Merge tag 'arm-defconfig-5.14' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-2.6-microblaze.git] / net / wireless / scan.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cfg80211 scan result handling
4  *
5  * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2016       Intel Deutschland GmbH
8  * Copyright (C) 2018-2021 Intel Corporation
9  */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <linux/crc32.h>
18 #include <linux/bitfield.h>
19 #include <net/arp.h>
20 #include <net/cfg80211.h>
21 #include <net/cfg80211-wext.h>
22 #include <net/iw_handler.h>
23 #include "core.h"
24 #include "nl80211.h"
25 #include "wext-compat.h"
26 #include "rdev-ops.h"
27
28 /**
29  * DOC: BSS tree/list structure
30  *
31  * At the top level, the BSS list is kept in both a list in each
32  * registered device (@bss_list) as well as an RB-tree for faster
33  * lookup. In the RB-tree, entries can be looked up using their
34  * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
35  * for other BSSes.
36  *
37  * Due to the possibility of hidden SSIDs, there's a second level
38  * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
39  * The hidden_list connects all BSSes belonging to a single AP
40  * that has a hidden SSID, and connects beacon and probe response
41  * entries. For a probe response entry for a hidden SSID, the
42  * hidden_beacon_bss pointer points to the BSS struct holding the
43  * beacon's information.
44  *
45  * Reference counting is done for all these references except for
46  * the hidden_list, so that a beacon BSS struct that is otherwise
47  * not referenced has one reference for being on the bss_list and
48  * one for each probe response entry that points to it using the
49  * hidden_beacon_bss pointer. When a BSS struct that has such a
50  * pointer is get/put, the refcount update is also propagated to
51  * the referenced struct, this ensure that it cannot get removed
52  * while somebody is using the probe response version.
53  *
54  * Note that the hidden_beacon_bss pointer never changes, due to
55  * the reference counting. Therefore, no locking is needed for
56  * it.
57  *
58  * Also note that the hidden_beacon_bss pointer is only relevant
59  * if the driver uses something other than the IEs, e.g. private
60  * data stored in the BSS struct, since the beacon IEs are
61  * also linked into the probe response struct.
62  */
63
64 /*
65  * Limit the number of BSS entries stored in mac80211. Each one is
66  * a bit over 4k at most, so this limits to roughly 4-5M of memory.
67  * If somebody wants to really attack this though, they'd likely
68  * use small beacons, and only one type of frame, limiting each of
69  * the entries to a much smaller size (in order to generate more
70  * entries in total, so overhead is bigger.)
71  */
72 static int bss_entries_limit = 1000;
73 module_param(bss_entries_limit, int, 0644);
74 MODULE_PARM_DESC(bss_entries_limit,
75                  "limit to number of scan BSS entries (per wiphy, default 1000)");
76
77 #define IEEE80211_SCAN_RESULT_EXPIRE    (30 * HZ)
78
79 /**
80  * struct cfg80211_colocated_ap - colocated AP information
81  *
82  * @list: linked list to all colocated aPS
83  * @bssid: BSSID of the reported AP
84  * @ssid: SSID of the reported AP
85  * @ssid_len: length of the ssid
86  * @center_freq: frequency the reported AP is on
87  * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
88  *      that operate in the same channel as the reported AP and that might be
89  *      detected by a STA receiving this frame, are transmitting unsolicited
90  *      Probe Response frames every 20 TUs
91  * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
92  * @same_ssid: the reported AP has the same SSID as the reporting AP
93  * @multi_bss: the reported AP is part of a multiple BSSID set
94  * @transmitted_bssid: the reported AP is the transmitting BSSID
95  * @colocated_ess: all the APs that share the same ESS as the reported AP are
96  *      colocated and can be discovered via legacy bands.
97  * @short_ssid_valid: short_ssid is valid and can be used
98  * @short_ssid: the short SSID for this SSID
99  */
100 struct cfg80211_colocated_ap {
101         struct list_head list;
102         u8 bssid[ETH_ALEN];
103         u8 ssid[IEEE80211_MAX_SSID_LEN];
104         size_t ssid_len;
105         u32 short_ssid;
106         u32 center_freq;
107         u8 unsolicited_probe:1,
108            oct_recommended:1,
109            same_ssid:1,
110            multi_bss:1,
111            transmitted_bssid:1,
112            colocated_ess:1,
113            short_ssid_valid:1;
114 };
115
116 static void bss_free(struct cfg80211_internal_bss *bss)
117 {
118         struct cfg80211_bss_ies *ies;
119
120         if (WARN_ON(atomic_read(&bss->hold)))
121                 return;
122
123         ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
124         if (ies && !bss->pub.hidden_beacon_bss)
125                 kfree_rcu(ies, rcu_head);
126         ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
127         if (ies)
128                 kfree_rcu(ies, rcu_head);
129
130         /*
131          * This happens when the module is removed, it doesn't
132          * really matter any more save for completeness
133          */
134         if (!list_empty(&bss->hidden_list))
135                 list_del(&bss->hidden_list);
136
137         kfree(bss);
138 }
139
140 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
141                                struct cfg80211_internal_bss *bss)
142 {
143         lockdep_assert_held(&rdev->bss_lock);
144
145         bss->refcount++;
146         if (bss->pub.hidden_beacon_bss) {
147                 bss = container_of(bss->pub.hidden_beacon_bss,
148                                    struct cfg80211_internal_bss,
149                                    pub);
150                 bss->refcount++;
151         }
152         if (bss->pub.transmitted_bss) {
153                 bss = container_of(bss->pub.transmitted_bss,
154                                    struct cfg80211_internal_bss,
155                                    pub);
156                 bss->refcount++;
157         }
158 }
159
160 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
161                                struct cfg80211_internal_bss *bss)
162 {
163         lockdep_assert_held(&rdev->bss_lock);
164
165         if (bss->pub.hidden_beacon_bss) {
166                 struct cfg80211_internal_bss *hbss;
167                 hbss = container_of(bss->pub.hidden_beacon_bss,
168                                     struct cfg80211_internal_bss,
169                                     pub);
170                 hbss->refcount--;
171                 if (hbss->refcount == 0)
172                         bss_free(hbss);
173         }
174
175         if (bss->pub.transmitted_bss) {
176                 struct cfg80211_internal_bss *tbss;
177
178                 tbss = container_of(bss->pub.transmitted_bss,
179                                     struct cfg80211_internal_bss,
180                                     pub);
181                 tbss->refcount--;
182                 if (tbss->refcount == 0)
183                         bss_free(tbss);
184         }
185
186         bss->refcount--;
187         if (bss->refcount == 0)
188                 bss_free(bss);
189 }
190
191 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
192                                   struct cfg80211_internal_bss *bss)
193 {
194         lockdep_assert_held(&rdev->bss_lock);
195
196         if (!list_empty(&bss->hidden_list)) {
197                 /*
198                  * don't remove the beacon entry if it has
199                  * probe responses associated with it
200                  */
201                 if (!bss->pub.hidden_beacon_bss)
202                         return false;
203                 /*
204                  * if it's a probe response entry break its
205                  * link to the other entries in the group
206                  */
207                 list_del_init(&bss->hidden_list);
208         }
209
210         list_del_init(&bss->list);
211         list_del_init(&bss->pub.nontrans_list);
212         rb_erase(&bss->rbn, &rdev->bss_tree);
213         rdev->bss_entries--;
214         WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
215                   "rdev bss entries[%d]/list[empty:%d] corruption\n",
216                   rdev->bss_entries, list_empty(&rdev->bss_list));
217         bss_ref_put(rdev, bss);
218         return true;
219 }
220
221 bool cfg80211_is_element_inherited(const struct element *elem,
222                                    const struct element *non_inherit_elem)
223 {
224         u8 id_len, ext_id_len, i, loop_len, id;
225         const u8 *list;
226
227         if (elem->id == WLAN_EID_MULTIPLE_BSSID)
228                 return false;
229
230         if (!non_inherit_elem || non_inherit_elem->datalen < 2)
231                 return true;
232
233         /*
234          * non inheritance element format is:
235          * ext ID (56) | IDs list len | list | extension IDs list len | list
236          * Both lists are optional. Both lengths are mandatory.
237          * This means valid length is:
238          * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
239          */
240         id_len = non_inherit_elem->data[1];
241         if (non_inherit_elem->datalen < 3 + id_len)
242                 return true;
243
244         ext_id_len = non_inherit_elem->data[2 + id_len];
245         if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
246                 return true;
247
248         if (elem->id == WLAN_EID_EXTENSION) {
249                 if (!ext_id_len)
250                         return true;
251                 loop_len = ext_id_len;
252                 list = &non_inherit_elem->data[3 + id_len];
253                 id = elem->data[0];
254         } else {
255                 if (!id_len)
256                         return true;
257                 loop_len = id_len;
258                 list = &non_inherit_elem->data[2];
259                 id = elem->id;
260         }
261
262         for (i = 0; i < loop_len; i++) {
263                 if (list[i] == id)
264                         return false;
265         }
266
267         return true;
268 }
269 EXPORT_SYMBOL(cfg80211_is_element_inherited);
270
271 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
272                                   const u8 *subelement, size_t subie_len,
273                                   u8 *new_ie, gfp_t gfp)
274 {
275         u8 *pos, *tmp;
276         const u8 *tmp_old, *tmp_new;
277         const struct element *non_inherit_elem;
278         u8 *sub_copy;
279
280         /* copy subelement as we need to change its content to
281          * mark an ie after it is processed.
282          */
283         sub_copy = kmemdup(subelement, subie_len, gfp);
284         if (!sub_copy)
285                 return 0;
286
287         pos = &new_ie[0];
288
289         /* set new ssid */
290         tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len);
291         if (tmp_new) {
292                 memcpy(pos, tmp_new, tmp_new[1] + 2);
293                 pos += (tmp_new[1] + 2);
294         }
295
296         /* get non inheritance list if exists */
297         non_inherit_elem =
298                 cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
299                                        sub_copy, subie_len);
300
301         /* go through IEs in ie (skip SSID) and subelement,
302          * merge them into new_ie
303          */
304         tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
305         tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie;
306
307         while (tmp_old + tmp_old[1] + 2 - ie <= ielen) {
308                 if (tmp_old[0] == 0) {
309                         tmp_old++;
310                         continue;
311                 }
312
313                 if (tmp_old[0] == WLAN_EID_EXTENSION)
314                         tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy,
315                                                          subie_len);
316                 else
317                         tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy,
318                                                      subie_len);
319
320                 if (!tmp) {
321                         const struct element *old_elem = (void *)tmp_old;
322
323                         /* ie in old ie but not in subelement */
324                         if (cfg80211_is_element_inherited(old_elem,
325                                                           non_inherit_elem)) {
326                                 memcpy(pos, tmp_old, tmp_old[1] + 2);
327                                 pos += tmp_old[1] + 2;
328                         }
329                 } else {
330                         /* ie in transmitting ie also in subelement,
331                          * copy from subelement and flag the ie in subelement
332                          * as copied (by setting eid field to WLAN_EID_SSID,
333                          * which is skipped anyway).
334                          * For vendor ie, compare OUI + type + subType to
335                          * determine if they are the same ie.
336                          */
337                         if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) {
338                                 if (!memcmp(tmp_old + 2, tmp + 2, 5)) {
339                                         /* same vendor ie, copy from
340                                          * subelement
341                                          */
342                                         memcpy(pos, tmp, tmp[1] + 2);
343                                         pos += tmp[1] + 2;
344                                         tmp[0] = WLAN_EID_SSID;
345                                 } else {
346                                         memcpy(pos, tmp_old, tmp_old[1] + 2);
347                                         pos += tmp_old[1] + 2;
348                                 }
349                         } else {
350                                 /* copy ie from subelement into new ie */
351                                 memcpy(pos, tmp, tmp[1] + 2);
352                                 pos += tmp[1] + 2;
353                                 tmp[0] = WLAN_EID_SSID;
354                         }
355                 }
356
357                 if (tmp_old + tmp_old[1] + 2 - ie == ielen)
358                         break;
359
360                 tmp_old += tmp_old[1] + 2;
361         }
362
363         /* go through subelement again to check if there is any ie not
364          * copied to new ie, skip ssid, capability, bssid-index ie
365          */
366         tmp_new = sub_copy;
367         while (tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) {
368                 if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP ||
369                       tmp_new[0] == WLAN_EID_SSID)) {
370                         memcpy(pos, tmp_new, tmp_new[1] + 2);
371                         pos += tmp_new[1] + 2;
372                 }
373                 if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len)
374                         break;
375                 tmp_new += tmp_new[1] + 2;
376         }
377
378         kfree(sub_copy);
379         return pos - new_ie;
380 }
381
382 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
383                    const u8 *ssid, size_t ssid_len)
384 {
385         const struct cfg80211_bss_ies *ies;
386         const u8 *ssidie;
387
388         if (bssid && !ether_addr_equal(a->bssid, bssid))
389                 return false;
390
391         if (!ssid)
392                 return true;
393
394         ies = rcu_access_pointer(a->ies);
395         if (!ies)
396                 return false;
397         ssidie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
398         if (!ssidie)
399                 return false;
400         if (ssidie[1] != ssid_len)
401                 return false;
402         return memcmp(ssidie + 2, ssid, ssid_len) == 0;
403 }
404
405 static int
406 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
407                            struct cfg80211_bss *nontrans_bss)
408 {
409         const u8 *ssid;
410         size_t ssid_len;
411         struct cfg80211_bss *bss = NULL;
412
413         rcu_read_lock();
414         ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
415         if (!ssid) {
416                 rcu_read_unlock();
417                 return -EINVAL;
418         }
419         ssid_len = ssid[1];
420         ssid = ssid + 2;
421         rcu_read_unlock();
422
423         /* check if nontrans_bss is in the list */
424         list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
425                 if (is_bss(bss, nontrans_bss->bssid, ssid, ssid_len))
426                         return 0;
427         }
428
429         /* add to the list */
430         list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
431         return 0;
432 }
433
434 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
435                                   unsigned long expire_time)
436 {
437         struct cfg80211_internal_bss *bss, *tmp;
438         bool expired = false;
439
440         lockdep_assert_held(&rdev->bss_lock);
441
442         list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
443                 if (atomic_read(&bss->hold))
444                         continue;
445                 if (!time_after(expire_time, bss->ts))
446                         continue;
447
448                 if (__cfg80211_unlink_bss(rdev, bss))
449                         expired = true;
450         }
451
452         if (expired)
453                 rdev->bss_generation++;
454 }
455
456 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
457 {
458         struct cfg80211_internal_bss *bss, *oldest = NULL;
459         bool ret;
460
461         lockdep_assert_held(&rdev->bss_lock);
462
463         list_for_each_entry(bss, &rdev->bss_list, list) {
464                 if (atomic_read(&bss->hold))
465                         continue;
466
467                 if (!list_empty(&bss->hidden_list) &&
468                     !bss->pub.hidden_beacon_bss)
469                         continue;
470
471                 if (oldest && time_before(oldest->ts, bss->ts))
472                         continue;
473                 oldest = bss;
474         }
475
476         if (WARN_ON(!oldest))
477                 return false;
478
479         /*
480          * The callers make sure to increase rdev->bss_generation if anything
481          * gets removed (and a new entry added), so there's no need to also do
482          * it here.
483          */
484
485         ret = __cfg80211_unlink_bss(rdev, oldest);
486         WARN_ON(!ret);
487         return ret;
488 }
489
490 static u8 cfg80211_parse_bss_param(u8 data,
491                                    struct cfg80211_colocated_ap *coloc_ap)
492 {
493         coloc_ap->oct_recommended =
494                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
495         coloc_ap->same_ssid =
496                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
497         coloc_ap->multi_bss =
498                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
499         coloc_ap->transmitted_bssid =
500                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
501         coloc_ap->unsolicited_probe =
502                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
503         coloc_ap->colocated_ess =
504                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
505
506         return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
507 }
508
509 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
510                                     const struct element **elem, u32 *s_ssid)
511 {
512
513         *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
514         if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
515                 return -EINVAL;
516
517         *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
518         return 0;
519 }
520
521 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
522 {
523         struct cfg80211_colocated_ap *ap, *tmp_ap;
524
525         list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
526                 list_del(&ap->list);
527                 kfree(ap);
528         }
529 }
530
531 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
532                                   const u8 *pos, u8 length,
533                                   const struct element *ssid_elem,
534                                   int s_ssid_tmp)
535 {
536         /* skip the TBTT offset */
537         pos++;
538
539         memcpy(entry->bssid, pos, ETH_ALEN);
540         pos += ETH_ALEN;
541
542         if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM) {
543                 memcpy(&entry->short_ssid, pos,
544                        sizeof(entry->short_ssid));
545                 entry->short_ssid_valid = true;
546                 pos += 4;
547         }
548
549         /* skip non colocated APs */
550         if (!cfg80211_parse_bss_param(*pos, entry))
551                 return -EINVAL;
552         pos++;
553
554         if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM) {
555                 /*
556                  * no information about the short ssid. Consider the entry valid
557                  * for now. It would later be dropped in case there are explicit
558                  * SSIDs that need to be matched
559                  */
560                 if (!entry->same_ssid)
561                         return 0;
562         }
563
564         if (entry->same_ssid) {
565                 entry->short_ssid = s_ssid_tmp;
566                 entry->short_ssid_valid = true;
567
568                 /*
569                  * This is safe because we validate datalen in
570                  * cfg80211_parse_colocated_ap(), before calling this
571                  * function.
572                  */
573                 memcpy(&entry->ssid, &ssid_elem->data,
574                        ssid_elem->datalen);
575                 entry->ssid_len = ssid_elem->datalen;
576         }
577         return 0;
578 }
579
580 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
581                                        struct list_head *list)
582 {
583         struct ieee80211_neighbor_ap_info *ap_info;
584         const struct element *elem, *ssid_elem;
585         const u8 *pos, *end;
586         u32 s_ssid_tmp;
587         int n_coloc = 0, ret;
588         LIST_HEAD(ap_list);
589
590         elem = cfg80211_find_elem(WLAN_EID_REDUCED_NEIGHBOR_REPORT, ies->data,
591                                   ies->len);
592         if (!elem)
593                 return 0;
594
595         pos = elem->data;
596         end = pos + elem->datalen;
597
598         ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
599         if (ret)
600                 return ret;
601
602         /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
603         while (pos + sizeof(*ap_info) <= end) {
604                 enum nl80211_band band;
605                 int freq;
606                 u8 length, i, count;
607
608                 ap_info = (void *)pos;
609                 count = u8_get_bits(ap_info->tbtt_info_hdr,
610                                     IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
611                 length = ap_info->tbtt_info_len;
612
613                 pos += sizeof(*ap_info);
614
615                 if (!ieee80211_operating_class_to_band(ap_info->op_class,
616                                                        &band))
617                         break;
618
619                 freq = ieee80211_channel_to_frequency(ap_info->channel, band);
620
621                 if (end - pos < count * length)
622                         break;
623
624                 /*
625                  * TBTT info must include bss param + BSSID +
626                  * (short SSID or same_ssid bit to be set).
627                  * ignore other options, and move to the
628                  * next AP info
629                  */
630                 if (band != NL80211_BAND_6GHZ ||
631                     (length != IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM &&
632                      length < IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM)) {
633                         pos += count * length;
634                         continue;
635                 }
636
637                 for (i = 0; i < count; i++) {
638                         struct cfg80211_colocated_ap *entry;
639
640                         entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
641                                         GFP_ATOMIC);
642
643                         if (!entry)
644                                 break;
645
646                         entry->center_freq = freq;
647
648                         if (!cfg80211_parse_ap_info(entry, pos, length,
649                                                     ssid_elem, s_ssid_tmp)) {
650                                 n_coloc++;
651                                 list_add_tail(&entry->list, &ap_list);
652                         } else {
653                                 kfree(entry);
654                         }
655
656                         pos += length;
657                 }
658         }
659
660         if (pos != end) {
661                 cfg80211_free_coloc_ap_list(&ap_list);
662                 return 0;
663         }
664
665         list_splice_tail(&ap_list, list);
666         return n_coloc;
667 }
668
669 static  void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
670                                         struct ieee80211_channel *chan,
671                                         bool add_to_6ghz)
672 {
673         int i;
674         u32 n_channels = request->n_channels;
675         struct cfg80211_scan_6ghz_params *params =
676                 &request->scan_6ghz_params[request->n_6ghz_params];
677
678         for (i = 0; i < n_channels; i++) {
679                 if (request->channels[i] == chan) {
680                         if (add_to_6ghz)
681                                 params->channel_idx = i;
682                         return;
683                 }
684         }
685
686         request->channels[n_channels] = chan;
687         if (add_to_6ghz)
688                 request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
689                         n_channels;
690
691         request->n_channels++;
692 }
693
694 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
695                                      struct cfg80211_scan_request *request)
696 {
697         int i;
698         u32 s_ssid;
699
700         for (i = 0; i < request->n_ssids; i++) {
701                 /* wildcard ssid in the scan request */
702                 if (!request->ssids[i].ssid_len)
703                         return true;
704
705                 if (ap->ssid_len &&
706                     ap->ssid_len == request->ssids[i].ssid_len) {
707                         if (!memcmp(request->ssids[i].ssid, ap->ssid,
708                                     ap->ssid_len))
709                                 return true;
710                 } else if (ap->short_ssid_valid) {
711                         s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
712                                            request->ssids[i].ssid_len);
713
714                         if (ap->short_ssid == s_ssid)
715                                 return true;
716                 }
717         }
718
719         return false;
720 }
721
722 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
723 {
724         u8 i;
725         struct cfg80211_colocated_ap *ap;
726         int n_channels, count = 0, err;
727         struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
728         LIST_HEAD(coloc_ap_list);
729         bool need_scan_psc = true;
730         const struct ieee80211_sband_iftype_data *iftd;
731
732         rdev_req->scan_6ghz = true;
733
734         if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
735                 return -EOPNOTSUPP;
736
737         iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
738                                                rdev_req->wdev->iftype);
739         if (!iftd || !iftd->he_cap.has_he)
740                 return -EOPNOTSUPP;
741
742         n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
743
744         if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
745                 struct cfg80211_internal_bss *intbss;
746
747                 spin_lock_bh(&rdev->bss_lock);
748                 list_for_each_entry(intbss, &rdev->bss_list, list) {
749                         struct cfg80211_bss *res = &intbss->pub;
750                         const struct cfg80211_bss_ies *ies;
751
752                         ies = rcu_access_pointer(res->ies);
753                         count += cfg80211_parse_colocated_ap(ies,
754                                                              &coloc_ap_list);
755                 }
756                 spin_unlock_bh(&rdev->bss_lock);
757         }
758
759         request = kzalloc(struct_size(request, channels, n_channels) +
760                           sizeof(*request->scan_6ghz_params) * count +
761                           sizeof(*request->ssids) * rdev_req->n_ssids,
762                           GFP_KERNEL);
763         if (!request) {
764                 cfg80211_free_coloc_ap_list(&coloc_ap_list);
765                 return -ENOMEM;
766         }
767
768         *request = *rdev_req;
769         request->n_channels = 0;
770         request->scan_6ghz_params =
771                 (void *)&request->channels[n_channels];
772
773         /*
774          * PSC channels should not be scanned in case of direct scan with 1 SSID
775          * and at least one of the reported co-located APs with same SSID
776          * indicating that all APs in the same ESS are co-located
777          */
778         if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
779                 list_for_each_entry(ap, &coloc_ap_list, list) {
780                         if (ap->colocated_ess &&
781                             cfg80211_find_ssid_match(ap, request)) {
782                                 need_scan_psc = false;
783                                 break;
784                         }
785                 }
786         }
787
788         /*
789          * add to the scan request the channels that need to be scanned
790          * regardless of the collocated APs (PSC channels or all channels
791          * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
792          */
793         for (i = 0; i < rdev_req->n_channels; i++) {
794                 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
795                     ((need_scan_psc &&
796                       cfg80211_channel_is_psc(rdev_req->channels[i])) ||
797                      !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
798                         cfg80211_scan_req_add_chan(request,
799                                                    rdev_req->channels[i],
800                                                    false);
801                 }
802         }
803
804         if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
805                 goto skip;
806
807         list_for_each_entry(ap, &coloc_ap_list, list) {
808                 bool found = false;
809                 struct cfg80211_scan_6ghz_params *scan_6ghz_params =
810                         &request->scan_6ghz_params[request->n_6ghz_params];
811                 struct ieee80211_channel *chan =
812                         ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
813
814                 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
815                         continue;
816
817                 for (i = 0; i < rdev_req->n_channels; i++) {
818                         if (rdev_req->channels[i] == chan)
819                                 found = true;
820                 }
821
822                 if (!found)
823                         continue;
824
825                 if (request->n_ssids > 0 &&
826                     !cfg80211_find_ssid_match(ap, request))
827                         continue;
828
829                 cfg80211_scan_req_add_chan(request, chan, true);
830                 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
831                 scan_6ghz_params->short_ssid = ap->short_ssid;
832                 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
833                 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
834
835                 /*
836                  * If a PSC channel is added to the scan and 'need_scan_psc' is
837                  * set to false, then all the APs that the scan logic is
838                  * interested with on the channel are collocated and thus there
839                  * is no need to perform the initial PSC channel listen.
840                  */
841                 if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
842                         scan_6ghz_params->psc_no_listen = true;
843
844                 request->n_6ghz_params++;
845         }
846
847 skip:
848         cfg80211_free_coloc_ap_list(&coloc_ap_list);
849
850         if (request->n_channels) {
851                 struct cfg80211_scan_request *old = rdev->int_scan_req;
852                 rdev->int_scan_req = request;
853
854                 /*
855                  * Add the ssids from the parent scan request to the new scan
856                  * request, so the driver would be able to use them in its
857                  * probe requests to discover hidden APs on PSC channels.
858                  */
859                 request->ssids = (void *)&request->channels[request->n_channels];
860                 request->n_ssids = rdev_req->n_ssids;
861                 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
862                        request->n_ssids);
863
864                 /*
865                  * If this scan follows a previous scan, save the scan start
866                  * info from the first part of the scan
867                  */
868                 if (old)
869                         rdev->int_scan_req->info = old->info;
870
871                 err = rdev_scan(rdev, request);
872                 if (err) {
873                         rdev->int_scan_req = old;
874                         kfree(request);
875                 } else {
876                         kfree(old);
877                 }
878
879                 return err;
880         }
881
882         kfree(request);
883         return -EINVAL;
884 }
885
886 int cfg80211_scan(struct cfg80211_registered_device *rdev)
887 {
888         struct cfg80211_scan_request *request;
889         struct cfg80211_scan_request *rdev_req = rdev->scan_req;
890         u32 n_channels = 0, idx, i;
891
892         if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
893                 return rdev_scan(rdev, rdev_req);
894
895         for (i = 0; i < rdev_req->n_channels; i++) {
896                 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
897                         n_channels++;
898         }
899
900         if (!n_channels)
901                 return cfg80211_scan_6ghz(rdev);
902
903         request = kzalloc(struct_size(request, channels, n_channels),
904                           GFP_KERNEL);
905         if (!request)
906                 return -ENOMEM;
907
908         *request = *rdev_req;
909         request->n_channels = n_channels;
910
911         for (i = idx = 0; i < rdev_req->n_channels; i++) {
912                 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
913                         request->channels[idx++] = rdev_req->channels[i];
914         }
915
916         rdev_req->scan_6ghz = false;
917         rdev->int_scan_req = request;
918         return rdev_scan(rdev, request);
919 }
920
921 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
922                            bool send_message)
923 {
924         struct cfg80211_scan_request *request, *rdev_req;
925         struct wireless_dev *wdev;
926         struct sk_buff *msg;
927 #ifdef CONFIG_CFG80211_WEXT
928         union iwreq_data wrqu;
929 #endif
930
931         lockdep_assert_held(&rdev->wiphy.mtx);
932
933         if (rdev->scan_msg) {
934                 nl80211_send_scan_msg(rdev, rdev->scan_msg);
935                 rdev->scan_msg = NULL;
936                 return;
937         }
938
939         rdev_req = rdev->scan_req;
940         if (!rdev_req)
941                 return;
942
943         wdev = rdev_req->wdev;
944         request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
945
946         if (wdev_running(wdev) &&
947             (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
948             !rdev_req->scan_6ghz && !request->info.aborted &&
949             !cfg80211_scan_6ghz(rdev))
950                 return;
951
952         /*
953          * This must be before sending the other events!
954          * Otherwise, wpa_supplicant gets completely confused with
955          * wext events.
956          */
957         if (wdev->netdev)
958                 cfg80211_sme_scan_done(wdev->netdev);
959
960         if (!request->info.aborted &&
961             request->flags & NL80211_SCAN_FLAG_FLUSH) {
962                 /* flush entries from previous scans */
963                 spin_lock_bh(&rdev->bss_lock);
964                 __cfg80211_bss_expire(rdev, request->scan_start);
965                 spin_unlock_bh(&rdev->bss_lock);
966         }
967
968         msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
969
970 #ifdef CONFIG_CFG80211_WEXT
971         if (wdev->netdev && !request->info.aborted) {
972                 memset(&wrqu, 0, sizeof(wrqu));
973
974                 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
975         }
976 #endif
977
978         if (wdev->netdev)
979                 dev_put(wdev->netdev);
980
981         kfree(rdev->int_scan_req);
982         rdev->int_scan_req = NULL;
983
984         kfree(rdev->scan_req);
985         rdev->scan_req = NULL;
986
987         if (!send_message)
988                 rdev->scan_msg = msg;
989         else
990                 nl80211_send_scan_msg(rdev, msg);
991 }
992
993 void __cfg80211_scan_done(struct work_struct *wk)
994 {
995         struct cfg80211_registered_device *rdev;
996
997         rdev = container_of(wk, struct cfg80211_registered_device,
998                             scan_done_wk);
999
1000         wiphy_lock(&rdev->wiphy);
1001         ___cfg80211_scan_done(rdev, true);
1002         wiphy_unlock(&rdev->wiphy);
1003 }
1004
1005 void cfg80211_scan_done(struct cfg80211_scan_request *request,
1006                         struct cfg80211_scan_info *info)
1007 {
1008         struct cfg80211_scan_info old_info = request->info;
1009
1010         trace_cfg80211_scan_done(request, info);
1011         WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1012                 request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1013
1014         request->info = *info;
1015
1016         /*
1017          * In case the scan is split, the scan_start_tsf and tsf_bssid should
1018          * be of the first part. In such a case old_info.scan_start_tsf should
1019          * be non zero.
1020          */
1021         if (request->scan_6ghz && old_info.scan_start_tsf) {
1022                 request->info.scan_start_tsf = old_info.scan_start_tsf;
1023                 memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1024                        sizeof(request->info.tsf_bssid));
1025         }
1026
1027         request->notified = true;
1028         queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1029 }
1030 EXPORT_SYMBOL(cfg80211_scan_done);
1031
1032 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1033                                  struct cfg80211_sched_scan_request *req)
1034 {
1035         lockdep_assert_held(&rdev->wiphy.mtx);
1036
1037         list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1038 }
1039
1040 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1041                                         struct cfg80211_sched_scan_request *req)
1042 {
1043         lockdep_assert_held(&rdev->wiphy.mtx);
1044
1045         list_del_rcu(&req->list);
1046         kfree_rcu(req, rcu_head);
1047 }
1048
1049 static struct cfg80211_sched_scan_request *
1050 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1051 {
1052         struct cfg80211_sched_scan_request *pos;
1053
1054         list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1055                                 lockdep_is_held(&rdev->wiphy.mtx)) {
1056                 if (pos->reqid == reqid)
1057                         return pos;
1058         }
1059         return NULL;
1060 }
1061
1062 /*
1063  * Determines if a scheduled scan request can be handled. When a legacy
1064  * scheduled scan is running no other scheduled scan is allowed regardless
1065  * whether the request is for legacy or multi-support scan. When a multi-support
1066  * scheduled scan is running a request for legacy scan is not allowed. In this
1067  * case a request for multi-support scan can be handled if resources are
1068  * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1069  */
1070 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1071                                      bool want_multi)
1072 {
1073         struct cfg80211_sched_scan_request *pos;
1074         int i = 0;
1075
1076         list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1077                 /* request id zero means legacy in progress */
1078                 if (!i && !pos->reqid)
1079                         return -EINPROGRESS;
1080                 i++;
1081         }
1082
1083         if (i) {
1084                 /* no legacy allowed when multi request(s) are active */
1085                 if (!want_multi)
1086                         return -EINPROGRESS;
1087
1088                 /* resource limit reached */
1089                 if (i == rdev->wiphy.max_sched_scan_reqs)
1090                         return -ENOSPC;
1091         }
1092         return 0;
1093 }
1094
1095 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1096 {
1097         struct cfg80211_registered_device *rdev;
1098         struct cfg80211_sched_scan_request *req, *tmp;
1099
1100         rdev = container_of(work, struct cfg80211_registered_device,
1101                            sched_scan_res_wk);
1102
1103         wiphy_lock(&rdev->wiphy);
1104         list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1105                 if (req->report_results) {
1106                         req->report_results = false;
1107                         if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1108                                 /* flush entries from previous scans */
1109                                 spin_lock_bh(&rdev->bss_lock);
1110                                 __cfg80211_bss_expire(rdev, req->scan_start);
1111                                 spin_unlock_bh(&rdev->bss_lock);
1112                                 req->scan_start = jiffies;
1113                         }
1114                         nl80211_send_sched_scan(req,
1115                                                 NL80211_CMD_SCHED_SCAN_RESULTS);
1116                 }
1117         }
1118         wiphy_unlock(&rdev->wiphy);
1119 }
1120
1121 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1122 {
1123         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1124         struct cfg80211_sched_scan_request *request;
1125
1126         trace_cfg80211_sched_scan_results(wiphy, reqid);
1127         /* ignore if we're not scanning */
1128
1129         rcu_read_lock();
1130         request = cfg80211_find_sched_scan_req(rdev, reqid);
1131         if (request) {
1132                 request->report_results = true;
1133                 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1134         }
1135         rcu_read_unlock();
1136 }
1137 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1138
1139 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1140 {
1141         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1142
1143         lockdep_assert_held(&wiphy->mtx);
1144
1145         trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1146
1147         __cfg80211_stop_sched_scan(rdev, reqid, true);
1148 }
1149 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1150
1151 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1152 {
1153         wiphy_lock(wiphy);
1154         cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1155         wiphy_unlock(wiphy);
1156 }
1157 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1158
1159 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1160                                  struct cfg80211_sched_scan_request *req,
1161                                  bool driver_initiated)
1162 {
1163         lockdep_assert_held(&rdev->wiphy.mtx);
1164
1165         if (!driver_initiated) {
1166                 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1167                 if (err)
1168                         return err;
1169         }
1170
1171         nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1172
1173         cfg80211_del_sched_scan_req(rdev, req);
1174
1175         return 0;
1176 }
1177
1178 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1179                                u64 reqid, bool driver_initiated)
1180 {
1181         struct cfg80211_sched_scan_request *sched_scan_req;
1182
1183         lockdep_assert_held(&rdev->wiphy.mtx);
1184
1185         sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1186         if (!sched_scan_req)
1187                 return -ENOENT;
1188
1189         return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1190                                             driver_initiated);
1191 }
1192
1193 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1194                       unsigned long age_secs)
1195 {
1196         struct cfg80211_internal_bss *bss;
1197         unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1198
1199         spin_lock_bh(&rdev->bss_lock);
1200         list_for_each_entry(bss, &rdev->bss_list, list)
1201                 bss->ts -= age_jiffies;
1202         spin_unlock_bh(&rdev->bss_lock);
1203 }
1204
1205 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1206 {
1207         __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1208 }
1209
1210 void cfg80211_bss_flush(struct wiphy *wiphy)
1211 {
1212         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1213
1214         spin_lock_bh(&rdev->bss_lock);
1215         __cfg80211_bss_expire(rdev, jiffies);
1216         spin_unlock_bh(&rdev->bss_lock);
1217 }
1218 EXPORT_SYMBOL(cfg80211_bss_flush);
1219
1220 const struct element *
1221 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1222                          const u8 *match, unsigned int match_len,
1223                          unsigned int match_offset)
1224 {
1225         const struct element *elem;
1226
1227         for_each_element_id(elem, eid, ies, len) {
1228                 if (elem->datalen >= match_offset + match_len &&
1229                     !memcmp(elem->data + match_offset, match, match_len))
1230                         return elem;
1231         }
1232
1233         return NULL;
1234 }
1235 EXPORT_SYMBOL(cfg80211_find_elem_match);
1236
1237 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1238                                                 const u8 *ies,
1239                                                 unsigned int len)
1240 {
1241         const struct element *elem;
1242         u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1243         int match_len = (oui_type < 0) ? 3 : sizeof(match);
1244
1245         if (WARN_ON(oui_type > 0xff))
1246                 return NULL;
1247
1248         elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1249                                         match, match_len, 0);
1250
1251         if (!elem || elem->datalen < 4)
1252                 return NULL;
1253
1254         return elem;
1255 }
1256 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1257
1258 /**
1259  * enum bss_compare_mode - BSS compare mode
1260  * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1261  * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1262  * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1263  */
1264 enum bss_compare_mode {
1265         BSS_CMP_REGULAR,
1266         BSS_CMP_HIDE_ZLEN,
1267         BSS_CMP_HIDE_NUL,
1268 };
1269
1270 static int cmp_bss(struct cfg80211_bss *a,
1271                    struct cfg80211_bss *b,
1272                    enum bss_compare_mode mode)
1273 {
1274         const struct cfg80211_bss_ies *a_ies, *b_ies;
1275         const u8 *ie1 = NULL;
1276         const u8 *ie2 = NULL;
1277         int i, r;
1278
1279         if (a->channel != b->channel)
1280                 return b->channel->center_freq - a->channel->center_freq;
1281
1282         a_ies = rcu_access_pointer(a->ies);
1283         if (!a_ies)
1284                 return -1;
1285         b_ies = rcu_access_pointer(b->ies);
1286         if (!b_ies)
1287                 return 1;
1288
1289         if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1290                 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1291                                        a_ies->data, a_ies->len);
1292         if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1293                 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1294                                        b_ies->data, b_ies->len);
1295         if (ie1 && ie2) {
1296                 int mesh_id_cmp;
1297
1298                 if (ie1[1] == ie2[1])
1299                         mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1300                 else
1301                         mesh_id_cmp = ie2[1] - ie1[1];
1302
1303                 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1304                                        a_ies->data, a_ies->len);
1305                 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1306                                        b_ies->data, b_ies->len);
1307                 if (ie1 && ie2) {
1308                         if (mesh_id_cmp)
1309                                 return mesh_id_cmp;
1310                         if (ie1[1] != ie2[1])
1311                                 return ie2[1] - ie1[1];
1312                         return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1313                 }
1314         }
1315
1316         r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1317         if (r)
1318                 return r;
1319
1320         ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1321         ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1322
1323         if (!ie1 && !ie2)
1324                 return 0;
1325
1326         /*
1327          * Note that with "hide_ssid", the function returns a match if
1328          * the already-present BSS ("b") is a hidden SSID beacon for
1329          * the new BSS ("a").
1330          */
1331
1332         /* sort missing IE before (left of) present IE */
1333         if (!ie1)
1334                 return -1;
1335         if (!ie2)
1336                 return 1;
1337
1338         switch (mode) {
1339         case BSS_CMP_HIDE_ZLEN:
1340                 /*
1341                  * In ZLEN mode we assume the BSS entry we're
1342                  * looking for has a zero-length SSID. So if
1343                  * the one we're looking at right now has that,
1344                  * return 0. Otherwise, return the difference
1345                  * in length, but since we're looking for the
1346                  * 0-length it's really equivalent to returning
1347                  * the length of the one we're looking at.
1348                  *
1349                  * No content comparison is needed as we assume
1350                  * the content length is zero.
1351                  */
1352                 return ie2[1];
1353         case BSS_CMP_REGULAR:
1354         default:
1355                 /* sort by length first, then by contents */
1356                 if (ie1[1] != ie2[1])
1357                         return ie2[1] - ie1[1];
1358                 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1359         case BSS_CMP_HIDE_NUL:
1360                 if (ie1[1] != ie2[1])
1361                         return ie2[1] - ie1[1];
1362                 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1363                 for (i = 0; i < ie2[1]; i++)
1364                         if (ie2[i + 2])
1365                                 return -1;
1366                 return 0;
1367         }
1368 }
1369
1370 static bool cfg80211_bss_type_match(u16 capability,
1371                                     enum nl80211_band band,
1372                                     enum ieee80211_bss_type bss_type)
1373 {
1374         bool ret = true;
1375         u16 mask, val;
1376
1377         if (bss_type == IEEE80211_BSS_TYPE_ANY)
1378                 return ret;
1379
1380         if (band == NL80211_BAND_60GHZ) {
1381                 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1382                 switch (bss_type) {
1383                 case IEEE80211_BSS_TYPE_ESS:
1384                         val = WLAN_CAPABILITY_DMG_TYPE_AP;
1385                         break;
1386                 case IEEE80211_BSS_TYPE_PBSS:
1387                         val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1388                         break;
1389                 case IEEE80211_BSS_TYPE_IBSS:
1390                         val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1391                         break;
1392                 default:
1393                         return false;
1394                 }
1395         } else {
1396                 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1397                 switch (bss_type) {
1398                 case IEEE80211_BSS_TYPE_ESS:
1399                         val = WLAN_CAPABILITY_ESS;
1400                         break;
1401                 case IEEE80211_BSS_TYPE_IBSS:
1402                         val = WLAN_CAPABILITY_IBSS;
1403                         break;
1404                 case IEEE80211_BSS_TYPE_MBSS:
1405                         val = 0;
1406                         break;
1407                 default:
1408                         return false;
1409                 }
1410         }
1411
1412         ret = ((capability & mask) == val);
1413         return ret;
1414 }
1415
1416 /* Returned bss is reference counted and must be cleaned up appropriately. */
1417 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
1418                                       struct ieee80211_channel *channel,
1419                                       const u8 *bssid,
1420                                       const u8 *ssid, size_t ssid_len,
1421                                       enum ieee80211_bss_type bss_type,
1422                                       enum ieee80211_privacy privacy)
1423 {
1424         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1425         struct cfg80211_internal_bss *bss, *res = NULL;
1426         unsigned long now = jiffies;
1427         int bss_privacy;
1428
1429         trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1430                                privacy);
1431
1432         spin_lock_bh(&rdev->bss_lock);
1433
1434         list_for_each_entry(bss, &rdev->bss_list, list) {
1435                 if (!cfg80211_bss_type_match(bss->pub.capability,
1436                                              bss->pub.channel->band, bss_type))
1437                         continue;
1438
1439                 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1440                 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1441                     (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1442                         continue;
1443                 if (channel && bss->pub.channel != channel)
1444                         continue;
1445                 if (!is_valid_ether_addr(bss->pub.bssid))
1446                         continue;
1447                 /* Don't get expired BSS structs */
1448                 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1449                     !atomic_read(&bss->hold))
1450                         continue;
1451                 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1452                         res = bss;
1453                         bss_ref_get(rdev, res);
1454                         break;
1455                 }
1456         }
1457
1458         spin_unlock_bh(&rdev->bss_lock);
1459         if (!res)
1460                 return NULL;
1461         trace_cfg80211_return_bss(&res->pub);
1462         return &res->pub;
1463 }
1464 EXPORT_SYMBOL(cfg80211_get_bss);
1465
1466 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1467                           struct cfg80211_internal_bss *bss)
1468 {
1469         struct rb_node **p = &rdev->bss_tree.rb_node;
1470         struct rb_node *parent = NULL;
1471         struct cfg80211_internal_bss *tbss;
1472         int cmp;
1473
1474         while (*p) {
1475                 parent = *p;
1476                 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1477
1478                 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1479
1480                 if (WARN_ON(!cmp)) {
1481                         /* will sort of leak this BSS */
1482                         return;
1483                 }
1484
1485                 if (cmp < 0)
1486                         p = &(*p)->rb_left;
1487                 else
1488                         p = &(*p)->rb_right;
1489         }
1490
1491         rb_link_node(&bss->rbn, parent, p);
1492         rb_insert_color(&bss->rbn, &rdev->bss_tree);
1493 }
1494
1495 static struct cfg80211_internal_bss *
1496 rb_find_bss(struct cfg80211_registered_device *rdev,
1497             struct cfg80211_internal_bss *res,
1498             enum bss_compare_mode mode)
1499 {
1500         struct rb_node *n = rdev->bss_tree.rb_node;
1501         struct cfg80211_internal_bss *bss;
1502         int r;
1503
1504         while (n) {
1505                 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1506                 r = cmp_bss(&res->pub, &bss->pub, mode);
1507
1508                 if (r == 0)
1509                         return bss;
1510                 else if (r < 0)
1511                         n = n->rb_left;
1512                 else
1513                         n = n->rb_right;
1514         }
1515
1516         return NULL;
1517 }
1518
1519 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1520                                    struct cfg80211_internal_bss *new)
1521 {
1522         const struct cfg80211_bss_ies *ies;
1523         struct cfg80211_internal_bss *bss;
1524         const u8 *ie;
1525         int i, ssidlen;
1526         u8 fold = 0;
1527         u32 n_entries = 0;
1528
1529         ies = rcu_access_pointer(new->pub.beacon_ies);
1530         if (WARN_ON(!ies))
1531                 return false;
1532
1533         ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1534         if (!ie) {
1535                 /* nothing to do */
1536                 return true;
1537         }
1538
1539         ssidlen = ie[1];
1540         for (i = 0; i < ssidlen; i++)
1541                 fold |= ie[2 + i];
1542
1543         if (fold) {
1544                 /* not a hidden SSID */
1545                 return true;
1546         }
1547
1548         /* This is the bad part ... */
1549
1550         list_for_each_entry(bss, &rdev->bss_list, list) {
1551                 /*
1552                  * we're iterating all the entries anyway, so take the
1553                  * opportunity to validate the list length accounting
1554                  */
1555                 n_entries++;
1556
1557                 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1558                         continue;
1559                 if (bss->pub.channel != new->pub.channel)
1560                         continue;
1561                 if (bss->pub.scan_width != new->pub.scan_width)
1562                         continue;
1563                 if (rcu_access_pointer(bss->pub.beacon_ies))
1564                         continue;
1565                 ies = rcu_access_pointer(bss->pub.ies);
1566                 if (!ies)
1567                         continue;
1568                 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1569                 if (!ie)
1570                         continue;
1571                 if (ssidlen && ie[1] != ssidlen)
1572                         continue;
1573                 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1574                         continue;
1575                 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1576                         list_del(&bss->hidden_list);
1577                 /* combine them */
1578                 list_add(&bss->hidden_list, &new->hidden_list);
1579                 bss->pub.hidden_beacon_bss = &new->pub;
1580                 new->refcount += bss->refcount;
1581                 rcu_assign_pointer(bss->pub.beacon_ies,
1582                                    new->pub.beacon_ies);
1583         }
1584
1585         WARN_ONCE(n_entries != rdev->bss_entries,
1586                   "rdev bss entries[%d]/list[len:%d] corruption\n",
1587                   rdev->bss_entries, n_entries);
1588
1589         return true;
1590 }
1591
1592 struct cfg80211_non_tx_bss {
1593         struct cfg80211_bss *tx_bss;
1594         u8 max_bssid_indicator;
1595         u8 bssid_index;
1596 };
1597
1598 static bool
1599 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1600                           struct cfg80211_internal_bss *known,
1601                           struct cfg80211_internal_bss *new,
1602                           bool signal_valid)
1603 {
1604         lockdep_assert_held(&rdev->bss_lock);
1605
1606         /* Update IEs */
1607         if (rcu_access_pointer(new->pub.proberesp_ies)) {
1608                 const struct cfg80211_bss_ies *old;
1609
1610                 old = rcu_access_pointer(known->pub.proberesp_ies);
1611
1612                 rcu_assign_pointer(known->pub.proberesp_ies,
1613                                    new->pub.proberesp_ies);
1614                 /* Override possible earlier Beacon frame IEs */
1615                 rcu_assign_pointer(known->pub.ies,
1616                                    new->pub.proberesp_ies);
1617                 if (old)
1618                         kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1619         } else if (rcu_access_pointer(new->pub.beacon_ies)) {
1620                 const struct cfg80211_bss_ies *old;
1621                 struct cfg80211_internal_bss *bss;
1622
1623                 if (known->pub.hidden_beacon_bss &&
1624                     !list_empty(&known->hidden_list)) {
1625                         const struct cfg80211_bss_ies *f;
1626
1627                         /* The known BSS struct is one of the probe
1628                          * response members of a group, but we're
1629                          * receiving a beacon (beacon_ies in the new
1630                          * bss is used). This can only mean that the
1631                          * AP changed its beacon from not having an
1632                          * SSID to showing it, which is confusing so
1633                          * drop this information.
1634                          */
1635
1636                         f = rcu_access_pointer(new->pub.beacon_ies);
1637                         kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1638                         return false;
1639                 }
1640
1641                 old = rcu_access_pointer(known->pub.beacon_ies);
1642
1643                 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1644
1645                 /* Override IEs if they were from a beacon before */
1646                 if (old == rcu_access_pointer(known->pub.ies))
1647                         rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1648
1649                 /* Assign beacon IEs to all sub entries */
1650                 list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1651                         const struct cfg80211_bss_ies *ies;
1652
1653                         ies = rcu_access_pointer(bss->pub.beacon_ies);
1654                         WARN_ON(ies != old);
1655
1656                         rcu_assign_pointer(bss->pub.beacon_ies,
1657                                            new->pub.beacon_ies);
1658                 }
1659
1660                 if (old)
1661                         kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1662         }
1663
1664         known->pub.beacon_interval = new->pub.beacon_interval;
1665
1666         /* don't update the signal if beacon was heard on
1667          * adjacent channel.
1668          */
1669         if (signal_valid)
1670                 known->pub.signal = new->pub.signal;
1671         known->pub.capability = new->pub.capability;
1672         known->ts = new->ts;
1673         known->ts_boottime = new->ts_boottime;
1674         known->parent_tsf = new->parent_tsf;
1675         known->pub.chains = new->pub.chains;
1676         memcpy(known->pub.chain_signal, new->pub.chain_signal,
1677                IEEE80211_MAX_CHAINS);
1678         ether_addr_copy(known->parent_bssid, new->parent_bssid);
1679         known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1680         known->pub.bssid_index = new->pub.bssid_index;
1681
1682         return true;
1683 }
1684
1685 /* Returned bss is reference counted and must be cleaned up appropriately. */
1686 struct cfg80211_internal_bss *
1687 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1688                     struct cfg80211_internal_bss *tmp,
1689                     bool signal_valid, unsigned long ts)
1690 {
1691         struct cfg80211_internal_bss *found = NULL;
1692
1693         if (WARN_ON(!tmp->pub.channel))
1694                 return NULL;
1695
1696         tmp->ts = ts;
1697
1698         spin_lock_bh(&rdev->bss_lock);
1699
1700         if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1701                 spin_unlock_bh(&rdev->bss_lock);
1702                 return NULL;
1703         }
1704
1705         found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1706
1707         if (found) {
1708                 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1709                         goto drop;
1710         } else {
1711                 struct cfg80211_internal_bss *new;
1712                 struct cfg80211_internal_bss *hidden;
1713                 struct cfg80211_bss_ies *ies;
1714
1715                 /*
1716                  * create a copy -- the "res" variable that is passed in
1717                  * is allocated on the stack since it's not needed in the
1718                  * more common case of an update
1719                  */
1720                 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1721                               GFP_ATOMIC);
1722                 if (!new) {
1723                         ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1724                         if (ies)
1725                                 kfree_rcu(ies, rcu_head);
1726                         ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1727                         if (ies)
1728                                 kfree_rcu(ies, rcu_head);
1729                         goto drop;
1730                 }
1731                 memcpy(new, tmp, sizeof(*new));
1732                 new->refcount = 1;
1733                 INIT_LIST_HEAD(&new->hidden_list);
1734                 INIT_LIST_HEAD(&new->pub.nontrans_list);
1735
1736                 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1737                         hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1738                         if (!hidden)
1739                                 hidden = rb_find_bss(rdev, tmp,
1740                                                      BSS_CMP_HIDE_NUL);
1741                         if (hidden) {
1742                                 new->pub.hidden_beacon_bss = &hidden->pub;
1743                                 list_add(&new->hidden_list,
1744                                          &hidden->hidden_list);
1745                                 hidden->refcount++;
1746                                 rcu_assign_pointer(new->pub.beacon_ies,
1747                                                    hidden->pub.beacon_ies);
1748                         }
1749                 } else {
1750                         /*
1751                          * Ok so we found a beacon, and don't have an entry. If
1752                          * it's a beacon with hidden SSID, we might be in for an
1753                          * expensive search for any probe responses that should
1754                          * be grouped with this beacon for updates ...
1755                          */
1756                         if (!cfg80211_combine_bsses(rdev, new)) {
1757                                 kfree(new);
1758                                 goto drop;
1759                         }
1760                 }
1761
1762                 if (rdev->bss_entries >= bss_entries_limit &&
1763                     !cfg80211_bss_expire_oldest(rdev)) {
1764                         if (!list_empty(&new->hidden_list))
1765                                 list_del(&new->hidden_list);
1766                         kfree(new);
1767                         goto drop;
1768                 }
1769
1770                 /* This must be before the call to bss_ref_get */
1771                 if (tmp->pub.transmitted_bss) {
1772                         struct cfg80211_internal_bss *pbss =
1773                                 container_of(tmp->pub.transmitted_bss,
1774                                              struct cfg80211_internal_bss,
1775                                              pub);
1776
1777                         new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1778                         bss_ref_get(rdev, pbss);
1779                 }
1780
1781                 list_add_tail(&new->list, &rdev->bss_list);
1782                 rdev->bss_entries++;
1783                 rb_insert_bss(rdev, new);
1784                 found = new;
1785         }
1786
1787         rdev->bss_generation++;
1788         bss_ref_get(rdev, found);
1789         spin_unlock_bh(&rdev->bss_lock);
1790
1791         return found;
1792  drop:
1793         spin_unlock_bh(&rdev->bss_lock);
1794         return NULL;
1795 }
1796
1797 /*
1798  * Update RX channel information based on the available frame payload
1799  * information. This is mainly for the 2.4 GHz band where frames can be received
1800  * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1801  * element to indicate the current (transmitting) channel, but this might also
1802  * be needed on other bands if RX frequency does not match with the actual
1803  * operating channel of a BSS.
1804  */
1805 static struct ieee80211_channel *
1806 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1807                          struct ieee80211_channel *channel,
1808                          enum nl80211_bss_scan_width scan_width)
1809 {
1810         const u8 *tmp;
1811         u32 freq;
1812         int channel_number = -1;
1813         struct ieee80211_channel *alt_channel;
1814
1815         if (channel->band == NL80211_BAND_S1GHZ) {
1816                 tmp = cfg80211_find_ie(WLAN_EID_S1G_OPERATION, ie, ielen);
1817                 if (tmp && tmp[1] >= sizeof(struct ieee80211_s1g_oper_ie)) {
1818                         struct ieee80211_s1g_oper_ie *s1gop = (void *)(tmp + 2);
1819
1820                         channel_number = s1gop->primary_ch;
1821                 }
1822         } else {
1823                 tmp = cfg80211_find_ie(WLAN_EID_DS_PARAMS, ie, ielen);
1824                 if (tmp && tmp[1] == 1) {
1825                         channel_number = tmp[2];
1826                 } else {
1827                         tmp = cfg80211_find_ie(WLAN_EID_HT_OPERATION, ie, ielen);
1828                         if (tmp && tmp[1] >= sizeof(struct ieee80211_ht_operation)) {
1829                                 struct ieee80211_ht_operation *htop = (void *)(tmp + 2);
1830
1831                                 channel_number = htop->primary_chan;
1832                         }
1833                 }
1834         }
1835
1836         if (channel_number < 0) {
1837                 /* No channel information in frame payload */
1838                 return channel;
1839         }
1840
1841         freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
1842         alt_channel = ieee80211_get_channel_khz(wiphy, freq);
1843         if (!alt_channel) {
1844                 if (channel->band == NL80211_BAND_2GHZ) {
1845                         /*
1846                          * Better not allow unexpected channels when that could
1847                          * be going beyond the 1-11 range (e.g., discovering
1848                          * BSS on channel 12 when radio is configured for
1849                          * channel 11.
1850                          */
1851                         return NULL;
1852                 }
1853
1854                 /* No match for the payload channel number - ignore it */
1855                 return channel;
1856         }
1857
1858         if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1859             scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1860                 /*
1861                  * Ignore channel number in 5 and 10 MHz channels where there
1862                  * may not be an n:1 or 1:n mapping between frequencies and
1863                  * channel numbers.
1864                  */
1865                 return channel;
1866         }
1867
1868         /*
1869          * Use the channel determined through the payload channel number
1870          * instead of the RX channel reported by the driver.
1871          */
1872         if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1873                 return NULL;
1874         return alt_channel;
1875 }
1876
1877 /* Returned bss is reference counted and must be cleaned up appropriately. */
1878 static struct cfg80211_bss *
1879 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
1880                                 struct cfg80211_inform_bss *data,
1881                                 enum cfg80211_bss_frame_type ftype,
1882                                 const u8 *bssid, u64 tsf, u16 capability,
1883                                 u16 beacon_interval, const u8 *ie, size_t ielen,
1884                                 struct cfg80211_non_tx_bss *non_tx_data,
1885                                 gfp_t gfp)
1886 {
1887         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1888         struct cfg80211_bss_ies *ies;
1889         struct ieee80211_channel *channel;
1890         struct cfg80211_internal_bss tmp = {}, *res;
1891         int bss_type;
1892         bool signal_valid;
1893         unsigned long ts;
1894
1895         if (WARN_ON(!wiphy))
1896                 return NULL;
1897
1898         if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1899                     (data->signal < 0 || data->signal > 100)))
1900                 return NULL;
1901
1902         channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan,
1903                                            data->scan_width);
1904         if (!channel)
1905                 return NULL;
1906
1907         memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
1908         tmp.pub.channel = channel;
1909         tmp.pub.scan_width = data->scan_width;
1910         tmp.pub.signal = data->signal;
1911         tmp.pub.beacon_interval = beacon_interval;
1912         tmp.pub.capability = capability;
1913         tmp.ts_boottime = data->boottime_ns;
1914         tmp.parent_tsf = data->parent_tsf;
1915         ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
1916
1917         if (non_tx_data) {
1918                 tmp.pub.transmitted_bss = non_tx_data->tx_bss;
1919                 ts = bss_from_pub(non_tx_data->tx_bss)->ts;
1920                 tmp.pub.bssid_index = non_tx_data->bssid_index;
1921                 tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator;
1922         } else {
1923                 ts = jiffies;
1924         }
1925
1926         /*
1927          * If we do not know here whether the IEs are from a Beacon or Probe
1928          * Response frame, we need to pick one of the options and only use it
1929          * with the driver that does not provide the full Beacon/Probe Response
1930          * frame. Use Beacon frame pointer to avoid indicating that this should
1931          * override the IEs pointer should we have received an earlier
1932          * indication of Probe Response data.
1933          */
1934         ies = kzalloc(sizeof(*ies) + ielen, gfp);
1935         if (!ies)
1936                 return NULL;
1937         ies->len = ielen;
1938         ies->tsf = tsf;
1939         ies->from_beacon = false;
1940         memcpy(ies->data, ie, ielen);
1941
1942         switch (ftype) {
1943         case CFG80211_BSS_FTYPE_BEACON:
1944                 ies->from_beacon = true;
1945                 fallthrough;
1946         case CFG80211_BSS_FTYPE_UNKNOWN:
1947                 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1948                 break;
1949         case CFG80211_BSS_FTYPE_PRESP:
1950                 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1951                 break;
1952         }
1953         rcu_assign_pointer(tmp.pub.ies, ies);
1954
1955         signal_valid = data->chan == channel;
1956         res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts);
1957         if (!res)
1958                 return NULL;
1959
1960         if (channel->band == NL80211_BAND_60GHZ) {
1961                 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1962                 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1963                     bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1964                         regulatory_hint_found_beacon(wiphy, channel, gfp);
1965         } else {
1966                 if (res->pub.capability & WLAN_CAPABILITY_ESS)
1967                         regulatory_hint_found_beacon(wiphy, channel, gfp);
1968         }
1969
1970         if (non_tx_data) {
1971                 /* this is a nontransmitting bss, we need to add it to
1972                  * transmitting bss' list if it is not there
1973                  */
1974                 if (cfg80211_add_nontrans_list(non_tx_data->tx_bss,
1975                                                &res->pub)) {
1976                         if (__cfg80211_unlink_bss(rdev, res))
1977                                 rdev->bss_generation++;
1978                 }
1979         }
1980
1981         trace_cfg80211_return_bss(&res->pub);
1982         /* cfg80211_bss_update gives us a referenced result */
1983         return &res->pub;
1984 }
1985
1986 static const struct element
1987 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
1988                                    const struct element *mbssid_elem,
1989                                    const struct element *sub_elem)
1990 {
1991         const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
1992         const struct element *next_mbssid;
1993         const struct element *next_sub;
1994
1995         next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
1996                                          mbssid_end,
1997                                          ielen - (mbssid_end - ie));
1998
1999         /*
2000          * If it is not the last subelement in current MBSSID IE or there isn't
2001          * a next MBSSID IE - profile is complete.
2002         */
2003         if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2004             !next_mbssid)
2005                 return NULL;
2006
2007         /* For any length error, just return NULL */
2008
2009         if (next_mbssid->datalen < 4)
2010                 return NULL;
2011
2012         next_sub = (void *)&next_mbssid->data[1];
2013
2014         if (next_mbssid->data + next_mbssid->datalen <
2015             next_sub->data + next_sub->datalen)
2016                 return NULL;
2017
2018         if (next_sub->id != 0 || next_sub->datalen < 2)
2019                 return NULL;
2020
2021         /*
2022          * Check if the first element in the next sub element is a start
2023          * of a new profile
2024          */
2025         return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2026                NULL : next_mbssid;
2027 }
2028
2029 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2030                               const struct element *mbssid_elem,
2031                               const struct element *sub_elem,
2032                               u8 *merged_ie, size_t max_copy_len)
2033 {
2034         size_t copied_len = sub_elem->datalen;
2035         const struct element *next_mbssid;
2036
2037         if (sub_elem->datalen > max_copy_len)
2038                 return 0;
2039
2040         memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2041
2042         while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2043                                                                 mbssid_elem,
2044                                                                 sub_elem))) {
2045                 const struct element *next_sub = (void *)&next_mbssid->data[1];
2046
2047                 if (copied_len + next_sub->datalen > max_copy_len)
2048                         break;
2049                 memcpy(merged_ie + copied_len, next_sub->data,
2050                        next_sub->datalen);
2051                 copied_len += next_sub->datalen;
2052         }
2053
2054         return copied_len;
2055 }
2056 EXPORT_SYMBOL(cfg80211_merge_profile);
2057
2058 static void cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2059                                        struct cfg80211_inform_bss *data,
2060                                        enum cfg80211_bss_frame_type ftype,
2061                                        const u8 *bssid, u64 tsf,
2062                                        u16 beacon_interval, const u8 *ie,
2063                                        size_t ielen,
2064                                        struct cfg80211_non_tx_bss *non_tx_data,
2065                                        gfp_t gfp)
2066 {
2067         const u8 *mbssid_index_ie;
2068         const struct element *elem, *sub;
2069         size_t new_ie_len;
2070         u8 new_bssid[ETH_ALEN];
2071         u8 *new_ie, *profile;
2072         u64 seen_indices = 0;
2073         u16 capability;
2074         struct cfg80211_bss *bss;
2075
2076         if (!non_tx_data)
2077                 return;
2078         if (!cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2079                 return;
2080         if (!wiphy->support_mbssid)
2081                 return;
2082         if (wiphy->support_only_he_mbssid &&
2083             !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2084                 return;
2085
2086         new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2087         if (!new_ie)
2088                 return;
2089
2090         profile = kmalloc(ielen, gfp);
2091         if (!profile)
2092                 goto out;
2093
2094         for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) {
2095                 if (elem->datalen < 4)
2096                         continue;
2097                 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2098                         u8 profile_len;
2099
2100                         if (sub->id != 0 || sub->datalen < 4) {
2101                                 /* not a valid BSS profile */
2102                                 continue;
2103                         }
2104
2105                         if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2106                             sub->data[1] != 2) {
2107                                 /* The first element within the Nontransmitted
2108                                  * BSSID Profile is not the Nontransmitted
2109                                  * BSSID Capability element.
2110                                  */
2111                                 continue;
2112                         }
2113
2114                         memset(profile, 0, ielen);
2115                         profile_len = cfg80211_merge_profile(ie, ielen,
2116                                                              elem,
2117                                                              sub,
2118                                                              profile,
2119                                                              ielen);
2120
2121                         /* found a Nontransmitted BSSID Profile */
2122                         mbssid_index_ie = cfg80211_find_ie
2123                                 (WLAN_EID_MULTI_BSSID_IDX,
2124                                  profile, profile_len);
2125                         if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2126                             mbssid_index_ie[2] == 0 ||
2127                             mbssid_index_ie[2] > 46) {
2128                                 /* No valid Multiple BSSID-Index element */
2129                                 continue;
2130                         }
2131
2132                         if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2133                                 /* We don't support legacy split of a profile */
2134                                 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2135                                                     mbssid_index_ie[2]);
2136
2137                         seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2138
2139                         non_tx_data->bssid_index = mbssid_index_ie[2];
2140                         non_tx_data->max_bssid_indicator = elem->data[0];
2141
2142                         cfg80211_gen_new_bssid(bssid,
2143                                                non_tx_data->max_bssid_indicator,
2144                                                non_tx_data->bssid_index,
2145                                                new_bssid);
2146                         memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2147                         new_ie_len = cfg80211_gen_new_ie(ie, ielen,
2148                                                          profile,
2149                                                          profile_len, new_ie,
2150                                                          gfp);
2151                         if (!new_ie_len)
2152                                 continue;
2153
2154                         capability = get_unaligned_le16(profile + 2);
2155                         bss = cfg80211_inform_single_bss_data(wiphy, data,
2156                                                               ftype,
2157                                                               new_bssid, tsf,
2158                                                               capability,
2159                                                               beacon_interval,
2160                                                               new_ie,
2161                                                               new_ie_len,
2162                                                               non_tx_data,
2163                                                               gfp);
2164                         if (!bss)
2165                                 break;
2166                         cfg80211_put_bss(wiphy, bss);
2167                 }
2168         }
2169
2170 out:
2171         kfree(new_ie);
2172         kfree(profile);
2173 }
2174
2175 struct cfg80211_bss *
2176 cfg80211_inform_bss_data(struct wiphy *wiphy,
2177                          struct cfg80211_inform_bss *data,
2178                          enum cfg80211_bss_frame_type ftype,
2179                          const u8 *bssid, u64 tsf, u16 capability,
2180                          u16 beacon_interval, const u8 *ie, size_t ielen,
2181                          gfp_t gfp)
2182 {
2183         struct cfg80211_bss *res;
2184         struct cfg80211_non_tx_bss non_tx_data;
2185
2186         res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf,
2187                                               capability, beacon_interval, ie,
2188                                               ielen, NULL, gfp);
2189         if (!res)
2190                 return NULL;
2191         non_tx_data.tx_bss = res;
2192         cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf,
2193                                    beacon_interval, ie, ielen, &non_tx_data,
2194                                    gfp);
2195         return res;
2196 }
2197 EXPORT_SYMBOL(cfg80211_inform_bss_data);
2198
2199 static void
2200 cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy,
2201                                  struct cfg80211_inform_bss *data,
2202                                  struct ieee80211_mgmt *mgmt, size_t len,
2203                                  struct cfg80211_non_tx_bss *non_tx_data,
2204                                  gfp_t gfp)
2205 {
2206         enum cfg80211_bss_frame_type ftype;
2207         const u8 *ie = mgmt->u.probe_resp.variable;
2208         size_t ielen = len - offsetof(struct ieee80211_mgmt,
2209                                       u.probe_resp.variable);
2210
2211         ftype = ieee80211_is_beacon(mgmt->frame_control) ?
2212                 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
2213
2214         cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid,
2215                                    le64_to_cpu(mgmt->u.probe_resp.timestamp),
2216                                    le16_to_cpu(mgmt->u.probe_resp.beacon_int),
2217                                    ie, ielen, non_tx_data, gfp);
2218 }
2219
2220 static void
2221 cfg80211_update_notlisted_nontrans(struct wiphy *wiphy,
2222                                    struct cfg80211_bss *nontrans_bss,
2223                                    struct ieee80211_mgmt *mgmt, size_t len)
2224 {
2225         u8 *ie, *new_ie, *pos;
2226         const u8 *nontrans_ssid, *trans_ssid, *mbssid;
2227         size_t ielen = len - offsetof(struct ieee80211_mgmt,
2228                                       u.probe_resp.variable);
2229         size_t new_ie_len;
2230         struct cfg80211_bss_ies *new_ies;
2231         const struct cfg80211_bss_ies *old;
2232         u8 cpy_len;
2233
2234         lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock);
2235
2236         ie = mgmt->u.probe_resp.variable;
2237
2238         new_ie_len = ielen;
2239         trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
2240         if (!trans_ssid)
2241                 return;
2242         new_ie_len -= trans_ssid[1];
2243         mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen);
2244         /*
2245          * It's not valid to have the MBSSID element before SSID
2246          * ignore if that happens - the code below assumes it is
2247          * after (while copying things inbetween).
2248          */
2249         if (!mbssid || mbssid < trans_ssid)
2250                 return;
2251         new_ie_len -= mbssid[1];
2252
2253         nontrans_ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
2254         if (!nontrans_ssid)
2255                 return;
2256
2257         new_ie_len += nontrans_ssid[1];
2258
2259         /* generate new ie for nontrans BSS
2260          * 1. replace SSID with nontrans BSS' SSID
2261          * 2. skip MBSSID IE
2262          */
2263         new_ie = kzalloc(new_ie_len, GFP_ATOMIC);
2264         if (!new_ie)
2265                 return;
2266
2267         new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC);
2268         if (!new_ies)
2269                 goto out_free;
2270
2271         pos = new_ie;
2272
2273         /* copy the nontransmitted SSID */
2274         cpy_len = nontrans_ssid[1] + 2;
2275         memcpy(pos, nontrans_ssid, cpy_len);
2276         pos += cpy_len;
2277         /* copy the IEs between SSID and MBSSID */
2278         cpy_len = trans_ssid[1] + 2;
2279         memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len)));
2280         pos += (mbssid - (trans_ssid + cpy_len));
2281         /* copy the IEs after MBSSID */
2282         cpy_len = mbssid[1] + 2;
2283         memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len)));
2284
2285         /* update ie */
2286         new_ies->len = new_ie_len;
2287         new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2288         new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
2289         memcpy(new_ies->data, new_ie, new_ie_len);
2290         if (ieee80211_is_probe_resp(mgmt->frame_control)) {
2291                 old = rcu_access_pointer(nontrans_bss->proberesp_ies);
2292                 rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies);
2293                 rcu_assign_pointer(nontrans_bss->ies, new_ies);
2294                 if (old)
2295                         kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2296         } else {
2297                 old = rcu_access_pointer(nontrans_bss->beacon_ies);
2298                 rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies);
2299                 rcu_assign_pointer(nontrans_bss->ies, new_ies);
2300                 if (old)
2301                         kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2302         }
2303
2304 out_free:
2305         kfree(new_ie);
2306 }
2307
2308 /* cfg80211_inform_bss_width_frame helper */
2309 static struct cfg80211_bss *
2310 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2311                                       struct cfg80211_inform_bss *data,
2312                                       struct ieee80211_mgmt *mgmt, size_t len,
2313                                       gfp_t gfp)
2314 {
2315         struct cfg80211_internal_bss tmp = {}, *res;
2316         struct cfg80211_bss_ies *ies;
2317         struct ieee80211_channel *channel;
2318         bool signal_valid;
2319         struct ieee80211_ext *ext = NULL;
2320         u8 *bssid, *variable;
2321         u16 capability, beacon_int;
2322         size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2323                                              u.probe_resp.variable);
2324         int bss_type;
2325
2326         BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2327                         offsetof(struct ieee80211_mgmt, u.beacon.variable));
2328
2329         trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2330
2331         if (WARN_ON(!mgmt))
2332                 return NULL;
2333
2334         if (WARN_ON(!wiphy))
2335                 return NULL;
2336
2337         if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2338                     (data->signal < 0 || data->signal > 100)))
2339                 return NULL;
2340
2341         if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2342                 ext = (void *) mgmt;
2343                 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2344                 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2345                         min_hdr_len = offsetof(struct ieee80211_ext,
2346                                                u.s1g_short_beacon.variable);
2347         }
2348
2349         if (WARN_ON(len < min_hdr_len))
2350                 return NULL;
2351
2352         ielen = len - min_hdr_len;
2353         variable = mgmt->u.probe_resp.variable;
2354         if (ext) {
2355                 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2356                         variable = ext->u.s1g_short_beacon.variable;
2357                 else
2358                         variable = ext->u.s1g_beacon.variable;
2359         }
2360
2361         channel = cfg80211_get_bss_channel(wiphy, variable,
2362                                            ielen, data->chan, data->scan_width);
2363         if (!channel)
2364                 return NULL;
2365
2366         if (ext) {
2367                 const struct ieee80211_s1g_bcn_compat_ie *compat;
2368                 const struct element *elem;
2369
2370                 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
2371                                           variable, ielen);
2372                 if (!elem)
2373                         return NULL;
2374                 if (elem->datalen < sizeof(*compat))
2375                         return NULL;
2376                 compat = (void *)elem->data;
2377                 bssid = ext->u.s1g_beacon.sa;
2378                 capability = le16_to_cpu(compat->compat_info);
2379                 beacon_int = le16_to_cpu(compat->beacon_int);
2380         } else {
2381                 bssid = mgmt->bssid;
2382                 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2383                 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
2384         }
2385
2386         ies = kzalloc(sizeof(*ies) + ielen, gfp);
2387         if (!ies)
2388                 return NULL;
2389         ies->len = ielen;
2390         ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2391         ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
2392                            ieee80211_is_s1g_beacon(mgmt->frame_control);
2393         memcpy(ies->data, variable, ielen);
2394
2395         if (ieee80211_is_probe_resp(mgmt->frame_control))
2396                 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2397         else
2398                 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2399         rcu_assign_pointer(tmp.pub.ies, ies);
2400
2401         memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2402         tmp.pub.beacon_interval = beacon_int;
2403         tmp.pub.capability = capability;
2404         tmp.pub.channel = channel;
2405         tmp.pub.scan_width = data->scan_width;
2406         tmp.pub.signal = data->signal;
2407         tmp.ts_boottime = data->boottime_ns;
2408         tmp.parent_tsf = data->parent_tsf;
2409         tmp.pub.chains = data->chains;
2410         memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
2411         ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
2412
2413         signal_valid = data->chan == channel;
2414         res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid,
2415                                   jiffies);
2416         if (!res)
2417                 return NULL;
2418
2419         if (channel->band == NL80211_BAND_60GHZ) {
2420                 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2421                 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2422                     bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2423                         regulatory_hint_found_beacon(wiphy, channel, gfp);
2424         } else {
2425                 if (res->pub.capability & WLAN_CAPABILITY_ESS)
2426                         regulatory_hint_found_beacon(wiphy, channel, gfp);
2427         }
2428
2429         trace_cfg80211_return_bss(&res->pub);
2430         /* cfg80211_bss_update gives us a referenced result */
2431         return &res->pub;
2432 }
2433
2434 struct cfg80211_bss *
2435 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
2436                                struct cfg80211_inform_bss *data,
2437                                struct ieee80211_mgmt *mgmt, size_t len,
2438                                gfp_t gfp)
2439 {
2440         struct cfg80211_bss *res, *tmp_bss;
2441         const u8 *ie = mgmt->u.probe_resp.variable;
2442         const struct cfg80211_bss_ies *ies1, *ies2;
2443         size_t ielen = len - offsetof(struct ieee80211_mgmt,
2444                                       u.probe_resp.variable);
2445         struct cfg80211_non_tx_bss non_tx_data;
2446
2447         res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
2448                                                     len, gfp);
2449         if (!res || !wiphy->support_mbssid ||
2450             !cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2451                 return res;
2452         if (wiphy->support_only_he_mbssid &&
2453             !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2454                 return res;
2455
2456         non_tx_data.tx_bss = res;
2457         /* process each non-transmitting bss */
2458         cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len,
2459                                          &non_tx_data, gfp);
2460
2461         spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2462
2463         /* check if the res has other nontransmitting bss which is not
2464          * in MBSSID IE
2465          */
2466         ies1 = rcu_access_pointer(res->ies);
2467
2468         /* go through nontrans_list, if the timestamp of the BSS is
2469          * earlier than the timestamp of the transmitting BSS then
2470          * update it
2471          */
2472         list_for_each_entry(tmp_bss, &res->nontrans_list,
2473                             nontrans_list) {
2474                 ies2 = rcu_access_pointer(tmp_bss->ies);
2475                 if (ies2->tsf < ies1->tsf)
2476                         cfg80211_update_notlisted_nontrans(wiphy, tmp_bss,
2477                                                            mgmt, len);
2478         }
2479         spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2480
2481         return res;
2482 }
2483 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
2484
2485 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2486 {
2487         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2488         struct cfg80211_internal_bss *bss;
2489
2490         if (!pub)
2491                 return;
2492
2493         bss = container_of(pub, struct cfg80211_internal_bss, pub);
2494
2495         spin_lock_bh(&rdev->bss_lock);
2496         bss_ref_get(rdev, bss);
2497         spin_unlock_bh(&rdev->bss_lock);
2498 }
2499 EXPORT_SYMBOL(cfg80211_ref_bss);
2500
2501 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2502 {
2503         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2504         struct cfg80211_internal_bss *bss;
2505
2506         if (!pub)
2507                 return;
2508
2509         bss = container_of(pub, struct cfg80211_internal_bss, pub);
2510
2511         spin_lock_bh(&rdev->bss_lock);
2512         bss_ref_put(rdev, bss);
2513         spin_unlock_bh(&rdev->bss_lock);
2514 }
2515 EXPORT_SYMBOL(cfg80211_put_bss);
2516
2517 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2518 {
2519         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2520         struct cfg80211_internal_bss *bss, *tmp1;
2521         struct cfg80211_bss *nontrans_bss, *tmp;
2522
2523         if (WARN_ON(!pub))
2524                 return;
2525
2526         bss = container_of(pub, struct cfg80211_internal_bss, pub);
2527
2528         spin_lock_bh(&rdev->bss_lock);
2529         if (list_empty(&bss->list))
2530                 goto out;
2531
2532         list_for_each_entry_safe(nontrans_bss, tmp,
2533                                  &pub->nontrans_list,
2534                                  nontrans_list) {
2535                 tmp1 = container_of(nontrans_bss,
2536                                     struct cfg80211_internal_bss, pub);
2537                 if (__cfg80211_unlink_bss(rdev, tmp1))
2538                         rdev->bss_generation++;
2539         }
2540
2541         if (__cfg80211_unlink_bss(rdev, bss))
2542                 rdev->bss_generation++;
2543 out:
2544         spin_unlock_bh(&rdev->bss_lock);
2545 }
2546 EXPORT_SYMBOL(cfg80211_unlink_bss);
2547
2548 void cfg80211_bss_iter(struct wiphy *wiphy,
2549                        struct cfg80211_chan_def *chandef,
2550                        void (*iter)(struct wiphy *wiphy,
2551                                     struct cfg80211_bss *bss,
2552                                     void *data),
2553                        void *iter_data)
2554 {
2555         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2556         struct cfg80211_internal_bss *bss;
2557
2558         spin_lock_bh(&rdev->bss_lock);
2559
2560         list_for_each_entry(bss, &rdev->bss_list, list) {
2561                 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel))
2562                         iter(wiphy, &bss->pub, iter_data);
2563         }
2564
2565         spin_unlock_bh(&rdev->bss_lock);
2566 }
2567 EXPORT_SYMBOL(cfg80211_bss_iter);
2568
2569 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
2570                                      struct ieee80211_channel *chan)
2571 {
2572         struct wiphy *wiphy = wdev->wiphy;
2573         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2574         struct cfg80211_internal_bss *cbss = wdev->current_bss;
2575         struct cfg80211_internal_bss *new = NULL;
2576         struct cfg80211_internal_bss *bss;
2577         struct cfg80211_bss *nontrans_bss;
2578         struct cfg80211_bss *tmp;
2579
2580         spin_lock_bh(&rdev->bss_lock);
2581
2582         /*
2583          * Some APs use CSA also for bandwidth changes, i.e., without actually
2584          * changing the control channel, so no need to update in such a case.
2585          */
2586         if (cbss->pub.channel == chan)
2587                 goto done;
2588
2589         /* use transmitting bss */
2590         if (cbss->pub.transmitted_bss)
2591                 cbss = container_of(cbss->pub.transmitted_bss,
2592                                     struct cfg80211_internal_bss,
2593                                     pub);
2594
2595         cbss->pub.channel = chan;
2596
2597         list_for_each_entry(bss, &rdev->bss_list, list) {
2598                 if (!cfg80211_bss_type_match(bss->pub.capability,
2599                                              bss->pub.channel->band,
2600                                              wdev->conn_bss_type))
2601                         continue;
2602
2603                 if (bss == cbss)
2604                         continue;
2605
2606                 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
2607                         new = bss;
2608                         break;
2609                 }
2610         }
2611
2612         if (new) {
2613                 /* to save time, update IEs for transmitting bss only */
2614                 if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
2615                         new->pub.proberesp_ies = NULL;
2616                         new->pub.beacon_ies = NULL;
2617                 }
2618
2619                 list_for_each_entry_safe(nontrans_bss, tmp,
2620                                          &new->pub.nontrans_list,
2621                                          nontrans_list) {
2622                         bss = container_of(nontrans_bss,
2623                                            struct cfg80211_internal_bss, pub);
2624                         if (__cfg80211_unlink_bss(rdev, bss))
2625                                 rdev->bss_generation++;
2626                 }
2627
2628                 WARN_ON(atomic_read(&new->hold));
2629                 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
2630                         rdev->bss_generation++;
2631         }
2632
2633         rb_erase(&cbss->rbn, &rdev->bss_tree);
2634         rb_insert_bss(rdev, cbss);
2635         rdev->bss_generation++;
2636
2637         list_for_each_entry_safe(nontrans_bss, tmp,
2638                                  &cbss->pub.nontrans_list,
2639                                  nontrans_list) {
2640                 bss = container_of(nontrans_bss,
2641                                    struct cfg80211_internal_bss, pub);
2642                 bss->pub.channel = chan;
2643                 rb_erase(&bss->rbn, &rdev->bss_tree);
2644                 rb_insert_bss(rdev, bss);
2645                 rdev->bss_generation++;
2646         }
2647
2648 done:
2649         spin_unlock_bh(&rdev->bss_lock);
2650 }
2651
2652 #ifdef CONFIG_CFG80211_WEXT
2653 static struct cfg80211_registered_device *
2654 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
2655 {
2656         struct cfg80211_registered_device *rdev;
2657         struct net_device *dev;
2658
2659         ASSERT_RTNL();
2660
2661         dev = dev_get_by_index(net, ifindex);
2662         if (!dev)
2663                 return ERR_PTR(-ENODEV);
2664         if (dev->ieee80211_ptr)
2665                 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
2666         else
2667                 rdev = ERR_PTR(-ENODEV);
2668         dev_put(dev);
2669         return rdev;
2670 }
2671
2672 int cfg80211_wext_siwscan(struct net_device *dev,
2673                           struct iw_request_info *info,
2674                           union iwreq_data *wrqu, char *extra)
2675 {
2676         struct cfg80211_registered_device *rdev;
2677         struct wiphy *wiphy;
2678         struct iw_scan_req *wreq = NULL;
2679         struct cfg80211_scan_request *creq = NULL;
2680         int i, err, n_channels = 0;
2681         enum nl80211_band band;
2682
2683         if (!netif_running(dev))
2684                 return -ENETDOWN;
2685
2686         if (wrqu->data.length == sizeof(struct iw_scan_req))
2687                 wreq = (struct iw_scan_req *)extra;
2688
2689         rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2690
2691         if (IS_ERR(rdev))
2692                 return PTR_ERR(rdev);
2693
2694         if (rdev->scan_req || rdev->scan_msg) {
2695                 err = -EBUSY;
2696                 goto out;
2697         }
2698
2699         wiphy = &rdev->wiphy;
2700
2701         /* Determine number of channels, needed to allocate creq */
2702         if (wreq && wreq->num_channels)
2703                 n_channels = wreq->num_channels;
2704         else
2705                 n_channels = ieee80211_get_num_supported_channels(wiphy);
2706
2707         creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
2708                        n_channels * sizeof(void *),
2709                        GFP_ATOMIC);
2710         if (!creq) {
2711                 err = -ENOMEM;
2712                 goto out;
2713         }
2714
2715         creq->wiphy = wiphy;
2716         creq->wdev = dev->ieee80211_ptr;
2717         /* SSIDs come after channels */
2718         creq->ssids = (void *)&creq->channels[n_channels];
2719         creq->n_channels = n_channels;
2720         creq->n_ssids = 1;
2721         creq->scan_start = jiffies;
2722
2723         /* translate "Scan on frequencies" request */
2724         i = 0;
2725         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2726                 int j;
2727
2728                 if (!wiphy->bands[band])
2729                         continue;
2730
2731                 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
2732                         /* ignore disabled channels */
2733                         if (wiphy->bands[band]->channels[j].flags &
2734                                                 IEEE80211_CHAN_DISABLED)
2735                                 continue;
2736
2737                         /* If we have a wireless request structure and the
2738                          * wireless request specifies frequencies, then search
2739                          * for the matching hardware channel.
2740                          */
2741                         if (wreq && wreq->num_channels) {
2742                                 int k;
2743                                 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
2744                                 for (k = 0; k < wreq->num_channels; k++) {
2745                                         struct iw_freq *freq =
2746                                                 &wreq->channel_list[k];
2747                                         int wext_freq =
2748                                                 cfg80211_wext_freq(freq);
2749
2750                                         if (wext_freq == wiphy_freq)
2751                                                 goto wext_freq_found;
2752                                 }
2753                                 goto wext_freq_not_found;
2754                         }
2755
2756                 wext_freq_found:
2757                         creq->channels[i] = &wiphy->bands[band]->channels[j];
2758                         i++;
2759                 wext_freq_not_found: ;
2760                 }
2761         }
2762         /* No channels found? */
2763         if (!i) {
2764                 err = -EINVAL;
2765                 goto out;
2766         }
2767
2768         /* Set real number of channels specified in creq->channels[] */
2769         creq->n_channels = i;
2770
2771         /* translate "Scan for SSID" request */
2772         if (wreq) {
2773                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
2774                         if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
2775                                 err = -EINVAL;
2776                                 goto out;
2777                         }
2778                         memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
2779                         creq->ssids[0].ssid_len = wreq->essid_len;
2780                 }
2781                 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
2782                         creq->n_ssids = 0;
2783         }
2784
2785         for (i = 0; i < NUM_NL80211_BANDS; i++)
2786                 if (wiphy->bands[i])
2787                         creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
2788
2789         eth_broadcast_addr(creq->bssid);
2790
2791         wiphy_lock(&rdev->wiphy);
2792
2793         rdev->scan_req = creq;
2794         err = rdev_scan(rdev, creq);
2795         if (err) {
2796                 rdev->scan_req = NULL;
2797                 /* creq will be freed below */
2798         } else {
2799                 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
2800                 /* creq now owned by driver */
2801                 creq = NULL;
2802                 dev_hold(dev);
2803         }
2804         wiphy_unlock(&rdev->wiphy);
2805  out:
2806         kfree(creq);
2807         return err;
2808 }
2809 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
2810
2811 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
2812                                     const struct cfg80211_bss_ies *ies,
2813                                     char *current_ev, char *end_buf)
2814 {
2815         const u8 *pos, *end, *next;
2816         struct iw_event iwe;
2817
2818         if (!ies)
2819                 return current_ev;
2820
2821         /*
2822          * If needed, fragment the IEs buffer (at IE boundaries) into short
2823          * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
2824          */
2825         pos = ies->data;
2826         end = pos + ies->len;
2827
2828         while (end - pos > IW_GENERIC_IE_MAX) {
2829                 next = pos + 2 + pos[1];
2830                 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
2831                         next = next + 2 + next[1];
2832
2833                 memset(&iwe, 0, sizeof(iwe));
2834                 iwe.cmd = IWEVGENIE;
2835                 iwe.u.data.length = next - pos;
2836                 current_ev = iwe_stream_add_point_check(info, current_ev,
2837                                                         end_buf, &iwe,
2838                                                         (void *)pos);
2839                 if (IS_ERR(current_ev))
2840                         return current_ev;
2841                 pos = next;
2842         }
2843
2844         if (end > pos) {
2845                 memset(&iwe, 0, sizeof(iwe));
2846                 iwe.cmd = IWEVGENIE;
2847                 iwe.u.data.length = end - pos;
2848                 current_ev = iwe_stream_add_point_check(info, current_ev,
2849                                                         end_buf, &iwe,
2850                                                         (void *)pos);
2851                 if (IS_ERR(current_ev))
2852                         return current_ev;
2853         }
2854
2855         return current_ev;
2856 }
2857
2858 static char *
2859 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
2860               struct cfg80211_internal_bss *bss, char *current_ev,
2861               char *end_buf)
2862 {
2863         const struct cfg80211_bss_ies *ies;
2864         struct iw_event iwe;
2865         const u8 *ie;
2866         u8 buf[50];
2867         u8 *cfg, *p, *tmp;
2868         int rem, i, sig;
2869         bool ismesh = false;
2870
2871         memset(&iwe, 0, sizeof(iwe));
2872         iwe.cmd = SIOCGIWAP;
2873         iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
2874         memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
2875         current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2876                                                 IW_EV_ADDR_LEN);
2877         if (IS_ERR(current_ev))
2878                 return current_ev;
2879
2880         memset(&iwe, 0, sizeof(iwe));
2881         iwe.cmd = SIOCGIWFREQ;
2882         iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
2883         iwe.u.freq.e = 0;
2884         current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2885                                                 IW_EV_FREQ_LEN);
2886         if (IS_ERR(current_ev))
2887                 return current_ev;
2888
2889         memset(&iwe, 0, sizeof(iwe));
2890         iwe.cmd = SIOCGIWFREQ;
2891         iwe.u.freq.m = bss->pub.channel->center_freq;
2892         iwe.u.freq.e = 6;
2893         current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2894                                                 IW_EV_FREQ_LEN);
2895         if (IS_ERR(current_ev))
2896                 return current_ev;
2897
2898         if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
2899                 memset(&iwe, 0, sizeof(iwe));
2900                 iwe.cmd = IWEVQUAL;
2901                 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
2902                                      IW_QUAL_NOISE_INVALID |
2903                                      IW_QUAL_QUAL_UPDATED;
2904                 switch (wiphy->signal_type) {
2905                 case CFG80211_SIGNAL_TYPE_MBM:
2906                         sig = bss->pub.signal / 100;
2907                         iwe.u.qual.level = sig;
2908                         iwe.u.qual.updated |= IW_QUAL_DBM;
2909                         if (sig < -110)         /* rather bad */
2910                                 sig = -110;
2911                         else if (sig > -40)     /* perfect */
2912                                 sig = -40;
2913                         /* will give a range of 0 .. 70 */
2914                         iwe.u.qual.qual = sig + 110;
2915                         break;
2916                 case CFG80211_SIGNAL_TYPE_UNSPEC:
2917                         iwe.u.qual.level = bss->pub.signal;
2918                         /* will give range 0 .. 100 */
2919                         iwe.u.qual.qual = bss->pub.signal;
2920                         break;
2921                 default:
2922                         /* not reached */
2923                         break;
2924                 }
2925                 current_ev = iwe_stream_add_event_check(info, current_ev,
2926                                                         end_buf, &iwe,
2927                                                         IW_EV_QUAL_LEN);
2928                 if (IS_ERR(current_ev))
2929                         return current_ev;
2930         }
2931
2932         memset(&iwe, 0, sizeof(iwe));
2933         iwe.cmd = SIOCGIWENCODE;
2934         if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
2935                 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
2936         else
2937                 iwe.u.data.flags = IW_ENCODE_DISABLED;
2938         iwe.u.data.length = 0;
2939         current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
2940                                                 &iwe, "");
2941         if (IS_ERR(current_ev))
2942                 return current_ev;
2943
2944         rcu_read_lock();
2945         ies = rcu_dereference(bss->pub.ies);
2946         rem = ies->len;
2947         ie = ies->data;
2948
2949         while (rem >= 2) {
2950                 /* invalid data */
2951                 if (ie[1] > rem - 2)
2952                         break;
2953
2954                 switch (ie[0]) {
2955                 case WLAN_EID_SSID:
2956                         memset(&iwe, 0, sizeof(iwe));
2957                         iwe.cmd = SIOCGIWESSID;
2958                         iwe.u.data.length = ie[1];
2959                         iwe.u.data.flags = 1;
2960                         current_ev = iwe_stream_add_point_check(info,
2961                                                                 current_ev,
2962                                                                 end_buf, &iwe,
2963                                                                 (u8 *)ie + 2);
2964                         if (IS_ERR(current_ev))
2965                                 goto unlock;
2966                         break;
2967                 case WLAN_EID_MESH_ID:
2968                         memset(&iwe, 0, sizeof(iwe));
2969                         iwe.cmd = SIOCGIWESSID;
2970                         iwe.u.data.length = ie[1];
2971                         iwe.u.data.flags = 1;
2972                         current_ev = iwe_stream_add_point_check(info,
2973                                                                 current_ev,
2974                                                                 end_buf, &iwe,
2975                                                                 (u8 *)ie + 2);
2976                         if (IS_ERR(current_ev))
2977                                 goto unlock;
2978                         break;
2979                 case WLAN_EID_MESH_CONFIG:
2980                         ismesh = true;
2981                         if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
2982                                 break;
2983                         cfg = (u8 *)ie + 2;
2984                         memset(&iwe, 0, sizeof(iwe));
2985                         iwe.cmd = IWEVCUSTOM;
2986                         sprintf(buf, "Mesh Network Path Selection Protocol ID: "
2987                                 "0x%02X", cfg[0]);
2988                         iwe.u.data.length = strlen(buf);
2989                         current_ev = iwe_stream_add_point_check(info,
2990                                                                 current_ev,
2991                                                                 end_buf,
2992                                                                 &iwe, buf);
2993                         if (IS_ERR(current_ev))
2994                                 goto unlock;
2995                         sprintf(buf, "Path Selection Metric ID: 0x%02X",
2996                                 cfg[1]);
2997                         iwe.u.data.length = strlen(buf);
2998                         current_ev = iwe_stream_add_point_check(info,
2999                                                                 current_ev,
3000                                                                 end_buf,
3001                                                                 &iwe, buf);
3002                         if (IS_ERR(current_ev))
3003                                 goto unlock;
3004                         sprintf(buf, "Congestion Control Mode ID: 0x%02X",
3005                                 cfg[2]);
3006                         iwe.u.data.length = strlen(buf);
3007                         current_ev = iwe_stream_add_point_check(info,
3008                                                                 current_ev,
3009                                                                 end_buf,
3010                                                                 &iwe, buf);
3011                         if (IS_ERR(current_ev))
3012                                 goto unlock;
3013                         sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
3014                         iwe.u.data.length = strlen(buf);
3015                         current_ev = iwe_stream_add_point_check(info,
3016                                                                 current_ev,
3017                                                                 end_buf,
3018                                                                 &iwe, buf);
3019                         if (IS_ERR(current_ev))
3020                                 goto unlock;
3021                         sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
3022                         iwe.u.data.length = strlen(buf);
3023                         current_ev = iwe_stream_add_point_check(info,
3024                                                                 current_ev,
3025                                                                 end_buf,
3026                                                                 &iwe, buf);
3027                         if (IS_ERR(current_ev))
3028                                 goto unlock;
3029                         sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
3030                         iwe.u.data.length = strlen(buf);
3031                         current_ev = iwe_stream_add_point_check(info,
3032                                                                 current_ev,
3033                                                                 end_buf,
3034                                                                 &iwe, buf);
3035                         if (IS_ERR(current_ev))
3036                                 goto unlock;
3037                         sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
3038                         iwe.u.data.length = strlen(buf);
3039                         current_ev = iwe_stream_add_point_check(info,
3040                                                                 current_ev,
3041                                                                 end_buf,
3042                                                                 &iwe, buf);
3043                         if (IS_ERR(current_ev))
3044                                 goto unlock;
3045                         break;
3046                 case WLAN_EID_SUPP_RATES:
3047                 case WLAN_EID_EXT_SUPP_RATES:
3048                         /* display all supported rates in readable format */
3049                         p = current_ev + iwe_stream_lcp_len(info);
3050
3051                         memset(&iwe, 0, sizeof(iwe));
3052                         iwe.cmd = SIOCGIWRATE;
3053                         /* Those two flags are ignored... */
3054                         iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3055
3056                         for (i = 0; i < ie[1]; i++) {
3057                                 iwe.u.bitrate.value =
3058                                         ((ie[i + 2] & 0x7f) * 500000);
3059                                 tmp = p;
3060                                 p = iwe_stream_add_value(info, current_ev, p,
3061                                                          end_buf, &iwe,
3062                                                          IW_EV_PARAM_LEN);
3063                                 if (p == tmp) {
3064                                         current_ev = ERR_PTR(-E2BIG);
3065                                         goto unlock;
3066                                 }
3067                         }
3068                         current_ev = p;
3069                         break;
3070                 }
3071                 rem -= ie[1] + 2;
3072                 ie += ie[1] + 2;
3073         }
3074
3075         if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3076             ismesh) {
3077                 memset(&iwe, 0, sizeof(iwe));
3078                 iwe.cmd = SIOCGIWMODE;
3079                 if (ismesh)
3080                         iwe.u.mode = IW_MODE_MESH;
3081                 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3082                         iwe.u.mode = IW_MODE_MASTER;
3083                 else
3084                         iwe.u.mode = IW_MODE_ADHOC;
3085                 current_ev = iwe_stream_add_event_check(info, current_ev,
3086                                                         end_buf, &iwe,
3087                                                         IW_EV_UINT_LEN);
3088                 if (IS_ERR(current_ev))
3089                         goto unlock;
3090         }
3091
3092         memset(&iwe, 0, sizeof(iwe));
3093         iwe.cmd = IWEVCUSTOM;
3094         sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
3095         iwe.u.data.length = strlen(buf);
3096         current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3097                                                 &iwe, buf);
3098         if (IS_ERR(current_ev))
3099                 goto unlock;
3100         memset(&iwe, 0, sizeof(iwe));
3101         iwe.cmd = IWEVCUSTOM;
3102         sprintf(buf, " Last beacon: %ums ago",
3103                 elapsed_jiffies_msecs(bss->ts));
3104         iwe.u.data.length = strlen(buf);
3105         current_ev = iwe_stream_add_point_check(info, current_ev,
3106                                                 end_buf, &iwe, buf);
3107         if (IS_ERR(current_ev))
3108                 goto unlock;
3109
3110         current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3111
3112  unlock:
3113         rcu_read_unlock();
3114         return current_ev;
3115 }
3116
3117
3118 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3119                                   struct iw_request_info *info,
3120                                   char *buf, size_t len)
3121 {
3122         char *current_ev = buf;
3123         char *end_buf = buf + len;
3124         struct cfg80211_internal_bss *bss;
3125         int err = 0;
3126
3127         spin_lock_bh(&rdev->bss_lock);
3128         cfg80211_bss_expire(rdev);
3129
3130         list_for_each_entry(bss, &rdev->bss_list, list) {
3131                 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3132                         err = -E2BIG;
3133                         break;
3134                 }
3135                 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3136                                            current_ev, end_buf);
3137                 if (IS_ERR(current_ev)) {
3138                         err = PTR_ERR(current_ev);
3139                         break;
3140                 }
3141         }
3142         spin_unlock_bh(&rdev->bss_lock);
3143
3144         if (err)
3145                 return err;
3146         return current_ev - buf;
3147 }
3148
3149
3150 int cfg80211_wext_giwscan(struct net_device *dev,
3151                           struct iw_request_info *info,
3152                           struct iw_point *data, char *extra)
3153 {
3154         struct cfg80211_registered_device *rdev;
3155         int res;
3156
3157         if (!netif_running(dev))
3158                 return -ENETDOWN;
3159
3160         rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3161
3162         if (IS_ERR(rdev))
3163                 return PTR_ERR(rdev);
3164
3165         if (rdev->scan_req || rdev->scan_msg)
3166                 return -EAGAIN;
3167
3168         res = ieee80211_scan_results(rdev, info, extra, data->length);
3169         data->length = 0;
3170         if (res >= 0) {
3171                 data->length = res;
3172                 res = 0;
3173         }
3174
3175         return res;
3176 }
3177 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3178 #endif