Merge tag 'gpio-v4.16-1' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[linux-2.6-microblaze.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  *
9  * Permission to use, copy, modify, and/or distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21
22
23 /**
24  * DOC: Wireless regulatory infrastructure
25  *
26  * The usual implementation is for a driver to read a device EEPROM to
27  * determine which regulatory domain it should be operating under, then
28  * looking up the allowable channels in a driver-local table and finally
29  * registering those channels in the wiphy structure.
30  *
31  * Another set of compliance enforcement is for drivers to use their
32  * own compliance limits which can be stored on the EEPROM. The host
33  * driver or firmware may ensure these are used.
34  *
35  * In addition to all this we provide an extra layer of regulatory
36  * conformance. For drivers which do not have any regulatory
37  * information CRDA provides the complete regulatory solution.
38  * For others it provides a community effort on further restrictions
39  * to enhance compliance.
40  *
41  * Note: When number of rules --> infinity we will not be able to
42  * index on alpha2 any more, instead we'll probably have to
43  * rely on some SHA1 checksum of the regdomain for example.
44  *
45  */
46
47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
48
49 #include <linux/kernel.h>
50 #include <linux/export.h>
51 #include <linux/slab.h>
52 #include <linux/list.h>
53 #include <linux/ctype.h>
54 #include <linux/nl80211.h>
55 #include <linux/platform_device.h>
56 #include <linux/verification.h>
57 #include <linux/moduleparam.h>
58 #include <linux/firmware.h>
59 #include <net/cfg80211.h>
60 #include "core.h"
61 #include "reg.h"
62 #include "rdev-ops.h"
63 #include "nl80211.h"
64
65 /*
66  * Grace period we give before making sure all current interfaces reside on
67  * channels allowed by the current regulatory domain.
68  */
69 #define REG_ENFORCE_GRACE_MS 60000
70
71 /**
72  * enum reg_request_treatment - regulatory request treatment
73  *
74  * @REG_REQ_OK: continue processing the regulatory request
75  * @REG_REQ_IGNORE: ignore the regulatory request
76  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
77  *      be intersected with the current one.
78  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
79  *      regulatory settings, and no further processing is required.
80  */
81 enum reg_request_treatment {
82         REG_REQ_OK,
83         REG_REQ_IGNORE,
84         REG_REQ_INTERSECT,
85         REG_REQ_ALREADY_SET,
86 };
87
88 static struct regulatory_request core_request_world = {
89         .initiator = NL80211_REGDOM_SET_BY_CORE,
90         .alpha2[0] = '0',
91         .alpha2[1] = '0',
92         .intersect = false,
93         .processed = true,
94         .country_ie_env = ENVIRON_ANY,
95 };
96
97 /*
98  * Receipt of information from last regulatory request,
99  * protected by RTNL (and can be accessed with RCU protection)
100  */
101 static struct regulatory_request __rcu *last_request =
102         (void __force __rcu *)&core_request_world;
103
104 /* To trigger userspace events and load firmware */
105 static struct platform_device *reg_pdev;
106
107 /*
108  * Central wireless core regulatory domains, we only need two,
109  * the current one and a world regulatory domain in case we have no
110  * information to give us an alpha2.
111  * (protected by RTNL, can be read under RCU)
112  */
113 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
114
115 /*
116  * Number of devices that registered to the core
117  * that support cellular base station regulatory hints
118  * (protected by RTNL)
119  */
120 static int reg_num_devs_support_basehint;
121
122 /*
123  * State variable indicating if the platform on which the devices
124  * are attached is operating in an indoor environment. The state variable
125  * is relevant for all registered devices.
126  */
127 static bool reg_is_indoor;
128 static spinlock_t reg_indoor_lock;
129
130 /* Used to track the userspace process controlling the indoor setting */
131 static u32 reg_is_indoor_portid;
132
133 static void restore_regulatory_settings(bool reset_user);
134
135 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
136 {
137         return rtnl_dereference(cfg80211_regdomain);
138 }
139
140 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
141 {
142         return rtnl_dereference(wiphy->regd);
143 }
144
145 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
146 {
147         switch (dfs_region) {
148         case NL80211_DFS_UNSET:
149                 return "unset";
150         case NL80211_DFS_FCC:
151                 return "FCC";
152         case NL80211_DFS_ETSI:
153                 return "ETSI";
154         case NL80211_DFS_JP:
155                 return "JP";
156         }
157         return "Unknown";
158 }
159
160 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
161 {
162         const struct ieee80211_regdomain *regd = NULL;
163         const struct ieee80211_regdomain *wiphy_regd = NULL;
164
165         regd = get_cfg80211_regdom();
166         if (!wiphy)
167                 goto out;
168
169         wiphy_regd = get_wiphy_regdom(wiphy);
170         if (!wiphy_regd)
171                 goto out;
172
173         if (wiphy_regd->dfs_region == regd->dfs_region)
174                 goto out;
175
176         pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
177                  dev_name(&wiphy->dev),
178                  reg_dfs_region_str(wiphy_regd->dfs_region),
179                  reg_dfs_region_str(regd->dfs_region));
180
181 out:
182         return regd->dfs_region;
183 }
184
185 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
186 {
187         if (!r)
188                 return;
189         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
190 }
191
192 static struct regulatory_request *get_last_request(void)
193 {
194         return rcu_dereference_rtnl(last_request);
195 }
196
197 /* Used to queue up regulatory hints */
198 static LIST_HEAD(reg_requests_list);
199 static spinlock_t reg_requests_lock;
200
201 /* Used to queue up beacon hints for review */
202 static LIST_HEAD(reg_pending_beacons);
203 static spinlock_t reg_pending_beacons_lock;
204
205 /* Used to keep track of processed beacon hints */
206 static LIST_HEAD(reg_beacon_list);
207
208 struct reg_beacon {
209         struct list_head list;
210         struct ieee80211_channel chan;
211 };
212
213 static void reg_check_chans_work(struct work_struct *work);
214 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
215
216 static void reg_todo(struct work_struct *work);
217 static DECLARE_WORK(reg_work, reg_todo);
218
219 /* We keep a static world regulatory domain in case of the absence of CRDA */
220 static const struct ieee80211_regdomain world_regdom = {
221         .n_reg_rules = 8,
222         .alpha2 =  "00",
223         .reg_rules = {
224                 /* IEEE 802.11b/g, channels 1..11 */
225                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
226                 /* IEEE 802.11b/g, channels 12..13. */
227                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
228                         NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
229                 /* IEEE 802.11 channel 14 - Only JP enables
230                  * this and for 802.11b only */
231                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
232                         NL80211_RRF_NO_IR |
233                         NL80211_RRF_NO_OFDM),
234                 /* IEEE 802.11a, channel 36..48 */
235                 REG_RULE(5180-10, 5240+10, 80, 6, 20,
236                         NL80211_RRF_NO_IR |
237                         NL80211_RRF_AUTO_BW),
238
239                 /* IEEE 802.11a, channel 52..64 - DFS required */
240                 REG_RULE(5260-10, 5320+10, 80, 6, 20,
241                         NL80211_RRF_NO_IR |
242                         NL80211_RRF_AUTO_BW |
243                         NL80211_RRF_DFS),
244
245                 /* IEEE 802.11a, channel 100..144 - DFS required */
246                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
247                         NL80211_RRF_NO_IR |
248                         NL80211_RRF_DFS),
249
250                 /* IEEE 802.11a, channel 149..165 */
251                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
252                         NL80211_RRF_NO_IR),
253
254                 /* IEEE 802.11ad (60GHz), channels 1..3 */
255                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
256         }
257 };
258
259 /* protected by RTNL */
260 static const struct ieee80211_regdomain *cfg80211_world_regdom =
261         &world_regdom;
262
263 static char *ieee80211_regdom = "00";
264 static char user_alpha2[2];
265
266 module_param(ieee80211_regdom, charp, 0444);
267 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
268
269 static void reg_free_request(struct regulatory_request *request)
270 {
271         if (request == &core_request_world)
272                 return;
273
274         if (request != get_last_request())
275                 kfree(request);
276 }
277
278 static void reg_free_last_request(void)
279 {
280         struct regulatory_request *lr = get_last_request();
281
282         if (lr != &core_request_world && lr)
283                 kfree_rcu(lr, rcu_head);
284 }
285
286 static void reg_update_last_request(struct regulatory_request *request)
287 {
288         struct regulatory_request *lr;
289
290         lr = get_last_request();
291         if (lr == request)
292                 return;
293
294         reg_free_last_request();
295         rcu_assign_pointer(last_request, request);
296 }
297
298 static void reset_regdomains(bool full_reset,
299                              const struct ieee80211_regdomain *new_regdom)
300 {
301         const struct ieee80211_regdomain *r;
302
303         ASSERT_RTNL();
304
305         r = get_cfg80211_regdom();
306
307         /* avoid freeing static information or freeing something twice */
308         if (r == cfg80211_world_regdom)
309                 r = NULL;
310         if (cfg80211_world_regdom == &world_regdom)
311                 cfg80211_world_regdom = NULL;
312         if (r == &world_regdom)
313                 r = NULL;
314
315         rcu_free_regdom(r);
316         rcu_free_regdom(cfg80211_world_regdom);
317
318         cfg80211_world_regdom = &world_regdom;
319         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
320
321         if (!full_reset)
322                 return;
323
324         reg_update_last_request(&core_request_world);
325 }
326
327 /*
328  * Dynamic world regulatory domain requested by the wireless
329  * core upon initialization
330  */
331 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
332 {
333         struct regulatory_request *lr;
334
335         lr = get_last_request();
336
337         WARN_ON(!lr);
338
339         reset_regdomains(false, rd);
340
341         cfg80211_world_regdom = rd;
342 }
343
344 bool is_world_regdom(const char *alpha2)
345 {
346         if (!alpha2)
347                 return false;
348         return alpha2[0] == '0' && alpha2[1] == '0';
349 }
350
351 static bool is_alpha2_set(const char *alpha2)
352 {
353         if (!alpha2)
354                 return false;
355         return alpha2[0] && alpha2[1];
356 }
357
358 static bool is_unknown_alpha2(const char *alpha2)
359 {
360         if (!alpha2)
361                 return false;
362         /*
363          * Special case where regulatory domain was built by driver
364          * but a specific alpha2 cannot be determined
365          */
366         return alpha2[0] == '9' && alpha2[1] == '9';
367 }
368
369 static bool is_intersected_alpha2(const char *alpha2)
370 {
371         if (!alpha2)
372                 return false;
373         /*
374          * Special case where regulatory domain is the
375          * result of an intersection between two regulatory domain
376          * structures
377          */
378         return alpha2[0] == '9' && alpha2[1] == '8';
379 }
380
381 static bool is_an_alpha2(const char *alpha2)
382 {
383         if (!alpha2)
384                 return false;
385         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
386 }
387
388 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
389 {
390         if (!alpha2_x || !alpha2_y)
391                 return false;
392         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
393 }
394
395 static bool regdom_changes(const char *alpha2)
396 {
397         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
398
399         if (!r)
400                 return true;
401         return !alpha2_equal(r->alpha2, alpha2);
402 }
403
404 /*
405  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
406  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
407  * has ever been issued.
408  */
409 static bool is_user_regdom_saved(void)
410 {
411         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
412                 return false;
413
414         /* This would indicate a mistake on the design */
415         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
416                  "Unexpected user alpha2: %c%c\n",
417                  user_alpha2[0], user_alpha2[1]))
418                 return false;
419
420         return true;
421 }
422
423 static const struct ieee80211_regdomain *
424 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
425 {
426         struct ieee80211_regdomain *regd;
427         int size_of_regd;
428         unsigned int i;
429
430         size_of_regd =
431                 sizeof(struct ieee80211_regdomain) +
432                 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
433
434         regd = kzalloc(size_of_regd, GFP_KERNEL);
435         if (!regd)
436                 return ERR_PTR(-ENOMEM);
437
438         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
439
440         for (i = 0; i < src_regd->n_reg_rules; i++)
441                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
442                        sizeof(struct ieee80211_reg_rule));
443
444         return regd;
445 }
446
447 struct reg_regdb_apply_request {
448         struct list_head list;
449         const struct ieee80211_regdomain *regdom;
450 };
451
452 static LIST_HEAD(reg_regdb_apply_list);
453 static DEFINE_MUTEX(reg_regdb_apply_mutex);
454
455 static void reg_regdb_apply(struct work_struct *work)
456 {
457         struct reg_regdb_apply_request *request;
458
459         rtnl_lock();
460
461         mutex_lock(&reg_regdb_apply_mutex);
462         while (!list_empty(&reg_regdb_apply_list)) {
463                 request = list_first_entry(&reg_regdb_apply_list,
464                                            struct reg_regdb_apply_request,
465                                            list);
466                 list_del(&request->list);
467
468                 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
469                 kfree(request);
470         }
471         mutex_unlock(&reg_regdb_apply_mutex);
472
473         rtnl_unlock();
474 }
475
476 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
477
478 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
479 {
480         struct reg_regdb_apply_request *request;
481
482         request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
483         if (!request) {
484                 kfree(regdom);
485                 return -ENOMEM;
486         }
487
488         request->regdom = regdom;
489
490         mutex_lock(&reg_regdb_apply_mutex);
491         list_add_tail(&request->list, &reg_regdb_apply_list);
492         mutex_unlock(&reg_regdb_apply_mutex);
493
494         schedule_work(&reg_regdb_work);
495         return 0;
496 }
497
498 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
499 /* Max number of consecutive attempts to communicate with CRDA  */
500 #define REG_MAX_CRDA_TIMEOUTS 10
501
502 static u32 reg_crda_timeouts;
503
504 static void crda_timeout_work(struct work_struct *work);
505 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
506
507 static void crda_timeout_work(struct work_struct *work)
508 {
509         pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
510         rtnl_lock();
511         reg_crda_timeouts++;
512         restore_regulatory_settings(true);
513         rtnl_unlock();
514 }
515
516 static void cancel_crda_timeout(void)
517 {
518         cancel_delayed_work(&crda_timeout);
519 }
520
521 static void cancel_crda_timeout_sync(void)
522 {
523         cancel_delayed_work_sync(&crda_timeout);
524 }
525
526 static void reset_crda_timeouts(void)
527 {
528         reg_crda_timeouts = 0;
529 }
530
531 /*
532  * This lets us keep regulatory code which is updated on a regulatory
533  * basis in userspace.
534  */
535 static int call_crda(const char *alpha2)
536 {
537         char country[12];
538         char *env[] = { country, NULL };
539         int ret;
540
541         snprintf(country, sizeof(country), "COUNTRY=%c%c",
542                  alpha2[0], alpha2[1]);
543
544         if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
545                 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
546                 return -EINVAL;
547         }
548
549         if (!is_world_regdom((char *) alpha2))
550                 pr_debug("Calling CRDA for country: %c%c\n",
551                          alpha2[0], alpha2[1]);
552         else
553                 pr_debug("Calling CRDA to update world regulatory domain\n");
554
555         ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
556         if (ret)
557                 return ret;
558
559         queue_delayed_work(system_power_efficient_wq,
560                            &crda_timeout, msecs_to_jiffies(3142));
561         return 0;
562 }
563 #else
564 static inline void cancel_crda_timeout(void) {}
565 static inline void cancel_crda_timeout_sync(void) {}
566 static inline void reset_crda_timeouts(void) {}
567 static inline int call_crda(const char *alpha2)
568 {
569         return -ENODATA;
570 }
571 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
572
573 /* code to directly load a firmware database through request_firmware */
574 static const struct fwdb_header *regdb;
575
576 struct fwdb_country {
577         u8 alpha2[2];
578         __be16 coll_ptr;
579         /* this struct cannot be extended */
580 } __packed __aligned(4);
581
582 struct fwdb_collection {
583         u8 len;
584         u8 n_rules;
585         u8 dfs_region;
586         /* no optional data yet */
587         /* aligned to 2, then followed by __be16 array of rule pointers */
588 } __packed __aligned(4);
589
590 enum fwdb_flags {
591         FWDB_FLAG_NO_OFDM       = BIT(0),
592         FWDB_FLAG_NO_OUTDOOR    = BIT(1),
593         FWDB_FLAG_DFS           = BIT(2),
594         FWDB_FLAG_NO_IR         = BIT(3),
595         FWDB_FLAG_AUTO_BW       = BIT(4),
596 };
597
598 struct fwdb_rule {
599         u8 len;
600         u8 flags;
601         __be16 max_eirp;
602         __be32 start, end, max_bw;
603         /* start of optional data */
604         __be16 cac_timeout;
605 } __packed __aligned(4);
606
607 #define FWDB_MAGIC 0x52474442
608 #define FWDB_VERSION 20
609
610 struct fwdb_header {
611         __be32 magic;
612         __be32 version;
613         struct fwdb_country country[];
614 } __packed __aligned(4);
615
616 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
617 {
618         struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
619
620         if ((u8 *)rule + sizeof(rule->len) > data + size)
621                 return false;
622
623         /* mandatory fields */
624         if (rule->len < offsetofend(struct fwdb_rule, max_bw))
625                 return false;
626
627         return true;
628 }
629
630 static bool valid_country(const u8 *data, unsigned int size,
631                           const struct fwdb_country *country)
632 {
633         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
634         struct fwdb_collection *coll = (void *)(data + ptr);
635         __be16 *rules_ptr;
636         unsigned int i;
637
638         /* make sure we can read len/n_rules */
639         if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
640                 return false;
641
642         /* make sure base struct and all rules fit */
643         if ((u8 *)coll + ALIGN(coll->len, 2) +
644             (coll->n_rules * 2) > data + size)
645                 return false;
646
647         /* mandatory fields must exist */
648         if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
649                 return false;
650
651         rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
652
653         for (i = 0; i < coll->n_rules; i++) {
654                 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
655
656                 if (!valid_rule(data, size, rule_ptr))
657                         return false;
658         }
659
660         return true;
661 }
662
663 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
664 static struct key *builtin_regdb_keys;
665
666 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
667 {
668         const u8 *end = p + buflen;
669         size_t plen;
670         key_ref_t key;
671
672         while (p < end) {
673                 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
674                  * than 256 bytes in size.
675                  */
676                 if (end - p < 4)
677                         goto dodgy_cert;
678                 if (p[0] != 0x30 &&
679                     p[1] != 0x82)
680                         goto dodgy_cert;
681                 plen = (p[2] << 8) | p[3];
682                 plen += 4;
683                 if (plen > end - p)
684                         goto dodgy_cert;
685
686                 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
687                                            "asymmetric", NULL, p, plen,
688                                            ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
689                                             KEY_USR_VIEW | KEY_USR_READ),
690                                            KEY_ALLOC_NOT_IN_QUOTA |
691                                            KEY_ALLOC_BUILT_IN |
692                                            KEY_ALLOC_BYPASS_RESTRICTION);
693                 if (IS_ERR(key)) {
694                         pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
695                                PTR_ERR(key));
696                 } else {
697                         pr_notice("Loaded X.509 cert '%s'\n",
698                                   key_ref_to_ptr(key)->description);
699                         key_ref_put(key);
700                 }
701                 p += plen;
702         }
703
704         return;
705
706 dodgy_cert:
707         pr_err("Problem parsing in-kernel X.509 certificate list\n");
708 }
709
710 static int __init load_builtin_regdb_keys(void)
711 {
712         builtin_regdb_keys =
713                 keyring_alloc(".builtin_regdb_keys",
714                               KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
715                               ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
716                               KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
717                               KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
718         if (IS_ERR(builtin_regdb_keys))
719                 return PTR_ERR(builtin_regdb_keys);
720
721         pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
722
723 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
724         load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
725 #endif
726 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
727         if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
728                 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
729 #endif
730
731         return 0;
732 }
733
734 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
735 {
736         const struct firmware *sig;
737         bool result;
738
739         if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
740                 return false;
741
742         result = verify_pkcs7_signature(data, size, sig->data, sig->size,
743                                         builtin_regdb_keys,
744                                         VERIFYING_UNSPECIFIED_SIGNATURE,
745                                         NULL, NULL) == 0;
746
747         release_firmware(sig);
748
749         return result;
750 }
751
752 static void free_regdb_keyring(void)
753 {
754         key_put(builtin_regdb_keys);
755 }
756 #else
757 static int load_builtin_regdb_keys(void)
758 {
759         return 0;
760 }
761
762 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
763 {
764         return true;
765 }
766
767 static void free_regdb_keyring(void)
768 {
769 }
770 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
771
772 static bool valid_regdb(const u8 *data, unsigned int size)
773 {
774         const struct fwdb_header *hdr = (void *)data;
775         const struct fwdb_country *country;
776
777         if (size < sizeof(*hdr))
778                 return false;
779
780         if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
781                 return false;
782
783         if (hdr->version != cpu_to_be32(FWDB_VERSION))
784                 return false;
785
786         if (!regdb_has_valid_signature(data, size))
787                 return false;
788
789         country = &hdr->country[0];
790         while ((u8 *)(country + 1) <= data + size) {
791                 if (!country->coll_ptr)
792                         break;
793                 if (!valid_country(data, size, country))
794                         return false;
795                 country++;
796         }
797
798         return true;
799 }
800
801 static int regdb_query_country(const struct fwdb_header *db,
802                                const struct fwdb_country *country)
803 {
804         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
805         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
806         struct ieee80211_regdomain *regdom;
807         unsigned int size_of_regd;
808         unsigned int i;
809
810         size_of_regd =
811                 sizeof(struct ieee80211_regdomain) +
812                 coll->n_rules * sizeof(struct ieee80211_reg_rule);
813
814         regdom = kzalloc(size_of_regd, GFP_KERNEL);
815         if (!regdom)
816                 return -ENOMEM;
817
818         regdom->n_reg_rules = coll->n_rules;
819         regdom->alpha2[0] = country->alpha2[0];
820         regdom->alpha2[1] = country->alpha2[1];
821         regdom->dfs_region = coll->dfs_region;
822
823         for (i = 0; i < regdom->n_reg_rules; i++) {
824                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
825                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
826                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
827                 struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
828
829                 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
830                 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
831                 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
832
833                 rrule->power_rule.max_antenna_gain = 0;
834                 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
835
836                 rrule->flags = 0;
837                 if (rule->flags & FWDB_FLAG_NO_OFDM)
838                         rrule->flags |= NL80211_RRF_NO_OFDM;
839                 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
840                         rrule->flags |= NL80211_RRF_NO_OUTDOOR;
841                 if (rule->flags & FWDB_FLAG_DFS)
842                         rrule->flags |= NL80211_RRF_DFS;
843                 if (rule->flags & FWDB_FLAG_NO_IR)
844                         rrule->flags |= NL80211_RRF_NO_IR;
845                 if (rule->flags & FWDB_FLAG_AUTO_BW)
846                         rrule->flags |= NL80211_RRF_AUTO_BW;
847
848                 rrule->dfs_cac_ms = 0;
849
850                 /* handle optional data */
851                 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
852                         rrule->dfs_cac_ms =
853                                 1000 * be16_to_cpu(rule->cac_timeout);
854         }
855
856         return reg_schedule_apply(regdom);
857 }
858
859 static int query_regdb(const char *alpha2)
860 {
861         const struct fwdb_header *hdr = regdb;
862         const struct fwdb_country *country;
863
864         ASSERT_RTNL();
865
866         if (IS_ERR(regdb))
867                 return PTR_ERR(regdb);
868
869         country = &hdr->country[0];
870         while (country->coll_ptr) {
871                 if (alpha2_equal(alpha2, country->alpha2))
872                         return regdb_query_country(regdb, country);
873                 country++;
874         }
875
876         return -ENODATA;
877 }
878
879 static void regdb_fw_cb(const struct firmware *fw, void *context)
880 {
881         int set_error = 0;
882         bool restore = true;
883         void *db;
884
885         if (!fw) {
886                 pr_info("failed to load regulatory.db\n");
887                 set_error = -ENODATA;
888         } else if (!valid_regdb(fw->data, fw->size)) {
889                 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
890                 set_error = -EINVAL;
891         }
892
893         rtnl_lock();
894         if (WARN_ON(regdb && !IS_ERR(regdb))) {
895                 /* just restore and free new db */
896         } else if (set_error) {
897                 regdb = ERR_PTR(set_error);
898         } else if (fw) {
899                 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
900                 if (db) {
901                         regdb = db;
902                         restore = context && query_regdb(context);
903                 } else {
904                         restore = true;
905                 }
906         }
907
908         if (restore)
909                 restore_regulatory_settings(true);
910
911         rtnl_unlock();
912
913         kfree(context);
914
915         release_firmware(fw);
916 }
917
918 static int query_regdb_file(const char *alpha2)
919 {
920         ASSERT_RTNL();
921
922         if (regdb)
923                 return query_regdb(alpha2);
924
925         alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
926         if (!alpha2)
927                 return -ENOMEM;
928
929         return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
930                                        &reg_pdev->dev, GFP_KERNEL,
931                                        (void *)alpha2, regdb_fw_cb);
932 }
933
934 int reg_reload_regdb(void)
935 {
936         const struct firmware *fw;
937         void *db;
938         int err;
939
940         err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
941         if (err)
942                 return err;
943
944         if (!valid_regdb(fw->data, fw->size)) {
945                 err = -ENODATA;
946                 goto out;
947         }
948
949         db = kmemdup(fw->data, fw->size, GFP_KERNEL);
950         if (!db) {
951                 err = -ENOMEM;
952                 goto out;
953         }
954
955         rtnl_lock();
956         if (!IS_ERR_OR_NULL(regdb))
957                 kfree(regdb);
958         regdb = db;
959         rtnl_unlock();
960
961  out:
962         release_firmware(fw);
963         return err;
964 }
965
966 static bool reg_query_database(struct regulatory_request *request)
967 {
968         if (query_regdb_file(request->alpha2) == 0)
969                 return true;
970
971         if (call_crda(request->alpha2) == 0)
972                 return true;
973
974         return false;
975 }
976
977 bool reg_is_valid_request(const char *alpha2)
978 {
979         struct regulatory_request *lr = get_last_request();
980
981         if (!lr || lr->processed)
982                 return false;
983
984         return alpha2_equal(lr->alpha2, alpha2);
985 }
986
987 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
988 {
989         struct regulatory_request *lr = get_last_request();
990
991         /*
992          * Follow the driver's regulatory domain, if present, unless a country
993          * IE has been processed or a user wants to help complaince further
994          */
995         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
996             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
997             wiphy->regd)
998                 return get_wiphy_regdom(wiphy);
999
1000         return get_cfg80211_regdom();
1001 }
1002
1003 static unsigned int
1004 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1005                                  const struct ieee80211_reg_rule *rule)
1006 {
1007         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1008         const struct ieee80211_freq_range *freq_range_tmp;
1009         const struct ieee80211_reg_rule *tmp;
1010         u32 start_freq, end_freq, idx, no;
1011
1012         for (idx = 0; idx < rd->n_reg_rules; idx++)
1013                 if (rule == &rd->reg_rules[idx])
1014                         break;
1015
1016         if (idx == rd->n_reg_rules)
1017                 return 0;
1018
1019         /* get start_freq */
1020         no = idx;
1021
1022         while (no) {
1023                 tmp = &rd->reg_rules[--no];
1024                 freq_range_tmp = &tmp->freq_range;
1025
1026                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1027                         break;
1028
1029                 freq_range = freq_range_tmp;
1030         }
1031
1032         start_freq = freq_range->start_freq_khz;
1033
1034         /* get end_freq */
1035         freq_range = &rule->freq_range;
1036         no = idx;
1037
1038         while (no < rd->n_reg_rules - 1) {
1039                 tmp = &rd->reg_rules[++no];
1040                 freq_range_tmp = &tmp->freq_range;
1041
1042                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1043                         break;
1044
1045                 freq_range = freq_range_tmp;
1046         }
1047
1048         end_freq = freq_range->end_freq_khz;
1049
1050         return end_freq - start_freq;
1051 }
1052
1053 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1054                                    const struct ieee80211_reg_rule *rule)
1055 {
1056         unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1057
1058         if (rule->flags & NL80211_RRF_NO_160MHZ)
1059                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1060         if (rule->flags & NL80211_RRF_NO_80MHZ)
1061                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1062
1063         /*
1064          * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1065          * are not allowed.
1066          */
1067         if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1068             rule->flags & NL80211_RRF_NO_HT40PLUS)
1069                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1070
1071         return bw;
1072 }
1073
1074 /* Sanity check on a regulatory rule */
1075 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1076 {
1077         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1078         u32 freq_diff;
1079
1080         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1081                 return false;
1082
1083         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1084                 return false;
1085
1086         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1087
1088         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1089             freq_range->max_bandwidth_khz > freq_diff)
1090                 return false;
1091
1092         return true;
1093 }
1094
1095 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1096 {
1097         const struct ieee80211_reg_rule *reg_rule = NULL;
1098         unsigned int i;
1099
1100         if (!rd->n_reg_rules)
1101                 return false;
1102
1103         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1104                 return false;
1105
1106         for (i = 0; i < rd->n_reg_rules; i++) {
1107                 reg_rule = &rd->reg_rules[i];
1108                 if (!is_valid_reg_rule(reg_rule))
1109                         return false;
1110         }
1111
1112         return true;
1113 }
1114
1115 /**
1116  * freq_in_rule_band - tells us if a frequency is in a frequency band
1117  * @freq_range: frequency rule we want to query
1118  * @freq_khz: frequency we are inquiring about
1119  *
1120  * This lets us know if a specific frequency rule is or is not relevant to
1121  * a specific frequency's band. Bands are device specific and artificial
1122  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1123  * however it is safe for now to assume that a frequency rule should not be
1124  * part of a frequency's band if the start freq or end freq are off by more
1125  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
1126  * 60 GHz band.
1127  * This resolution can be lowered and should be considered as we add
1128  * regulatory rule support for other "bands".
1129  **/
1130 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1131                               u32 freq_khz)
1132 {
1133 #define ONE_GHZ_IN_KHZ  1000000
1134         /*
1135          * From 802.11ad: directional multi-gigabit (DMG):
1136          * Pertaining to operation in a frequency band containing a channel
1137          * with the Channel starting frequency above 45 GHz.
1138          */
1139         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1140                         10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1141         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1142                 return true;
1143         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1144                 return true;
1145         return false;
1146 #undef ONE_GHZ_IN_KHZ
1147 }
1148
1149 /*
1150  * Later on we can perhaps use the more restrictive DFS
1151  * region but we don't have information for that yet so
1152  * for now simply disallow conflicts.
1153  */
1154 static enum nl80211_dfs_regions
1155 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1156                          const enum nl80211_dfs_regions dfs_region2)
1157 {
1158         if (dfs_region1 != dfs_region2)
1159                 return NL80211_DFS_UNSET;
1160         return dfs_region1;
1161 }
1162
1163 /*
1164  * Helper for regdom_intersect(), this does the real
1165  * mathematical intersection fun
1166  */
1167 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1168                                const struct ieee80211_regdomain *rd2,
1169                                const struct ieee80211_reg_rule *rule1,
1170                                const struct ieee80211_reg_rule *rule2,
1171                                struct ieee80211_reg_rule *intersected_rule)
1172 {
1173         const struct ieee80211_freq_range *freq_range1, *freq_range2;
1174         struct ieee80211_freq_range *freq_range;
1175         const struct ieee80211_power_rule *power_rule1, *power_rule2;
1176         struct ieee80211_power_rule *power_rule;
1177         u32 freq_diff, max_bandwidth1, max_bandwidth2;
1178
1179         freq_range1 = &rule1->freq_range;
1180         freq_range2 = &rule2->freq_range;
1181         freq_range = &intersected_rule->freq_range;
1182
1183         power_rule1 = &rule1->power_rule;
1184         power_rule2 = &rule2->power_rule;
1185         power_rule = &intersected_rule->power_rule;
1186
1187         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1188                                          freq_range2->start_freq_khz);
1189         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1190                                        freq_range2->end_freq_khz);
1191
1192         max_bandwidth1 = freq_range1->max_bandwidth_khz;
1193         max_bandwidth2 = freq_range2->max_bandwidth_khz;
1194
1195         if (rule1->flags & NL80211_RRF_AUTO_BW)
1196                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1197         if (rule2->flags & NL80211_RRF_AUTO_BW)
1198                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1199
1200         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1201
1202         intersected_rule->flags = rule1->flags | rule2->flags;
1203
1204         /*
1205          * In case NL80211_RRF_AUTO_BW requested for both rules
1206          * set AUTO_BW in intersected rule also. Next we will
1207          * calculate BW correctly in handle_channel function.
1208          * In other case remove AUTO_BW flag while we calculate
1209          * maximum bandwidth correctly and auto calculation is
1210          * not required.
1211          */
1212         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1213             (rule2->flags & NL80211_RRF_AUTO_BW))
1214                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1215         else
1216                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1217
1218         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1219         if (freq_range->max_bandwidth_khz > freq_diff)
1220                 freq_range->max_bandwidth_khz = freq_diff;
1221
1222         power_rule->max_eirp = min(power_rule1->max_eirp,
1223                 power_rule2->max_eirp);
1224         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1225                 power_rule2->max_antenna_gain);
1226
1227         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1228                                            rule2->dfs_cac_ms);
1229
1230         if (!is_valid_reg_rule(intersected_rule))
1231                 return -EINVAL;
1232
1233         return 0;
1234 }
1235
1236 /* check whether old rule contains new rule */
1237 static bool rule_contains(struct ieee80211_reg_rule *r1,
1238                           struct ieee80211_reg_rule *r2)
1239 {
1240         /* for simplicity, currently consider only same flags */
1241         if (r1->flags != r2->flags)
1242                 return false;
1243
1244         /* verify r1 is more restrictive */
1245         if ((r1->power_rule.max_antenna_gain >
1246              r2->power_rule.max_antenna_gain) ||
1247             r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1248                 return false;
1249
1250         /* make sure r2's range is contained within r1 */
1251         if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1252             r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1253                 return false;
1254
1255         /* and finally verify that r1.max_bw >= r2.max_bw */
1256         if (r1->freq_range.max_bandwidth_khz <
1257             r2->freq_range.max_bandwidth_khz)
1258                 return false;
1259
1260         return true;
1261 }
1262
1263 /* add or extend current rules. do nothing if rule is already contained */
1264 static void add_rule(struct ieee80211_reg_rule *rule,
1265                      struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1266 {
1267         struct ieee80211_reg_rule *tmp_rule;
1268         int i;
1269
1270         for (i = 0; i < *n_rules; i++) {
1271                 tmp_rule = &reg_rules[i];
1272                 /* rule is already contained - do nothing */
1273                 if (rule_contains(tmp_rule, rule))
1274                         return;
1275
1276                 /* extend rule if possible */
1277                 if (rule_contains(rule, tmp_rule)) {
1278                         memcpy(tmp_rule, rule, sizeof(*rule));
1279                         return;
1280                 }
1281         }
1282
1283         memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1284         (*n_rules)++;
1285 }
1286
1287 /**
1288  * regdom_intersect - do the intersection between two regulatory domains
1289  * @rd1: first regulatory domain
1290  * @rd2: second regulatory domain
1291  *
1292  * Use this function to get the intersection between two regulatory domains.
1293  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1294  * as no one single alpha2 can represent this regulatory domain.
1295  *
1296  * Returns a pointer to the regulatory domain structure which will hold the
1297  * resulting intersection of rules between rd1 and rd2. We will
1298  * kzalloc() this structure for you.
1299  */
1300 static struct ieee80211_regdomain *
1301 regdom_intersect(const struct ieee80211_regdomain *rd1,
1302                  const struct ieee80211_regdomain *rd2)
1303 {
1304         int r, size_of_regd;
1305         unsigned int x, y;
1306         unsigned int num_rules = 0;
1307         const struct ieee80211_reg_rule *rule1, *rule2;
1308         struct ieee80211_reg_rule intersected_rule;
1309         struct ieee80211_regdomain *rd;
1310
1311         if (!rd1 || !rd2)
1312                 return NULL;
1313
1314         /*
1315          * First we get a count of the rules we'll need, then we actually
1316          * build them. This is to so we can malloc() and free() a
1317          * regdomain once. The reason we use reg_rules_intersect() here
1318          * is it will return -EINVAL if the rule computed makes no sense.
1319          * All rules that do check out OK are valid.
1320          */
1321
1322         for (x = 0; x < rd1->n_reg_rules; x++) {
1323                 rule1 = &rd1->reg_rules[x];
1324                 for (y = 0; y < rd2->n_reg_rules; y++) {
1325                         rule2 = &rd2->reg_rules[y];
1326                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1327                                                  &intersected_rule))
1328                                 num_rules++;
1329                 }
1330         }
1331
1332         if (!num_rules)
1333                 return NULL;
1334
1335         size_of_regd = sizeof(struct ieee80211_regdomain) +
1336                        num_rules * sizeof(struct ieee80211_reg_rule);
1337
1338         rd = kzalloc(size_of_regd, GFP_KERNEL);
1339         if (!rd)
1340                 return NULL;
1341
1342         for (x = 0; x < rd1->n_reg_rules; x++) {
1343                 rule1 = &rd1->reg_rules[x];
1344                 for (y = 0; y < rd2->n_reg_rules; y++) {
1345                         rule2 = &rd2->reg_rules[y];
1346                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1347                                                 &intersected_rule);
1348                         /*
1349                          * No need to memset here the intersected rule here as
1350                          * we're not using the stack anymore
1351                          */
1352                         if (r)
1353                                 continue;
1354
1355                         add_rule(&intersected_rule, rd->reg_rules,
1356                                  &rd->n_reg_rules);
1357                 }
1358         }
1359
1360         rd->alpha2[0] = '9';
1361         rd->alpha2[1] = '8';
1362         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1363                                                   rd2->dfs_region);
1364
1365         return rd;
1366 }
1367
1368 /*
1369  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1370  * want to just have the channel structure use these
1371  */
1372 static u32 map_regdom_flags(u32 rd_flags)
1373 {
1374         u32 channel_flags = 0;
1375         if (rd_flags & NL80211_RRF_NO_IR_ALL)
1376                 channel_flags |= IEEE80211_CHAN_NO_IR;
1377         if (rd_flags & NL80211_RRF_DFS)
1378                 channel_flags |= IEEE80211_CHAN_RADAR;
1379         if (rd_flags & NL80211_RRF_NO_OFDM)
1380                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1381         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1382                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1383         if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1384                 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1385         if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1386                 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1387         if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1388                 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1389         if (rd_flags & NL80211_RRF_NO_80MHZ)
1390                 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1391         if (rd_flags & NL80211_RRF_NO_160MHZ)
1392                 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1393         return channel_flags;
1394 }
1395
1396 static const struct ieee80211_reg_rule *
1397 freq_reg_info_regd(u32 center_freq,
1398                    const struct ieee80211_regdomain *regd, u32 bw)
1399 {
1400         int i;
1401         bool band_rule_found = false;
1402         bool bw_fits = false;
1403
1404         if (!regd)
1405                 return ERR_PTR(-EINVAL);
1406
1407         for (i = 0; i < regd->n_reg_rules; i++) {
1408                 const struct ieee80211_reg_rule *rr;
1409                 const struct ieee80211_freq_range *fr = NULL;
1410
1411                 rr = &regd->reg_rules[i];
1412                 fr = &rr->freq_range;
1413
1414                 /*
1415                  * We only need to know if one frequency rule was
1416                  * was in center_freq's band, that's enough, so lets
1417                  * not overwrite it once found
1418                  */
1419                 if (!band_rule_found)
1420                         band_rule_found = freq_in_rule_band(fr, center_freq);
1421
1422                 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1423
1424                 if (band_rule_found && bw_fits)
1425                         return rr;
1426         }
1427
1428         if (!band_rule_found)
1429                 return ERR_PTR(-ERANGE);
1430
1431         return ERR_PTR(-EINVAL);
1432 }
1433
1434 static const struct ieee80211_reg_rule *
1435 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1436 {
1437         const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1438         const struct ieee80211_reg_rule *reg_rule = NULL;
1439         u32 bw;
1440
1441         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1442                 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1443                 if (!IS_ERR(reg_rule))
1444                         return reg_rule;
1445         }
1446
1447         return reg_rule;
1448 }
1449
1450 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1451                                                u32 center_freq)
1452 {
1453         return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1454 }
1455 EXPORT_SYMBOL(freq_reg_info);
1456
1457 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1458 {
1459         switch (initiator) {
1460         case NL80211_REGDOM_SET_BY_CORE:
1461                 return "core";
1462         case NL80211_REGDOM_SET_BY_USER:
1463                 return "user";
1464         case NL80211_REGDOM_SET_BY_DRIVER:
1465                 return "driver";
1466         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1467                 return "country IE";
1468         default:
1469                 WARN_ON(1);
1470                 return "bug";
1471         }
1472 }
1473 EXPORT_SYMBOL(reg_initiator_name);
1474
1475 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1476                                           const struct ieee80211_reg_rule *reg_rule,
1477                                           const struct ieee80211_channel *chan)
1478 {
1479         const struct ieee80211_freq_range *freq_range = NULL;
1480         u32 max_bandwidth_khz, bw_flags = 0;
1481
1482         freq_range = &reg_rule->freq_range;
1483
1484         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1485         /* Check if auto calculation requested */
1486         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1487                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1488
1489         /* If we get a reg_rule we can assume that at least 5Mhz fit */
1490         if (!cfg80211_does_bw_fit_range(freq_range,
1491                                         MHZ_TO_KHZ(chan->center_freq),
1492                                         MHZ_TO_KHZ(10)))
1493                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1494         if (!cfg80211_does_bw_fit_range(freq_range,
1495                                         MHZ_TO_KHZ(chan->center_freq),
1496                                         MHZ_TO_KHZ(20)))
1497                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1498
1499         if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1500                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1501         if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1502                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1503         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1504                 bw_flags |= IEEE80211_CHAN_NO_HT40;
1505         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1506                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1507         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1508                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1509         return bw_flags;
1510 }
1511
1512 /*
1513  * Note that right now we assume the desired channel bandwidth
1514  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1515  * per channel, the primary and the extension channel).
1516  */
1517 static void handle_channel(struct wiphy *wiphy,
1518                            enum nl80211_reg_initiator initiator,
1519                            struct ieee80211_channel *chan)
1520 {
1521         u32 flags, bw_flags = 0;
1522         const struct ieee80211_reg_rule *reg_rule = NULL;
1523         const struct ieee80211_power_rule *power_rule = NULL;
1524         struct wiphy *request_wiphy = NULL;
1525         struct regulatory_request *lr = get_last_request();
1526         const struct ieee80211_regdomain *regd;
1527
1528         request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1529
1530         flags = chan->orig_flags;
1531
1532         reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1533         if (IS_ERR(reg_rule)) {
1534                 /*
1535                  * We will disable all channels that do not match our
1536                  * received regulatory rule unless the hint is coming
1537                  * from a Country IE and the Country IE had no information
1538                  * about a band. The IEEE 802.11 spec allows for an AP
1539                  * to send only a subset of the regulatory rules allowed,
1540                  * so an AP in the US that only supports 2.4 GHz may only send
1541                  * a country IE with information for the 2.4 GHz band
1542                  * while 5 GHz is still supported.
1543                  */
1544                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1545                     PTR_ERR(reg_rule) == -ERANGE)
1546                         return;
1547
1548                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1549                     request_wiphy && request_wiphy == wiphy &&
1550                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1551                         pr_debug("Disabling freq %d MHz for good\n",
1552                                  chan->center_freq);
1553                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1554                         chan->flags = chan->orig_flags;
1555                 } else {
1556                         pr_debug("Disabling freq %d MHz\n",
1557                                  chan->center_freq);
1558                         chan->flags |= IEEE80211_CHAN_DISABLED;
1559                 }
1560                 return;
1561         }
1562
1563         regd = reg_get_regdomain(wiphy);
1564
1565         power_rule = &reg_rule->power_rule;
1566         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1567
1568         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1569             request_wiphy && request_wiphy == wiphy &&
1570             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1571                 /*
1572                  * This guarantees the driver's requested regulatory domain
1573                  * will always be used as a base for further regulatory
1574                  * settings
1575                  */
1576                 chan->flags = chan->orig_flags =
1577                         map_regdom_flags(reg_rule->flags) | bw_flags;
1578                 chan->max_antenna_gain = chan->orig_mag =
1579                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1580                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1581                         (int) MBM_TO_DBM(power_rule->max_eirp);
1582
1583                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1584                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1585                         if (reg_rule->dfs_cac_ms)
1586                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1587                 }
1588
1589                 return;
1590         }
1591
1592         chan->dfs_state = NL80211_DFS_USABLE;
1593         chan->dfs_state_entered = jiffies;
1594
1595         chan->beacon_found = false;
1596         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1597         chan->max_antenna_gain =
1598                 min_t(int, chan->orig_mag,
1599                       MBI_TO_DBI(power_rule->max_antenna_gain));
1600         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1601
1602         if (chan->flags & IEEE80211_CHAN_RADAR) {
1603                 if (reg_rule->dfs_cac_ms)
1604                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1605                 else
1606                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1607         }
1608
1609         if (chan->orig_mpwr) {
1610                 /*
1611                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1612                  * will always follow the passed country IE power settings.
1613                  */
1614                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1615                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1616                         chan->max_power = chan->max_reg_power;
1617                 else
1618                         chan->max_power = min(chan->orig_mpwr,
1619                                               chan->max_reg_power);
1620         } else
1621                 chan->max_power = chan->max_reg_power;
1622 }
1623
1624 static void handle_band(struct wiphy *wiphy,
1625                         enum nl80211_reg_initiator initiator,
1626                         struct ieee80211_supported_band *sband)
1627 {
1628         unsigned int i;
1629
1630         if (!sband)
1631                 return;
1632
1633         for (i = 0; i < sband->n_channels; i++)
1634                 handle_channel(wiphy, initiator, &sband->channels[i]);
1635 }
1636
1637 static bool reg_request_cell_base(struct regulatory_request *request)
1638 {
1639         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1640                 return false;
1641         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1642 }
1643
1644 bool reg_last_request_cell_base(void)
1645 {
1646         return reg_request_cell_base(get_last_request());
1647 }
1648
1649 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1650 /* Core specific check */
1651 static enum reg_request_treatment
1652 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1653 {
1654         struct regulatory_request *lr = get_last_request();
1655
1656         if (!reg_num_devs_support_basehint)
1657                 return REG_REQ_IGNORE;
1658
1659         if (reg_request_cell_base(lr) &&
1660             !regdom_changes(pending_request->alpha2))
1661                 return REG_REQ_ALREADY_SET;
1662
1663         return REG_REQ_OK;
1664 }
1665
1666 /* Device specific check */
1667 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1668 {
1669         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1670 }
1671 #else
1672 static enum reg_request_treatment
1673 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1674 {
1675         return REG_REQ_IGNORE;
1676 }
1677
1678 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1679 {
1680         return true;
1681 }
1682 #endif
1683
1684 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1685 {
1686         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1687             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1688                 return true;
1689         return false;
1690 }
1691
1692 static bool ignore_reg_update(struct wiphy *wiphy,
1693                               enum nl80211_reg_initiator initiator)
1694 {
1695         struct regulatory_request *lr = get_last_request();
1696
1697         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1698                 return true;
1699
1700         if (!lr) {
1701                 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1702                          reg_initiator_name(initiator));
1703                 return true;
1704         }
1705
1706         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1707             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1708                 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1709                          reg_initiator_name(initiator));
1710                 return true;
1711         }
1712
1713         /*
1714          * wiphy->regd will be set once the device has its own
1715          * desired regulatory domain set
1716          */
1717         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1718             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1719             !is_world_regdom(lr->alpha2)) {
1720                 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1721                          reg_initiator_name(initiator));
1722                 return true;
1723         }
1724
1725         if (reg_request_cell_base(lr))
1726                 return reg_dev_ignore_cell_hint(wiphy);
1727
1728         return false;
1729 }
1730
1731 static bool reg_is_world_roaming(struct wiphy *wiphy)
1732 {
1733         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1734         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1735         struct regulatory_request *lr = get_last_request();
1736
1737         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1738                 return true;
1739
1740         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1741             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1742                 return true;
1743
1744         return false;
1745 }
1746
1747 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1748                               struct reg_beacon *reg_beacon)
1749 {
1750         struct ieee80211_supported_band *sband;
1751         struct ieee80211_channel *chan;
1752         bool channel_changed = false;
1753         struct ieee80211_channel chan_before;
1754
1755         sband = wiphy->bands[reg_beacon->chan.band];
1756         chan = &sband->channels[chan_idx];
1757
1758         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1759                 return;
1760
1761         if (chan->beacon_found)
1762                 return;
1763
1764         chan->beacon_found = true;
1765
1766         if (!reg_is_world_roaming(wiphy))
1767                 return;
1768
1769         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1770                 return;
1771
1772         chan_before = *chan;
1773
1774         if (chan->flags & IEEE80211_CHAN_NO_IR) {
1775                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1776                 channel_changed = true;
1777         }
1778
1779         if (channel_changed)
1780                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1781 }
1782
1783 /*
1784  * Called when a scan on a wiphy finds a beacon on
1785  * new channel
1786  */
1787 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1788                                     struct reg_beacon *reg_beacon)
1789 {
1790         unsigned int i;
1791         struct ieee80211_supported_band *sband;
1792
1793         if (!wiphy->bands[reg_beacon->chan.band])
1794                 return;
1795
1796         sband = wiphy->bands[reg_beacon->chan.band];
1797
1798         for (i = 0; i < sband->n_channels; i++)
1799                 handle_reg_beacon(wiphy, i, reg_beacon);
1800 }
1801
1802 /*
1803  * Called upon reg changes or a new wiphy is added
1804  */
1805 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1806 {
1807         unsigned int i;
1808         struct ieee80211_supported_band *sband;
1809         struct reg_beacon *reg_beacon;
1810
1811         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1812                 if (!wiphy->bands[reg_beacon->chan.band])
1813                         continue;
1814                 sband = wiphy->bands[reg_beacon->chan.band];
1815                 for (i = 0; i < sband->n_channels; i++)
1816                         handle_reg_beacon(wiphy, i, reg_beacon);
1817         }
1818 }
1819
1820 /* Reap the advantages of previously found beacons */
1821 static void reg_process_beacons(struct wiphy *wiphy)
1822 {
1823         /*
1824          * Means we are just firing up cfg80211, so no beacons would
1825          * have been processed yet.
1826          */
1827         if (!last_request)
1828                 return;
1829         wiphy_update_beacon_reg(wiphy);
1830 }
1831
1832 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1833 {
1834         if (!chan)
1835                 return false;
1836         if (chan->flags & IEEE80211_CHAN_DISABLED)
1837                 return false;
1838         /* This would happen when regulatory rules disallow HT40 completely */
1839         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1840                 return false;
1841         return true;
1842 }
1843
1844 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1845                                          struct ieee80211_channel *channel)
1846 {
1847         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1848         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1849         const struct ieee80211_regdomain *regd;
1850         unsigned int i;
1851         u32 flags;
1852
1853         if (!is_ht40_allowed(channel)) {
1854                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1855                 return;
1856         }
1857
1858         /*
1859          * We need to ensure the extension channels exist to
1860          * be able to use HT40- or HT40+, this finds them (or not)
1861          */
1862         for (i = 0; i < sband->n_channels; i++) {
1863                 struct ieee80211_channel *c = &sband->channels[i];
1864
1865                 if (c->center_freq == (channel->center_freq - 20))
1866                         channel_before = c;
1867                 if (c->center_freq == (channel->center_freq + 20))
1868                         channel_after = c;
1869         }
1870
1871         flags = 0;
1872         regd = get_wiphy_regdom(wiphy);
1873         if (regd) {
1874                 const struct ieee80211_reg_rule *reg_rule =
1875                         freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
1876                                            regd, MHZ_TO_KHZ(20));
1877
1878                 if (!IS_ERR(reg_rule))
1879                         flags = reg_rule->flags;
1880         }
1881
1882         /*
1883          * Please note that this assumes target bandwidth is 20 MHz,
1884          * if that ever changes we also need to change the below logic
1885          * to include that as well.
1886          */
1887         if (!is_ht40_allowed(channel_before) ||
1888             flags & NL80211_RRF_NO_HT40MINUS)
1889                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1890         else
1891                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1892
1893         if (!is_ht40_allowed(channel_after) ||
1894             flags & NL80211_RRF_NO_HT40PLUS)
1895                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1896         else
1897                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1898 }
1899
1900 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1901                                       struct ieee80211_supported_band *sband)
1902 {
1903         unsigned int i;
1904
1905         if (!sband)
1906                 return;
1907
1908         for (i = 0; i < sband->n_channels; i++)
1909                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1910 }
1911
1912 static void reg_process_ht_flags(struct wiphy *wiphy)
1913 {
1914         enum nl80211_band band;
1915
1916         if (!wiphy)
1917                 return;
1918
1919         for (band = 0; band < NUM_NL80211_BANDS; band++)
1920                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1921 }
1922
1923 static void reg_call_notifier(struct wiphy *wiphy,
1924                               struct regulatory_request *request)
1925 {
1926         if (wiphy->reg_notifier)
1927                 wiphy->reg_notifier(wiphy, request);
1928 }
1929
1930 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1931 {
1932         struct cfg80211_chan_def chandef;
1933         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1934         enum nl80211_iftype iftype;
1935
1936         wdev_lock(wdev);
1937         iftype = wdev->iftype;
1938
1939         /* make sure the interface is active */
1940         if (!wdev->netdev || !netif_running(wdev->netdev))
1941                 goto wdev_inactive_unlock;
1942
1943         switch (iftype) {
1944         case NL80211_IFTYPE_AP:
1945         case NL80211_IFTYPE_P2P_GO:
1946                 if (!wdev->beacon_interval)
1947                         goto wdev_inactive_unlock;
1948                 chandef = wdev->chandef;
1949                 break;
1950         case NL80211_IFTYPE_ADHOC:
1951                 if (!wdev->ssid_len)
1952                         goto wdev_inactive_unlock;
1953                 chandef = wdev->chandef;
1954                 break;
1955         case NL80211_IFTYPE_STATION:
1956         case NL80211_IFTYPE_P2P_CLIENT:
1957                 if (!wdev->current_bss ||
1958                     !wdev->current_bss->pub.channel)
1959                         goto wdev_inactive_unlock;
1960
1961                 if (!rdev->ops->get_channel ||
1962                     rdev_get_channel(rdev, wdev, &chandef))
1963                         cfg80211_chandef_create(&chandef,
1964                                                 wdev->current_bss->pub.channel,
1965                                                 NL80211_CHAN_NO_HT);
1966                 break;
1967         case NL80211_IFTYPE_MONITOR:
1968         case NL80211_IFTYPE_AP_VLAN:
1969         case NL80211_IFTYPE_P2P_DEVICE:
1970                 /* no enforcement required */
1971                 break;
1972         default:
1973                 /* others not implemented for now */
1974                 WARN_ON(1);
1975                 break;
1976         }
1977
1978         wdev_unlock(wdev);
1979
1980         switch (iftype) {
1981         case NL80211_IFTYPE_AP:
1982         case NL80211_IFTYPE_P2P_GO:
1983         case NL80211_IFTYPE_ADHOC:
1984                 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
1985         case NL80211_IFTYPE_STATION:
1986         case NL80211_IFTYPE_P2P_CLIENT:
1987                 return cfg80211_chandef_usable(wiphy, &chandef,
1988                                                IEEE80211_CHAN_DISABLED);
1989         default:
1990                 break;
1991         }
1992
1993         return true;
1994
1995 wdev_inactive_unlock:
1996         wdev_unlock(wdev);
1997         return true;
1998 }
1999
2000 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2001 {
2002         struct wireless_dev *wdev;
2003         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2004
2005         ASSERT_RTNL();
2006
2007         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2008                 if (!reg_wdev_chan_valid(wiphy, wdev))
2009                         cfg80211_leave(rdev, wdev);
2010 }
2011
2012 static void reg_check_chans_work(struct work_struct *work)
2013 {
2014         struct cfg80211_registered_device *rdev;
2015
2016         pr_debug("Verifying active interfaces after reg change\n");
2017         rtnl_lock();
2018
2019         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2020                 if (!(rdev->wiphy.regulatory_flags &
2021                       REGULATORY_IGNORE_STALE_KICKOFF))
2022                         reg_leave_invalid_chans(&rdev->wiphy);
2023
2024         rtnl_unlock();
2025 }
2026
2027 static void reg_check_channels(void)
2028 {
2029         /*
2030          * Give usermode a chance to do something nicer (move to another
2031          * channel, orderly disconnection), before forcing a disconnection.
2032          */
2033         mod_delayed_work(system_power_efficient_wq,
2034                          &reg_check_chans,
2035                          msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2036 }
2037
2038 static void wiphy_update_regulatory(struct wiphy *wiphy,
2039                                     enum nl80211_reg_initiator initiator)
2040 {
2041         enum nl80211_band band;
2042         struct regulatory_request *lr = get_last_request();
2043
2044         if (ignore_reg_update(wiphy, initiator)) {
2045                 /*
2046                  * Regulatory updates set by CORE are ignored for custom
2047                  * regulatory cards. Let us notify the changes to the driver,
2048                  * as some drivers used this to restore its orig_* reg domain.
2049                  */
2050                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2051                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2052                         reg_call_notifier(wiphy, lr);
2053                 return;
2054         }
2055
2056         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2057
2058         for (band = 0; band < NUM_NL80211_BANDS; band++)
2059                 handle_band(wiphy, initiator, wiphy->bands[band]);
2060
2061         reg_process_beacons(wiphy);
2062         reg_process_ht_flags(wiphy);
2063         reg_call_notifier(wiphy, lr);
2064 }
2065
2066 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2067 {
2068         struct cfg80211_registered_device *rdev;
2069         struct wiphy *wiphy;
2070
2071         ASSERT_RTNL();
2072
2073         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2074                 wiphy = &rdev->wiphy;
2075                 wiphy_update_regulatory(wiphy, initiator);
2076         }
2077
2078         reg_check_channels();
2079 }
2080
2081 static void handle_channel_custom(struct wiphy *wiphy,
2082                                   struct ieee80211_channel *chan,
2083                                   const struct ieee80211_regdomain *regd)
2084 {
2085         u32 bw_flags = 0;
2086         const struct ieee80211_reg_rule *reg_rule = NULL;
2087         const struct ieee80211_power_rule *power_rule = NULL;
2088         u32 bw;
2089
2090         for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
2091                 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
2092                                               regd, bw);
2093                 if (!IS_ERR(reg_rule))
2094                         break;
2095         }
2096
2097         if (IS_ERR(reg_rule)) {
2098                 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
2099                          chan->center_freq);
2100                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2101                         chan->flags |= IEEE80211_CHAN_DISABLED;
2102                 } else {
2103                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2104                         chan->flags = chan->orig_flags;
2105                 }
2106                 return;
2107         }
2108
2109         power_rule = &reg_rule->power_rule;
2110         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2111
2112         chan->dfs_state_entered = jiffies;
2113         chan->dfs_state = NL80211_DFS_USABLE;
2114
2115         chan->beacon_found = false;
2116
2117         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2118                 chan->flags = chan->orig_flags | bw_flags |
2119                               map_regdom_flags(reg_rule->flags);
2120         else
2121                 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2122
2123         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2124         chan->max_reg_power = chan->max_power =
2125                 (int) MBM_TO_DBM(power_rule->max_eirp);
2126
2127         if (chan->flags & IEEE80211_CHAN_RADAR) {
2128                 if (reg_rule->dfs_cac_ms)
2129                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2130                 else
2131                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2132         }
2133
2134         chan->max_power = chan->max_reg_power;
2135 }
2136
2137 static void handle_band_custom(struct wiphy *wiphy,
2138                                struct ieee80211_supported_band *sband,
2139                                const struct ieee80211_regdomain *regd)
2140 {
2141         unsigned int i;
2142
2143         if (!sband)
2144                 return;
2145
2146         for (i = 0; i < sband->n_channels; i++)
2147                 handle_channel_custom(wiphy, &sband->channels[i], regd);
2148 }
2149
2150 /* Used by drivers prior to wiphy registration */
2151 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2152                                    const struct ieee80211_regdomain *regd)
2153 {
2154         enum nl80211_band band;
2155         unsigned int bands_set = 0;
2156
2157         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2158              "wiphy should have REGULATORY_CUSTOM_REG\n");
2159         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2160
2161         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2162                 if (!wiphy->bands[band])
2163                         continue;
2164                 handle_band_custom(wiphy, wiphy->bands[band], regd);
2165                 bands_set++;
2166         }
2167
2168         /*
2169          * no point in calling this if it won't have any effect
2170          * on your device's supported bands.
2171          */
2172         WARN_ON(!bands_set);
2173 }
2174 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2175
2176 static void reg_set_request_processed(void)
2177 {
2178         bool need_more_processing = false;
2179         struct regulatory_request *lr = get_last_request();
2180
2181         lr->processed = true;
2182
2183         spin_lock(&reg_requests_lock);
2184         if (!list_empty(&reg_requests_list))
2185                 need_more_processing = true;
2186         spin_unlock(&reg_requests_lock);
2187
2188         cancel_crda_timeout();
2189
2190         if (need_more_processing)
2191                 schedule_work(&reg_work);
2192 }
2193
2194 /**
2195  * reg_process_hint_core - process core regulatory requests
2196  * @pending_request: a pending core regulatory request
2197  *
2198  * The wireless subsystem can use this function to process
2199  * a regulatory request issued by the regulatory core.
2200  */
2201 static enum reg_request_treatment
2202 reg_process_hint_core(struct regulatory_request *core_request)
2203 {
2204         if (reg_query_database(core_request)) {
2205                 core_request->intersect = false;
2206                 core_request->processed = false;
2207                 reg_update_last_request(core_request);
2208                 return REG_REQ_OK;
2209         }
2210
2211         return REG_REQ_IGNORE;
2212 }
2213
2214 static enum reg_request_treatment
2215 __reg_process_hint_user(struct regulatory_request *user_request)
2216 {
2217         struct regulatory_request *lr = get_last_request();
2218
2219         if (reg_request_cell_base(user_request))
2220                 return reg_ignore_cell_hint(user_request);
2221
2222         if (reg_request_cell_base(lr))
2223                 return REG_REQ_IGNORE;
2224
2225         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2226                 return REG_REQ_INTERSECT;
2227         /*
2228          * If the user knows better the user should set the regdom
2229          * to their country before the IE is picked up
2230          */
2231         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2232             lr->intersect)
2233                 return REG_REQ_IGNORE;
2234         /*
2235          * Process user requests only after previous user/driver/core
2236          * requests have been processed
2237          */
2238         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2239              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2240              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2241             regdom_changes(lr->alpha2))
2242                 return REG_REQ_IGNORE;
2243
2244         if (!regdom_changes(user_request->alpha2))
2245                 return REG_REQ_ALREADY_SET;
2246
2247         return REG_REQ_OK;
2248 }
2249
2250 /**
2251  * reg_process_hint_user - process user regulatory requests
2252  * @user_request: a pending user regulatory request
2253  *
2254  * The wireless subsystem can use this function to process
2255  * a regulatory request initiated by userspace.
2256  */
2257 static enum reg_request_treatment
2258 reg_process_hint_user(struct regulatory_request *user_request)
2259 {
2260         enum reg_request_treatment treatment;
2261
2262         treatment = __reg_process_hint_user(user_request);
2263         if (treatment == REG_REQ_IGNORE ||
2264             treatment == REG_REQ_ALREADY_SET)
2265                 return REG_REQ_IGNORE;
2266
2267         user_request->intersect = treatment == REG_REQ_INTERSECT;
2268         user_request->processed = false;
2269
2270         if (reg_query_database(user_request)) {
2271                 reg_update_last_request(user_request);
2272                 user_alpha2[0] = user_request->alpha2[0];
2273                 user_alpha2[1] = user_request->alpha2[1];
2274                 return REG_REQ_OK;
2275         }
2276
2277         return REG_REQ_IGNORE;
2278 }
2279
2280 static enum reg_request_treatment
2281 __reg_process_hint_driver(struct regulatory_request *driver_request)
2282 {
2283         struct regulatory_request *lr = get_last_request();
2284
2285         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2286                 if (regdom_changes(driver_request->alpha2))
2287                         return REG_REQ_OK;
2288                 return REG_REQ_ALREADY_SET;
2289         }
2290
2291         /*
2292          * This would happen if you unplug and plug your card
2293          * back in or if you add a new device for which the previously
2294          * loaded card also agrees on the regulatory domain.
2295          */
2296         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2297             !regdom_changes(driver_request->alpha2))
2298                 return REG_REQ_ALREADY_SET;
2299
2300         return REG_REQ_INTERSECT;
2301 }
2302
2303 /**
2304  * reg_process_hint_driver - process driver regulatory requests
2305  * @driver_request: a pending driver regulatory request
2306  *
2307  * The wireless subsystem can use this function to process
2308  * a regulatory request issued by an 802.11 driver.
2309  *
2310  * Returns one of the different reg request treatment values.
2311  */
2312 static enum reg_request_treatment
2313 reg_process_hint_driver(struct wiphy *wiphy,
2314                         struct regulatory_request *driver_request)
2315 {
2316         const struct ieee80211_regdomain *regd, *tmp;
2317         enum reg_request_treatment treatment;
2318
2319         treatment = __reg_process_hint_driver(driver_request);
2320
2321         switch (treatment) {
2322         case REG_REQ_OK:
2323                 break;
2324         case REG_REQ_IGNORE:
2325                 return REG_REQ_IGNORE;
2326         case REG_REQ_INTERSECT:
2327         case REG_REQ_ALREADY_SET:
2328                 regd = reg_copy_regd(get_cfg80211_regdom());
2329                 if (IS_ERR(regd))
2330                         return REG_REQ_IGNORE;
2331
2332                 tmp = get_wiphy_regdom(wiphy);
2333                 rcu_assign_pointer(wiphy->regd, regd);
2334                 rcu_free_regdom(tmp);
2335         }
2336
2337
2338         driver_request->intersect = treatment == REG_REQ_INTERSECT;
2339         driver_request->processed = false;
2340
2341         /*
2342          * Since CRDA will not be called in this case as we already
2343          * have applied the requested regulatory domain before we just
2344          * inform userspace we have processed the request
2345          */
2346         if (treatment == REG_REQ_ALREADY_SET) {
2347                 nl80211_send_reg_change_event(driver_request);
2348                 reg_update_last_request(driver_request);
2349                 reg_set_request_processed();
2350                 return REG_REQ_ALREADY_SET;
2351         }
2352
2353         if (reg_query_database(driver_request)) {
2354                 reg_update_last_request(driver_request);
2355                 return REG_REQ_OK;
2356         }
2357
2358         return REG_REQ_IGNORE;
2359 }
2360
2361 static enum reg_request_treatment
2362 __reg_process_hint_country_ie(struct wiphy *wiphy,
2363                               struct regulatory_request *country_ie_request)
2364 {
2365         struct wiphy *last_wiphy = NULL;
2366         struct regulatory_request *lr = get_last_request();
2367
2368         if (reg_request_cell_base(lr)) {
2369                 /* Trust a Cell base station over the AP's country IE */
2370                 if (regdom_changes(country_ie_request->alpha2))
2371                         return REG_REQ_IGNORE;
2372                 return REG_REQ_ALREADY_SET;
2373         } else {
2374                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2375                         return REG_REQ_IGNORE;
2376         }
2377
2378         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2379                 return -EINVAL;
2380
2381         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2382                 return REG_REQ_OK;
2383
2384         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2385
2386         if (last_wiphy != wiphy) {
2387                 /*
2388                  * Two cards with two APs claiming different
2389                  * Country IE alpha2s. We could
2390                  * intersect them, but that seems unlikely
2391                  * to be correct. Reject second one for now.
2392                  */
2393                 if (regdom_changes(country_ie_request->alpha2))
2394                         return REG_REQ_IGNORE;
2395                 return REG_REQ_ALREADY_SET;
2396         }
2397
2398         if (regdom_changes(country_ie_request->alpha2))
2399                 return REG_REQ_OK;
2400         return REG_REQ_ALREADY_SET;
2401 }
2402
2403 /**
2404  * reg_process_hint_country_ie - process regulatory requests from country IEs
2405  * @country_ie_request: a regulatory request from a country IE
2406  *
2407  * The wireless subsystem can use this function to process
2408  * a regulatory request issued by a country Information Element.
2409  *
2410  * Returns one of the different reg request treatment values.
2411  */
2412 static enum reg_request_treatment
2413 reg_process_hint_country_ie(struct wiphy *wiphy,
2414                             struct regulatory_request *country_ie_request)
2415 {
2416         enum reg_request_treatment treatment;
2417
2418         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2419
2420         switch (treatment) {
2421         case REG_REQ_OK:
2422                 break;
2423         case REG_REQ_IGNORE:
2424                 return REG_REQ_IGNORE;
2425         case REG_REQ_ALREADY_SET:
2426                 reg_free_request(country_ie_request);
2427                 return REG_REQ_ALREADY_SET;
2428         case REG_REQ_INTERSECT:
2429                 /*
2430                  * This doesn't happen yet, not sure we
2431                  * ever want to support it for this case.
2432                  */
2433                 WARN_ONCE(1, "Unexpected intersection for country IEs");
2434                 return REG_REQ_IGNORE;
2435         }
2436
2437         country_ie_request->intersect = false;
2438         country_ie_request->processed = false;
2439
2440         if (reg_query_database(country_ie_request)) {
2441                 reg_update_last_request(country_ie_request);
2442                 return REG_REQ_OK;
2443         }
2444
2445         return REG_REQ_IGNORE;
2446 }
2447
2448 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2449 {
2450         const struct ieee80211_regdomain *wiphy1_regd = NULL;
2451         const struct ieee80211_regdomain *wiphy2_regd = NULL;
2452         const struct ieee80211_regdomain *cfg80211_regd = NULL;
2453         bool dfs_domain_same;
2454
2455         rcu_read_lock();
2456
2457         cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2458         wiphy1_regd = rcu_dereference(wiphy1->regd);
2459         if (!wiphy1_regd)
2460                 wiphy1_regd = cfg80211_regd;
2461
2462         wiphy2_regd = rcu_dereference(wiphy2->regd);
2463         if (!wiphy2_regd)
2464                 wiphy2_regd = cfg80211_regd;
2465
2466         dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2467
2468         rcu_read_unlock();
2469
2470         return dfs_domain_same;
2471 }
2472
2473 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2474                                     struct ieee80211_channel *src_chan)
2475 {
2476         if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2477             !(src_chan->flags & IEEE80211_CHAN_RADAR))
2478                 return;
2479
2480         if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2481             src_chan->flags & IEEE80211_CHAN_DISABLED)
2482                 return;
2483
2484         if (src_chan->center_freq == dst_chan->center_freq &&
2485             dst_chan->dfs_state == NL80211_DFS_USABLE) {
2486                 dst_chan->dfs_state = src_chan->dfs_state;
2487                 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2488         }
2489 }
2490
2491 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2492                                        struct wiphy *src_wiphy)
2493 {
2494         struct ieee80211_supported_band *src_sband, *dst_sband;
2495         struct ieee80211_channel *src_chan, *dst_chan;
2496         int i, j, band;
2497
2498         if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2499                 return;
2500
2501         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2502                 dst_sband = dst_wiphy->bands[band];
2503                 src_sband = src_wiphy->bands[band];
2504                 if (!dst_sband || !src_sband)
2505                         continue;
2506
2507                 for (i = 0; i < dst_sband->n_channels; i++) {
2508                         dst_chan = &dst_sband->channels[i];
2509                         for (j = 0; j < src_sband->n_channels; j++) {
2510                                 src_chan = &src_sband->channels[j];
2511                                 reg_copy_dfs_chan_state(dst_chan, src_chan);
2512                         }
2513                 }
2514         }
2515 }
2516
2517 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2518 {
2519         struct cfg80211_registered_device *rdev;
2520
2521         ASSERT_RTNL();
2522
2523         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2524                 if (wiphy == &rdev->wiphy)
2525                         continue;
2526                 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2527         }
2528 }
2529
2530 /* This processes *all* regulatory hints */
2531 static void reg_process_hint(struct regulatory_request *reg_request)
2532 {
2533         struct wiphy *wiphy = NULL;
2534         enum reg_request_treatment treatment;
2535
2536         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2537                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2538
2539         switch (reg_request->initiator) {
2540         case NL80211_REGDOM_SET_BY_CORE:
2541                 treatment = reg_process_hint_core(reg_request);
2542                 break;
2543         case NL80211_REGDOM_SET_BY_USER:
2544                 treatment = reg_process_hint_user(reg_request);
2545                 break;
2546         case NL80211_REGDOM_SET_BY_DRIVER:
2547                 if (!wiphy)
2548                         goto out_free;
2549                 treatment = reg_process_hint_driver(wiphy, reg_request);
2550                 break;
2551         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2552                 if (!wiphy)
2553                         goto out_free;
2554                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2555                 break;
2556         default:
2557                 WARN(1, "invalid initiator %d\n", reg_request->initiator);
2558                 goto out_free;
2559         }
2560
2561         if (treatment == REG_REQ_IGNORE)
2562                 goto out_free;
2563
2564         WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2565              "unexpected treatment value %d\n", treatment);
2566
2567         /* This is required so that the orig_* parameters are saved.
2568          * NOTE: treatment must be set for any case that reaches here!
2569          */
2570         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2571             wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2572                 wiphy_update_regulatory(wiphy, reg_request->initiator);
2573                 wiphy_all_share_dfs_chan_state(wiphy);
2574                 reg_check_channels();
2575         }
2576
2577         return;
2578
2579 out_free:
2580         reg_free_request(reg_request);
2581 }
2582
2583 static bool reg_only_self_managed_wiphys(void)
2584 {
2585         struct cfg80211_registered_device *rdev;
2586         struct wiphy *wiphy;
2587         bool self_managed_found = false;
2588
2589         ASSERT_RTNL();
2590
2591         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2592                 wiphy = &rdev->wiphy;
2593                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2594                         self_managed_found = true;
2595                 else
2596                         return false;
2597         }
2598
2599         /* make sure at least one self-managed wiphy exists */
2600         return self_managed_found;
2601 }
2602
2603 /*
2604  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2605  * Regulatory hints come on a first come first serve basis and we
2606  * must process each one atomically.
2607  */
2608 static void reg_process_pending_hints(void)
2609 {
2610         struct regulatory_request *reg_request, *lr;
2611
2612         lr = get_last_request();
2613
2614         /* When last_request->processed becomes true this will be rescheduled */
2615         if (lr && !lr->processed) {
2616                 reg_process_hint(lr);
2617                 return;
2618         }
2619
2620         spin_lock(&reg_requests_lock);
2621
2622         if (list_empty(&reg_requests_list)) {
2623                 spin_unlock(&reg_requests_lock);
2624                 return;
2625         }
2626
2627         reg_request = list_first_entry(&reg_requests_list,
2628                                        struct regulatory_request,
2629                                        list);
2630         list_del_init(&reg_request->list);
2631
2632         spin_unlock(&reg_requests_lock);
2633
2634         if (reg_only_self_managed_wiphys()) {
2635                 reg_free_request(reg_request);
2636                 return;
2637         }
2638
2639         reg_process_hint(reg_request);
2640
2641         lr = get_last_request();
2642
2643         spin_lock(&reg_requests_lock);
2644         if (!list_empty(&reg_requests_list) && lr && lr->processed)
2645                 schedule_work(&reg_work);
2646         spin_unlock(&reg_requests_lock);
2647 }
2648
2649 /* Processes beacon hints -- this has nothing to do with country IEs */
2650 static void reg_process_pending_beacon_hints(void)
2651 {
2652         struct cfg80211_registered_device *rdev;
2653         struct reg_beacon *pending_beacon, *tmp;
2654
2655         /* This goes through the _pending_ beacon list */
2656         spin_lock_bh(&reg_pending_beacons_lock);
2657
2658         list_for_each_entry_safe(pending_beacon, tmp,
2659                                  &reg_pending_beacons, list) {
2660                 list_del_init(&pending_beacon->list);
2661
2662                 /* Applies the beacon hint to current wiphys */
2663                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2664                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2665
2666                 /* Remembers the beacon hint for new wiphys or reg changes */
2667                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2668         }
2669
2670         spin_unlock_bh(&reg_pending_beacons_lock);
2671 }
2672
2673 static void reg_process_self_managed_hints(void)
2674 {
2675         struct cfg80211_registered_device *rdev;
2676         struct wiphy *wiphy;
2677         const struct ieee80211_regdomain *tmp;
2678         const struct ieee80211_regdomain *regd;
2679         enum nl80211_band band;
2680         struct regulatory_request request = {};
2681
2682         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2683                 wiphy = &rdev->wiphy;
2684
2685                 spin_lock(&reg_requests_lock);
2686                 regd = rdev->requested_regd;
2687                 rdev->requested_regd = NULL;
2688                 spin_unlock(&reg_requests_lock);
2689
2690                 if (regd == NULL)
2691                         continue;
2692
2693                 tmp = get_wiphy_regdom(wiphy);
2694                 rcu_assign_pointer(wiphy->regd, regd);
2695                 rcu_free_regdom(tmp);
2696
2697                 for (band = 0; band < NUM_NL80211_BANDS; band++)
2698                         handle_band_custom(wiphy, wiphy->bands[band], regd);
2699
2700                 reg_process_ht_flags(wiphy);
2701
2702                 request.wiphy_idx = get_wiphy_idx(wiphy);
2703                 request.alpha2[0] = regd->alpha2[0];
2704                 request.alpha2[1] = regd->alpha2[1];
2705                 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2706
2707                 nl80211_send_wiphy_reg_change_event(&request);
2708         }
2709
2710         reg_check_channels();
2711 }
2712
2713 static void reg_todo(struct work_struct *work)
2714 {
2715         rtnl_lock();
2716         reg_process_pending_hints();
2717         reg_process_pending_beacon_hints();
2718         reg_process_self_managed_hints();
2719         rtnl_unlock();
2720 }
2721
2722 static void queue_regulatory_request(struct regulatory_request *request)
2723 {
2724         request->alpha2[0] = toupper(request->alpha2[0]);
2725         request->alpha2[1] = toupper(request->alpha2[1]);
2726
2727         spin_lock(&reg_requests_lock);
2728         list_add_tail(&request->list, &reg_requests_list);
2729         spin_unlock(&reg_requests_lock);
2730
2731         schedule_work(&reg_work);
2732 }
2733
2734 /*
2735  * Core regulatory hint -- happens during cfg80211_init()
2736  * and when we restore regulatory settings.
2737  */
2738 static int regulatory_hint_core(const char *alpha2)
2739 {
2740         struct regulatory_request *request;
2741
2742         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2743         if (!request)
2744                 return -ENOMEM;
2745
2746         request->alpha2[0] = alpha2[0];
2747         request->alpha2[1] = alpha2[1];
2748         request->initiator = NL80211_REGDOM_SET_BY_CORE;
2749
2750         queue_regulatory_request(request);
2751
2752         return 0;
2753 }
2754
2755 /* User hints */
2756 int regulatory_hint_user(const char *alpha2,
2757                          enum nl80211_user_reg_hint_type user_reg_hint_type)
2758 {
2759         struct regulatory_request *request;
2760
2761         if (WARN_ON(!alpha2))
2762                 return -EINVAL;
2763
2764         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2765         if (!request)
2766                 return -ENOMEM;
2767
2768         request->wiphy_idx = WIPHY_IDX_INVALID;
2769         request->alpha2[0] = alpha2[0];
2770         request->alpha2[1] = alpha2[1];
2771         request->initiator = NL80211_REGDOM_SET_BY_USER;
2772         request->user_reg_hint_type = user_reg_hint_type;
2773
2774         /* Allow calling CRDA again */
2775         reset_crda_timeouts();
2776
2777         queue_regulatory_request(request);
2778
2779         return 0;
2780 }
2781
2782 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2783 {
2784         spin_lock(&reg_indoor_lock);
2785
2786         /* It is possible that more than one user space process is trying to
2787          * configure the indoor setting. To handle such cases, clear the indoor
2788          * setting in case that some process does not think that the device
2789          * is operating in an indoor environment. In addition, if a user space
2790          * process indicates that it is controlling the indoor setting, save its
2791          * portid, i.e., make it the owner.
2792          */
2793         reg_is_indoor = is_indoor;
2794         if (reg_is_indoor) {
2795                 if (!reg_is_indoor_portid)
2796                         reg_is_indoor_portid = portid;
2797         } else {
2798                 reg_is_indoor_portid = 0;
2799         }
2800
2801         spin_unlock(&reg_indoor_lock);
2802
2803         if (!is_indoor)
2804                 reg_check_channels();
2805
2806         return 0;
2807 }
2808
2809 void regulatory_netlink_notify(u32 portid)
2810 {
2811         spin_lock(&reg_indoor_lock);
2812
2813         if (reg_is_indoor_portid != portid) {
2814                 spin_unlock(&reg_indoor_lock);
2815                 return;
2816         }
2817
2818         reg_is_indoor = false;
2819         reg_is_indoor_portid = 0;
2820
2821         spin_unlock(&reg_indoor_lock);
2822
2823         reg_check_channels();
2824 }
2825
2826 /* Driver hints */
2827 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2828 {
2829         struct regulatory_request *request;
2830
2831         if (WARN_ON(!alpha2 || !wiphy))
2832                 return -EINVAL;
2833
2834         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2835
2836         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2837         if (!request)
2838                 return -ENOMEM;
2839
2840         request->wiphy_idx = get_wiphy_idx(wiphy);
2841
2842         request->alpha2[0] = alpha2[0];
2843         request->alpha2[1] = alpha2[1];
2844         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2845
2846         /* Allow calling CRDA again */
2847         reset_crda_timeouts();
2848
2849         queue_regulatory_request(request);
2850
2851         return 0;
2852 }
2853 EXPORT_SYMBOL(regulatory_hint);
2854
2855 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
2856                                 const u8 *country_ie, u8 country_ie_len)
2857 {
2858         char alpha2[2];
2859         enum environment_cap env = ENVIRON_ANY;
2860         struct regulatory_request *request = NULL, *lr;
2861
2862         /* IE len must be evenly divisible by 2 */
2863         if (country_ie_len & 0x01)
2864                 return;
2865
2866         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2867                 return;
2868
2869         request = kzalloc(sizeof(*request), GFP_KERNEL);
2870         if (!request)
2871                 return;
2872
2873         alpha2[0] = country_ie[0];
2874         alpha2[1] = country_ie[1];
2875
2876         if (country_ie[2] == 'I')
2877                 env = ENVIRON_INDOOR;
2878         else if (country_ie[2] == 'O')
2879                 env = ENVIRON_OUTDOOR;
2880
2881         rcu_read_lock();
2882         lr = get_last_request();
2883
2884         if (unlikely(!lr))
2885                 goto out;
2886
2887         /*
2888          * We will run this only upon a successful connection on cfg80211.
2889          * We leave conflict resolution to the workqueue, where can hold
2890          * the RTNL.
2891          */
2892         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2893             lr->wiphy_idx != WIPHY_IDX_INVALID)
2894                 goto out;
2895
2896         request->wiphy_idx = get_wiphy_idx(wiphy);
2897         request->alpha2[0] = alpha2[0];
2898         request->alpha2[1] = alpha2[1];
2899         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2900         request->country_ie_env = env;
2901
2902         /* Allow calling CRDA again */
2903         reset_crda_timeouts();
2904
2905         queue_regulatory_request(request);
2906         request = NULL;
2907 out:
2908         kfree(request);
2909         rcu_read_unlock();
2910 }
2911
2912 static void restore_alpha2(char *alpha2, bool reset_user)
2913 {
2914         /* indicates there is no alpha2 to consider for restoration */
2915         alpha2[0] = '9';
2916         alpha2[1] = '7';
2917
2918         /* The user setting has precedence over the module parameter */
2919         if (is_user_regdom_saved()) {
2920                 /* Unless we're asked to ignore it and reset it */
2921                 if (reset_user) {
2922                         pr_debug("Restoring regulatory settings including user preference\n");
2923                         user_alpha2[0] = '9';
2924                         user_alpha2[1] = '7';
2925
2926                         /*
2927                          * If we're ignoring user settings, we still need to
2928                          * check the module parameter to ensure we put things
2929                          * back as they were for a full restore.
2930                          */
2931                         if (!is_world_regdom(ieee80211_regdom)) {
2932                                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2933                                          ieee80211_regdom[0], ieee80211_regdom[1]);
2934                                 alpha2[0] = ieee80211_regdom[0];
2935                                 alpha2[1] = ieee80211_regdom[1];
2936                         }
2937                 } else {
2938                         pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
2939                                  user_alpha2[0], user_alpha2[1]);
2940                         alpha2[0] = user_alpha2[0];
2941                         alpha2[1] = user_alpha2[1];
2942                 }
2943         } else if (!is_world_regdom(ieee80211_regdom)) {
2944                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2945                          ieee80211_regdom[0], ieee80211_regdom[1]);
2946                 alpha2[0] = ieee80211_regdom[0];
2947                 alpha2[1] = ieee80211_regdom[1];
2948         } else
2949                 pr_debug("Restoring regulatory settings\n");
2950 }
2951
2952 static void restore_custom_reg_settings(struct wiphy *wiphy)
2953 {
2954         struct ieee80211_supported_band *sband;
2955         enum nl80211_band band;
2956         struct ieee80211_channel *chan;
2957         int i;
2958
2959         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2960                 sband = wiphy->bands[band];
2961                 if (!sband)
2962                         continue;
2963                 for (i = 0; i < sband->n_channels; i++) {
2964                         chan = &sband->channels[i];
2965                         chan->flags = chan->orig_flags;
2966                         chan->max_antenna_gain = chan->orig_mag;
2967                         chan->max_power = chan->orig_mpwr;
2968                         chan->beacon_found = false;
2969                 }
2970         }
2971 }
2972
2973 /*
2974  * Restoring regulatory settings involves ingoring any
2975  * possibly stale country IE information and user regulatory
2976  * settings if so desired, this includes any beacon hints
2977  * learned as we could have traveled outside to another country
2978  * after disconnection. To restore regulatory settings we do
2979  * exactly what we did at bootup:
2980  *
2981  *   - send a core regulatory hint
2982  *   - send a user regulatory hint if applicable
2983  *
2984  * Device drivers that send a regulatory hint for a specific country
2985  * keep their own regulatory domain on wiphy->regd so that does does
2986  * not need to be remembered.
2987  */
2988 static void restore_regulatory_settings(bool reset_user)
2989 {
2990         char alpha2[2];
2991         char world_alpha2[2];
2992         struct reg_beacon *reg_beacon, *btmp;
2993         LIST_HEAD(tmp_reg_req_list);
2994         struct cfg80211_registered_device *rdev;
2995
2996         ASSERT_RTNL();
2997
2998         /*
2999          * Clear the indoor setting in case that it is not controlled by user
3000          * space, as otherwise there is no guarantee that the device is still
3001          * operating in an indoor environment.
3002          */
3003         spin_lock(&reg_indoor_lock);
3004         if (reg_is_indoor && !reg_is_indoor_portid) {
3005                 reg_is_indoor = false;
3006                 reg_check_channels();
3007         }
3008         spin_unlock(&reg_indoor_lock);
3009
3010         reset_regdomains(true, &world_regdom);
3011         restore_alpha2(alpha2, reset_user);
3012
3013         /*
3014          * If there's any pending requests we simply
3015          * stash them to a temporary pending queue and
3016          * add then after we've restored regulatory
3017          * settings.
3018          */
3019         spin_lock(&reg_requests_lock);
3020         list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3021         spin_unlock(&reg_requests_lock);
3022
3023         /* Clear beacon hints */
3024         spin_lock_bh(&reg_pending_beacons_lock);
3025         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3026                 list_del(&reg_beacon->list);
3027                 kfree(reg_beacon);
3028         }
3029         spin_unlock_bh(&reg_pending_beacons_lock);
3030
3031         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3032                 list_del(&reg_beacon->list);
3033                 kfree(reg_beacon);
3034         }
3035
3036         /* First restore to the basic regulatory settings */
3037         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3038         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3039
3040         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3041                 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3042                         continue;
3043                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3044                         restore_custom_reg_settings(&rdev->wiphy);
3045         }
3046
3047         regulatory_hint_core(world_alpha2);
3048
3049         /*
3050          * This restores the ieee80211_regdom module parameter
3051          * preference or the last user requested regulatory
3052          * settings, user regulatory settings takes precedence.
3053          */
3054         if (is_an_alpha2(alpha2))
3055                 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3056
3057         spin_lock(&reg_requests_lock);
3058         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3059         spin_unlock(&reg_requests_lock);
3060
3061         pr_debug("Kicking the queue\n");
3062
3063         schedule_work(&reg_work);
3064 }
3065
3066 void regulatory_hint_disconnect(void)
3067 {
3068         pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3069         restore_regulatory_settings(false);
3070 }
3071
3072 static bool freq_is_chan_12_13_14(u16 freq)
3073 {
3074         if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3075             freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3076             freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3077                 return true;
3078         return false;
3079 }
3080
3081 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3082 {
3083         struct reg_beacon *pending_beacon;
3084
3085         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3086                 if (beacon_chan->center_freq ==
3087                     pending_beacon->chan.center_freq)
3088                         return true;
3089         return false;
3090 }
3091
3092 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3093                                  struct ieee80211_channel *beacon_chan,
3094                                  gfp_t gfp)
3095 {
3096         struct reg_beacon *reg_beacon;
3097         bool processing;
3098
3099         if (beacon_chan->beacon_found ||
3100             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3101             (beacon_chan->band == NL80211_BAND_2GHZ &&
3102              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3103                 return 0;
3104
3105         spin_lock_bh(&reg_pending_beacons_lock);
3106         processing = pending_reg_beacon(beacon_chan);
3107         spin_unlock_bh(&reg_pending_beacons_lock);
3108
3109         if (processing)
3110                 return 0;
3111
3112         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3113         if (!reg_beacon)
3114                 return -ENOMEM;
3115
3116         pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
3117                  beacon_chan->center_freq,
3118                  ieee80211_frequency_to_channel(beacon_chan->center_freq),
3119                  wiphy_name(wiphy));
3120
3121         memcpy(&reg_beacon->chan, beacon_chan,
3122                sizeof(struct ieee80211_channel));
3123
3124         /*
3125          * Since we can be called from BH or and non-BH context
3126          * we must use spin_lock_bh()
3127          */
3128         spin_lock_bh(&reg_pending_beacons_lock);
3129         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3130         spin_unlock_bh(&reg_pending_beacons_lock);
3131
3132         schedule_work(&reg_work);
3133
3134         return 0;
3135 }
3136
3137 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3138 {
3139         unsigned int i;
3140         const struct ieee80211_reg_rule *reg_rule = NULL;
3141         const struct ieee80211_freq_range *freq_range = NULL;
3142         const struct ieee80211_power_rule *power_rule = NULL;
3143         char bw[32], cac_time[32];
3144
3145         pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3146
3147         for (i = 0; i < rd->n_reg_rules; i++) {
3148                 reg_rule = &rd->reg_rules[i];
3149                 freq_range = &reg_rule->freq_range;
3150                 power_rule = &reg_rule->power_rule;
3151
3152                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3153                         snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
3154                                  freq_range->max_bandwidth_khz,
3155                                  reg_get_max_bandwidth(rd, reg_rule));
3156                 else
3157                         snprintf(bw, sizeof(bw), "%d KHz",
3158                                  freq_range->max_bandwidth_khz);
3159
3160                 if (reg_rule->flags & NL80211_RRF_DFS)
3161                         scnprintf(cac_time, sizeof(cac_time), "%u s",
3162                                   reg_rule->dfs_cac_ms/1000);
3163                 else
3164                         scnprintf(cac_time, sizeof(cac_time), "N/A");
3165
3166
3167                 /*
3168                  * There may not be documentation for max antenna gain
3169                  * in certain regions
3170                  */
3171                 if (power_rule->max_antenna_gain)
3172                         pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3173                                 freq_range->start_freq_khz,
3174                                 freq_range->end_freq_khz,
3175                                 bw,
3176                                 power_rule->max_antenna_gain,
3177                                 power_rule->max_eirp,
3178                                 cac_time);
3179                 else
3180                         pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3181                                 freq_range->start_freq_khz,
3182                                 freq_range->end_freq_khz,
3183                                 bw,
3184                                 power_rule->max_eirp,
3185                                 cac_time);
3186         }
3187 }
3188
3189 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3190 {
3191         switch (dfs_region) {
3192         case NL80211_DFS_UNSET:
3193         case NL80211_DFS_FCC:
3194         case NL80211_DFS_ETSI:
3195         case NL80211_DFS_JP:
3196                 return true;
3197         default:
3198                 pr_debug("Ignoring uknown DFS master region: %d\n", dfs_region);
3199                 return false;
3200         }
3201 }
3202
3203 static void print_regdomain(const struct ieee80211_regdomain *rd)
3204 {
3205         struct regulatory_request *lr = get_last_request();
3206
3207         if (is_intersected_alpha2(rd->alpha2)) {
3208                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3209                         struct cfg80211_registered_device *rdev;
3210                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3211                         if (rdev) {
3212                                 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3213                                         rdev->country_ie_alpha2[0],
3214                                         rdev->country_ie_alpha2[1]);
3215                         } else
3216                                 pr_debug("Current regulatory domain intersected:\n");
3217                 } else
3218                         pr_debug("Current regulatory domain intersected:\n");
3219         } else if (is_world_regdom(rd->alpha2)) {
3220                 pr_debug("World regulatory domain updated:\n");
3221         } else {
3222                 if (is_unknown_alpha2(rd->alpha2))
3223                         pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3224                 else {
3225                         if (reg_request_cell_base(lr))
3226                                 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3227                                         rd->alpha2[0], rd->alpha2[1]);
3228                         else
3229                                 pr_debug("Regulatory domain changed to country: %c%c\n",
3230                                         rd->alpha2[0], rd->alpha2[1]);
3231                 }
3232         }
3233
3234         pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3235         print_rd_rules(rd);
3236 }
3237
3238 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3239 {
3240         pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3241         print_rd_rules(rd);
3242 }
3243
3244 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3245 {
3246         if (!is_world_regdom(rd->alpha2))
3247                 return -EINVAL;
3248         update_world_regdomain(rd);
3249         return 0;
3250 }
3251
3252 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3253                            struct regulatory_request *user_request)
3254 {
3255         const struct ieee80211_regdomain *intersected_rd = NULL;
3256
3257         if (!regdom_changes(rd->alpha2))
3258                 return -EALREADY;
3259
3260         if (!is_valid_rd(rd)) {
3261                 pr_err("Invalid regulatory domain detected: %c%c\n",
3262                        rd->alpha2[0], rd->alpha2[1]);
3263                 print_regdomain_info(rd);
3264                 return -EINVAL;
3265         }
3266
3267         if (!user_request->intersect) {
3268                 reset_regdomains(false, rd);
3269                 return 0;
3270         }
3271
3272         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3273         if (!intersected_rd)
3274                 return -EINVAL;
3275
3276         kfree(rd);
3277         rd = NULL;
3278         reset_regdomains(false, intersected_rd);
3279
3280         return 0;
3281 }
3282
3283 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3284                              struct regulatory_request *driver_request)
3285 {
3286         const struct ieee80211_regdomain *regd;
3287         const struct ieee80211_regdomain *intersected_rd = NULL;
3288         const struct ieee80211_regdomain *tmp;
3289         struct wiphy *request_wiphy;
3290
3291         if (is_world_regdom(rd->alpha2))
3292                 return -EINVAL;
3293
3294         if (!regdom_changes(rd->alpha2))
3295                 return -EALREADY;
3296
3297         if (!is_valid_rd(rd)) {
3298                 pr_err("Invalid regulatory domain detected: %c%c\n",
3299                        rd->alpha2[0], rd->alpha2[1]);
3300                 print_regdomain_info(rd);
3301                 return -EINVAL;
3302         }
3303
3304         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3305         if (!request_wiphy)
3306                 return -ENODEV;
3307
3308         if (!driver_request->intersect) {
3309                 if (request_wiphy->regd)
3310                         return -EALREADY;
3311
3312                 regd = reg_copy_regd(rd);
3313                 if (IS_ERR(regd))
3314                         return PTR_ERR(regd);
3315
3316                 rcu_assign_pointer(request_wiphy->regd, regd);
3317                 reset_regdomains(false, rd);
3318                 return 0;
3319         }
3320
3321         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3322         if (!intersected_rd)
3323                 return -EINVAL;
3324
3325         /*
3326          * We can trash what CRDA provided now.
3327          * However if a driver requested this specific regulatory
3328          * domain we keep it for its private use
3329          */
3330         tmp = get_wiphy_regdom(request_wiphy);
3331         rcu_assign_pointer(request_wiphy->regd, rd);
3332         rcu_free_regdom(tmp);
3333
3334         rd = NULL;
3335
3336         reset_regdomains(false, intersected_rd);
3337
3338         return 0;
3339 }
3340
3341 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3342                                  struct regulatory_request *country_ie_request)
3343 {
3344         struct wiphy *request_wiphy;
3345
3346         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3347             !is_unknown_alpha2(rd->alpha2))
3348                 return -EINVAL;
3349
3350         /*
3351          * Lets only bother proceeding on the same alpha2 if the current
3352          * rd is non static (it means CRDA was present and was used last)
3353          * and the pending request came in from a country IE
3354          */
3355
3356         if (!is_valid_rd(rd)) {
3357                 pr_err("Invalid regulatory domain detected: %c%c\n",
3358                        rd->alpha2[0], rd->alpha2[1]);
3359                 print_regdomain_info(rd);
3360                 return -EINVAL;
3361         }
3362
3363         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3364         if (!request_wiphy)
3365                 return -ENODEV;
3366
3367         if (country_ie_request->intersect)
3368                 return -EINVAL;
3369
3370         reset_regdomains(false, rd);
3371         return 0;
3372 }
3373
3374 /*
3375  * Use this call to set the current regulatory domain. Conflicts with
3376  * multiple drivers can be ironed out later. Caller must've already
3377  * kmalloc'd the rd structure.
3378  */
3379 int set_regdom(const struct ieee80211_regdomain *rd,
3380                enum ieee80211_regd_source regd_src)
3381 {
3382         struct regulatory_request *lr;
3383         bool user_reset = false;
3384         int r;
3385
3386         if (!reg_is_valid_request(rd->alpha2)) {
3387                 kfree(rd);
3388                 return -EINVAL;
3389         }
3390
3391         if (regd_src == REGD_SOURCE_CRDA)
3392                 reset_crda_timeouts();
3393
3394         lr = get_last_request();
3395
3396         /* Note that this doesn't update the wiphys, this is done below */
3397         switch (lr->initiator) {
3398         case NL80211_REGDOM_SET_BY_CORE:
3399                 r = reg_set_rd_core(rd);
3400                 break;
3401         case NL80211_REGDOM_SET_BY_USER:
3402                 r = reg_set_rd_user(rd, lr);
3403                 user_reset = true;
3404                 break;
3405         case NL80211_REGDOM_SET_BY_DRIVER:
3406                 r = reg_set_rd_driver(rd, lr);
3407                 break;
3408         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3409                 r = reg_set_rd_country_ie(rd, lr);
3410                 break;
3411         default:
3412                 WARN(1, "invalid initiator %d\n", lr->initiator);
3413                 kfree(rd);
3414                 return -EINVAL;
3415         }
3416
3417         if (r) {
3418                 switch (r) {
3419                 case -EALREADY:
3420                         reg_set_request_processed();
3421                         break;
3422                 default:
3423                         /* Back to world regulatory in case of errors */
3424                         restore_regulatory_settings(user_reset);
3425                 }
3426
3427                 kfree(rd);
3428                 return r;
3429         }
3430
3431         /* This would make this whole thing pointless */
3432         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3433                 return -EINVAL;
3434
3435         /* update all wiphys now with the new established regulatory domain */
3436         update_all_wiphy_regulatory(lr->initiator);
3437
3438         print_regdomain(get_cfg80211_regdom());
3439
3440         nl80211_send_reg_change_event(lr);
3441
3442         reg_set_request_processed();
3443
3444         return 0;
3445 }
3446
3447 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3448                                        struct ieee80211_regdomain *rd)
3449 {
3450         const struct ieee80211_regdomain *regd;
3451         const struct ieee80211_regdomain *prev_regd;
3452         struct cfg80211_registered_device *rdev;
3453
3454         if (WARN_ON(!wiphy || !rd))
3455                 return -EINVAL;
3456
3457         if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3458                  "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3459                 return -EPERM;
3460
3461         if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3462                 print_regdomain_info(rd);
3463                 return -EINVAL;
3464         }
3465
3466         regd = reg_copy_regd(rd);
3467         if (IS_ERR(regd))
3468                 return PTR_ERR(regd);
3469
3470         rdev = wiphy_to_rdev(wiphy);
3471
3472         spin_lock(&reg_requests_lock);
3473         prev_regd = rdev->requested_regd;
3474         rdev->requested_regd = regd;
3475         spin_unlock(&reg_requests_lock);
3476
3477         kfree(prev_regd);
3478         return 0;
3479 }
3480
3481 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3482                               struct ieee80211_regdomain *rd)
3483 {
3484         int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3485
3486         if (ret)
3487                 return ret;
3488
3489         schedule_work(&reg_work);
3490         return 0;
3491 }
3492 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3493
3494 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3495                                         struct ieee80211_regdomain *rd)
3496 {
3497         int ret;
3498
3499         ASSERT_RTNL();
3500
3501         ret = __regulatory_set_wiphy_regd(wiphy, rd);
3502         if (ret)
3503                 return ret;
3504
3505         /* process the request immediately */
3506         reg_process_self_managed_hints();
3507         return 0;
3508 }
3509 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3510
3511 void wiphy_regulatory_register(struct wiphy *wiphy)
3512 {
3513         struct regulatory_request *lr;
3514
3515         /* self-managed devices ignore external hints */
3516         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3517                 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3518                                            REGULATORY_COUNTRY_IE_IGNORE;
3519
3520         if (!reg_dev_ignore_cell_hint(wiphy))
3521                 reg_num_devs_support_basehint++;
3522
3523         lr = get_last_request();
3524         wiphy_update_regulatory(wiphy, lr->initiator);
3525         wiphy_all_share_dfs_chan_state(wiphy);
3526 }
3527
3528 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3529 {
3530         struct wiphy *request_wiphy = NULL;
3531         struct regulatory_request *lr;
3532
3533         lr = get_last_request();
3534
3535         if (!reg_dev_ignore_cell_hint(wiphy))
3536                 reg_num_devs_support_basehint--;
3537
3538         rcu_free_regdom(get_wiphy_regdom(wiphy));
3539         RCU_INIT_POINTER(wiphy->regd, NULL);
3540
3541         if (lr)
3542                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3543
3544         if (!request_wiphy || request_wiphy != wiphy)
3545                 return;
3546
3547         lr->wiphy_idx = WIPHY_IDX_INVALID;
3548         lr->country_ie_env = ENVIRON_ANY;
3549 }
3550
3551 /*
3552  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3553  * UNII band definitions
3554  */
3555 int cfg80211_get_unii(int freq)
3556 {
3557         /* UNII-1 */
3558         if (freq >= 5150 && freq <= 5250)
3559                 return 0;
3560
3561         /* UNII-2A */
3562         if (freq > 5250 && freq <= 5350)
3563                 return 1;
3564
3565         /* UNII-2B */
3566         if (freq > 5350 && freq <= 5470)
3567                 return 2;
3568
3569         /* UNII-2C */
3570         if (freq > 5470 && freq <= 5725)
3571                 return 3;
3572
3573         /* UNII-3 */
3574         if (freq > 5725 && freq <= 5825)
3575                 return 4;
3576
3577         return -EINVAL;
3578 }
3579
3580 bool regulatory_indoor_allowed(void)
3581 {
3582         return reg_is_indoor;
3583 }
3584
3585 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
3586 {
3587         const struct ieee80211_regdomain *regd = NULL;
3588         const struct ieee80211_regdomain *wiphy_regd = NULL;
3589         bool pre_cac_allowed = false;
3590
3591         rcu_read_lock();
3592
3593         regd = rcu_dereference(cfg80211_regdomain);
3594         wiphy_regd = rcu_dereference(wiphy->regd);
3595         if (!wiphy_regd) {
3596                 if (regd->dfs_region == NL80211_DFS_ETSI)
3597                         pre_cac_allowed = true;
3598
3599                 rcu_read_unlock();
3600
3601                 return pre_cac_allowed;
3602         }
3603
3604         if (regd->dfs_region == wiphy_regd->dfs_region &&
3605             wiphy_regd->dfs_region == NL80211_DFS_ETSI)
3606                 pre_cac_allowed = true;
3607
3608         rcu_read_unlock();
3609
3610         return pre_cac_allowed;
3611 }
3612
3613 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
3614                                     struct cfg80211_chan_def *chandef,
3615                                     enum nl80211_dfs_state dfs_state,
3616                                     enum nl80211_radar_event event)
3617 {
3618         struct cfg80211_registered_device *rdev;
3619
3620         ASSERT_RTNL();
3621
3622         if (WARN_ON(!cfg80211_chandef_valid(chandef)))
3623                 return;
3624
3625         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3626                 if (wiphy == &rdev->wiphy)
3627                         continue;
3628
3629                 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
3630                         continue;
3631
3632                 if (!ieee80211_get_channel(&rdev->wiphy,
3633                                            chandef->chan->center_freq))
3634                         continue;
3635
3636                 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
3637
3638                 if (event == NL80211_RADAR_DETECTED ||
3639                     event == NL80211_RADAR_CAC_FINISHED)
3640                         cfg80211_sched_dfs_chan_update(rdev);
3641
3642                 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
3643         }
3644 }
3645
3646 static int __init regulatory_init_db(void)
3647 {
3648         int err;
3649
3650         err = load_builtin_regdb_keys();
3651         if (err)
3652                 return err;
3653
3654         /* We always try to get an update for the static regdomain */
3655         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3656         if (err) {
3657                 if (err == -ENOMEM) {
3658                         platform_device_unregister(reg_pdev);
3659                         return err;
3660                 }
3661                 /*
3662                  * N.B. kobject_uevent_env() can fail mainly for when we're out
3663                  * memory which is handled and propagated appropriately above
3664                  * but it can also fail during a netlink_broadcast() or during
3665                  * early boot for call_usermodehelper(). For now treat these
3666                  * errors as non-fatal.
3667                  */
3668                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3669         }
3670
3671         /*
3672          * Finally, if the user set the module parameter treat it
3673          * as a user hint.
3674          */
3675         if (!is_world_regdom(ieee80211_regdom))
3676                 regulatory_hint_user(ieee80211_regdom,
3677                                      NL80211_USER_REG_HINT_USER);
3678
3679         return 0;
3680 }
3681 #ifndef MODULE
3682 late_initcall(regulatory_init_db);
3683 #endif
3684
3685 int __init regulatory_init(void)
3686 {
3687         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3688         if (IS_ERR(reg_pdev))
3689                 return PTR_ERR(reg_pdev);
3690
3691         spin_lock_init(&reg_requests_lock);
3692         spin_lock_init(&reg_pending_beacons_lock);
3693         spin_lock_init(&reg_indoor_lock);
3694
3695         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3696
3697         user_alpha2[0] = '9';
3698         user_alpha2[1] = '7';
3699
3700 #ifdef MODULE
3701         return regulatory_init_db();
3702 #else
3703         return 0;
3704 #endif
3705 }
3706
3707 void regulatory_exit(void)
3708 {
3709         struct regulatory_request *reg_request, *tmp;
3710         struct reg_beacon *reg_beacon, *btmp;
3711
3712         cancel_work_sync(&reg_work);
3713         cancel_crda_timeout_sync();
3714         cancel_delayed_work_sync(&reg_check_chans);
3715
3716         /* Lock to suppress warnings */
3717         rtnl_lock();
3718         reset_regdomains(true, NULL);
3719         rtnl_unlock();
3720
3721         dev_set_uevent_suppress(&reg_pdev->dev, true);
3722
3723         platform_device_unregister(reg_pdev);
3724
3725         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3726                 list_del(&reg_beacon->list);
3727                 kfree(reg_beacon);
3728         }
3729
3730         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3731                 list_del(&reg_beacon->list);
3732                 kfree(reg_beacon);
3733         }
3734
3735         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3736                 list_del(&reg_request->list);
3737                 kfree(reg_request);
3738         }
3739
3740         if (!IS_ERR_OR_NULL(regdb))
3741                 kfree(regdb);
3742
3743         free_regdb_keyring();
3744 }