279         else if (rate->bw == RATE_INFO_BW_40 ||
1280                  (rate->bw == RATE_INFO_BW_HE_RU &&
1281                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1282                 result = rates_484[rate->he_gi];
1283         else if (rate->bw == RATE_INFO_BW_20 ||
1284                  (rate->bw == RATE_INFO_BW_HE_RU &&
1285                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1286                 result = rates_242[rate->he_gi];
1287         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1288                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1289                 result = rates_106[rate->he_gi];
1290         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1291                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1292                 result = rates_52[rate->he_gi];
1293         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1294                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1295                 result = rates_26[rate->he_gi];
1296         else {
1297                 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1298                      rate->bw, rate->he_ru_alloc);
1299                 return 0;
1300         }
1301
1302         /* now scale to the appropriate MCS */
1303         tmp = result;
1304         tmp *= SCALE;
1305         do_div(tmp, mcs_divisors[rate->mcs]);
1306         result = tmp;
1307
1308         /* and take NSS, DCM into account */
1309         result = (result * rate->nss) / 8;
1310         if (rate->he_dcm)
1311                 result /= 2;
1312
1313         return result / 10000;
1314 }
1315
1316 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1317 {
1318         if (rate->flags & RATE_INFO_FLAGS_MCS)
1319                 return cfg80211_calculate_bitrate_ht(rate);
1320         if (rate->flags & RATE_INFO_FLAGS_DMG)
1321                 return cfg80211_calculate_bitrate_dmg(rate);
1322         if (rate->flags & RATE_INFO_FLAGS_EDMG)
1323                 return cfg80211_calculate_bitrate_edmg(rate);
1324         if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1325                 return cfg80211_calculate_bitrate_vht(rate);
1326         if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1327                 return cfg80211_calculate_bitrate_he(rate);
1328
1329         return rate->legacy;
1330 }
1331 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1332
1333 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1334                           enum ieee80211_p2p_attr_id attr,
1335                           u8 *buf, unsigned int bufsize)
1336 {
1337         u8 *out = buf;
1338         u16 attr_remaining = 0;
1339         bool desired_attr = false;
1340         u16 desired_len = 0;
1341
1342         while (len > 0) {
1343                 unsigned int iedatalen;
1344                 unsigned int copy;
1345                 const u8 *iedata;
1346
1347                 if (len < 2)
1348                         return -EILSEQ;
1349                 iedatalen = ies[1];
1350                 if (iedatalen + 2 > len)
1351                         return -EILSEQ;
1352
1353                 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1354                         goto cont;
1355
1356                 if (iedatalen < 4)
1357                         goto cont;
1358
1359                 iedata = ies + 2;
1360
1361                 /* check WFA OUI, P2P subtype */
1362                 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1363                     iedata[2] != 0x9a || iedata[3] != 0x09)
1364                         goto cont;
1365
1366                 iedatalen -= 4;
1367                 iedata += 4;
1368
1369                 /* check attribute continuation into this IE */
1370                 copy = min_t(unsigned int, attr_remaining, iedatalen);
1371                 if (copy && desired_attr) {
1372                         desired_len += copy;
1373                         if (out) {
1374                                 memcpy(out, iedata, min(bufsize, copy));
1375                                 out += min(bufsize, copy);
1376                                 bufsize -= min(bufsize, copy);
1377                         }
1378
1379
1380                         if (copy == attr_remaining)
1381                                 return desired_len;
1382                 }
1383
1384                 attr_remaining -= copy;
1385                 if (attr_remaining)
1386                         goto cont;
1387
1388                 iedatalen -= copy;
1389                 iedata += copy;
1390
1391                 while (iedatalen > 0) {
1392                         u16 attr_len;
1393
1394                         /* P2P attribute ID & size must fit */
1395                         if (iedatalen < 3)
1396                                 return -EILSEQ;
1397                         desired_attr = iedata[0] == attr;
1398                         attr_len = get_unaligned_le16(iedata + 1);
1399                         iedatalen -= 3;
1400                         iedata += 3;
1401
1402                         copy = min_t(unsigned int, attr_len, iedatalen);
1403
1404                         if (desired_attr) {
1405                                 desired_len += copy;
1406                                 if (out) {
1407                                         memcpy(out, iedata, min(bufsize, copy));
1408                                         out += min(bufsize, copy);
1409                                         bufsize -= min(bufsize, copy);
1410                                 }
1411
1412                                 if (copy == attr_len)
1413                                         return desired_len;
1414                         }
1415
1416                         iedata += copy;
1417                         iedatalen -= copy;
1418                         attr_remaining = attr_len - copy;
1419                 }
1420
1421  cont:
1422                 len -= ies[1] + 2;
1423                 ies += ies[1] + 2;
1424         }
1425
1426         if (attr_remaining && desired_attr)
1427                 return -EILSEQ;
1428
1429         return -ENOENT;
1430 }
1431 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1432
1433 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1434 {
1435         int i;
1436
1437         /* Make sure array values are legal */
1438         if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1439                 return false;
1440
1441         i = 0;
1442         while (i < n_ids) {
1443                 if (ids[i] == WLAN_EID_EXTENSION) {
1444                         if (id_ext && (ids[i + 1] == id))
1445                                 return true;
1446
1447                         i += 2;
1448                         continue;
1449                 }
1450
1451                 if (ids[i] == id && !id_ext)
1452                         return true;
1453
1454                 i++;
1455         }
1456         return false;
1457 }
1458
1459 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1460 {
1461         /* we assume a validly formed IEs buffer */
1462         u8 len = ies[pos + 1];
1463
1464         pos += 2 + len;
1465
1466         /* the IE itself must have 255 bytes for fragments to follow */
1467         if (len < 255)
1468                 return pos;
1469
1470         while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1471                 len = ies[pos + 1];
1472                 pos += 2 + len;
1473         }
1474
1475         return pos;
1476 }
1477
1478 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1479                               const u8 *ids, int n_ids,
1480                               const u8 *after_ric, int n_after_ric,
1481                               size_t offset)
1482 {
1483         size_t pos = offset;
1484
1485         while (pos < ielen) {
1486                 u8 ext = 0;
1487
1488                 if (ies[pos] == WLAN_EID_EXTENSION)
1489                         ext = 2;
1490                 if ((pos + ext) >= ielen)
1491                         break;
1492
1493                 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1494                                           ies[pos] == WLAN_EID_EXTENSION))
1495                         break;
1496
1497                 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1498                         pos = skip_ie(ies, ielen, pos);
1499
1500                         while (pos < ielen) {
1501                                 if (ies[pos] == WLAN_EID_EXTENSION)
1502                                         ext = 2;
1503                                 else
1504                                         ext = 0;
1505
1506                                 if ((pos + ext) >= ielen)
1507                                         break;
1508
1509                                 if (!ieee80211_id_in_list(after_ric,
1510                                                           n_after_ric,
1511                                                           ies[pos + ext],
1512                                                           ext == 2))
1513                                         pos = skip_ie(ies, ielen, pos);
1514                                 else
1515                                         break;
1516                         }
1517                 } else {
1518                         pos = skip_ie(ies, ielen, pos);
1519                 }
1520         }
1521
1522         return pos;
1523 }
1524 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1525
1526 bool ieee80211_operating_class_to_band(u8 operating_class,
1527                                        enum nl80211_band *band)
1528 {
1529         switch (operating_class) {
1530         case 112:
1531         case 115 ... 127:
1532         case 128 ... 130:
1533                 *band = NL80211_BAND_5GHZ;
1534                 return true;
1535         case 131 ... 135:
1536                 *band = NL80211_BAND_6GHZ;
1537                 return true;
1538         case 81:
1539         case 82:
1540         case 83:
1541         case 84:
1542                 *band = NL80211_BAND_2GHZ;
1543                 return true;
1544         case 180:
1545                 *band = NL80211_BAND_60GHZ;
1546                 return true;
1547         }
1548
1549         return false;
1550 }
1551 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1552
1553 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1554                                           u8 *op_class)
1555 {
1556         u8 vht_opclass;
1557         u32 freq = chandef->center_freq1;
1558
1559         if (freq >= 2412 && freq <= 2472) {
1560                 if (chandef->width > NL80211_CHAN_WIDTH_40)
1561                         return false;
1562
1563                 /* 2.407 GHz, channels 1..13 */
1564                 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1565                         if (freq > chandef->chan->center_freq)
1566                                 *op_class = 83; /* HT40+ */
1567                         else
1568                                 *op_class = 84; /* HT40- */
1569                 } else {
1570                         *op_class = 81;
1571                 }
1572
1573                 return true;
1574         }
1575
1576         if (freq == 2484) {
1577                 /* channel 14 is only for IEEE 802.11b */
1578                 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1579                         return false;
1580
1581                 *op_class = 82; /* channel 14 */
1582                 return true;
1583         }
1584
1585         switch (chandef->width) {
1586         case NL80211_CHAN_WIDTH_80:
1587                 vht_opclass = 128;
1588                 break;
1589         case NL80211_CHAN_WIDTH_160:
1590                 vht_opclass = 129;
1591                 break;
1592         case NL80211_CHAN_WIDTH_80P80:
1593                 vht_opclass = 130;
1594                 break;
1595         case NL80211_CHAN_WIDTH_10:
1596         case NL80211_CHAN_WIDTH_5:
1597                 return false; /* unsupported for now */
1598         default:
1599                 vht_opclass = 0;
1600                 break;
1601         }
1602
1603         /* 5 GHz, channels 36..48 */
1604         if (freq >= 5180 && freq <= 5240) {
1605                 if (vht_opclass) {
1606                         *op_class = vht_opclass;
1607                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1608                         if (freq > chandef->chan->center_freq)
1609                                 *op_class = 116;
1610                         else
1611                                 *op_class = 117;
1612                 } else {
1613                         *op_class = 115;
1614                 }
1615
1616                 return true;
1617         }
1618
1619         /* 5 GHz, channels 52..64 */
1620         if (freq >= 5260 && freq <= 5320) {
1621                 if (vht_opclass) {
1622                         *op_class = vht_opclass;
1623                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1624                         if (freq > chandef->chan->center_freq)
1625                                 *op_class = 119;
1626                         else
1627                                 *op_class = 120;
1628                 } else {
1629                         *op_class = 118;
1630                 }
1631
1632                 return true;
1633         }
1634
1635         /* 5 GHz, channels 100..144 */
1636         if (freq >= 5500 && freq <= 5720) {
1637                 if (vht_opclass) {
1638                         *op_class = vht_opclass;
1639                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1640                         if (freq > chandef->chan->center_freq)
1641                                 *op_class = 122;
1642                         else
1643                                 *op_class = 123;
1644                 } else {
1645                         *op_class = 121;
1646                 }
1647
1648                 return true;
1649         }
1650
1651         /* 5 GHz, channels 149..169 */
1652         if (freq >= 5745 && freq <= 5845) {
1653                 if (vht_opclass) {
1654                         *op_class = vht_opclass;
1655                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1656                         if (freq > chandef->chan->center_freq)
1657                                 *op_class = 126;
1658                         else
1659                                 *op_class = 127;
1660                 } else if (freq <= 5805) {
1661                         *op_class = 124;
1662                 } else {
1663                         *op_class = 125;
1664                 }
1665
1666                 return true;
1667         }
1668
1669         /* 56.16 GHz, channel 1..4 */
1670         if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1671                 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1672                         return false;
1673
1674                 *op_class = 180;
1675                 return true;
1676         }
1677
1678         /* not supported yet */
1679         return false;
1680 }
1681 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1682
1683 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1684                                        u32 *beacon_int_gcd,
1685                                        bool *beacon_int_different)
1686 {
1687         struct wireless_dev *wdev;
1688
1689         *beacon_int_gcd = 0;
1690         *beacon_int_different = false;
1691
1692         list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1693                 if (!wdev->beacon_interval)
1694                         continue;
1695
1696                 if (!*beacon_int_gcd) {
1697                         *beacon_int_gcd = wdev->beacon_interval;
1698                         continue;
1699                 }
1700
1701                 if (wdev->beacon_interval == *beacon_int_gcd)
1702                         continue;
1703
1704                 *beacon_int_different = true;
1705                 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1706         }
1707
1708         if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1709                 if (*beacon_int_gcd)
1710                         *beacon_int_different = true;
1711                 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1712         }
1713 }
1714
1715 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1716                                  enum nl80211_iftype iftype, u32 beacon_int)
1717 {
1718         /*
1719          * This is just a basic pre-condition check; if interface combinations
1720          * are possible the driver must already be checking those with a call
1721          * to cfg80211_check_combinations(), in which case we'll validate more
1722          * through the cfg80211_calculate_bi_data() call and code in
1723          * cfg80211_iter_combinations().
1724          */
1725
1726         if (beacon_int < 10 || beacon_int > 10000)
1727                 return -EINVAL;
1728
1729         return 0;
1730 }
1731
1732 int cfg80211_iter_combinations(struct wiphy *wiphy,
1733                                struct iface_combination_params *params,
1734                                void (*iter)(const struct ieee80211_iface_combination *c,
1735                                             void *data),
1736                                void *data)
1737 {
1738         const struct ieee80211_regdomain *regdom;
1739         enum nl80211_dfs_regions region = 0;
1740         int i, j, iftype;
1741         int num_interfaces = 0;
1742         u32 used_iftypes = 0;
1743         u32 beacon_int_gcd;
1744         bool beacon_int_different;
1745
1746         /*
1747          * This is a bit strange, since the iteration used to rely only on
1748          * the data given by the driver, but here it now relies on context,
1749          * in form of the currently operating interfaces.
1750          * This is OK for all current users, and saves us from having to
1751          * push the GCD calculations into all the drivers.
1752          * In the future, this should probably rely more on data that's in
1753          * cfg80211 already - the only thing not would appear to be any new
1754          * interfaces (while being brought up) and channel/radar data.
1755          */
1756         cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1757                                    &beacon_int_gcd, &beacon_int_different);
1758
1759         if (params->radar_detect) {
1760                 rcu_read_lock();
1761                 regdom = rcu_dereference(cfg80211_regdomain);
1762                 if (regdom)
1763                         region = regdom->dfs_region;
1764                 rcu_read_unlock();
1765         }
1766
1767         for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1768                 num_interfaces += params->iftype_num[iftype];
1769                 if (params->iftype_num[iftype] > 0 &&
1770                     !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1771                         used_iftypes |= BIT(iftype);
1772         }
1773
1774         for (i = 0; i < wiphy->n_iface_combinations; i++) {
1775                 const struct ieee80211_iface_combination *c;
1776                 struct ieee80211_iface_limit *limits;
1777                 u32 all_iftypes = 0;
1778
1779                 c = &wiphy->iface_combinations[i];
1780
1781                 if (num_interfaces > c->max_interfaces)
1782                         continue;
1783                 if (params->num_different_channels > c->num_different_channels)
1784                         continue;
1785
1786                 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1787                                  GFP_KERNEL);
1788                 if (!limits)
1789                         return -ENOMEM;
1790
1791                 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1792                         if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1793                                 continue;
1794                         for (j = 0; j < c->n_limits; j++) {
1795                                 all_iftypes |= limits[j].types;
1796                                 if (!(limits[j].types & BIT(iftype)))
1797                                         continue;
1798                                 if (limits[j].max < params->iftype_num[iftype])
1799                                         goto cont;
1800                                 limits[j].max -= params->iftype_num[iftype];
1801                         }
1802                 }
1803
1804                 if (params->radar_detect !=
1805                         (c->radar_detect_widths & params->radar_detect))
1806                         goto cont;
1807
1808                 if (params->radar_detect && c->radar_detect_regions &&
1809                     !(c->radar_detect_regions & BIT(region)))
1810                         goto cont;
1811
1812                 /* Finally check that all iftypes that we're currently
1813                  * using are actually part of this combination. If they
1814                  * aren't then we can't use this combination and have
1815                  * to continue to the next.
1816                  */
1817                 if ((all_iftypes & used_iftypes) != used_iftypes)
1818                         goto cont;
1819
1820                 if (beacon_int_gcd) {
1821                         if (c->beacon_int_min_gcd &&
1822                             beacon_int_gcd < c->beacon_int_min_gcd)
1823                                 goto cont;
1824                         if (!c->beacon_int_min_gcd && beacon_int_different)
1825                                 goto cont;
1826                 }
1827
1828                 /* This combination covered all interface types and
1829                  * supported the requested numbers, so we're good.
1830                  */
1831
1832                 (*iter)(c, data);
1833  cont:
1834                 kfree(limits);
1835         }
1836
1837         return 0;
1838 }
1839 EXPORT_SYMBOL(cfg80211_iter_combinations);
1840
1841 static void
1842 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1843                           void *data)
1844 {
1845         int *num = data;
1846         (*num)++;
1847 }
1848
1849 int cfg80211_check_combinations(struct wiphy *wiphy,
1850                                 struct iface_combination_params *params)
1851 {
1852         int err, num = 0;
1853
1854         err = cfg80211_iter_combinations(wiphy, params,
1855                                          cfg80211_iter_sum_ifcombs, &num);
1856         if (err)
1857                 return err;
1858         if (num == 0)
1859                 return -EBUSY;
1860
1861         return 0;
1862 }
1863 EXPORT_SYMBOL(cfg80211_check_combinations);
1864
1865 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1866                            const u8 *rates, unsigned int n_rates,
1867                            u32 *mask)
1868 {
1869         int i, j;
1870
1871         if (!sband)
1872                 return -EINVAL;
1873
1874         if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1875                 return -EINVAL;
1876
1877         *mask = 0;
1878
1879         for (i = 0; i < n_rates; i++) {
1880                 int rate = (rates[i] & 0x7f) * 5;
1881                 bool found = false;
1882
1883                 for (j = 0; j < sband->n_bitrates; j++) {
1884                         if (sband->bitrates[j].bitrate == rate) {
1885                                 found = true;
1886                                 *mask |= BIT(j);
1887                                 break;
1888                         }
1889                 }
1890                 if (!found)
1891                         return -EINVAL;
1892         }
1893
1894         /*
1895          * mask must have at least one bit set here since we
1896          * didn't accept a 0-length rates array nor allowed
1897          * entries in the array that didn't exist
1898          */
1899
1900         return 0;
1901 }
1902
1903 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1904 {
1905         enum nl80211_band band;
1906         unsigned int n_channels = 0;
1907
1908         for (band = 0; band < NUM_NL80211_BANDS; band++)
1909                 if (wiphy->bands[band])
1910                         n_channels += wiphy->bands[band]->n_channels;
1911
1912         return n_channels;
1913 }
1914 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1915
1916 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1917                          struct station_info *sinfo)
1918 {
1919         struct cfg80211_registered_device *rdev;
1920         struct wireless_dev *wdev;
1921
1922         wdev = dev->ieee80211_ptr;
1923         if (!wdev)
1924                 return -EOPNOTSUPP;
1925
1926         rdev = wiphy_to_rdev(wdev->wiphy);
1927         if (!rdev->ops->get_station)
1928                 return -EOPNOTSUPP;
1929
1930         memset(sinfo, 0, sizeof(*sinfo));
1931
1932         return rdev_get_station(rdev, dev, mac_addr, sinfo);
1933 }
1934 EXPORT_SYMBOL(cfg80211_get_station);
1935
1936 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1937 {
1938         int i;
1939
1940         if (!f)
1941                 return;
1942
1943         kfree(f->serv_spec_info);
1944         kfree(f->srf_bf);
1945         kfree(f->srf_macs);
1946         for (i = 0; i < f->num_rx_filters; i++)
1947                 kfree(f->rx_filters[i].filter);
1948
1949         for (i = 0; i < f->num_tx_filters; i++)
1950                 kfree(f->tx_filters[i].filter);
1951
1952         kfree(f->rx_filters);
1953         kfree(f->tx_filters);
1954         kfree(f);
1955 }
1956 EXPORT_SYMBOL(cfg80211_free_nan_func);
1957
1958 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1959                                 u32 center_freq_khz, u32 bw_khz)
1960 {
1961         u32 start_freq_khz, end_freq_khz;
1962
1963         start_freq_khz = center_freq_khz - (bw_khz / 2);
1964         end_freq_khz = center_freq_khz + (bw_khz / 2);
1965
1966         if (start_freq_khz >= freq_range->start_freq_khz &&
1967             end_freq_khz <= freq_range->end_freq_khz)
1968                 return true;
1969
1970         return false;
1971 }
1972
1973 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
1974 {
1975         sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
1976                                 sizeof(*(sinfo->pertid)),
1977                                 gfp);
1978         if (!sinfo->pertid)
1979                 return -ENOMEM;
1980
1981         return 0;
1982 }
1983 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
1984
1985 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1986 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1987 const unsigned char rfc1042_header[] __aligned(2) =
1988         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1989 EXPORT_SYMBOL(rfc1042_header);
1990
1991 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1992 const unsigned char bridge_tunnel_header[] __aligned(2) =
1993         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1994 EXPORT_SYMBOL(bridge_tunnel_header);
1995
1996 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
1997 struct iapp_layer2_update {
1998         u8 da[ETH_ALEN];        /* broadcast */
1999         u8 sa[ETH_ALEN];        /* STA addr */
2000         __be16 len;             /* 6 */
2001         u8 dsap;                /* 0 */
2002         u8 ssap;                /* 0 */
2003         u8 control;
2004         u8 xid_info[3];
2005 } __packed;
2006
2007 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2008 {
2009         struct iapp_layer2_update *msg;
2010         struct sk_buff *skb;
2011
2012         /* Send Level 2 Update Frame to update forwarding tables in layer 2
2013          * bridge devices */
2014
2015         skb = dev_alloc_skb(sizeof(*msg));
2016         if (!skb)
2017                 return;
2018         msg = skb_put(skb, sizeof(*msg));
2019
2020         /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2021          * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2022
2023         eth_broadcast_addr(msg->da);
2024         ether_addr_copy(msg->sa, addr);
2025         msg->len = htons(6);
2026         msg->dsap = 0;
2027         msg->ssap = 0x01;       /* NULL LSAP, CR Bit: Response */
2028         msg->control = 0xaf;    /* XID response lsb.1111F101.
2029                                  * F=0 (no poll command; unsolicited frame) */
2030         msg->xid_info[0] = 0x81;        /* XID format identifier */
2031         msg->xid_info[1] = 1;   /* LLC types/classes: Type 1 LLC */
2032         msg->xid_info[2] = 0;   /* XID sender's receive window size (RW) */
2033
2034         skb->dev = dev;
2035         skb->protocol = eth_type_trans(skb, dev);
2036         memset(skb->cb, 0, sizeof(skb->cb));
2037         netif_rx_ni(skb);
2038 }
2039 EXPORT_SYMBOL(cfg80211_send_layer2_update);
2040
2041 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2042                               enum ieee80211_vht_chanwidth bw,
2043                               int mcs, bool ext_nss_bw_capable,
2044                               unsigned int max_vht_nss)
2045 {
2046         u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2047         int ext_nss_bw;
2048         int supp_width;
2049         int i, mcs_encoding;
2050
2051         if (map == 0xffff)
2052                 return 0;
2053
2054         if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2055                 return 0;
2056         if (mcs <= 7)
2057                 mcs_encoding = 0;
2058         else if (mcs == 8)
2059                 mcs_encoding = 1;
2060         else
2061                 mcs_encoding = 2;
2062
2063         if (!max_vht_nss) {
2064                 /* find max_vht_nss for the given MCS */
2065                 for (i = 7; i >= 0; i--) {
2066                         int supp = (map >> (2 * i)) & 3;
2067
2068                         if (supp == 3)
2069                                 continue;
2070
2071                         if (supp >= mcs_encoding) {
2072                                 max_vht_nss = i + 1;
2073                                 break;
2074                         }
2075                 }
2076         }
2077
2078         if (!(cap->supp_mcs.tx_mcs_map &
2079                         cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2080                 return max_vht_nss;
2081
2082         ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2083                                    IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2084         supp_width = le32_get_bits(cap->vht_cap_info,
2085                                    IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2086
2087         /* if not capable, treat ext_nss_bw as 0 */
2088         if (!ext_nss_bw_capable)
2089                 ext_nss_bw = 0;
2090
2091         /* This is invalid */
2092         if (supp_width == 3)
2093                 return 0;
2094
2095         /* This is an invalid combination so pretend nothing is supported */
2096         if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2097                 return 0;
2098
2099         /*
2100          * Cover all the special cases according to IEEE 802.11-2016
2101          * Table 9-250. All other cases are either factor of 1 or not
2102          * valid/supported.
2103          */
2104         switch (bw) {
2105         case IEEE80211_VHT_CHANWIDTH_USE_HT:
2106         case IEEE80211_VHT_CHANWIDTH_80MHZ:
2107                 if ((supp_width == 1 || supp_width == 2) &&
2108                     ext_nss_bw == 3)
2109                         return 2 * max_vht_nss;
2110                 break;
2111         case IEEE80211_VHT_CHANWIDTH_160MHZ:
2112                 if (supp_width == 0 &&
2113                     (ext_nss_bw == 1 || ext_nss_bw == 2))
2114                         return max_vht_nss / 2;
2115                 if (supp_width == 0 &&
2116                     ext_nss_bw == 3)
2117                         return (3 * max_vht_nss) / 4;
2118                 if (supp_width == 1 &&
2119                     ext_nss_bw == 3)
2120                         return 2 * max_vht_nss;
2121                 break;
2122         case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2123                 if (supp_width == 0 && ext_nss_bw == 1)
2124                         return 0; /* not possible */
2125                 if (supp_width == 0 &&
2126                     ext_nss_bw == 2)
2127                         return max_vht_nss / 2;
2128                 if (supp_width == 0 &&
2129                     ext_nss_bw == 3)
2130                         return (3 * max_vht_nss) / 4;
2131                 if (supp_width == 1 &&
2132                     ext_nss_bw == 0)
2133                         return 0; /* not possible */
2134                 if (supp_width == 1 &&
2135                     ext_nss_bw == 1)
2136                         return max_vht_nss / 2;
2137                 if (supp_width == 1 &&
2138                     ext_nss_bw == 2)
2139                         return (3 * max_vht_nss) / 4;
2140                 break;
2141         }
2142
2143         /* not covered or invalid combination received */
2144         return max_vht_nss;
2145 }
2146 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2147
2148 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2149                              bool is_4addr, u8 check_swif)
2150
2151 {
2152         bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2153
2154         switch (check_swif) {
2155         case 0:
2156                 if (is_vlan && is_4addr)
2157                         return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2158                 return wiphy->interface_modes & BIT(iftype);
2159         case 1:
2160                 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2161                         return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2162                 return wiphy->software_iftypes & BIT(iftype);
2163         default:
2164                 break;
2165         }
2166
2167         return false;
2168 }
2169 EXPORT_SYMBOL(cfg80211_iftype_allowed);