Merge tag 'irqchip-fixes-5.4-2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / net / wireless / util.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Wireless utility functions
4  *
5  * Copyright 2007-2009  Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2017       Intel Deutschland GmbH
8  * Copyright (C) 2018-2019 Intel Corporation
9  */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25
26
27 struct ieee80211_rate *
28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29                             u32 basic_rates, int bitrate)
30 {
31         struct ieee80211_rate *result = &sband->bitrates[0];
32         int i;
33
34         for (i = 0; i < sband->n_bitrates; i++) {
35                 if (!(basic_rates & BIT(i)))
36                         continue;
37                 if (sband->bitrates[i].bitrate > bitrate)
38                         continue;
39                 result = &sband->bitrates[i];
40         }
41
42         return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45
46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47                               enum nl80211_bss_scan_width scan_width)
48 {
49         struct ieee80211_rate *bitrates;
50         u32 mandatory_rates = 0;
51         enum ieee80211_rate_flags mandatory_flag;
52         int i;
53
54         if (WARN_ON(!sband))
55                 return 1;
56
57         if (sband->band == NL80211_BAND_2GHZ) {
58                 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59                     scan_width == NL80211_BSS_CHAN_WIDTH_10)
60                         mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61                 else
62                         mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63         } else {
64                 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65         }
66
67         bitrates = sband->bitrates;
68         for (i = 0; i < sband->n_bitrates; i++)
69                 if (bitrates[i].flags & mandatory_flag)
70                         mandatory_rates |= BIT(i);
71         return mandatory_rates;
72 }
73 EXPORT_SYMBOL(ieee80211_mandatory_rates);
74
75 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
76 {
77         /* see 802.11 17.3.8.3.2 and Annex J
78          * there are overlapping channel numbers in 5GHz and 2GHz bands */
79         if (chan <= 0)
80                 return 0; /* not supported */
81         switch (band) {
82         case NL80211_BAND_2GHZ:
83                 if (chan == 14)
84                         return 2484;
85                 else if (chan < 14)
86                         return 2407 + chan * 5;
87                 break;
88         case NL80211_BAND_5GHZ:
89                 if (chan >= 182 && chan <= 196)
90                         return 4000 + chan * 5;
91                 else
92                         return 5000 + chan * 5;
93                 break;
94         case NL80211_BAND_6GHZ:
95                 /* see 802.11ax D4.1 27.3.22.2 */
96                 if (chan <= 253)
97                         return 5940 + chan * 5;
98                 break;
99         case NL80211_BAND_60GHZ:
100                 if (chan < 7)
101                         return 56160 + chan * 2160;
102                 break;
103         default:
104                 ;
105         }
106         return 0; /* not supported */
107 }
108 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
109
110 int ieee80211_frequency_to_channel(int freq)
111 {
112         /* see 802.11 17.3.8.3.2 and Annex J */
113         if (freq == 2484)
114                 return 14;
115         else if (freq < 2484)
116                 return (freq - 2407) / 5;
117         else if (freq >= 4910 && freq <= 4980)
118                 return (freq - 4000) / 5;
119         else if (freq < 5945)
120                 return (freq - 5000) / 5;
121         else if (freq <= 45000) /* DMG band lower limit */
122                 /* see 802.11ax D4.1 27.3.22.2 */
123                 return (freq - 5940) / 5;
124         else if (freq >= 58320 && freq <= 70200)
125                 return (freq - 56160) / 2160;
126         else
127                 return 0;
128 }
129 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
130
131 struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq)
132 {
133         enum nl80211_band band;
134         struct ieee80211_supported_band *sband;
135         int i;
136
137         for (band = 0; band < NUM_NL80211_BANDS; band++) {
138                 sband = wiphy->bands[band];
139
140                 if (!sband)
141                         continue;
142
143                 for (i = 0; i < sband->n_channels; i++) {
144                         if (sband->channels[i].center_freq == freq)
145                                 return &sband->channels[i];
146                 }
147         }
148
149         return NULL;
150 }
151 EXPORT_SYMBOL(ieee80211_get_channel);
152
153 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
154 {
155         int i, want;
156
157         switch (sband->band) {
158         case NL80211_BAND_5GHZ:
159         case NL80211_BAND_6GHZ:
160                 want = 3;
161                 for (i = 0; i < sband->n_bitrates; i++) {
162                         if (sband->bitrates[i].bitrate == 60 ||
163                             sband->bitrates[i].bitrate == 120 ||
164                             sband->bitrates[i].bitrate == 240) {
165                                 sband->bitrates[i].flags |=
166                                         IEEE80211_RATE_MANDATORY_A;
167                                 want--;
168                         }
169                 }
170                 WARN_ON(want);
171                 break;
172         case NL80211_BAND_2GHZ:
173                 want = 7;
174                 for (i = 0; i < sband->n_bitrates; i++) {
175                         switch (sband->bitrates[i].bitrate) {
176                         case 10:
177                         case 20:
178                         case 55:
179                         case 110:
180                                 sband->bitrates[i].flags |=
181                                         IEEE80211_RATE_MANDATORY_B |
182                                         IEEE80211_RATE_MANDATORY_G;
183                                 want--;
184                                 break;
185                         case 60:
186                         case 120:
187                         case 240:
188                                 sband->bitrates[i].flags |=
189                                         IEEE80211_RATE_MANDATORY_G;
190                                 want--;
191                                 /* fall through */
192                         default:
193                                 sband->bitrates[i].flags |=
194                                         IEEE80211_RATE_ERP_G;
195                                 break;
196                         }
197                 }
198                 WARN_ON(want != 0 && want != 3);
199                 break;
200         case NL80211_BAND_60GHZ:
201                 /* check for mandatory HT MCS 1..4 */
202                 WARN_ON(!sband->ht_cap.ht_supported);
203                 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
204                 break;
205         case NUM_NL80211_BANDS:
206         default:
207                 WARN_ON(1);
208                 break;
209         }
210 }
211
212 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
213 {
214         enum nl80211_band band;
215
216         for (band = 0; band < NUM_NL80211_BANDS; band++)
217                 if (wiphy->bands[band])
218                         set_mandatory_flags_band(wiphy->bands[band]);
219 }
220
221 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
222 {
223         int i;
224         for (i = 0; i < wiphy->n_cipher_suites; i++)
225                 if (cipher == wiphy->cipher_suites[i])
226                         return true;
227         return false;
228 }
229
230 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
231                                    struct key_params *params, int key_idx,
232                                    bool pairwise, const u8 *mac_addr)
233 {
234         if (key_idx < 0 || key_idx > 5)
235                 return -EINVAL;
236
237         if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
238                 return -EINVAL;
239
240         if (pairwise && !mac_addr)
241                 return -EINVAL;
242
243         switch (params->cipher) {
244         case WLAN_CIPHER_SUITE_TKIP:
245                 /* Extended Key ID can only be used with CCMP/GCMP ciphers */
246                 if ((pairwise && key_idx) ||
247                     params->mode != NL80211_KEY_RX_TX)
248                         return -EINVAL;
249                 break;
250         case WLAN_CIPHER_SUITE_CCMP:
251         case WLAN_CIPHER_SUITE_CCMP_256:
252         case WLAN_CIPHER_SUITE_GCMP:
253         case WLAN_CIPHER_SUITE_GCMP_256:
254                 /* IEEE802.11-2016 allows only 0 and - when supporting
255                  * Extended Key ID - 1 as index for pairwise keys.
256                  * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
257                  * the driver supports Extended Key ID.
258                  * @NL80211_KEY_SET_TX can't be set when installing and
259                  * validating a key.
260                  */
261                 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
262                     params->mode == NL80211_KEY_SET_TX)
263                         return -EINVAL;
264                 if (wiphy_ext_feature_isset(&rdev->wiphy,
265                                             NL80211_EXT_FEATURE_EXT_KEY_ID)) {
266                         if (pairwise && (key_idx < 0 || key_idx > 1))
267                                 return -EINVAL;
268                 } else if (pairwise && key_idx) {
269                         return -EINVAL;
270                 }
271                 break;
272         case WLAN_CIPHER_SUITE_AES_CMAC:
273         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
274         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
275         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
276                 /* Disallow BIP (group-only) cipher as pairwise cipher */
277                 if (pairwise)
278                         return -EINVAL;
279                 if (key_idx < 4)
280                         return -EINVAL;
281                 break;
282         case WLAN_CIPHER_SUITE_WEP40:
283         case WLAN_CIPHER_SUITE_WEP104:
284                 if (key_idx > 3)
285                         return -EINVAL;
286         default:
287                 break;
288         }
289
290         switch (params->cipher) {
291         case WLAN_CIPHER_SUITE_WEP40:
292                 if (params->key_len != WLAN_KEY_LEN_WEP40)
293                         return -EINVAL;
294                 break;
295         case WLAN_CIPHER_SUITE_TKIP:
296                 if (params->key_len != WLAN_KEY_LEN_TKIP)
297                         return -EINVAL;
298                 break;
299         case WLAN_CIPHER_SUITE_CCMP:
300                 if (params->key_len != WLAN_KEY_LEN_CCMP)
301                         return -EINVAL;
302                 break;
303         case WLAN_CIPHER_SUITE_CCMP_256:
304                 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
305                         return -EINVAL;
306                 break;
307         case WLAN_CIPHER_SUITE_GCMP:
308                 if (params->key_len != WLAN_KEY_LEN_GCMP)
309                         return -EINVAL;
310                 break;
311         case WLAN_CIPHER_SUITE_GCMP_256:
312                 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
313                         return -EINVAL;
314                 break;
315         case WLAN_CIPHER_SUITE_WEP104:
316                 if (params->key_len != WLAN_KEY_LEN_WEP104)
317                         return -EINVAL;
318                 break;
319         case WLAN_CIPHER_SUITE_AES_CMAC:
320                 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
321                         return -EINVAL;
322                 break;
323         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
324                 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
325                         return -EINVAL;
326                 break;
327         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
328                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
329                         return -EINVAL;
330                 break;
331         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
332                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
333                         return -EINVAL;
334                 break;
335         default:
336                 /*
337                  * We don't know anything about this algorithm,
338                  * allow using it -- but the driver must check
339                  * all parameters! We still check below whether
340                  * or not the driver supports this algorithm,
341                  * of course.
342                  */
343                 break;
344         }
345
346         if (params->seq) {
347                 switch (params->cipher) {
348                 case WLAN_CIPHER_SUITE_WEP40:
349                 case WLAN_CIPHER_SUITE_WEP104:
350                         /* These ciphers do not use key sequence */
351                         return -EINVAL;
352                 case WLAN_CIPHER_SUITE_TKIP:
353                 case WLAN_CIPHER_SUITE_CCMP:
354                 case WLAN_CIPHER_SUITE_CCMP_256:
355                 case WLAN_CIPHER_SUITE_GCMP:
356                 case WLAN_CIPHER_SUITE_GCMP_256:
357                 case WLAN_CIPHER_SUITE_AES_CMAC:
358                 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
359                 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
360                 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
361                         if (params->seq_len != 6)
362                                 return -EINVAL;
363                         break;
364                 }
365         }
366
367         if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
368                 return -EINVAL;
369
370         return 0;
371 }
372
373 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
374 {
375         unsigned int hdrlen = 24;
376
377         if (ieee80211_is_data(fc)) {
378                 if (ieee80211_has_a4(fc))
379                         hdrlen = 30;
380                 if (ieee80211_is_data_qos(fc)) {
381                         hdrlen += IEEE80211_QOS_CTL_LEN;
382                         if (ieee80211_has_order(fc))
383                                 hdrlen += IEEE80211_HT_CTL_LEN;
384                 }
385                 goto out;
386         }
387
388         if (ieee80211_is_mgmt(fc)) {
389                 if (ieee80211_has_order(fc))
390                         hdrlen += IEEE80211_HT_CTL_LEN;
391                 goto out;
392         }
393
394         if (ieee80211_is_ctl(fc)) {
395                 /*
396                  * ACK and CTS are 10 bytes, all others 16. To see how
397                  * to get this condition consider
398                  *   subtype mask:   0b0000000011110000 (0x00F0)
399                  *   ACK subtype:    0b0000000011010000 (0x00D0)
400                  *   CTS subtype:    0b0000000011000000 (0x00C0)
401                  *   bits that matter:         ^^^      (0x00E0)
402                  *   value of those: 0b0000000011000000 (0x00C0)
403                  */
404                 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
405                         hdrlen = 10;
406                 else
407                         hdrlen = 16;
408         }
409 out:
410         return hdrlen;
411 }
412 EXPORT_SYMBOL(ieee80211_hdrlen);
413
414 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
415 {
416         const struct ieee80211_hdr *hdr =
417                         (const struct ieee80211_hdr *)skb->data;
418         unsigned int hdrlen;
419
420         if (unlikely(skb->len < 10))
421                 return 0;
422         hdrlen = ieee80211_hdrlen(hdr->frame_control);
423         if (unlikely(hdrlen > skb->len))
424                 return 0;
425         return hdrlen;
426 }
427 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
428
429 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
430 {
431         int ae = flags & MESH_FLAGS_AE;
432         /* 802.11-2012, 8.2.4.7.3 */
433         switch (ae) {
434         default:
435         case 0:
436                 return 6;
437         case MESH_FLAGS_AE_A4:
438                 return 12;
439         case MESH_FLAGS_AE_A5_A6:
440                 return 18;
441         }
442 }
443
444 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
445 {
446         return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
447 }
448 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
449
450 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
451                                   const u8 *addr, enum nl80211_iftype iftype,
452                                   u8 data_offset)
453 {
454         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
455         struct {
456                 u8 hdr[ETH_ALEN] __aligned(2);
457                 __be16 proto;
458         } payload;
459         struct ethhdr tmp;
460         u16 hdrlen;
461         u8 mesh_flags = 0;
462
463         if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
464                 return -1;
465
466         hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
467         if (skb->len < hdrlen + 8)
468                 return -1;
469
470         /* convert IEEE 802.11 header + possible LLC headers into Ethernet
471          * header
472          * IEEE 802.11 address fields:
473          * ToDS FromDS Addr1 Addr2 Addr3 Addr4
474          *   0     0   DA    SA    BSSID n/a
475          *   0     1   DA    BSSID SA    n/a
476          *   1     0   BSSID SA    DA    n/a
477          *   1     1   RA    TA    DA    SA
478          */
479         memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
480         memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
481
482         if (iftype == NL80211_IFTYPE_MESH_POINT)
483                 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
484
485         mesh_flags &= MESH_FLAGS_AE;
486
487         switch (hdr->frame_control &
488                 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
489         case cpu_to_le16(IEEE80211_FCTL_TODS):
490                 if (unlikely(iftype != NL80211_IFTYPE_AP &&
491                              iftype != NL80211_IFTYPE_AP_VLAN &&
492                              iftype != NL80211_IFTYPE_P2P_GO))
493                         return -1;
494                 break;
495         case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
496                 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
497                              iftype != NL80211_IFTYPE_MESH_POINT &&
498                              iftype != NL80211_IFTYPE_AP_VLAN &&
499                              iftype != NL80211_IFTYPE_STATION))
500                         return -1;
501                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
502                         if (mesh_flags == MESH_FLAGS_AE_A4)
503                                 return -1;
504                         if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
505                                 skb_copy_bits(skb, hdrlen +
506                                         offsetof(struct ieee80211s_hdr, eaddr1),
507                                         tmp.h_dest, 2 * ETH_ALEN);
508                         }
509                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
510                 }
511                 break;
512         case cpu_to_le16(IEEE80211_FCTL_FROMDS):
513                 if ((iftype != NL80211_IFTYPE_STATION &&
514                      iftype != NL80211_IFTYPE_P2P_CLIENT &&
515                      iftype != NL80211_IFTYPE_MESH_POINT) ||
516                     (is_multicast_ether_addr(tmp.h_dest) &&
517                      ether_addr_equal(tmp.h_source, addr)))
518                         return -1;
519                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
520                         if (mesh_flags == MESH_FLAGS_AE_A5_A6)
521                                 return -1;
522                         if (mesh_flags == MESH_FLAGS_AE_A4)
523                                 skb_copy_bits(skb, hdrlen +
524                                         offsetof(struct ieee80211s_hdr, eaddr1),
525                                         tmp.h_source, ETH_ALEN);
526                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
527                 }
528                 break;
529         case cpu_to_le16(0):
530                 if (iftype != NL80211_IFTYPE_ADHOC &&
531                     iftype != NL80211_IFTYPE_STATION &&
532                     iftype != NL80211_IFTYPE_OCB)
533                                 return -1;
534                 break;
535         }
536
537         skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
538         tmp.h_proto = payload.proto;
539
540         if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
541                     tmp.h_proto != htons(ETH_P_AARP) &&
542                     tmp.h_proto != htons(ETH_P_IPX)) ||
543                    ether_addr_equal(payload.hdr, bridge_tunnel_header)))
544                 /* remove RFC1042 or Bridge-Tunnel encapsulation and
545                  * replace EtherType */
546                 hdrlen += ETH_ALEN + 2;
547         else
548                 tmp.h_proto = htons(skb->len - hdrlen);
549
550         pskb_pull(skb, hdrlen);
551
552         if (!ehdr)
553                 ehdr = skb_push(skb, sizeof(struct ethhdr));
554         memcpy(ehdr, &tmp, sizeof(tmp));
555
556         return 0;
557 }
558 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
559
560 static void
561 __frame_add_frag(struct sk_buff *skb, struct page *page,
562                  void *ptr, int len, int size)
563 {
564         struct skb_shared_info *sh = skb_shinfo(skb);
565         int page_offset;
566
567         page_ref_inc(page);
568         page_offset = ptr - page_address(page);
569         skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
570 }
571
572 static void
573 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
574                             int offset, int len)
575 {
576         struct skb_shared_info *sh = skb_shinfo(skb);
577         const skb_frag_t *frag = &sh->frags[0];
578         struct page *frag_page;
579         void *frag_ptr;
580         int frag_len, frag_size;
581         int head_size = skb->len - skb->data_len;
582         int cur_len;
583
584         frag_page = virt_to_head_page(skb->head);
585         frag_ptr = skb->data;
586         frag_size = head_size;
587
588         while (offset >= frag_size) {
589                 offset -= frag_size;
590                 frag_page = skb_frag_page(frag);
591                 frag_ptr = skb_frag_address(frag);
592                 frag_size = skb_frag_size(frag);
593                 frag++;
594         }
595
596         frag_ptr += offset;
597         frag_len = frag_size - offset;
598
599         cur_len = min(len, frag_len);
600
601         __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
602         len -= cur_len;
603
604         while (len > 0) {
605                 frag_len = skb_frag_size(frag);
606                 cur_len = min(len, frag_len);
607                 __frame_add_frag(frame, skb_frag_page(frag),
608                                  skb_frag_address(frag), cur_len, frag_len);
609                 len -= cur_len;
610                 frag++;
611         }
612 }
613
614 static struct sk_buff *
615 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
616                        int offset, int len, bool reuse_frag)
617 {
618         struct sk_buff *frame;
619         int cur_len = len;
620
621         if (skb->len - offset < len)
622                 return NULL;
623
624         /*
625          * When reusing framents, copy some data to the head to simplify
626          * ethernet header handling and speed up protocol header processing
627          * in the stack later.
628          */
629         if (reuse_frag)
630                 cur_len = min_t(int, len, 32);
631
632         /*
633          * Allocate and reserve two bytes more for payload
634          * alignment since sizeof(struct ethhdr) is 14.
635          */
636         frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
637         if (!frame)
638                 return NULL;
639
640         skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
641         skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
642
643         len -= cur_len;
644         if (!len)
645                 return frame;
646
647         offset += cur_len;
648         __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
649
650         return frame;
651 }
652
653 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
654                               const u8 *addr, enum nl80211_iftype iftype,
655                               const unsigned int extra_headroom,
656                               const u8 *check_da, const u8 *check_sa)
657 {
658         unsigned int hlen = ALIGN(extra_headroom, 4);
659         struct sk_buff *frame = NULL;
660         u16 ethertype;
661         u8 *payload;
662         int offset = 0, remaining;
663         struct ethhdr eth;
664         bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
665         bool reuse_skb = false;
666         bool last = false;
667
668         while (!last) {
669                 unsigned int subframe_len;
670                 int len;
671                 u8 padding;
672
673                 skb_copy_bits(skb, offset, &eth, sizeof(eth));
674                 len = ntohs(eth.h_proto);
675                 subframe_len = sizeof(struct ethhdr) + len;
676                 padding = (4 - subframe_len) & 0x3;
677
678                 /* the last MSDU has no padding */
679                 remaining = skb->len - offset;
680                 if (subframe_len > remaining)
681                         goto purge;
682
683                 offset += sizeof(struct ethhdr);
684                 last = remaining <= subframe_len + padding;
685
686                 /* FIXME: should we really accept multicast DA? */
687                 if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
688                      !ether_addr_equal(check_da, eth.h_dest)) ||
689                     (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
690                         offset += len + padding;
691                         continue;
692                 }
693
694                 /* reuse skb for the last subframe */
695                 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
696                         skb_pull(skb, offset);
697                         frame = skb;
698                         reuse_skb = true;
699                 } else {
700                         frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
701                                                        reuse_frag);
702                         if (!frame)
703                                 goto purge;
704
705                         offset += len + padding;
706                 }
707
708                 skb_reset_network_header(frame);
709                 frame->dev = skb->dev;
710                 frame->priority = skb->priority;
711
712                 payload = frame->data;
713                 ethertype = (payload[6] << 8) | payload[7];
714                 if (likely((ether_addr_equal(payload, rfc1042_header) &&
715                             ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
716                            ether_addr_equal(payload, bridge_tunnel_header))) {
717                         eth.h_proto = htons(ethertype);
718                         skb_pull(frame, ETH_ALEN + 2);
719                 }
720
721                 memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
722                 __skb_queue_tail(list, frame);
723         }
724
725         if (!reuse_skb)
726                 dev_kfree_skb(skb);
727
728         return;
729
730  purge:
731         __skb_queue_purge(list);
732         dev_kfree_skb(skb);
733 }
734 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
735
736 /* Given a data frame determine the 802.1p/1d tag to use. */
737 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
738                                     struct cfg80211_qos_map *qos_map)
739 {
740         unsigned int dscp;
741         unsigned char vlan_priority;
742         unsigned int ret;
743
744         /* skb->priority values from 256->263 are magic values to
745          * directly indicate a specific 802.1d priority.  This is used
746          * to allow 802.1d priority to be passed directly in from VLAN
747          * tags, etc.
748          */
749         if (skb->priority >= 256 && skb->priority <= 263) {
750                 ret = skb->priority - 256;
751                 goto out;
752         }
753
754         if (skb_vlan_tag_present(skb)) {
755                 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
756                         >> VLAN_PRIO_SHIFT;
757                 if (vlan_priority > 0) {
758                         ret = vlan_priority;
759                         goto out;
760                 }
761         }
762
763         switch (skb->protocol) {
764         case htons(ETH_P_IP):
765                 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
766                 break;
767         case htons(ETH_P_IPV6):
768                 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
769                 break;
770         case htons(ETH_P_MPLS_UC):
771         case htons(ETH_P_MPLS_MC): {
772                 struct mpls_label mpls_tmp, *mpls;
773
774                 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
775                                           sizeof(*mpls), &mpls_tmp);
776                 if (!mpls)
777                         return 0;
778
779                 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
780                         >> MPLS_LS_TC_SHIFT;
781                 goto out;
782         }
783         case htons(ETH_P_80221):
784                 /* 802.21 is always network control traffic */
785                 return 7;
786         default:
787                 return 0;
788         }
789
790         if (qos_map) {
791                 unsigned int i, tmp_dscp = dscp >> 2;
792
793                 for (i = 0; i < qos_map->num_des; i++) {
794                         if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
795                                 ret = qos_map->dscp_exception[i].up;
796                                 goto out;
797                         }
798                 }
799
800                 for (i = 0; i < 8; i++) {
801                         if (tmp_dscp >= qos_map->up[i].low &&
802                             tmp_dscp <= qos_map->up[i].high) {
803                                 ret = i;
804                                 goto out;
805                         }
806                 }
807         }
808
809         ret = dscp >> 5;
810 out:
811         return array_index_nospec(ret, IEEE80211_NUM_TIDS);
812 }
813 EXPORT_SYMBOL(cfg80211_classify8021d);
814
815 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
816 {
817         const struct cfg80211_bss_ies *ies;
818
819         ies = rcu_dereference(bss->ies);
820         if (!ies)
821                 return NULL;
822
823         return cfg80211_find_elem(id, ies->data, ies->len);
824 }
825 EXPORT_SYMBOL(ieee80211_bss_get_elem);
826
827 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
828 {
829         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
830         struct net_device *dev = wdev->netdev;
831         int i;
832
833         if (!wdev->connect_keys)
834                 return;
835
836         for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
837                 if (!wdev->connect_keys->params[i].cipher)
838                         continue;
839                 if (rdev_add_key(rdev, dev, i, false, NULL,
840                                  &wdev->connect_keys->params[i])) {
841                         netdev_err(dev, "failed to set key %d\n", i);
842                         continue;
843                 }
844                 if (wdev->connect_keys->def == i &&
845                     rdev_set_default_key(rdev, dev, i, true, true)) {
846                         netdev_err(dev, "failed to set defkey %d\n", i);
847                         continue;
848                 }
849         }
850
851         kzfree(wdev->connect_keys);
852         wdev->connect_keys = NULL;
853 }
854
855 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
856 {
857         struct cfg80211_event *ev;
858         unsigned long flags;
859
860         spin_lock_irqsave(&wdev->event_lock, flags);
861         while (!list_empty(&wdev->event_list)) {
862                 ev = list_first_entry(&wdev->event_list,
863                                       struct cfg80211_event, list);
864                 list_del(&ev->list);
865                 spin_unlock_irqrestore(&wdev->event_lock, flags);
866
867                 wdev_lock(wdev);
868                 switch (ev->type) {
869                 case EVENT_CONNECT_RESULT:
870                         __cfg80211_connect_result(
871                                 wdev->netdev,
872                                 &ev->cr,
873                                 ev->cr.status == WLAN_STATUS_SUCCESS);
874                         break;
875                 case EVENT_ROAMED:
876                         __cfg80211_roamed(wdev, &ev->rm);
877                         break;
878                 case EVENT_DISCONNECTED:
879                         __cfg80211_disconnected(wdev->netdev,
880                                                 ev->dc.ie, ev->dc.ie_len,
881                                                 ev->dc.reason,
882                                                 !ev->dc.locally_generated);
883                         break;
884                 case EVENT_IBSS_JOINED:
885                         __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
886                                                ev->ij.channel);
887                         break;
888                 case EVENT_STOPPED:
889                         __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
890                         break;
891                 case EVENT_PORT_AUTHORIZED:
892                         __cfg80211_port_authorized(wdev, ev->pa.bssid);
893                         break;
894                 }
895                 wdev_unlock(wdev);
896
897                 kfree(ev);
898
899                 spin_lock_irqsave(&wdev->event_lock, flags);
900         }
901         spin_unlock_irqrestore(&wdev->event_lock, flags);
902 }
903
904 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
905 {
906         struct wireless_dev *wdev;
907
908         ASSERT_RTNL();
909
910         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
911                 cfg80211_process_wdev_events(wdev);
912 }
913
914 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
915                           struct net_device *dev, enum nl80211_iftype ntype,
916                           struct vif_params *params)
917 {
918         int err;
919         enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
920
921         ASSERT_RTNL();
922
923         /* don't support changing VLANs, you just re-create them */
924         if (otype == NL80211_IFTYPE_AP_VLAN)
925                 return -EOPNOTSUPP;
926
927         /* cannot change into P2P device or NAN */
928         if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
929             ntype == NL80211_IFTYPE_NAN)
930                 return -EOPNOTSUPP;
931
932         if (!rdev->ops->change_virtual_intf ||
933             !(rdev->wiphy.interface_modes & (1 << ntype)))
934                 return -EOPNOTSUPP;
935
936         /* if it's part of a bridge, reject changing type to station/ibss */
937         if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
938             (ntype == NL80211_IFTYPE_ADHOC ||
939              ntype == NL80211_IFTYPE_STATION ||
940              ntype == NL80211_IFTYPE_P2P_CLIENT))
941                 return -EBUSY;
942
943         if (ntype != otype) {
944                 dev->ieee80211_ptr->use_4addr = false;
945                 dev->ieee80211_ptr->mesh_id_up_len = 0;
946                 wdev_lock(dev->ieee80211_ptr);
947                 rdev_set_qos_map(rdev, dev, NULL);
948                 wdev_unlock(dev->ieee80211_ptr);
949
950                 switch (otype) {
951                 case NL80211_IFTYPE_AP:
952                         cfg80211_stop_ap(rdev, dev, true);
953                         break;
954                 case NL80211_IFTYPE_ADHOC:
955                         cfg80211_leave_ibss(rdev, dev, false);
956                         break;
957                 case NL80211_IFTYPE_STATION:
958                 case NL80211_IFTYPE_P2P_CLIENT:
959                         wdev_lock(dev->ieee80211_ptr);
960                         cfg80211_disconnect(rdev, dev,
961                                             WLAN_REASON_DEAUTH_LEAVING, true);
962                         wdev_unlock(dev->ieee80211_ptr);
963                         break;
964                 case NL80211_IFTYPE_MESH_POINT:
965                         /* mesh should be handled? */
966                         break;
967                 default:
968                         break;
969                 }
970
971                 cfg80211_process_rdev_events(rdev);
972                 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
973         }
974
975         err = rdev_change_virtual_intf(rdev, dev, ntype, params);
976
977         WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
978
979         if (!err && params && params->use_4addr != -1)
980                 dev->ieee80211_ptr->use_4addr = params->use_4addr;
981
982         if (!err) {
983                 dev->priv_flags &= ~IFF_DONT_BRIDGE;
984                 switch (ntype) {
985                 case NL80211_IFTYPE_STATION:
986                         if (dev->ieee80211_ptr->use_4addr)
987                                 break;
988                         /* fall through */
989                 case NL80211_IFTYPE_OCB:
990                 case NL80211_IFTYPE_P2P_CLIENT:
991                 case NL80211_IFTYPE_ADHOC:
992                         dev->priv_flags |= IFF_DONT_BRIDGE;
993                         break;
994                 case NL80211_IFTYPE_P2P_GO:
995                 case NL80211_IFTYPE_AP:
996                 case NL80211_IFTYPE_AP_VLAN:
997                 case NL80211_IFTYPE_WDS:
998                 case NL80211_IFTYPE_MESH_POINT:
999                         /* bridging OK */
1000                         break;
1001                 case NL80211_IFTYPE_MONITOR:
1002                         /* monitor can't bridge anyway */
1003                         break;
1004                 case NL80211_IFTYPE_UNSPECIFIED:
1005                 case NUM_NL80211_IFTYPES:
1006                         /* not happening */
1007                         break;
1008                 case NL80211_IFTYPE_P2P_DEVICE:
1009                 case NL80211_IFTYPE_NAN:
1010                         WARN_ON(1);
1011                         break;
1012                 }
1013         }
1014
1015         if (!err && ntype != otype && netif_running(dev)) {
1016                 cfg80211_update_iface_num(rdev, ntype, 1);
1017                 cfg80211_update_iface_num(rdev, otype, -1);
1018         }
1019
1020         return err;
1021 }
1022
1023 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1024 {
1025         int modulation, streams, bitrate;
1026
1027         /* the formula below does only work for MCS values smaller than 32 */
1028         if (WARN_ON_ONCE(rate->mcs >= 32))
1029                 return 0;
1030
1031         modulation = rate->mcs & 7;
1032         streams = (rate->mcs >> 3) + 1;
1033
1034         bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1035
1036         if (modulation < 4)
1037                 bitrate *= (modulation + 1);
1038         else if (modulation == 4)
1039                 bitrate *= (modulation + 2);
1040         else
1041                 bitrate *= (modulation + 3);
1042
1043         bitrate *= streams;
1044
1045         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1046                 bitrate = (bitrate / 9) * 10;
1047
1048         /* do NOT round down here */
1049         return (bitrate + 50000) / 100000;
1050 }
1051
1052 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1053 {
1054         static const u32 __mcs2bitrate[] = {
1055                 /* control PHY */
1056                 [0] =   275,
1057                 /* SC PHY */
1058                 [1] =  3850,
1059                 [2] =  7700,
1060                 [3] =  9625,
1061                 [4] = 11550,
1062                 [5] = 12512, /* 1251.25 mbps */
1063                 [6] = 15400,
1064                 [7] = 19250,
1065                 [8] = 23100,
1066                 [9] = 25025,
1067                 [10] = 30800,
1068                 [11] = 38500,
1069                 [12] = 46200,
1070                 /* OFDM PHY */
1071                 [13] =  6930,
1072                 [14] =  8662, /* 866.25 mbps */
1073                 [15] = 13860,
1074                 [16] = 17325,
1075                 [17] = 20790,
1076                 [18] = 27720,
1077                 [19] = 34650,
1078                 [20] = 41580,
1079                 [21] = 45045,
1080                 [22] = 51975,
1081                 [23] = 62370,
1082                 [24] = 67568, /* 6756.75 mbps */
1083                 /* LP-SC PHY */
1084                 [25] =  6260,
1085                 [26] =  8340,
1086                 [27] = 11120,
1087                 [28] = 12510,
1088                 [29] = 16680,
1089                 [30] = 22240,
1090                 [31] = 25030,
1091         };
1092
1093         if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1094                 return 0;
1095
1096         return __mcs2bitrate[rate->mcs];
1097 }
1098
1099 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1100 {
1101         static const u32 __mcs2bitrate[] = {
1102                 /* control PHY */
1103                 [0] =   275,
1104                 /* SC PHY */
1105                 [1] =  3850,
1106                 [2] =  7700,
1107                 [3] =  9625,
1108                 [4] = 11550,
1109                 [5] = 12512, /* 1251.25 mbps */
1110                 [6] = 13475,
1111                 [7] = 15400,
1112                 [8] = 19250,
1113                 [9] = 23100,
1114                 [10] = 25025,
1115                 [11] = 26950,
1116                 [12] = 30800,
1117                 [13] = 38500,
1118                 [14] = 46200,
1119                 [15] = 50050,
1120                 [16] = 53900,
1121                 [17] = 57750,
1122                 [18] = 69300,
1123                 [19] = 75075,
1124                 [20] = 80850,
1125         };
1126
1127         if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1128                 return 0;
1129
1130         return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1131 }
1132
1133 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1134 {
1135         static const u32 base[4][10] = {
1136                 {   6500000,
1137                    13000000,
1138                    19500000,
1139                    26000000,
1140                    39000000,
1141                    52000000,
1142                    58500000,
1143                    65000000,
1144                    78000000,
1145                 /* not in the spec, but some devices use this: */
1146                    86500000,
1147                 },
1148                 {  13500000,
1149                    27000000,
1150                    40500000,
1151                    54000000,
1152                    81000000,
1153                   108000000,
1154                   121500000,
1155                   135000000,
1156                   162000000,
1157                   180000000,
1158                 },
1159                 {  29300000,
1160                    58500000,
1161                    87800000,
1162                   117000000,
1163                   175500000,
1164                   234000000,
1165                   263300000,
1166                   292500000,
1167                   351000000,
1168                   390000000,
1169                 },
1170                 {  58500000,
1171                   117000000,
1172                   175500000,
1173                   234000000,
1174                   351000000,
1175                   468000000,
1176                   526500000,
1177                   585000000,
1178                   702000000,
1179                   780000000,
1180                 },
1181         };
1182         u32 bitrate;
1183         int idx;
1184
1185         if (rate->mcs > 9)
1186                 goto warn;
1187
1188         switch (rate->bw) {
1189         case RATE_INFO_BW_160:
1190                 idx = 3;
1191                 break;
1192         case RATE_INFO_BW_80:
1193                 idx = 2;
1194                 break;
1195         case RATE_INFO_BW_40:
1196                 idx = 1;
1197                 break;
1198         case RATE_INFO_BW_5:
1199         case RATE_INFO_BW_10:
1200         default:
1201                 goto warn;
1202         case RATE_INFO_BW_20:
1203                 idx = 0;
1204         }
1205
1206         bitrate = base[idx][rate->mcs];
1207         bitrate *= rate->nss;
1208
1209         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1210                 bitrate = (bitrate / 9) * 10;
1211
1212         /* do NOT round down here */
1213         return (bitrate + 50000) / 100000;
1214  warn:
1215         WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1216                   rate->bw, rate->mcs, rate->nss);
1217         return 0;
1218 }
1219
1220 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1221 {
1222 #define SCALE 2048
1223         u16 mcs_divisors[12] = {
1224                 34133, /* 16.666666... */
1225                 17067, /*  8.333333... */
1226                 11378, /*  5.555555... */
1227                  8533, /*  4.166666... */
1228                  5689, /*  2.777777... */
1229                  4267, /*  2.083333... */
1230                  3923, /*  1.851851... */
1231                  3413, /*  1.666666... */
1232                  2844, /*  1.388888... */
1233                  2560, /*  1.250000... */
1234                  2276, /*  1.111111... */
1235                  2048, /*  1.000000... */
1236         };
1237         u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1238         u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
1239         u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1240         u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1241         u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1242         u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1243         u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1244         u64 tmp;
1245         u32 result;
1246
1247         if (WARN_ON_ONCE(rate->mcs > 11))
1248                 return 0;
1249
1250         if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1251                 return 0;
1252         if (WARN_ON_ONCE(rate->he_ru_alloc >
1253                          NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1254                 return 0;
1255         if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1256                 return 0;
1257
1258         if (rate->bw == RATE_INFO_BW_160)
1259                 result = rates_160M[rate->he_gi];
1260         else if (rate->bw == RATE_INFO_BW_80 ||
1261                  (rate->bw == RATE_INFO_BW_HE_RU &&
1262                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1263                 result = rates_969[rate->he_gi];
1264         else if (rate->bw == RATE_INFO_BW_40 ||
1265                  (rate->bw == RATE_INFO_BW_HE_RU &&
1266                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1267                 result = rates_484[rate->he_gi];
1268         else if (rate->bw == RATE_INFO_BW_20 ||
1269                  (rate->bw == RATE_INFO_BW_HE_RU &&
1270                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1271                 result = rates_242[rate->he_gi];
1272         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1273                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1274                 result = rates_106[rate->he_gi];
1275         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1276                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1277                 result = rates_52[rate->he_gi];
1278         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1279                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1280                 result = rates_26[rate->he_gi];
1281         else {
1282                 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1283                      rate->bw, rate->he_ru_alloc);
1284                 return 0;
1285         }
1286
1287         /* now scale to the appropriate MCS */
1288         tmp = result;
1289         tmp *= SCALE;
1290         do_div(tmp, mcs_divisors[rate->mcs]);
1291         result = tmp;
1292
1293         /* and take NSS, DCM into account */
1294         result = (result * rate->nss) / 8;
1295         if (rate->he_dcm)
1296                 result /= 2;
1297
1298         return result / 10000;
1299 }
1300
1301 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1302 {
1303         if (rate->flags & RATE_INFO_FLAGS_MCS)
1304                 return cfg80211_calculate_bitrate_ht(rate);
1305         if (rate->flags & RATE_INFO_FLAGS_DMG)
1306                 return cfg80211_calculate_bitrate_dmg(rate);
1307         if (rate->flags & RATE_INFO_FLAGS_EDMG)
1308                 return cfg80211_calculate_bitrate_edmg(rate);
1309         if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1310                 return cfg80211_calculate_bitrate_vht(rate);
1311         if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1312                 return cfg80211_calculate_bitrate_he(rate);
1313
1314         return rate->legacy;
1315 }
1316 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1317
1318 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1319                           enum ieee80211_p2p_attr_id attr,
1320                           u8 *buf, unsigned int bufsize)
1321 {
1322         u8 *out = buf;
1323         u16 attr_remaining = 0;
1324         bool desired_attr = false;
1325         u16 desired_len = 0;
1326
1327         while (len > 0) {
1328                 unsigned int iedatalen;
1329                 unsigned int copy;
1330                 const u8 *iedata;
1331
1332                 if (len < 2)
1333                         return -EILSEQ;
1334                 iedatalen = ies[1];
1335                 if (iedatalen + 2 > len)
1336                         return -EILSEQ;
1337
1338                 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1339                         goto cont;
1340
1341                 if (iedatalen < 4)
1342                         goto cont;
1343
1344                 iedata = ies + 2;
1345
1346                 /* check WFA OUI, P2P subtype */
1347                 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1348                     iedata[2] != 0x9a || iedata[3] != 0x09)
1349                         goto cont;
1350
1351                 iedatalen -= 4;
1352                 iedata += 4;
1353
1354                 /* check attribute continuation into this IE */
1355                 copy = min_t(unsigned int, attr_remaining, iedatalen);
1356                 if (copy && desired_attr) {
1357                         desired_len += copy;
1358                         if (out) {
1359                                 memcpy(out, iedata, min(bufsize, copy));
1360                                 out += min(bufsize, copy);
1361                                 bufsize -= min(bufsize, copy);
1362                         }
1363
1364
1365                         if (copy == attr_remaining)
1366                                 return desired_len;
1367                 }
1368
1369                 attr_remaining -= copy;
1370                 if (attr_remaining)
1371                         goto cont;
1372
1373                 iedatalen -= copy;
1374                 iedata += copy;
1375
1376                 while (iedatalen > 0) {
1377                         u16 attr_len;
1378
1379                         /* P2P attribute ID & size must fit */
1380                         if (iedatalen < 3)
1381                                 return -EILSEQ;
1382                         desired_attr = iedata[0] == attr;
1383                         attr_len = get_unaligned_le16(iedata + 1);
1384                         iedatalen -= 3;
1385                         iedata += 3;
1386
1387                         copy = min_t(unsigned int, attr_len, iedatalen);
1388
1389                         if (desired_attr) {
1390                                 desired_len += copy;
1391                                 if (out) {
1392                                         memcpy(out, iedata, min(bufsize, copy));
1393                                         out += min(bufsize, copy);
1394                                         bufsize -= min(bufsize, copy);
1395                                 }
1396
1397                                 if (copy == attr_len)
1398                                         return desired_len;
1399                         }
1400
1401                         iedata += copy;
1402                         iedatalen -= copy;
1403                         attr_remaining = attr_len - copy;
1404                 }
1405
1406  cont:
1407                 len -= ies[1] + 2;
1408                 ies += ies[1] + 2;
1409         }
1410
1411         if (attr_remaining && desired_attr)
1412                 return -EILSEQ;
1413
1414         return -ENOENT;
1415 }
1416 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1417
1418 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1419 {
1420         int i;
1421
1422         /* Make sure array values are legal */
1423         if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1424                 return false;
1425
1426         i = 0;
1427         while (i < n_ids) {
1428                 if (ids[i] == WLAN_EID_EXTENSION) {
1429                         if (id_ext && (ids[i + 1] == id))
1430                                 return true;
1431
1432                         i += 2;
1433                         continue;
1434                 }
1435
1436                 if (ids[i] == id && !id_ext)
1437                         return true;
1438
1439                 i++;
1440         }
1441         return false;
1442 }
1443
1444 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1445 {
1446         /* we assume a validly formed IEs buffer */
1447         u8 len = ies[pos + 1];
1448
1449         pos += 2 + len;
1450
1451         /* the IE itself must have 255 bytes for fragments to follow */
1452         if (len < 255)
1453                 return pos;
1454
1455         while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1456                 len = ies[pos + 1];
1457                 pos += 2 + len;
1458         }
1459
1460         return pos;
1461 }
1462
1463 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1464                               const u8 *ids, int n_ids,
1465                               const u8 *after_ric, int n_after_ric,
1466                               size_t offset)
1467 {
1468         size_t pos = offset;
1469
1470         while (pos < ielen) {
1471                 u8 ext = 0;
1472
1473                 if (ies[pos] == WLAN_EID_EXTENSION)
1474                         ext = 2;
1475                 if ((pos + ext) >= ielen)
1476                         break;
1477
1478                 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1479                                           ies[pos] == WLAN_EID_EXTENSION))
1480                         break;
1481
1482                 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1483                         pos = skip_ie(ies, ielen, pos);
1484
1485                         while (pos < ielen) {
1486                                 if (ies[pos] == WLAN_EID_EXTENSION)
1487                                         ext = 2;
1488                                 else
1489                                         ext = 0;
1490
1491                                 if ((pos + ext) >= ielen)
1492                                         break;
1493
1494                                 if (!ieee80211_id_in_list(after_ric,
1495                                                           n_after_ric,
1496                                                           ies[pos + ext],
1497                                                           ext == 2))
1498                                         pos = skip_ie(ies, ielen, pos);
1499                                 else
1500                                         break;
1501                         }
1502                 } else {
1503                         pos = skip_ie(ies, ielen, pos);
1504                 }
1505         }
1506
1507         return pos;
1508 }
1509 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1510
1511 bool ieee80211_operating_class_to_band(u8 operating_class,
1512                                        enum nl80211_band *band)
1513 {
1514         switch (operating_class) {
1515         case 112:
1516         case 115 ... 127:
1517         case 128 ... 130:
1518                 *band = NL80211_BAND_5GHZ;
1519                 return true;
1520         case 131 ... 135:
1521                 *band = NL80211_BAND_6GHZ;
1522                 return true;
1523         case 81:
1524         case 82:
1525         case 83:
1526         case 84:
1527                 *band = NL80211_BAND_2GHZ;
1528                 return true;
1529         case 180:
1530                 *band = NL80211_BAND_60GHZ;
1531                 return true;
1532         }
1533
1534         return false;
1535 }
1536 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1537
1538 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1539                                           u8 *op_class)
1540 {
1541         u8 vht_opclass;
1542         u32 freq = chandef->center_freq1;
1543
1544         if (freq >= 2412 && freq <= 2472) {
1545                 if (chandef->width > NL80211_CHAN_WIDTH_40)
1546                         return false;
1547
1548                 /* 2.407 GHz, channels 1..13 */
1549                 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1550                         if (freq > chandef->chan->center_freq)
1551                                 *op_class = 83; /* HT40+ */
1552                         else
1553                                 *op_class = 84; /* HT40- */
1554                 } else {
1555                         *op_class = 81;
1556                 }
1557
1558                 return true;
1559         }
1560
1561         if (freq == 2484) {
1562                 if (chandef->width > NL80211_CHAN_WIDTH_40)
1563                         return false;
1564
1565                 *op_class = 82; /* channel 14 */
1566                 return true;
1567         }
1568
1569         switch (chandef->width) {
1570         case NL80211_CHAN_WIDTH_80:
1571                 vht_opclass = 128;
1572                 break;
1573         case NL80211_CHAN_WIDTH_160:
1574                 vht_opclass = 129;
1575                 break;
1576         case NL80211_CHAN_WIDTH_80P80:
1577                 vht_opclass = 130;
1578                 break;
1579         case NL80211_CHAN_WIDTH_10:
1580         case NL80211_CHAN_WIDTH_5:
1581                 return false; /* unsupported for now */
1582         default:
1583                 vht_opclass = 0;
1584                 break;
1585         }
1586
1587         /* 5 GHz, channels 36..48 */
1588         if (freq >= 5180 && freq <= 5240) {
1589                 if (vht_opclass) {
1590                         *op_class = vht_opclass;
1591                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1592                         if (freq > chandef->chan->center_freq)
1593                                 *op_class = 116;
1594                         else
1595                                 *op_class = 117;
1596                 } else {
1597                         *op_class = 115;
1598                 }
1599
1600                 return true;
1601         }
1602
1603         /* 5 GHz, channels 52..64 */
1604         if (freq >= 5260 && freq <= 5320) {
1605                 if (vht_opclass) {
1606                         *op_class = vht_opclass;
1607                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1608                         if (freq > chandef->chan->center_freq)
1609                                 *op_class = 119;
1610                         else
1611                                 *op_class = 120;
1612                 } else {
1613                         *op_class = 118;
1614                 }
1615
1616                 return true;
1617         }
1618
1619         /* 5 GHz, channels 100..144 */
1620         if (freq >= 5500 && freq <= 5720) {
1621                 if (vht_opclass) {
1622                         *op_class = vht_opclass;
1623                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1624                         if (freq > chandef->chan->center_freq)
1625                                 *op_class = 122;
1626                         else
1627                                 *op_class = 123;
1628                 } else {
1629                         *op_class = 121;
1630                 }
1631
1632                 return true;
1633         }
1634
1635         /* 5 GHz, channels 149..169 */
1636         if (freq >= 5745 && freq <= 5845) {
1637                 if (vht_opclass) {
1638                         *op_class = vht_opclass;
1639                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1640                         if (freq > chandef->chan->center_freq)
1641                                 *op_class = 126;
1642                         else
1643                                 *op_class = 127;
1644                 } else if (freq <= 5805) {
1645                         *op_class = 124;
1646                 } else {
1647                         *op_class = 125;
1648                 }
1649
1650                 return true;
1651         }
1652
1653         /* 56.16 GHz, channel 1..4 */
1654         if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1655                 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1656                         return false;
1657
1658                 *op_class = 180;
1659                 return true;
1660         }
1661
1662         /* not supported yet */
1663         return false;
1664 }
1665 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1666
1667 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1668                                        u32 *beacon_int_gcd,
1669                                        bool *beacon_int_different)
1670 {
1671         struct wireless_dev *wdev;
1672
1673         *beacon_int_gcd = 0;
1674         *beacon_int_different = false;
1675
1676         list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1677                 if (!wdev->beacon_interval)
1678                         continue;
1679
1680                 if (!*beacon_int_gcd) {
1681                         *beacon_int_gcd = wdev->beacon_interval;
1682                         continue;
1683                 }
1684
1685                 if (wdev->beacon_interval == *beacon_int_gcd)
1686                         continue;
1687
1688                 *beacon_int_different = true;
1689                 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1690         }
1691
1692         if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1693                 if (*beacon_int_gcd)
1694                         *beacon_int_different = true;
1695                 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1696         }
1697 }
1698
1699 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1700                                  enum nl80211_iftype iftype, u32 beacon_int)
1701 {
1702         /*
1703          * This is just a basic pre-condition check; if interface combinations
1704          * are possible the driver must already be checking those with a call
1705          * to cfg80211_check_combinations(), in which case we'll validate more
1706          * through the cfg80211_calculate_bi_data() call and code in
1707          * cfg80211_iter_combinations().
1708          */
1709
1710         if (beacon_int < 10 || beacon_int > 10000)
1711                 return -EINVAL;
1712
1713         return 0;
1714 }
1715
1716 int cfg80211_iter_combinations(struct wiphy *wiphy,
1717                                struct iface_combination_params *params,
1718                                void (*iter)(const struct ieee80211_iface_combination *c,
1719                                             void *data),
1720                                void *data)
1721 {
1722         const struct ieee80211_regdomain *regdom;
1723         enum nl80211_dfs_regions region = 0;
1724         int i, j, iftype;
1725         int num_interfaces = 0;
1726         u32 used_iftypes = 0;
1727         u32 beacon_int_gcd;
1728         bool beacon_int_different;
1729
1730         /*
1731          * This is a bit strange, since the iteration used to rely only on
1732          * the data given by the driver, but here it now relies on context,
1733          * in form of the currently operating interfaces.
1734          * This is OK for all current users, and saves us from having to
1735          * push the GCD calculations into all the drivers.
1736          * In the future, this should probably rely more on data that's in
1737          * cfg80211 already - the only thing not would appear to be any new
1738          * interfaces (while being brought up) and channel/radar data.
1739          */
1740         cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1741                                    &beacon_int_gcd, &beacon_int_different);
1742
1743         if (params->radar_detect) {
1744                 rcu_read_lock();
1745                 regdom = rcu_dereference(cfg80211_regdomain);
1746                 if (regdom)
1747                         region = regdom->dfs_region;
1748                 rcu_read_unlock();
1749         }
1750
1751         for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1752                 num_interfaces += params->iftype_num[iftype];
1753                 if (params->iftype_num[iftype] > 0 &&
1754                     !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1755                         used_iftypes |= BIT(iftype);
1756         }
1757
1758         for (i = 0; i < wiphy->n_iface_combinations; i++) {
1759                 const struct ieee80211_iface_combination *c;
1760                 struct ieee80211_iface_limit *limits;
1761                 u32 all_iftypes = 0;
1762
1763                 c = &wiphy->iface_combinations[i];
1764
1765                 if (num_interfaces > c->max_interfaces)
1766                         continue;
1767                 if (params->num_different_channels > c->num_different_channels)
1768                         continue;
1769
1770                 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1771                                  GFP_KERNEL);
1772                 if (!limits)
1773                         return -ENOMEM;
1774
1775                 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1776                         if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1777                                 continue;
1778                         for (j = 0; j < c->n_limits; j++) {
1779                                 all_iftypes |= limits[j].types;
1780                                 if (!(limits[j].types & BIT(iftype)))
1781                                         continue;
1782                                 if (limits[j].max < params->iftype_num[iftype])
1783                                         goto cont;
1784                                 limits[j].max -= params->iftype_num[iftype];
1785                         }
1786                 }
1787
1788                 if (params->radar_detect !=
1789                         (c->radar_detect_widths & params->radar_detect))
1790                         goto cont;
1791
1792                 if (params->radar_detect && c->radar_detect_regions &&
1793                     !(c->radar_detect_regions & BIT(region)))
1794                         goto cont;
1795
1796                 /* Finally check that all iftypes that we're currently
1797                  * using are actually part of this combination. If they
1798                  * aren't then we can't use this combination and have
1799                  * to continue to the next.
1800                  */
1801                 if ((all_iftypes & used_iftypes) != used_iftypes)
1802                         goto cont;
1803
1804                 if (beacon_int_gcd) {
1805                         if (c->beacon_int_min_gcd &&
1806                             beacon_int_gcd < c->beacon_int_min_gcd)
1807                                 goto cont;
1808                         if (!c->beacon_int_min_gcd && beacon_int_different)
1809                                 goto cont;
1810                 }
1811
1812                 /* This combination covered all interface types and
1813                  * supported the requested numbers, so we're good.
1814                  */
1815
1816                 (*iter)(c, data);
1817  cont:
1818                 kfree(limits);
1819         }
1820
1821         return 0;
1822 }
1823 EXPORT_SYMBOL(cfg80211_iter_combinations);
1824
1825 static void
1826 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1827                           void *data)
1828 {
1829         int *num = data;
1830         (*num)++;
1831 }
1832
1833 int cfg80211_check_combinations(struct wiphy *wiphy,
1834                                 struct iface_combination_params *params)
1835 {
1836         int err, num = 0;
1837
1838         err = cfg80211_iter_combinations(wiphy, params,
1839                                          cfg80211_iter_sum_ifcombs, &num);
1840         if (err)
1841                 return err;
1842         if (num == 0)
1843                 return -EBUSY;
1844
1845         return 0;
1846 }
1847 EXPORT_SYMBOL(cfg80211_check_combinations);
1848
1849 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1850                            const u8 *rates, unsigned int n_rates,
1851                            u32 *mask)
1852 {
1853         int i, j;
1854
1855         if (!sband)
1856                 return -EINVAL;
1857
1858         if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1859                 return -EINVAL;
1860
1861         *mask = 0;
1862
1863         for (i = 0; i < n_rates; i++) {
1864                 int rate = (rates[i] & 0x7f) * 5;
1865                 bool found = false;
1866
1867                 for (j = 0; j < sband->n_bitrates; j++) {
1868                         if (sband->bitrates[j].bitrate == rate) {
1869                                 found = true;
1870                                 *mask |= BIT(j);
1871                                 break;
1872                         }
1873                 }
1874                 if (!found)
1875                         return -EINVAL;
1876         }
1877
1878         /*
1879          * mask must have at least one bit set here since we
1880          * didn't accept a 0-length rates array nor allowed
1881          * entries in the array that didn't exist
1882          */
1883
1884         return 0;
1885 }
1886
1887 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1888 {
1889         enum nl80211_band band;
1890         unsigned int n_channels = 0;
1891
1892         for (band = 0; band < NUM_NL80211_BANDS; band++)
1893                 if (wiphy->bands[band])
1894                         n_channels += wiphy->bands[band]->n_channels;
1895
1896         return n_channels;
1897 }
1898 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1899
1900 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1901                          struct station_info *sinfo)
1902 {
1903         struct cfg80211_registered_device *rdev;
1904         struct wireless_dev *wdev;
1905
1906         wdev = dev->ieee80211_ptr;
1907         if (!wdev)
1908                 return -EOPNOTSUPP;
1909
1910         rdev = wiphy_to_rdev(wdev->wiphy);
1911         if (!rdev->ops->get_station)
1912                 return -EOPNOTSUPP;
1913
1914         memset(sinfo, 0, sizeof(*sinfo));
1915
1916         return rdev_get_station(rdev, dev, mac_addr, sinfo);
1917 }
1918 EXPORT_SYMBOL(cfg80211_get_station);
1919
1920 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1921 {
1922         int i;
1923
1924         if (!f)
1925                 return;
1926
1927         kfree(f->serv_spec_info);
1928         kfree(f->srf_bf);
1929         kfree(f->srf_macs);
1930         for (i = 0; i < f->num_rx_filters; i++)
1931                 kfree(f->rx_filters[i].filter);
1932
1933         for (i = 0; i < f->num_tx_filters; i++)
1934                 kfree(f->tx_filters[i].filter);
1935
1936         kfree(f->rx_filters);
1937         kfree(f->tx_filters);
1938         kfree(f);
1939 }
1940 EXPORT_SYMBOL(cfg80211_free_nan_func);
1941
1942 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1943                                 u32 center_freq_khz, u32 bw_khz)
1944 {
1945         u32 start_freq_khz, end_freq_khz;
1946
1947         start_freq_khz = center_freq_khz - (bw_khz / 2);
1948         end_freq_khz = center_freq_khz + (bw_khz / 2);
1949
1950         if (start_freq_khz >= freq_range->start_freq_khz &&
1951             end_freq_khz <= freq_range->end_freq_khz)
1952                 return true;
1953
1954         return false;
1955 }
1956
1957 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
1958 {
1959         sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
1960                                 sizeof(*(sinfo->pertid)),
1961                                 gfp);
1962         if (!sinfo->pertid)
1963                 return -ENOMEM;
1964
1965         return 0;
1966 }
1967 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
1968
1969 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1970 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1971 const unsigned char rfc1042_header[] __aligned(2) =
1972         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1973 EXPORT_SYMBOL(rfc1042_header);
1974
1975 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1976 const unsigned char bridge_tunnel_header[] __aligned(2) =
1977         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1978 EXPORT_SYMBOL(bridge_tunnel_header);
1979
1980 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
1981 struct iapp_layer2_update {
1982         u8 da[ETH_ALEN];        /* broadcast */
1983         u8 sa[ETH_ALEN];        /* STA addr */
1984         __be16 len;             /* 6 */
1985         u8 dsap;                /* 0 */
1986         u8 ssap;                /* 0 */
1987         u8 control;
1988         u8 xid_info[3];
1989 } __packed;
1990
1991 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
1992 {
1993         struct iapp_layer2_update *msg;
1994         struct sk_buff *skb;
1995
1996         /* Send Level 2 Update Frame to update forwarding tables in layer 2
1997          * bridge devices */
1998
1999         skb = dev_alloc_skb(sizeof(*msg));
2000         if (!skb)
2001                 return;
2002         msg = skb_put(skb, sizeof(*msg));
2003
2004         /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2005          * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2006
2007         eth_broadcast_addr(msg->da);
2008         ether_addr_copy(msg->sa, addr);
2009         msg->len = htons(6);
2010         msg->dsap = 0;
2011         msg->ssap = 0x01;       /* NULL LSAP, CR Bit: Response */
2012         msg->control = 0xaf;    /* XID response lsb.1111F101.
2013                                  * F=0 (no poll command; unsolicited frame) */
2014         msg->xid_info[0] = 0x81;        /* XID format identifier */
2015         msg->xid_info[1] = 1;   /* LLC types/classes: Type 1 LLC */
2016         msg->xid_info[2] = 0;   /* XID sender's receive window size (RW) */
2017
2018         skb->dev = dev;
2019         skb->protocol = eth_type_trans(skb, dev);
2020         memset(skb->cb, 0, sizeof(skb->cb));
2021         netif_rx_ni(skb);
2022 }
2023 EXPORT_SYMBOL(cfg80211_send_layer2_update);
2024
2025 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2026                               enum ieee80211_vht_chanwidth bw,
2027                               int mcs, bool ext_nss_bw_capable)
2028 {
2029         u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2030         int max_vht_nss = 0;
2031         int ext_nss_bw;
2032         int supp_width;
2033         int i, mcs_encoding;
2034
2035         if (map == 0xffff)
2036                 return 0;
2037
2038         if (WARN_ON(mcs > 9))
2039                 return 0;
2040         if (mcs <= 7)
2041                 mcs_encoding = 0;
2042         else if (mcs == 8)
2043                 mcs_encoding = 1;
2044         else
2045                 mcs_encoding = 2;
2046
2047         /* find max_vht_nss for the given MCS */
2048         for (i = 7; i >= 0; i--) {
2049                 int supp = (map >> (2 * i)) & 3;
2050
2051                 if (supp == 3)
2052                         continue;
2053
2054                 if (supp >= mcs_encoding) {
2055                         max_vht_nss = i + 1;
2056                         break;
2057                 }
2058         }
2059
2060         if (!(cap->supp_mcs.tx_mcs_map &
2061                         cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2062                 return max_vht_nss;
2063
2064         ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2065                                    IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2066         supp_width = le32_get_bits(cap->vht_cap_info,
2067                                    IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2068
2069         /* if not capable, treat ext_nss_bw as 0 */
2070         if (!ext_nss_bw_capable)
2071                 ext_nss_bw = 0;
2072
2073         /* This is invalid */
2074         if (supp_width == 3)
2075                 return 0;
2076
2077         /* This is an invalid combination so pretend nothing is supported */
2078         if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2079                 return 0;
2080
2081         /*
2082          * Cover all the special cases according to IEEE 802.11-2016
2083          * Table 9-250. All other cases are either factor of 1 or not
2084          * valid/supported.
2085          */
2086         switch (bw) {
2087         case IEEE80211_VHT_CHANWIDTH_USE_HT:
2088         case IEEE80211_VHT_CHANWIDTH_80MHZ:
2089                 if ((supp_width == 1 || supp_width == 2) &&
2090                     ext_nss_bw == 3)
2091                         return 2 * max_vht_nss;
2092                 break;
2093         case IEEE80211_VHT_CHANWIDTH_160MHZ:
2094                 if (supp_width == 0 &&
2095                     (ext_nss_bw == 1 || ext_nss_bw == 2))
2096                         return max_vht_nss / 2;
2097                 if (supp_width == 0 &&
2098                     ext_nss_bw == 3)
2099                         return (3 * max_vht_nss) / 4;
2100                 if (supp_width == 1 &&
2101                     ext_nss_bw == 3)
2102                         return 2 * max_vht_nss;
2103                 break;
2104         case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2105                 if (supp_width == 0 && ext_nss_bw == 1)
2106                         return 0; /* not possible */
2107                 if (supp_width == 0 &&
2108                     ext_nss_bw == 2)
2109                         return max_vht_nss / 2;
2110                 if (supp_width == 0 &&
2111                     ext_nss_bw == 3)
2112                         return (3 * max_vht_nss) / 4;
2113                 if (supp_width == 1 &&
2114                     ext_nss_bw == 0)
2115                         return 0; /* not possible */
2116                 if (supp_width == 1 &&
2117                     ext_nss_bw == 1)
2118                         return max_vht_nss / 2;
2119                 if (supp_width == 1 &&
2120                     ext_nss_bw == 2)
2121                         return (3 * max_vht_nss) / 4;
2122                 break;
2123         }
2124
2125         /* not covered or invalid combination received */
2126         return max_vht_nss;
2127 }
2128 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2129
2130 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2131                              bool is_4addr, u8 check_swif)
2132
2133 {
2134         bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2135
2136         switch (check_swif) {
2137         case 0:
2138                 if (is_vlan && is_4addr)
2139                         return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2140                 return wiphy->interface_modes & BIT(iftype);
2141         case 1:
2142                 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2143                         return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2144                 return wiphy->software_iftypes & BIT(iftype);
2145         default:
2146                 break;
2147         }
2148
2149         return false;
2150 }
2151 EXPORT_SYMBOL(cfg80211_iftype_allowed);