Merge branch 'rework/kthreads' into for-linus
[linux-2.6-microblaze.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 - 2021 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22
23
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *      be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *      regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83         REG_REQ_OK,
84         REG_REQ_IGNORE,
85         REG_REQ_INTERSECT,
86         REG_REQ_ALREADY_SET,
87 };
88
89 static struct regulatory_request core_request_world = {
90         .initiator = NL80211_REGDOM_SET_BY_CORE,
91         .alpha2[0] = '0',
92         .alpha2[1] = '0',
93         .intersect = false,
94         .processed = true,
95         .country_ie_env = ENVIRON_ANY,
96 };
97
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103         (void __force __rcu *)&core_request_world;
104
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static DEFINE_SPINLOCK(reg_indoor_lock);
130
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136 static void reg_process_hint(struct regulatory_request *reg_request);
137
138 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
139 {
140         return rcu_dereference_rtnl(cfg80211_regdomain);
141 }
142
143 /*
144  * Returns the regulatory domain associated with the wiphy.
145  *
146  * Requires any of RTNL, wiphy mutex or RCU protection.
147  */
148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
149 {
150         return rcu_dereference_check(wiphy->regd,
151                                      lockdep_is_held(&wiphy->mtx) ||
152                                      lockdep_rtnl_is_held());
153 }
154 EXPORT_SYMBOL(get_wiphy_regdom);
155
156 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
157 {
158         switch (dfs_region) {
159         case NL80211_DFS_UNSET:
160                 return "unset";
161         case NL80211_DFS_FCC:
162                 return "FCC";
163         case NL80211_DFS_ETSI:
164                 return "ETSI";
165         case NL80211_DFS_JP:
166                 return "JP";
167         }
168         return "Unknown";
169 }
170
171 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
172 {
173         const struct ieee80211_regdomain *regd = NULL;
174         const struct ieee80211_regdomain *wiphy_regd = NULL;
175         enum nl80211_dfs_regions dfs_region;
176
177         rcu_read_lock();
178         regd = get_cfg80211_regdom();
179         dfs_region = regd->dfs_region;
180
181         if (!wiphy)
182                 goto out;
183
184         wiphy_regd = get_wiphy_regdom(wiphy);
185         if (!wiphy_regd)
186                 goto out;
187
188         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
189                 dfs_region = wiphy_regd->dfs_region;
190                 goto out;
191         }
192
193         if (wiphy_regd->dfs_region == regd->dfs_region)
194                 goto out;
195
196         pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
197                  dev_name(&wiphy->dev),
198                  reg_dfs_region_str(wiphy_regd->dfs_region),
199                  reg_dfs_region_str(regd->dfs_region));
200
201 out:
202         rcu_read_unlock();
203
204         return dfs_region;
205 }
206
207 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
208 {
209         if (!r)
210                 return;
211         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
212 }
213
214 static struct regulatory_request *get_last_request(void)
215 {
216         return rcu_dereference_rtnl(last_request);
217 }
218
219 /* Used to queue up regulatory hints */
220 static LIST_HEAD(reg_requests_list);
221 static DEFINE_SPINLOCK(reg_requests_lock);
222
223 /* Used to queue up beacon hints for review */
224 static LIST_HEAD(reg_pending_beacons);
225 static DEFINE_SPINLOCK(reg_pending_beacons_lock);
226
227 /* Used to keep track of processed beacon hints */
228 static LIST_HEAD(reg_beacon_list);
229
230 struct reg_beacon {
231         struct list_head list;
232         struct ieee80211_channel chan;
233 };
234
235 static void reg_check_chans_work(struct work_struct *work);
236 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
237
238 static void reg_todo(struct work_struct *work);
239 static DECLARE_WORK(reg_work, reg_todo);
240
241 /* We keep a static world regulatory domain in case of the absence of CRDA */
242 static const struct ieee80211_regdomain world_regdom = {
243         .n_reg_rules = 8,
244         .alpha2 =  "00",
245         .reg_rules = {
246                 /* IEEE 802.11b/g, channels 1..11 */
247                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
248                 /* IEEE 802.11b/g, channels 12..13. */
249                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
250                         NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
251                 /* IEEE 802.11 channel 14 - Only JP enables
252                  * this and for 802.11b only */
253                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
254                         NL80211_RRF_NO_IR |
255                         NL80211_RRF_NO_OFDM),
256                 /* IEEE 802.11a, channel 36..48 */
257                 REG_RULE(5180-10, 5240+10, 80, 6, 20,
258                         NL80211_RRF_NO_IR |
259                         NL80211_RRF_AUTO_BW),
260
261                 /* IEEE 802.11a, channel 52..64 - DFS required */
262                 REG_RULE(5260-10, 5320+10, 80, 6, 20,
263                         NL80211_RRF_NO_IR |
264                         NL80211_RRF_AUTO_BW |
265                         NL80211_RRF_DFS),
266
267                 /* IEEE 802.11a, channel 100..144 - DFS required */
268                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
269                         NL80211_RRF_NO_IR |
270                         NL80211_RRF_DFS),
271
272                 /* IEEE 802.11a, channel 149..165 */
273                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
274                         NL80211_RRF_NO_IR),
275
276                 /* IEEE 802.11ad (60GHz), channels 1..3 */
277                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
278         }
279 };
280
281 /* protected by RTNL */
282 static const struct ieee80211_regdomain *cfg80211_world_regdom =
283         &world_regdom;
284
285 static char *ieee80211_regdom = "00";
286 static char user_alpha2[2];
287 static const struct ieee80211_regdomain *cfg80211_user_regdom;
288
289 module_param(ieee80211_regdom, charp, 0444);
290 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
291
292 static void reg_free_request(struct regulatory_request *request)
293 {
294         if (request == &core_request_world)
295                 return;
296
297         if (request != get_last_request())
298                 kfree(request);
299 }
300
301 static void reg_free_last_request(void)
302 {
303         struct regulatory_request *lr = get_last_request();
304
305         if (lr != &core_request_world && lr)
306                 kfree_rcu(lr, rcu_head);
307 }
308
309 static void reg_update_last_request(struct regulatory_request *request)
310 {
311         struct regulatory_request *lr;
312
313         lr = get_last_request();
314         if (lr == request)
315                 return;
316
317         reg_free_last_request();
318         rcu_assign_pointer(last_request, request);
319 }
320
321 static void reset_regdomains(bool full_reset,
322                              const struct ieee80211_regdomain *new_regdom)
323 {
324         const struct ieee80211_regdomain *r;
325
326         ASSERT_RTNL();
327
328         r = get_cfg80211_regdom();
329
330         /* avoid freeing static information or freeing something twice */
331         if (r == cfg80211_world_regdom)
332                 r = NULL;
333         if (cfg80211_world_regdom == &world_regdom)
334                 cfg80211_world_regdom = NULL;
335         if (r == &world_regdom)
336                 r = NULL;
337
338         rcu_free_regdom(r);
339         rcu_free_regdom(cfg80211_world_regdom);
340
341         cfg80211_world_regdom = &world_regdom;
342         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
343
344         if (!full_reset)
345                 return;
346
347         reg_update_last_request(&core_request_world);
348 }
349
350 /*
351  * Dynamic world regulatory domain requested by the wireless
352  * core upon initialization
353  */
354 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
355 {
356         struct regulatory_request *lr;
357
358         lr = get_last_request();
359
360         WARN_ON(!lr);
361
362         reset_regdomains(false, rd);
363
364         cfg80211_world_regdom = rd;
365 }
366
367 bool is_world_regdom(const char *alpha2)
368 {
369         if (!alpha2)
370                 return false;
371         return alpha2[0] == '0' && alpha2[1] == '0';
372 }
373
374 static bool is_alpha2_set(const char *alpha2)
375 {
376         if (!alpha2)
377                 return false;
378         return alpha2[0] && alpha2[1];
379 }
380
381 static bool is_unknown_alpha2(const char *alpha2)
382 {
383         if (!alpha2)
384                 return false;
385         /*
386          * Special case where regulatory domain was built by driver
387          * but a specific alpha2 cannot be determined
388          */
389         return alpha2[0] == '9' && alpha2[1] == '9';
390 }
391
392 static bool is_intersected_alpha2(const char *alpha2)
393 {
394         if (!alpha2)
395                 return false;
396         /*
397          * Special case where regulatory domain is the
398          * result of an intersection between two regulatory domain
399          * structures
400          */
401         return alpha2[0] == '9' && alpha2[1] == '8';
402 }
403
404 static bool is_an_alpha2(const char *alpha2)
405 {
406         if (!alpha2)
407                 return false;
408         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
409 }
410
411 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
412 {
413         if (!alpha2_x || !alpha2_y)
414                 return false;
415         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
416 }
417
418 static bool regdom_changes(const char *alpha2)
419 {
420         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
421
422         if (!r)
423                 return true;
424         return !alpha2_equal(r->alpha2, alpha2);
425 }
426
427 /*
428  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
429  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
430  * has ever been issued.
431  */
432 static bool is_user_regdom_saved(void)
433 {
434         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
435                 return false;
436
437         /* This would indicate a mistake on the design */
438         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
439                  "Unexpected user alpha2: %c%c\n",
440                  user_alpha2[0], user_alpha2[1]))
441                 return false;
442
443         return true;
444 }
445
446 static const struct ieee80211_regdomain *
447 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
448 {
449         struct ieee80211_regdomain *regd;
450         unsigned int i;
451
452         regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
453                        GFP_KERNEL);
454         if (!regd)
455                 return ERR_PTR(-ENOMEM);
456
457         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
458
459         for (i = 0; i < src_regd->n_reg_rules; i++)
460                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
461                        sizeof(struct ieee80211_reg_rule));
462
463         return regd;
464 }
465
466 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
467 {
468         ASSERT_RTNL();
469
470         if (!IS_ERR(cfg80211_user_regdom))
471                 kfree(cfg80211_user_regdom);
472         cfg80211_user_regdom = reg_copy_regd(rd);
473 }
474
475 struct reg_regdb_apply_request {
476         struct list_head list;
477         const struct ieee80211_regdomain *regdom;
478 };
479
480 static LIST_HEAD(reg_regdb_apply_list);
481 static DEFINE_MUTEX(reg_regdb_apply_mutex);
482
483 static void reg_regdb_apply(struct work_struct *work)
484 {
485         struct reg_regdb_apply_request *request;
486
487         rtnl_lock();
488
489         mutex_lock(&reg_regdb_apply_mutex);
490         while (!list_empty(&reg_regdb_apply_list)) {
491                 request = list_first_entry(&reg_regdb_apply_list,
492                                            struct reg_regdb_apply_request,
493                                            list);
494                 list_del(&request->list);
495
496                 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
497                 kfree(request);
498         }
499         mutex_unlock(&reg_regdb_apply_mutex);
500
501         rtnl_unlock();
502 }
503
504 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
505
506 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
507 {
508         struct reg_regdb_apply_request *request;
509
510         request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
511         if (!request) {
512                 kfree(regdom);
513                 return -ENOMEM;
514         }
515
516         request->regdom = regdom;
517
518         mutex_lock(&reg_regdb_apply_mutex);
519         list_add_tail(&request->list, &reg_regdb_apply_list);
520         mutex_unlock(&reg_regdb_apply_mutex);
521
522         schedule_work(&reg_regdb_work);
523         return 0;
524 }
525
526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
527 /* Max number of consecutive attempts to communicate with CRDA  */
528 #define REG_MAX_CRDA_TIMEOUTS 10
529
530 static u32 reg_crda_timeouts;
531
532 static void crda_timeout_work(struct work_struct *work);
533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
534
535 static void crda_timeout_work(struct work_struct *work)
536 {
537         pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
538         rtnl_lock();
539         reg_crda_timeouts++;
540         restore_regulatory_settings(true, false);
541         rtnl_unlock();
542 }
543
544 static void cancel_crda_timeout(void)
545 {
546         cancel_delayed_work(&crda_timeout);
547 }
548
549 static void cancel_crda_timeout_sync(void)
550 {
551         cancel_delayed_work_sync(&crda_timeout);
552 }
553
554 static void reset_crda_timeouts(void)
555 {
556         reg_crda_timeouts = 0;
557 }
558
559 /*
560  * This lets us keep regulatory code which is updated on a regulatory
561  * basis in userspace.
562  */
563 static int call_crda(const char *alpha2)
564 {
565         char country[12];
566         char *env[] = { country, NULL };
567         int ret;
568
569         snprintf(country, sizeof(country), "COUNTRY=%c%c",
570                  alpha2[0], alpha2[1]);
571
572         if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
573                 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
574                 return -EINVAL;
575         }
576
577         if (!is_world_regdom((char *) alpha2))
578                 pr_debug("Calling CRDA for country: %c%c\n",
579                          alpha2[0], alpha2[1]);
580         else
581                 pr_debug("Calling CRDA to update world regulatory domain\n");
582
583         ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
584         if (ret)
585                 return ret;
586
587         queue_delayed_work(system_power_efficient_wq,
588                            &crda_timeout, msecs_to_jiffies(3142));
589         return 0;
590 }
591 #else
592 static inline void cancel_crda_timeout(void) {}
593 static inline void cancel_crda_timeout_sync(void) {}
594 static inline void reset_crda_timeouts(void) {}
595 static inline int call_crda(const char *alpha2)
596 {
597         return -ENODATA;
598 }
599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
600
601 /* code to directly load a firmware database through request_firmware */
602 static const struct fwdb_header *regdb;
603
604 struct fwdb_country {
605         u8 alpha2[2];
606         __be16 coll_ptr;
607         /* this struct cannot be extended */
608 } __packed __aligned(4);
609
610 struct fwdb_collection {
611         u8 len;
612         u8 n_rules;
613         u8 dfs_region;
614         /* no optional data yet */
615         /* aligned to 2, then followed by __be16 array of rule pointers */
616 } __packed __aligned(4);
617
618 enum fwdb_flags {
619         FWDB_FLAG_NO_OFDM       = BIT(0),
620         FWDB_FLAG_NO_OUTDOOR    = BIT(1),
621         FWDB_FLAG_DFS           = BIT(2),
622         FWDB_FLAG_NO_IR         = BIT(3),
623         FWDB_FLAG_AUTO_BW       = BIT(4),
624 };
625
626 struct fwdb_wmm_ac {
627         u8 ecw;
628         u8 aifsn;
629         __be16 cot;
630 } __packed;
631
632 struct fwdb_wmm_rule {
633         struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
634         struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
635 } __packed;
636
637 struct fwdb_rule {
638         u8 len;
639         u8 flags;
640         __be16 max_eirp;
641         __be32 start, end, max_bw;
642         /* start of optional data */
643         __be16 cac_timeout;
644         __be16 wmm_ptr;
645 } __packed __aligned(4);
646
647 #define FWDB_MAGIC 0x52474442
648 #define FWDB_VERSION 20
649
650 struct fwdb_header {
651         __be32 magic;
652         __be32 version;
653         struct fwdb_country country[];
654 } __packed __aligned(4);
655
656 static int ecw2cw(int ecw)
657 {
658         return (1 << ecw) - 1;
659 }
660
661 static bool valid_wmm(struct fwdb_wmm_rule *rule)
662 {
663         struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
664         int i;
665
666         for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
667                 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
668                 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
669                 u8 aifsn = ac[i].aifsn;
670
671                 if (cw_min >= cw_max)
672                         return false;
673
674                 if (aifsn < 1)
675                         return false;
676         }
677
678         return true;
679 }
680
681 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
682 {
683         struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
684
685         if ((u8 *)rule + sizeof(rule->len) > data + size)
686                 return false;
687
688         /* mandatory fields */
689         if (rule->len < offsetofend(struct fwdb_rule, max_bw))
690                 return false;
691         if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
692                 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
693                 struct fwdb_wmm_rule *wmm;
694
695                 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
696                         return false;
697
698                 wmm = (void *)(data + wmm_ptr);
699
700                 if (!valid_wmm(wmm))
701                         return false;
702         }
703         return true;
704 }
705
706 static bool valid_country(const u8 *data, unsigned int size,
707                           const struct fwdb_country *country)
708 {
709         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
710         struct fwdb_collection *coll = (void *)(data + ptr);
711         __be16 *rules_ptr;
712         unsigned int i;
713
714         /* make sure we can read len/n_rules */
715         if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
716                 return false;
717
718         /* make sure base struct and all rules fit */
719         if ((u8 *)coll + ALIGN(coll->len, 2) +
720             (coll->n_rules * 2) > data + size)
721                 return false;
722
723         /* mandatory fields must exist */
724         if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
725                 return false;
726
727         rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
728
729         for (i = 0; i < coll->n_rules; i++) {
730                 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
731
732                 if (!valid_rule(data, size, rule_ptr))
733                         return false;
734         }
735
736         return true;
737 }
738
739 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
740 static struct key *builtin_regdb_keys;
741
742 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
743 {
744         const u8 *end = p + buflen;
745         size_t plen;
746         key_ref_t key;
747
748         while (p < end) {
749                 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
750                  * than 256 bytes in size.
751                  */
752                 if (end - p < 4)
753                         goto dodgy_cert;
754                 if (p[0] != 0x30 &&
755                     p[1] != 0x82)
756                         goto dodgy_cert;
757                 plen = (p[2] << 8) | p[3];
758                 plen += 4;
759                 if (plen > end - p)
760                         goto dodgy_cert;
761
762                 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
763                                            "asymmetric", NULL, p, plen,
764                                            ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
765                                             KEY_USR_VIEW | KEY_USR_READ),
766                                            KEY_ALLOC_NOT_IN_QUOTA |
767                                            KEY_ALLOC_BUILT_IN |
768                                            KEY_ALLOC_BYPASS_RESTRICTION);
769                 if (IS_ERR(key)) {
770                         pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
771                                PTR_ERR(key));
772                 } else {
773                         pr_notice("Loaded X.509 cert '%s'\n",
774                                   key_ref_to_ptr(key)->description);
775                         key_ref_put(key);
776                 }
777                 p += plen;
778         }
779
780         return;
781
782 dodgy_cert:
783         pr_err("Problem parsing in-kernel X.509 certificate list\n");
784 }
785
786 static int __init load_builtin_regdb_keys(void)
787 {
788         builtin_regdb_keys =
789                 keyring_alloc(".builtin_regdb_keys",
790                               KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
791                               ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
792                               KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
793                               KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
794         if (IS_ERR(builtin_regdb_keys))
795                 return PTR_ERR(builtin_regdb_keys);
796
797         pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
798
799 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
800         load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
801 #endif
802 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
803         if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
804                 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
805 #endif
806
807         return 0;
808 }
809
810 MODULE_FIRMWARE("regulatory.db.p7s");
811
812 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
813 {
814         const struct firmware *sig;
815         bool result;
816
817         if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
818                 return false;
819
820         result = verify_pkcs7_signature(data, size, sig->data, sig->size,
821                                         builtin_regdb_keys,
822                                         VERIFYING_UNSPECIFIED_SIGNATURE,
823                                         NULL, NULL) == 0;
824
825         release_firmware(sig);
826
827         return result;
828 }
829
830 static void free_regdb_keyring(void)
831 {
832         key_put(builtin_regdb_keys);
833 }
834 #else
835 static int load_builtin_regdb_keys(void)
836 {
837         return 0;
838 }
839
840 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
841 {
842         return true;
843 }
844
845 static void free_regdb_keyring(void)
846 {
847 }
848 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
849
850 static bool valid_regdb(const u8 *data, unsigned int size)
851 {
852         const struct fwdb_header *hdr = (void *)data;
853         const struct fwdb_country *country;
854
855         if (size < sizeof(*hdr))
856                 return false;
857
858         if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
859                 return false;
860
861         if (hdr->version != cpu_to_be32(FWDB_VERSION))
862                 return false;
863
864         if (!regdb_has_valid_signature(data, size))
865                 return false;
866
867         country = &hdr->country[0];
868         while ((u8 *)(country + 1) <= data + size) {
869                 if (!country->coll_ptr)
870                         break;
871                 if (!valid_country(data, size, country))
872                         return false;
873                 country++;
874         }
875
876         return true;
877 }
878
879 static void set_wmm_rule(const struct fwdb_header *db,
880                          const struct fwdb_country *country,
881                          const struct fwdb_rule *rule,
882                          struct ieee80211_reg_rule *rrule)
883 {
884         struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
885         struct fwdb_wmm_rule *wmm;
886         unsigned int i, wmm_ptr;
887
888         wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
889         wmm = (void *)((u8 *)db + wmm_ptr);
890
891         if (!valid_wmm(wmm)) {
892                 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
893                        be32_to_cpu(rule->start), be32_to_cpu(rule->end),
894                        country->alpha2[0], country->alpha2[1]);
895                 return;
896         }
897
898         for (i = 0; i < IEEE80211_NUM_ACS; i++) {
899                 wmm_rule->client[i].cw_min =
900                         ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
901                 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
902                 wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
903                 wmm_rule->client[i].cot =
904                         1000 * be16_to_cpu(wmm->client[i].cot);
905                 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
906                 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
907                 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
908                 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
909         }
910
911         rrule->has_wmm = true;
912 }
913
914 static int __regdb_query_wmm(const struct fwdb_header *db,
915                              const struct fwdb_country *country, int freq,
916                              struct ieee80211_reg_rule *rrule)
917 {
918         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
919         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
920         int i;
921
922         for (i = 0; i < coll->n_rules; i++) {
923                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
924                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
925                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
926
927                 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
928                         continue;
929
930                 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
931                     freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
932                         set_wmm_rule(db, country, rule, rrule);
933                         return 0;
934                 }
935         }
936
937         return -ENODATA;
938 }
939
940 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
941 {
942         const struct fwdb_header *hdr = regdb;
943         const struct fwdb_country *country;
944
945         if (!regdb)
946                 return -ENODATA;
947
948         if (IS_ERR(regdb))
949                 return PTR_ERR(regdb);
950
951         country = &hdr->country[0];
952         while (country->coll_ptr) {
953                 if (alpha2_equal(alpha2, country->alpha2))
954                         return __regdb_query_wmm(regdb, country, freq, rule);
955
956                 country++;
957         }
958
959         return -ENODATA;
960 }
961 EXPORT_SYMBOL(reg_query_regdb_wmm);
962
963 static int regdb_query_country(const struct fwdb_header *db,
964                                const struct fwdb_country *country)
965 {
966         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
967         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
968         struct ieee80211_regdomain *regdom;
969         unsigned int i;
970
971         regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
972                          GFP_KERNEL);
973         if (!regdom)
974                 return -ENOMEM;
975
976         regdom->n_reg_rules = coll->n_rules;
977         regdom->alpha2[0] = country->alpha2[0];
978         regdom->alpha2[1] = country->alpha2[1];
979         regdom->dfs_region = coll->dfs_region;
980
981         for (i = 0; i < regdom->n_reg_rules; i++) {
982                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
983                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
984                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
985                 struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
986
987                 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
988                 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
989                 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
990
991                 rrule->power_rule.max_antenna_gain = 0;
992                 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
993
994                 rrule->flags = 0;
995                 if (rule->flags & FWDB_FLAG_NO_OFDM)
996                         rrule->flags |= NL80211_RRF_NO_OFDM;
997                 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
998                         rrule->flags |= NL80211_RRF_NO_OUTDOOR;
999                 if (rule->flags & FWDB_FLAG_DFS)
1000                         rrule->flags |= NL80211_RRF_DFS;
1001                 if (rule->flags & FWDB_FLAG_NO_IR)
1002                         rrule->flags |= NL80211_RRF_NO_IR;
1003                 if (rule->flags & FWDB_FLAG_AUTO_BW)
1004                         rrule->flags |= NL80211_RRF_AUTO_BW;
1005
1006                 rrule->dfs_cac_ms = 0;
1007
1008                 /* handle optional data */
1009                 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
1010                         rrule->dfs_cac_ms =
1011                                 1000 * be16_to_cpu(rule->cac_timeout);
1012                 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
1013                         set_wmm_rule(db, country, rule, rrule);
1014         }
1015
1016         return reg_schedule_apply(regdom);
1017 }
1018
1019 static int query_regdb(const char *alpha2)
1020 {
1021         const struct fwdb_header *hdr = regdb;
1022         const struct fwdb_country *country;
1023
1024         ASSERT_RTNL();
1025
1026         if (IS_ERR(regdb))
1027                 return PTR_ERR(regdb);
1028
1029         country = &hdr->country[0];
1030         while (country->coll_ptr) {
1031                 if (alpha2_equal(alpha2, country->alpha2))
1032                         return regdb_query_country(regdb, country);
1033                 country++;
1034         }
1035
1036         return -ENODATA;
1037 }
1038
1039 static void regdb_fw_cb(const struct firmware *fw, void *context)
1040 {
1041         int set_error = 0;
1042         bool restore = true;
1043         void *db;
1044
1045         if (!fw) {
1046                 pr_info("failed to load regulatory.db\n");
1047                 set_error = -ENODATA;
1048         } else if (!valid_regdb(fw->data, fw->size)) {
1049                 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1050                 set_error = -EINVAL;
1051         }
1052
1053         rtnl_lock();
1054         if (regdb && !IS_ERR(regdb)) {
1055                 /* negative case - a bug
1056                  * positive case - can happen due to race in case of multiple cb's in
1057                  * queue, due to usage of asynchronous callback
1058                  *
1059                  * Either case, just restore and free new db.
1060                  */
1061         } else if (set_error) {
1062                 regdb = ERR_PTR(set_error);
1063         } else if (fw) {
1064                 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1065                 if (db) {
1066                         regdb = db;
1067                         restore = context && query_regdb(context);
1068                 } else {
1069                         restore = true;
1070                 }
1071         }
1072
1073         if (restore)
1074                 restore_regulatory_settings(true, false);
1075
1076         rtnl_unlock();
1077
1078         kfree(context);
1079
1080         release_firmware(fw);
1081 }
1082
1083 MODULE_FIRMWARE("regulatory.db");
1084
1085 static int query_regdb_file(const char *alpha2)
1086 {
1087         ASSERT_RTNL();
1088
1089         if (regdb)
1090                 return query_regdb(alpha2);
1091
1092         alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1093         if (!alpha2)
1094                 return -ENOMEM;
1095
1096         return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1097                                        &reg_pdev->dev, GFP_KERNEL,
1098                                        (void *)alpha2, regdb_fw_cb);
1099 }
1100
1101 int reg_reload_regdb(void)
1102 {
1103         const struct firmware *fw;
1104         void *db;
1105         int err;
1106         const struct ieee80211_regdomain *current_regdomain;
1107         struct regulatory_request *request;
1108
1109         err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1110         if (err)
1111                 return err;
1112
1113         if (!valid_regdb(fw->data, fw->size)) {
1114                 err = -ENODATA;
1115                 goto out;
1116         }
1117
1118         db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1119         if (!db) {
1120                 err = -ENOMEM;
1121                 goto out;
1122         }
1123
1124         rtnl_lock();
1125         if (!IS_ERR_OR_NULL(regdb))
1126                 kfree(regdb);
1127         regdb = db;
1128
1129         /* reset regulatory domain */
1130         current_regdomain = get_cfg80211_regdom();
1131
1132         request = kzalloc(sizeof(*request), GFP_KERNEL);
1133         if (!request) {
1134                 err = -ENOMEM;
1135                 goto out_unlock;
1136         }
1137
1138         request->wiphy_idx = WIPHY_IDX_INVALID;
1139         request->alpha2[0] = current_regdomain->alpha2[0];
1140         request->alpha2[1] = current_regdomain->alpha2[1];
1141         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1142         request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1143
1144         reg_process_hint(request);
1145
1146 out_unlock:
1147         rtnl_unlock();
1148  out:
1149         release_firmware(fw);
1150         return err;
1151 }
1152
1153 static bool reg_query_database(struct regulatory_request *request)
1154 {
1155         if (query_regdb_file(request->alpha2) == 0)
1156                 return true;
1157
1158         if (call_crda(request->alpha2) == 0)
1159                 return true;
1160
1161         return false;
1162 }
1163
1164 bool reg_is_valid_request(const char *alpha2)
1165 {
1166         struct regulatory_request *lr = get_last_request();
1167
1168         if (!lr || lr->processed)
1169                 return false;
1170
1171         return alpha2_equal(lr->alpha2, alpha2);
1172 }
1173
1174 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1175 {
1176         struct regulatory_request *lr = get_last_request();
1177
1178         /*
1179          * Follow the driver's regulatory domain, if present, unless a country
1180          * IE has been processed or a user wants to help complaince further
1181          */
1182         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1183             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1184             wiphy->regd)
1185                 return get_wiphy_regdom(wiphy);
1186
1187         return get_cfg80211_regdom();
1188 }
1189
1190 static unsigned int
1191 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1192                                  const struct ieee80211_reg_rule *rule)
1193 {
1194         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1195         const struct ieee80211_freq_range *freq_range_tmp;
1196         const struct ieee80211_reg_rule *tmp;
1197         u32 start_freq, end_freq, idx, no;
1198
1199         for (idx = 0; idx < rd->n_reg_rules; idx++)
1200                 if (rule == &rd->reg_rules[idx])
1201                         break;
1202
1203         if (idx == rd->n_reg_rules)
1204                 return 0;
1205
1206         /* get start_freq */
1207         no = idx;
1208
1209         while (no) {
1210                 tmp = &rd->reg_rules[--no];
1211                 freq_range_tmp = &tmp->freq_range;
1212
1213                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1214                         break;
1215
1216                 freq_range = freq_range_tmp;
1217         }
1218
1219         start_freq = freq_range->start_freq_khz;
1220
1221         /* get end_freq */
1222         freq_range = &rule->freq_range;
1223         no = idx;
1224
1225         while (no < rd->n_reg_rules - 1) {
1226                 tmp = &rd->reg_rules[++no];
1227                 freq_range_tmp = &tmp->freq_range;
1228
1229                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1230                         break;
1231
1232                 freq_range = freq_range_tmp;
1233         }
1234
1235         end_freq = freq_range->end_freq_khz;
1236
1237         return end_freq - start_freq;
1238 }
1239
1240 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1241                                    const struct ieee80211_reg_rule *rule)
1242 {
1243         unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1244
1245         if (rule->flags & NL80211_RRF_NO_320MHZ)
1246                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1247         if (rule->flags & NL80211_RRF_NO_160MHZ)
1248                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1249         if (rule->flags & NL80211_RRF_NO_80MHZ)
1250                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1251
1252         /*
1253          * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1254          * are not allowed.
1255          */
1256         if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1257             rule->flags & NL80211_RRF_NO_HT40PLUS)
1258                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1259
1260         return bw;
1261 }
1262
1263 /* Sanity check on a regulatory rule */
1264 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1265 {
1266         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1267         u32 freq_diff;
1268
1269         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1270                 return false;
1271
1272         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1273                 return false;
1274
1275         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1276
1277         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1278             freq_range->max_bandwidth_khz > freq_diff)
1279                 return false;
1280
1281         return true;
1282 }
1283
1284 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1285 {
1286         const struct ieee80211_reg_rule *reg_rule = NULL;
1287         unsigned int i;
1288
1289         if (!rd->n_reg_rules)
1290                 return false;
1291
1292         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1293                 return false;
1294
1295         for (i = 0; i < rd->n_reg_rules; i++) {
1296                 reg_rule = &rd->reg_rules[i];
1297                 if (!is_valid_reg_rule(reg_rule))
1298                         return false;
1299         }
1300
1301         return true;
1302 }
1303
1304 /**
1305  * freq_in_rule_band - tells us if a frequency is in a frequency band
1306  * @freq_range: frequency rule we want to query
1307  * @freq_khz: frequency we are inquiring about
1308  *
1309  * This lets us know if a specific frequency rule is or is not relevant to
1310  * a specific frequency's band. Bands are device specific and artificial
1311  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1312  * however it is safe for now to assume that a frequency rule should not be
1313  * part of a frequency's band if the start freq or end freq are off by more
1314  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1315  * 60 GHz band.
1316  * This resolution can be lowered and should be considered as we add
1317  * regulatory rule support for other "bands".
1318  **/
1319 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1320                               u32 freq_khz)
1321 {
1322 #define ONE_GHZ_IN_KHZ  1000000
1323         /*
1324          * From 802.11ad: directional multi-gigabit (DMG):
1325          * Pertaining to operation in a frequency band containing a channel
1326          * with the Channel starting frequency above 45 GHz.
1327          */
1328         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1329                         20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1330         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1331                 return true;
1332         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1333                 return true;
1334         return false;
1335 #undef ONE_GHZ_IN_KHZ
1336 }
1337
1338 /*
1339  * Later on we can perhaps use the more restrictive DFS
1340  * region but we don't have information for that yet so
1341  * for now simply disallow conflicts.
1342  */
1343 static enum nl80211_dfs_regions
1344 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1345                          const enum nl80211_dfs_regions dfs_region2)
1346 {
1347         if (dfs_region1 != dfs_region2)
1348                 return NL80211_DFS_UNSET;
1349         return dfs_region1;
1350 }
1351
1352 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1353                                     const struct ieee80211_wmm_ac *wmm_ac2,
1354                                     struct ieee80211_wmm_ac *intersect)
1355 {
1356         intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1357         intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1358         intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1359         intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1360 }
1361
1362 /*
1363  * Helper for regdom_intersect(), this does the real
1364  * mathematical intersection fun
1365  */
1366 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1367                                const struct ieee80211_regdomain *rd2,
1368                                const struct ieee80211_reg_rule *rule1,
1369                                const struct ieee80211_reg_rule *rule2,
1370                                struct ieee80211_reg_rule *intersected_rule)
1371 {
1372         const struct ieee80211_freq_range *freq_range1, *freq_range2;
1373         struct ieee80211_freq_range *freq_range;
1374         const struct ieee80211_power_rule *power_rule1, *power_rule2;
1375         struct ieee80211_power_rule *power_rule;
1376         const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1377         struct ieee80211_wmm_rule *wmm_rule;
1378         u32 freq_diff, max_bandwidth1, max_bandwidth2;
1379
1380         freq_range1 = &rule1->freq_range;
1381         freq_range2 = &rule2->freq_range;
1382         freq_range = &intersected_rule->freq_range;
1383
1384         power_rule1 = &rule1->power_rule;
1385         power_rule2 = &rule2->power_rule;
1386         power_rule = &intersected_rule->power_rule;
1387
1388         wmm_rule1 = &rule1->wmm_rule;
1389         wmm_rule2 = &rule2->wmm_rule;
1390         wmm_rule = &intersected_rule->wmm_rule;
1391
1392         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1393                                          freq_range2->start_freq_khz);
1394         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1395                                        freq_range2->end_freq_khz);
1396
1397         max_bandwidth1 = freq_range1->max_bandwidth_khz;
1398         max_bandwidth2 = freq_range2->max_bandwidth_khz;
1399
1400         if (rule1->flags & NL80211_RRF_AUTO_BW)
1401                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1402         if (rule2->flags & NL80211_RRF_AUTO_BW)
1403                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1404
1405         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1406
1407         intersected_rule->flags = rule1->flags | rule2->flags;
1408
1409         /*
1410          * In case NL80211_RRF_AUTO_BW requested for both rules
1411          * set AUTO_BW in intersected rule also. Next we will
1412          * calculate BW correctly in handle_channel function.
1413          * In other case remove AUTO_BW flag while we calculate
1414          * maximum bandwidth correctly and auto calculation is
1415          * not required.
1416          */
1417         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1418             (rule2->flags & NL80211_RRF_AUTO_BW))
1419                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1420         else
1421                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1422
1423         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1424         if (freq_range->max_bandwidth_khz > freq_diff)
1425                 freq_range->max_bandwidth_khz = freq_diff;
1426
1427         power_rule->max_eirp = min(power_rule1->max_eirp,
1428                 power_rule2->max_eirp);
1429         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1430                 power_rule2->max_antenna_gain);
1431
1432         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1433                                            rule2->dfs_cac_ms);
1434
1435         if (rule1->has_wmm && rule2->has_wmm) {
1436                 u8 ac;
1437
1438                 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1439                         reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1440                                                 &wmm_rule2->client[ac],
1441                                                 &wmm_rule->client[ac]);
1442                         reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1443                                                 &wmm_rule2->ap[ac],
1444                                                 &wmm_rule->ap[ac]);
1445                 }
1446
1447                 intersected_rule->has_wmm = true;
1448         } else if (rule1->has_wmm) {
1449                 *wmm_rule = *wmm_rule1;
1450                 intersected_rule->has_wmm = true;
1451         } else if (rule2->has_wmm) {
1452                 *wmm_rule = *wmm_rule2;
1453                 intersected_rule->has_wmm = true;
1454         } else {
1455                 intersected_rule->has_wmm = false;
1456         }
1457
1458         if (!is_valid_reg_rule(intersected_rule))
1459                 return -EINVAL;
1460
1461         return 0;
1462 }
1463
1464 /* check whether old rule contains new rule */
1465 static bool rule_contains(struct ieee80211_reg_rule *r1,
1466                           struct ieee80211_reg_rule *r2)
1467 {
1468         /* for simplicity, currently consider only same flags */
1469         if (r1->flags != r2->flags)
1470                 return false;
1471
1472         /* verify r1 is more restrictive */
1473         if ((r1->power_rule.max_antenna_gain >
1474              r2->power_rule.max_antenna_gain) ||
1475             r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1476                 return false;
1477
1478         /* make sure r2's range is contained within r1 */
1479         if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1480             r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1481                 return false;
1482
1483         /* and finally verify that r1.max_bw >= r2.max_bw */
1484         if (r1->freq_range.max_bandwidth_khz <
1485             r2->freq_range.max_bandwidth_khz)
1486                 return false;
1487
1488         return true;
1489 }
1490
1491 /* add or extend current rules. do nothing if rule is already contained */
1492 static void add_rule(struct ieee80211_reg_rule *rule,
1493                      struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1494 {
1495         struct ieee80211_reg_rule *tmp_rule;
1496         int i;
1497
1498         for (i = 0; i < *n_rules; i++) {
1499                 tmp_rule = &reg_rules[i];
1500                 /* rule is already contained - do nothing */
1501                 if (rule_contains(tmp_rule, rule))
1502                         return;
1503
1504                 /* extend rule if possible */
1505                 if (rule_contains(rule, tmp_rule)) {
1506                         memcpy(tmp_rule, rule, sizeof(*rule));
1507                         return;
1508                 }
1509         }
1510
1511         memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1512         (*n_rules)++;
1513 }
1514
1515 /**
1516  * regdom_intersect - do the intersection between two regulatory domains
1517  * @rd1: first regulatory domain
1518  * @rd2: second regulatory domain
1519  *
1520  * Use this function to get the intersection between two regulatory domains.
1521  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1522  * as no one single alpha2 can represent this regulatory domain.
1523  *
1524  * Returns a pointer to the regulatory domain structure which will hold the
1525  * resulting intersection of rules between rd1 and rd2. We will
1526  * kzalloc() this structure for you.
1527  */
1528 static struct ieee80211_regdomain *
1529 regdom_intersect(const struct ieee80211_regdomain *rd1,
1530                  const struct ieee80211_regdomain *rd2)
1531 {
1532         int r;
1533         unsigned int x, y;
1534         unsigned int num_rules = 0;
1535         const struct ieee80211_reg_rule *rule1, *rule2;
1536         struct ieee80211_reg_rule intersected_rule;
1537         struct ieee80211_regdomain *rd;
1538
1539         if (!rd1 || !rd2)
1540                 return NULL;
1541
1542         /*
1543          * First we get a count of the rules we'll need, then we actually
1544          * build them. This is to so we can malloc() and free() a
1545          * regdomain once. The reason we use reg_rules_intersect() here
1546          * is it will return -EINVAL if the rule computed makes no sense.
1547          * All rules that do check out OK are valid.
1548          */
1549
1550         for (x = 0; x < rd1->n_reg_rules; x++) {
1551                 rule1 = &rd1->reg_rules[x];
1552                 for (y = 0; y < rd2->n_reg_rules; y++) {
1553                         rule2 = &rd2->reg_rules[y];
1554                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1555                                                  &intersected_rule))
1556                                 num_rules++;
1557                 }
1558         }
1559
1560         if (!num_rules)
1561                 return NULL;
1562
1563         rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1564         if (!rd)
1565                 return NULL;
1566
1567         for (x = 0; x < rd1->n_reg_rules; x++) {
1568                 rule1 = &rd1->reg_rules[x];
1569                 for (y = 0; y < rd2->n_reg_rules; y++) {
1570                         rule2 = &rd2->reg_rules[y];
1571                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1572                                                 &intersected_rule);
1573                         /*
1574                          * No need to memset here the intersected rule here as
1575                          * we're not using the stack anymore
1576                          */
1577                         if (r)
1578                                 continue;
1579
1580                         add_rule(&intersected_rule, rd->reg_rules,
1581                                  &rd->n_reg_rules);
1582                 }
1583         }
1584
1585         rd->alpha2[0] = '9';
1586         rd->alpha2[1] = '8';
1587         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1588                                                   rd2->dfs_region);
1589
1590         return rd;
1591 }
1592
1593 /*
1594  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1595  * want to just have the channel structure use these
1596  */
1597 static u32 map_regdom_flags(u32 rd_flags)
1598 {
1599         u32 channel_flags = 0;
1600         if (rd_flags & NL80211_RRF_NO_IR_ALL)
1601                 channel_flags |= IEEE80211_CHAN_NO_IR;
1602         if (rd_flags & NL80211_RRF_DFS)
1603                 channel_flags |= IEEE80211_CHAN_RADAR;
1604         if (rd_flags & NL80211_RRF_NO_OFDM)
1605                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1606         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1607                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1608         if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1609                 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1610         if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1611                 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1612         if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1613                 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1614         if (rd_flags & NL80211_RRF_NO_80MHZ)
1615                 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1616         if (rd_flags & NL80211_RRF_NO_160MHZ)
1617                 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1618         if (rd_flags & NL80211_RRF_NO_HE)
1619                 channel_flags |= IEEE80211_CHAN_NO_HE;
1620         if (rd_flags & NL80211_RRF_NO_320MHZ)
1621                 channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1622         return channel_flags;
1623 }
1624
1625 static const struct ieee80211_reg_rule *
1626 freq_reg_info_regd(u32 center_freq,
1627                    const struct ieee80211_regdomain *regd, u32 bw)
1628 {
1629         int i;
1630         bool band_rule_found = false;
1631         bool bw_fits = false;
1632
1633         if (!regd)
1634                 return ERR_PTR(-EINVAL);
1635
1636         for (i = 0; i < regd->n_reg_rules; i++) {
1637                 const struct ieee80211_reg_rule *rr;
1638                 const struct ieee80211_freq_range *fr = NULL;
1639
1640                 rr = &regd->reg_rules[i];
1641                 fr = &rr->freq_range;
1642
1643                 /*
1644                  * We only need to know if one frequency rule was
1645                  * in center_freq's band, that's enough, so let's
1646                  * not overwrite it once found
1647                  */
1648                 if (!band_rule_found)
1649                         band_rule_found = freq_in_rule_band(fr, center_freq);
1650
1651                 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1652
1653                 if (band_rule_found && bw_fits)
1654                         return rr;
1655         }
1656
1657         if (!band_rule_found)
1658                 return ERR_PTR(-ERANGE);
1659
1660         return ERR_PTR(-EINVAL);
1661 }
1662
1663 static const struct ieee80211_reg_rule *
1664 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1665 {
1666         const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1667         static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1668         const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1669         int i = ARRAY_SIZE(bws) - 1;
1670         u32 bw;
1671
1672         for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1673                 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1674                 if (!IS_ERR(reg_rule))
1675                         return reg_rule;
1676         }
1677
1678         return reg_rule;
1679 }
1680
1681 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1682                                                u32 center_freq)
1683 {
1684         u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1685
1686         return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1687 }
1688 EXPORT_SYMBOL(freq_reg_info);
1689
1690 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1691 {
1692         switch (initiator) {
1693         case NL80211_REGDOM_SET_BY_CORE:
1694                 return "core";
1695         case NL80211_REGDOM_SET_BY_USER:
1696                 return "user";
1697         case NL80211_REGDOM_SET_BY_DRIVER:
1698                 return "driver";
1699         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1700                 return "country element";
1701         default:
1702                 WARN_ON(1);
1703                 return "bug";
1704         }
1705 }
1706 EXPORT_SYMBOL(reg_initiator_name);
1707
1708 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1709                                           const struct ieee80211_reg_rule *reg_rule,
1710                                           const struct ieee80211_channel *chan)
1711 {
1712         const struct ieee80211_freq_range *freq_range = NULL;
1713         u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1714         bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1715
1716         freq_range = &reg_rule->freq_range;
1717
1718         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1719         center_freq_khz = ieee80211_channel_to_khz(chan);
1720         /* Check if auto calculation requested */
1721         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1722                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1723
1724         /* If we get a reg_rule we can assume that at least 5Mhz fit */
1725         if (!cfg80211_does_bw_fit_range(freq_range,
1726                                         center_freq_khz,
1727                                         MHZ_TO_KHZ(10)))
1728                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1729         if (!cfg80211_does_bw_fit_range(freq_range,
1730                                         center_freq_khz,
1731                                         MHZ_TO_KHZ(20)))
1732                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1733
1734         if (is_s1g) {
1735                 /* S1G is strict about non overlapping channels. We can
1736                  * calculate which bandwidth is allowed per channel by finding
1737                  * the largest bandwidth which cleanly divides the freq_range.
1738                  */
1739                 int edge_offset;
1740                 int ch_bw = max_bandwidth_khz;
1741
1742                 while (ch_bw) {
1743                         edge_offset = (center_freq_khz - ch_bw / 2) -
1744                                       freq_range->start_freq_khz;
1745                         if (edge_offset % ch_bw == 0) {
1746                                 switch (KHZ_TO_MHZ(ch_bw)) {
1747                                 case 1:
1748                                         bw_flags |= IEEE80211_CHAN_1MHZ;
1749                                         break;
1750                                 case 2:
1751                                         bw_flags |= IEEE80211_CHAN_2MHZ;
1752                                         break;
1753                                 case 4:
1754                                         bw_flags |= IEEE80211_CHAN_4MHZ;
1755                                         break;
1756                                 case 8:
1757                                         bw_flags |= IEEE80211_CHAN_8MHZ;
1758                                         break;
1759                                 case 16:
1760                                         bw_flags |= IEEE80211_CHAN_16MHZ;
1761                                         break;
1762                                 default:
1763                                         /* If we got here, no bandwidths fit on
1764                                          * this frequency, ie. band edge.
1765                                          */
1766                                         bw_flags |= IEEE80211_CHAN_DISABLED;
1767                                         break;
1768                                 }
1769                                 break;
1770                         }
1771                         ch_bw /= 2;
1772                 }
1773         } else {
1774                 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1775                         bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1776                 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1777                         bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1778                 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1779                         bw_flags |= IEEE80211_CHAN_NO_HT40;
1780                 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1781                         bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1782                 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1783                         bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1784                 if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1785                         bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1786         }
1787         return bw_flags;
1788 }
1789
1790 static void handle_channel_single_rule(struct wiphy *wiphy,
1791                                        enum nl80211_reg_initiator initiator,
1792                                        struct ieee80211_channel *chan,
1793                                        u32 flags,
1794                                        struct regulatory_request *lr,
1795                                        struct wiphy *request_wiphy,
1796                                        const struct ieee80211_reg_rule *reg_rule)
1797 {
1798         u32 bw_flags = 0;
1799         const struct ieee80211_power_rule *power_rule = NULL;
1800         const struct ieee80211_regdomain *regd;
1801
1802         regd = reg_get_regdomain(wiphy);
1803
1804         power_rule = &reg_rule->power_rule;
1805         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1806
1807         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1808             request_wiphy && request_wiphy == wiphy &&
1809             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1810                 /*
1811                  * This guarantees the driver's requested regulatory domain
1812                  * will always be used as a base for further regulatory
1813                  * settings
1814                  */
1815                 chan->flags = chan->orig_flags =
1816                         map_regdom_flags(reg_rule->flags) | bw_flags;
1817                 chan->max_antenna_gain = chan->orig_mag =
1818                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1819                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1820                         (int) MBM_TO_DBM(power_rule->max_eirp);
1821
1822                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1823                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1824                         if (reg_rule->dfs_cac_ms)
1825                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1826                 }
1827
1828                 return;
1829         }
1830
1831         chan->dfs_state = NL80211_DFS_USABLE;
1832         chan->dfs_state_entered = jiffies;
1833
1834         chan->beacon_found = false;
1835         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1836         chan->max_antenna_gain =
1837                 min_t(int, chan->orig_mag,
1838                       MBI_TO_DBI(power_rule->max_antenna_gain));
1839         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1840
1841         if (chan->flags & IEEE80211_CHAN_RADAR) {
1842                 if (reg_rule->dfs_cac_ms)
1843                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1844                 else
1845                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1846         }
1847
1848         if (chan->orig_mpwr) {
1849                 /*
1850                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1851                  * will always follow the passed country IE power settings.
1852                  */
1853                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1854                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1855                         chan->max_power = chan->max_reg_power;
1856                 else
1857                         chan->max_power = min(chan->orig_mpwr,
1858                                               chan->max_reg_power);
1859         } else
1860                 chan->max_power = chan->max_reg_power;
1861 }
1862
1863 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1864                                           enum nl80211_reg_initiator initiator,
1865                                           struct ieee80211_channel *chan,
1866                                           u32 flags,
1867                                           struct regulatory_request *lr,
1868                                           struct wiphy *request_wiphy,
1869                                           const struct ieee80211_reg_rule *rrule1,
1870                                           const struct ieee80211_reg_rule *rrule2,
1871                                           struct ieee80211_freq_range *comb_range)
1872 {
1873         u32 bw_flags1 = 0;
1874         u32 bw_flags2 = 0;
1875         const struct ieee80211_power_rule *power_rule1 = NULL;
1876         const struct ieee80211_power_rule *power_rule2 = NULL;
1877         const struct ieee80211_regdomain *regd;
1878
1879         regd = reg_get_regdomain(wiphy);
1880
1881         power_rule1 = &rrule1->power_rule;
1882         power_rule2 = &rrule2->power_rule;
1883         bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1884         bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1885
1886         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1887             request_wiphy && request_wiphy == wiphy &&
1888             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1889                 /* This guarantees the driver's requested regulatory domain
1890                  * will always be used as a base for further regulatory
1891                  * settings
1892                  */
1893                 chan->flags =
1894                         map_regdom_flags(rrule1->flags) |
1895                         map_regdom_flags(rrule2->flags) |
1896                         bw_flags1 |
1897                         bw_flags2;
1898                 chan->orig_flags = chan->flags;
1899                 chan->max_antenna_gain =
1900                         min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1901                               MBI_TO_DBI(power_rule2->max_antenna_gain));
1902                 chan->orig_mag = chan->max_antenna_gain;
1903                 chan->max_reg_power =
1904                         min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1905                               MBM_TO_DBM(power_rule2->max_eirp));
1906                 chan->max_power = chan->max_reg_power;
1907                 chan->orig_mpwr = chan->max_reg_power;
1908
1909                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1910                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1911                         if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1912                                 chan->dfs_cac_ms = max_t(unsigned int,
1913                                                          rrule1->dfs_cac_ms,
1914                                                          rrule2->dfs_cac_ms);
1915                 }
1916
1917                 return;
1918         }
1919
1920         chan->dfs_state = NL80211_DFS_USABLE;
1921         chan->dfs_state_entered = jiffies;
1922
1923         chan->beacon_found = false;
1924         chan->flags = flags | bw_flags1 | bw_flags2 |
1925                       map_regdom_flags(rrule1->flags) |
1926                       map_regdom_flags(rrule2->flags);
1927
1928         /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1929          * (otherwise no adj. rule case), recheck therefore
1930          */
1931         if (cfg80211_does_bw_fit_range(comb_range,
1932                                        ieee80211_channel_to_khz(chan),
1933                                        MHZ_TO_KHZ(10)))
1934                 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1935         if (cfg80211_does_bw_fit_range(comb_range,
1936                                        ieee80211_channel_to_khz(chan),
1937                                        MHZ_TO_KHZ(20)))
1938                 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1939
1940         chan->max_antenna_gain =
1941                 min_t(int, chan->orig_mag,
1942                       min_t(int,
1943                             MBI_TO_DBI(power_rule1->max_antenna_gain),
1944                             MBI_TO_DBI(power_rule2->max_antenna_gain)));
1945         chan->max_reg_power = min_t(int,
1946                                     MBM_TO_DBM(power_rule1->max_eirp),
1947                                     MBM_TO_DBM(power_rule2->max_eirp));
1948
1949         if (chan->flags & IEEE80211_CHAN_RADAR) {
1950                 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1951                         chan->dfs_cac_ms = max_t(unsigned int,
1952                                                  rrule1->dfs_cac_ms,
1953                                                  rrule2->dfs_cac_ms);
1954                 else
1955                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1956         }
1957
1958         if (chan->orig_mpwr) {
1959                 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1960                  * will always follow the passed country IE power settings.
1961                  */
1962                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1963                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1964                         chan->max_power = chan->max_reg_power;
1965                 else
1966                         chan->max_power = min(chan->orig_mpwr,
1967                                               chan->max_reg_power);
1968         } else {
1969                 chan->max_power = chan->max_reg_power;
1970         }
1971 }
1972
1973 /* Note that right now we assume the desired channel bandwidth
1974  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1975  * per channel, the primary and the extension channel).
1976  */
1977 static void handle_channel(struct wiphy *wiphy,
1978                            enum nl80211_reg_initiator initiator,
1979                            struct ieee80211_channel *chan)
1980 {
1981         const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1982         struct regulatory_request *lr = get_last_request();
1983         struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1984         const struct ieee80211_reg_rule *rrule = NULL;
1985         const struct ieee80211_reg_rule *rrule1 = NULL;
1986         const struct ieee80211_reg_rule *rrule2 = NULL;
1987
1988         u32 flags = chan->orig_flags;
1989
1990         rrule = freq_reg_info(wiphy, orig_chan_freq);
1991         if (IS_ERR(rrule)) {
1992                 /* check for adjacent match, therefore get rules for
1993                  * chan - 20 MHz and chan + 20 MHz and test
1994                  * if reg rules are adjacent
1995                  */
1996                 rrule1 = freq_reg_info(wiphy,
1997                                        orig_chan_freq - MHZ_TO_KHZ(20));
1998                 rrule2 = freq_reg_info(wiphy,
1999                                        orig_chan_freq + MHZ_TO_KHZ(20));
2000                 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
2001                         struct ieee80211_freq_range comb_range;
2002
2003                         if (rrule1->freq_range.end_freq_khz !=
2004                             rrule2->freq_range.start_freq_khz)
2005                                 goto disable_chan;
2006
2007                         comb_range.start_freq_khz =
2008                                 rrule1->freq_range.start_freq_khz;
2009                         comb_range.end_freq_khz =
2010                                 rrule2->freq_range.end_freq_khz;
2011                         comb_range.max_bandwidth_khz =
2012                                 min_t(u32,
2013                                       rrule1->freq_range.max_bandwidth_khz,
2014                                       rrule2->freq_range.max_bandwidth_khz);
2015
2016                         if (!cfg80211_does_bw_fit_range(&comb_range,
2017                                                         orig_chan_freq,
2018                                                         MHZ_TO_KHZ(20)))
2019                                 goto disable_chan;
2020
2021                         handle_channel_adjacent_rules(wiphy, initiator, chan,
2022                                                       flags, lr, request_wiphy,
2023                                                       rrule1, rrule2,
2024                                                       &comb_range);
2025                         return;
2026                 }
2027
2028 disable_chan:
2029                 /* We will disable all channels that do not match our
2030                  * received regulatory rule unless the hint is coming
2031                  * from a Country IE and the Country IE had no information
2032                  * about a band. The IEEE 802.11 spec allows for an AP
2033                  * to send only a subset of the regulatory rules allowed,
2034                  * so an AP in the US that only supports 2.4 GHz may only send
2035                  * a country IE with information for the 2.4 GHz band
2036                  * while 5 GHz is still supported.
2037                  */
2038                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2039                     PTR_ERR(rrule) == -ERANGE)
2040                         return;
2041
2042                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2043                     request_wiphy && request_wiphy == wiphy &&
2044                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2045                         pr_debug("Disabling freq %d.%03d MHz for good\n",
2046                                  chan->center_freq, chan->freq_offset);
2047                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2048                         chan->flags = chan->orig_flags;
2049                 } else {
2050                         pr_debug("Disabling freq %d.%03d MHz\n",
2051                                  chan->center_freq, chan->freq_offset);
2052                         chan->flags |= IEEE80211_CHAN_DISABLED;
2053                 }
2054                 return;
2055         }
2056
2057         handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2058                                    request_wiphy, rrule);
2059 }
2060
2061 static void handle_band(struct wiphy *wiphy,
2062                         enum nl80211_reg_initiator initiator,
2063                         struct ieee80211_supported_band *sband)
2064 {
2065         unsigned int i;
2066
2067         if (!sband)
2068                 return;
2069
2070         for (i = 0; i < sband->n_channels; i++)
2071                 handle_channel(wiphy, initiator, &sband->channels[i]);
2072 }
2073
2074 static bool reg_request_cell_base(struct regulatory_request *request)
2075 {
2076         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2077                 return false;
2078         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2079 }
2080
2081 bool reg_last_request_cell_base(void)
2082 {
2083         return reg_request_cell_base(get_last_request());
2084 }
2085
2086 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2087 /* Core specific check */
2088 static enum reg_request_treatment
2089 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2090 {
2091         struct regulatory_request *lr = get_last_request();
2092
2093         if (!reg_num_devs_support_basehint)
2094                 return REG_REQ_IGNORE;
2095
2096         if (reg_request_cell_base(lr) &&
2097             !regdom_changes(pending_request->alpha2))
2098                 return REG_REQ_ALREADY_SET;
2099
2100         return REG_REQ_OK;
2101 }
2102
2103 /* Device specific check */
2104 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2105 {
2106         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2107 }
2108 #else
2109 static enum reg_request_treatment
2110 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2111 {
2112         return REG_REQ_IGNORE;
2113 }
2114
2115 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2116 {
2117         return true;
2118 }
2119 #endif
2120
2121 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2122 {
2123         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2124             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2125                 return true;
2126         return false;
2127 }
2128
2129 static bool ignore_reg_update(struct wiphy *wiphy,
2130                               enum nl80211_reg_initiator initiator)
2131 {
2132         struct regulatory_request *lr = get_last_request();
2133
2134         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2135                 return true;
2136
2137         if (!lr) {
2138                 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2139                          reg_initiator_name(initiator));
2140                 return true;
2141         }
2142
2143         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2144             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2145                 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2146                          reg_initiator_name(initiator));
2147                 return true;
2148         }
2149
2150         /*
2151          * wiphy->regd will be set once the device has its own
2152          * desired regulatory domain set
2153          */
2154         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2155             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2156             !is_world_regdom(lr->alpha2)) {
2157                 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2158                          reg_initiator_name(initiator));
2159                 return true;
2160         }
2161
2162         if (reg_request_cell_base(lr))
2163                 return reg_dev_ignore_cell_hint(wiphy);
2164
2165         return false;
2166 }
2167
2168 static bool reg_is_world_roaming(struct wiphy *wiphy)
2169 {
2170         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2171         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2172         struct regulatory_request *lr = get_last_request();
2173
2174         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2175                 return true;
2176
2177         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2178             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2179                 return true;
2180
2181         return false;
2182 }
2183
2184 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2185                               struct reg_beacon *reg_beacon)
2186 {
2187         struct ieee80211_supported_band *sband;
2188         struct ieee80211_channel *chan;
2189         bool channel_changed = false;
2190         struct ieee80211_channel chan_before;
2191
2192         sband = wiphy->bands[reg_beacon->chan.band];
2193         chan = &sband->channels[chan_idx];
2194
2195         if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2196                 return;
2197
2198         if (chan->beacon_found)
2199                 return;
2200
2201         chan->beacon_found = true;
2202
2203         if (!reg_is_world_roaming(wiphy))
2204                 return;
2205
2206         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2207                 return;
2208
2209         chan_before = *chan;
2210
2211         if (chan->flags & IEEE80211_CHAN_NO_IR) {
2212                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
2213                 channel_changed = true;
2214         }
2215
2216         if (channel_changed)
2217                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2218 }
2219
2220 /*
2221  * Called when a scan on a wiphy finds a beacon on
2222  * new channel
2223  */
2224 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2225                                     struct reg_beacon *reg_beacon)
2226 {
2227         unsigned int i;
2228         struct ieee80211_supported_band *sband;
2229
2230         if (!wiphy->bands[reg_beacon->chan.band])
2231                 return;
2232
2233         sband = wiphy->bands[reg_beacon->chan.band];
2234
2235         for (i = 0; i < sband->n_channels; i++)
2236                 handle_reg_beacon(wiphy, i, reg_beacon);
2237 }
2238
2239 /*
2240  * Called upon reg changes or a new wiphy is added
2241  */
2242 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2243 {
2244         unsigned int i;
2245         struct ieee80211_supported_band *sband;
2246         struct reg_beacon *reg_beacon;
2247
2248         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2249                 if (!wiphy->bands[reg_beacon->chan.band])
2250                         continue;
2251                 sband = wiphy->bands[reg_beacon->chan.band];
2252                 for (i = 0; i < sband->n_channels; i++)
2253                         handle_reg_beacon(wiphy, i, reg_beacon);
2254         }
2255 }
2256
2257 /* Reap the advantages of previously found beacons */
2258 static void reg_process_beacons(struct wiphy *wiphy)
2259 {
2260         /*
2261          * Means we are just firing up cfg80211, so no beacons would
2262          * have been processed yet.
2263          */
2264         if (!last_request)
2265                 return;
2266         wiphy_update_beacon_reg(wiphy);
2267 }
2268
2269 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2270 {
2271         if (!chan)
2272                 return false;
2273         if (chan->flags & IEEE80211_CHAN_DISABLED)
2274                 return false;
2275         /* This would happen when regulatory rules disallow HT40 completely */
2276         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2277                 return false;
2278         return true;
2279 }
2280
2281 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2282                                          struct ieee80211_channel *channel)
2283 {
2284         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2285         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2286         const struct ieee80211_regdomain *regd;
2287         unsigned int i;
2288         u32 flags;
2289
2290         if (!is_ht40_allowed(channel)) {
2291                 channel->flags |= IEEE80211_CHAN_NO_HT40;
2292                 return;
2293         }
2294
2295         /*
2296          * We need to ensure the extension channels exist to
2297          * be able to use HT40- or HT40+, this finds them (or not)
2298          */
2299         for (i = 0; i < sband->n_channels; i++) {
2300                 struct ieee80211_channel *c = &sband->channels[i];
2301
2302                 if (c->center_freq == (channel->center_freq - 20))
2303                         channel_before = c;
2304                 if (c->center_freq == (channel->center_freq + 20))
2305                         channel_after = c;
2306         }
2307
2308         flags = 0;
2309         regd = get_wiphy_regdom(wiphy);
2310         if (regd) {
2311                 const struct ieee80211_reg_rule *reg_rule =
2312                         freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2313                                            regd, MHZ_TO_KHZ(20));
2314
2315                 if (!IS_ERR(reg_rule))
2316                         flags = reg_rule->flags;
2317         }
2318
2319         /*
2320          * Please note that this assumes target bandwidth is 20 MHz,
2321          * if that ever changes we also need to change the below logic
2322          * to include that as well.
2323          */
2324         if (!is_ht40_allowed(channel_before) ||
2325             flags & NL80211_RRF_NO_HT40MINUS)
2326                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2327         else
2328                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2329
2330         if (!is_ht40_allowed(channel_after) ||
2331             flags & NL80211_RRF_NO_HT40PLUS)
2332                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2333         else
2334                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2335 }
2336
2337 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2338                                       struct ieee80211_supported_band *sband)
2339 {
2340         unsigned int i;
2341
2342         if (!sband)
2343                 return;
2344
2345         for (i = 0; i < sband->n_channels; i++)
2346                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2347 }
2348
2349 static void reg_process_ht_flags(struct wiphy *wiphy)
2350 {
2351         enum nl80211_band band;
2352
2353         if (!wiphy)
2354                 return;
2355
2356         for (band = 0; band < NUM_NL80211_BANDS; band++)
2357                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2358 }
2359
2360 static void reg_call_notifier(struct wiphy *wiphy,
2361                               struct regulatory_request *request)
2362 {
2363         if (wiphy->reg_notifier)
2364                 wiphy->reg_notifier(wiphy, request);
2365 }
2366
2367 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2368 {
2369         struct cfg80211_chan_def chandef = {};
2370         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2371         enum nl80211_iftype iftype;
2372         bool ret;
2373
2374         wdev_lock(wdev);
2375         iftype = wdev->iftype;
2376
2377         /* make sure the interface is active */
2378         if (!wdev->netdev || !netif_running(wdev->netdev))
2379                 goto wdev_inactive_unlock;
2380
2381         switch (iftype) {
2382         case NL80211_IFTYPE_AP:
2383         case NL80211_IFTYPE_P2P_GO:
2384         case NL80211_IFTYPE_MESH_POINT:
2385                 if (!wdev->beacon_interval)
2386                         goto wdev_inactive_unlock;
2387                 chandef = wdev->chandef;
2388                 break;
2389         case NL80211_IFTYPE_ADHOC:
2390                 if (!wdev->ssid_len)
2391                         goto wdev_inactive_unlock;
2392                 chandef = wdev->chandef;
2393                 break;
2394         case NL80211_IFTYPE_STATION:
2395         case NL80211_IFTYPE_P2P_CLIENT:
2396                 if (!wdev->current_bss ||
2397                     !wdev->current_bss->pub.channel)
2398                         goto wdev_inactive_unlock;
2399
2400                 if (!rdev->ops->get_channel ||
2401                     rdev_get_channel(rdev, wdev, &chandef))
2402                         cfg80211_chandef_create(&chandef,
2403                                                 wdev->current_bss->pub.channel,
2404                                                 NL80211_CHAN_NO_HT);
2405                 break;
2406         case NL80211_IFTYPE_MONITOR:
2407         case NL80211_IFTYPE_AP_VLAN:
2408         case NL80211_IFTYPE_P2P_DEVICE:
2409                 /* no enforcement required */
2410                 break;
2411         default:
2412                 /* others not implemented for now */
2413                 WARN_ON(1);
2414                 break;
2415         }
2416
2417         wdev_unlock(wdev);
2418
2419         switch (iftype) {
2420         case NL80211_IFTYPE_AP:
2421         case NL80211_IFTYPE_P2P_GO:
2422         case NL80211_IFTYPE_ADHOC:
2423         case NL80211_IFTYPE_MESH_POINT:
2424                 wiphy_lock(wiphy);
2425                 ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2426                 wiphy_unlock(wiphy);
2427
2428                 return ret;
2429         case NL80211_IFTYPE_STATION:
2430         case NL80211_IFTYPE_P2P_CLIENT:
2431                 return cfg80211_chandef_usable(wiphy, &chandef,
2432                                                IEEE80211_CHAN_DISABLED);
2433         default:
2434                 break;
2435         }
2436
2437         return true;
2438
2439 wdev_inactive_unlock:
2440         wdev_unlock(wdev);
2441         return true;
2442 }
2443
2444 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2445 {
2446         struct wireless_dev *wdev;
2447         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2448
2449         ASSERT_RTNL();
2450
2451         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2452                 if (!reg_wdev_chan_valid(wiphy, wdev))
2453                         cfg80211_leave(rdev, wdev);
2454 }
2455
2456 static void reg_check_chans_work(struct work_struct *work)
2457 {
2458         struct cfg80211_registered_device *rdev;
2459
2460         pr_debug("Verifying active interfaces after reg change\n");
2461         rtnl_lock();
2462
2463         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2464                 if (!(rdev->wiphy.regulatory_flags &
2465                       REGULATORY_IGNORE_STALE_KICKOFF))
2466                         reg_leave_invalid_chans(&rdev->wiphy);
2467
2468         rtnl_unlock();
2469 }
2470
2471 static void reg_check_channels(void)
2472 {
2473         /*
2474          * Give usermode a chance to do something nicer (move to another
2475          * channel, orderly disconnection), before forcing a disconnection.
2476          */
2477         mod_delayed_work(system_power_efficient_wq,
2478                          &reg_check_chans,
2479                          msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2480 }
2481
2482 static void wiphy_update_regulatory(struct wiphy *wiphy,
2483                                     enum nl80211_reg_initiator initiator)
2484 {
2485         enum nl80211_band band;
2486         struct regulatory_request *lr = get_last_request();
2487
2488         if (ignore_reg_update(wiphy, initiator)) {
2489                 /*
2490                  * Regulatory updates set by CORE are ignored for custom
2491                  * regulatory cards. Let us notify the changes to the driver,
2492                  * as some drivers used this to restore its orig_* reg domain.
2493                  */
2494                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2495                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2496                     !(wiphy->regulatory_flags &
2497                       REGULATORY_WIPHY_SELF_MANAGED))
2498                         reg_call_notifier(wiphy, lr);
2499                 return;
2500         }
2501
2502         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2503
2504         for (band = 0; band < NUM_NL80211_BANDS; band++)
2505                 handle_band(wiphy, initiator, wiphy->bands[band]);
2506
2507         reg_process_beacons(wiphy);
2508         reg_process_ht_flags(wiphy);
2509         reg_call_notifier(wiphy, lr);
2510 }
2511
2512 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2513 {
2514         struct cfg80211_registered_device *rdev;
2515         struct wiphy *wiphy;
2516
2517         ASSERT_RTNL();
2518
2519         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2520                 wiphy = &rdev->wiphy;
2521                 wiphy_update_regulatory(wiphy, initiator);
2522         }
2523
2524         reg_check_channels();
2525 }
2526
2527 static void handle_channel_custom(struct wiphy *wiphy,
2528                                   struct ieee80211_channel *chan,
2529                                   const struct ieee80211_regdomain *regd,
2530                                   u32 min_bw)
2531 {
2532         u32 bw_flags = 0;
2533         const struct ieee80211_reg_rule *reg_rule = NULL;
2534         const struct ieee80211_power_rule *power_rule = NULL;
2535         u32 bw, center_freq_khz;
2536
2537         center_freq_khz = ieee80211_channel_to_khz(chan);
2538         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2539                 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2540                 if (!IS_ERR(reg_rule))
2541                         break;
2542         }
2543
2544         if (IS_ERR_OR_NULL(reg_rule)) {
2545                 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2546                          chan->center_freq, chan->freq_offset);
2547                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2548                         chan->flags |= IEEE80211_CHAN_DISABLED;
2549                 } else {
2550                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2551                         chan->flags = chan->orig_flags;
2552                 }
2553                 return;
2554         }
2555
2556         power_rule = &reg_rule->power_rule;
2557         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2558
2559         chan->dfs_state_entered = jiffies;
2560         chan->dfs_state = NL80211_DFS_USABLE;
2561
2562         chan->beacon_found = false;
2563
2564         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2565                 chan->flags = chan->orig_flags | bw_flags |
2566                               map_regdom_flags(reg_rule->flags);
2567         else
2568                 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2569
2570         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2571         chan->max_reg_power = chan->max_power =
2572                 (int) MBM_TO_DBM(power_rule->max_eirp);
2573
2574         if (chan->flags & IEEE80211_CHAN_RADAR) {
2575                 if (reg_rule->dfs_cac_ms)
2576                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2577                 else
2578                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2579         }
2580
2581         chan->max_power = chan->max_reg_power;
2582 }
2583
2584 static void handle_band_custom(struct wiphy *wiphy,
2585                                struct ieee80211_supported_band *sband,
2586                                const struct ieee80211_regdomain *regd)
2587 {
2588         unsigned int i;
2589
2590         if (!sband)
2591                 return;
2592
2593         /*
2594          * We currently assume that you always want at least 20 MHz,
2595          * otherwise channel 12 might get enabled if this rule is
2596          * compatible to US, which permits 2402 - 2472 MHz.
2597          */
2598         for (i = 0; i < sband->n_channels; i++)
2599                 handle_channel_custom(wiphy, &sband->channels[i], regd,
2600                                       MHZ_TO_KHZ(20));
2601 }
2602
2603 /* Used by drivers prior to wiphy registration */
2604 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2605                                    const struct ieee80211_regdomain *regd)
2606 {
2607         const struct ieee80211_regdomain *new_regd, *tmp;
2608         enum nl80211_band band;
2609         unsigned int bands_set = 0;
2610
2611         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2612              "wiphy should have REGULATORY_CUSTOM_REG\n");
2613         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2614
2615         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2616                 if (!wiphy->bands[band])
2617                         continue;
2618                 handle_band_custom(wiphy, wiphy->bands[band], regd);
2619                 bands_set++;
2620         }
2621
2622         /*
2623          * no point in calling this if it won't have any effect
2624          * on your device's supported bands.
2625          */
2626         WARN_ON(!bands_set);
2627         new_regd = reg_copy_regd(regd);
2628         if (IS_ERR(new_regd))
2629                 return;
2630
2631         rtnl_lock();
2632         wiphy_lock(wiphy);
2633
2634         tmp = get_wiphy_regdom(wiphy);
2635         rcu_assign_pointer(wiphy->regd, new_regd);
2636         rcu_free_regdom(tmp);
2637
2638         wiphy_unlock(wiphy);
2639         rtnl_unlock();
2640 }
2641 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2642
2643 static void reg_set_request_processed(void)
2644 {
2645         bool need_more_processing = false;
2646         struct regulatory_request *lr = get_last_request();
2647
2648         lr->processed = true;
2649
2650         spin_lock(&reg_requests_lock);
2651         if (!list_empty(&reg_requests_list))
2652                 need_more_processing = true;
2653         spin_unlock(&reg_requests_lock);
2654
2655         cancel_crda_timeout();
2656
2657         if (need_more_processing)
2658                 schedule_work(&reg_work);
2659 }
2660
2661 /**
2662  * reg_process_hint_core - process core regulatory requests
2663  * @core_request: a pending core regulatory request
2664  *
2665  * The wireless subsystem can use this function to process
2666  * a regulatory request issued by the regulatory core.
2667  */
2668 static enum reg_request_treatment
2669 reg_process_hint_core(struct regulatory_request *core_request)
2670 {
2671         if (reg_query_database(core_request)) {
2672                 core_request->intersect = false;
2673                 core_request->processed = false;
2674                 reg_update_last_request(core_request);
2675                 return REG_REQ_OK;
2676         }
2677
2678         return REG_REQ_IGNORE;
2679 }
2680
2681 static enum reg_request_treatment
2682 __reg_process_hint_user(struct regulatory_request *user_request)
2683 {
2684         struct regulatory_request *lr = get_last_request();
2685
2686         if (reg_request_cell_base(user_request))
2687                 return reg_ignore_cell_hint(user_request);
2688
2689         if (reg_request_cell_base(lr))
2690                 return REG_REQ_IGNORE;
2691
2692         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2693                 return REG_REQ_INTERSECT;
2694         /*
2695          * If the user knows better the user should set the regdom
2696          * to their country before the IE is picked up
2697          */
2698         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2699             lr->intersect)
2700                 return REG_REQ_IGNORE;
2701         /*
2702          * Process user requests only after previous user/driver/core
2703          * requests have been processed
2704          */
2705         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2706              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2707              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2708             regdom_changes(lr->alpha2))
2709                 return REG_REQ_IGNORE;
2710
2711         if (!regdom_changes(user_request->alpha2))
2712                 return REG_REQ_ALREADY_SET;
2713
2714         return REG_REQ_OK;
2715 }
2716
2717 /**
2718  * reg_process_hint_user - process user regulatory requests
2719  * @user_request: a pending user regulatory request
2720  *
2721  * The wireless subsystem can use this function to process
2722  * a regulatory request initiated by userspace.
2723  */
2724 static enum reg_request_treatment
2725 reg_process_hint_user(struct regulatory_request *user_request)
2726 {
2727         enum reg_request_treatment treatment;
2728
2729         treatment = __reg_process_hint_user(user_request);
2730         if (treatment == REG_REQ_IGNORE ||
2731             treatment == REG_REQ_ALREADY_SET)
2732                 return REG_REQ_IGNORE;
2733
2734         user_request->intersect = treatment == REG_REQ_INTERSECT;
2735         user_request->processed = false;
2736
2737         if (reg_query_database(user_request)) {
2738                 reg_update_last_request(user_request);
2739                 user_alpha2[0] = user_request->alpha2[0];
2740                 user_alpha2[1] = user_request->alpha2[1];
2741                 return REG_REQ_OK;
2742         }
2743
2744         return REG_REQ_IGNORE;
2745 }
2746
2747 static enum reg_request_treatment
2748 __reg_process_hint_driver(struct regulatory_request *driver_request)
2749 {
2750         struct regulatory_request *lr = get_last_request();
2751
2752         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2753                 if (regdom_changes(driver_request->alpha2))
2754                         return REG_REQ_OK;
2755                 return REG_REQ_ALREADY_SET;
2756         }
2757
2758         /*
2759          * This would happen if you unplug and plug your card
2760          * back in or if you add a new device for which the previously
2761          * loaded card also agrees on the regulatory domain.
2762          */
2763         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2764             !regdom_changes(driver_request->alpha2))
2765                 return REG_REQ_ALREADY_SET;
2766
2767         return REG_REQ_INTERSECT;
2768 }
2769
2770 /**
2771  * reg_process_hint_driver - process driver regulatory requests
2772  * @wiphy: the wireless device for the regulatory request
2773  * @driver_request: a pending driver regulatory request
2774  *
2775  * The wireless subsystem can use this function to process
2776  * a regulatory request issued by an 802.11 driver.
2777  *
2778  * Returns one of the different reg request treatment values.
2779  */
2780 static enum reg_request_treatment
2781 reg_process_hint_driver(struct wiphy *wiphy,
2782                         struct regulatory_request *driver_request)
2783 {
2784         const struct ieee80211_regdomain *regd, *tmp;
2785         enum reg_request_treatment treatment;
2786
2787         treatment = __reg_process_hint_driver(driver_request);
2788
2789         switch (treatment) {
2790         case REG_REQ_OK:
2791                 break;
2792         case REG_REQ_IGNORE:
2793                 return REG_REQ_IGNORE;
2794         case REG_REQ_INTERSECT:
2795         case REG_REQ_ALREADY_SET:
2796                 regd = reg_copy_regd(get_cfg80211_regdom());
2797                 if (IS_ERR(regd))
2798                         return REG_REQ_IGNORE;
2799
2800                 tmp = get_wiphy_regdom(wiphy);
2801                 ASSERT_RTNL();
2802                 wiphy_lock(wiphy);
2803                 rcu_assign_pointer(wiphy->regd, regd);
2804                 wiphy_unlock(wiphy);
2805                 rcu_free_regdom(tmp);
2806         }
2807
2808
2809         driver_request->intersect = treatment == REG_REQ_INTERSECT;
2810         driver_request->processed = false;
2811
2812         /*
2813          * Since CRDA will not be called in this case as we already
2814          * have applied the requested regulatory domain before we just
2815          * inform userspace we have processed the request
2816          */
2817         if (treatment == REG_REQ_ALREADY_SET) {
2818                 nl80211_send_reg_change_event(driver_request);
2819                 reg_update_last_request(driver_request);
2820                 reg_set_request_processed();
2821                 return REG_REQ_ALREADY_SET;
2822         }
2823
2824         if (reg_query_database(driver_request)) {
2825                 reg_update_last_request(driver_request);
2826                 return REG_REQ_OK;
2827         }
2828
2829         return REG_REQ_IGNORE;
2830 }
2831
2832 static enum reg_request_treatment
2833 __reg_process_hint_country_ie(struct wiphy *wiphy,
2834                               struct regulatory_request *country_ie_request)
2835 {
2836         struct wiphy *last_wiphy = NULL;
2837         struct regulatory_request *lr = get_last_request();
2838
2839         if (reg_request_cell_base(lr)) {
2840                 /* Trust a Cell base station over the AP's country IE */
2841                 if (regdom_changes(country_ie_request->alpha2))
2842                         return REG_REQ_IGNORE;
2843                 return REG_REQ_ALREADY_SET;
2844         } else {
2845                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2846                         return REG_REQ_IGNORE;
2847         }
2848
2849         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2850                 return -EINVAL;
2851
2852         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2853                 return REG_REQ_OK;
2854
2855         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2856
2857         if (last_wiphy != wiphy) {
2858                 /*
2859                  * Two cards with two APs claiming different
2860                  * Country IE alpha2s. We could
2861                  * intersect them, but that seems unlikely
2862                  * to be correct. Reject second one for now.
2863                  */
2864                 if (regdom_changes(country_ie_request->alpha2))
2865                         return REG_REQ_IGNORE;
2866                 return REG_REQ_ALREADY_SET;
2867         }
2868
2869         if (regdom_changes(country_ie_request->alpha2))
2870                 return REG_REQ_OK;
2871         return REG_REQ_ALREADY_SET;
2872 }
2873
2874 /**
2875  * reg_process_hint_country_ie - process regulatory requests from country IEs
2876  * @wiphy: the wireless device for the regulatory request
2877  * @country_ie_request: a regulatory request from a country IE
2878  *
2879  * The wireless subsystem can use this function to process
2880  * a regulatory request issued by a country Information Element.
2881  *
2882  * Returns one of the different reg request treatment values.
2883  */
2884 static enum reg_request_treatment
2885 reg_process_hint_country_ie(struct wiphy *wiphy,
2886                             struct regulatory_request *country_ie_request)
2887 {
2888         enum reg_request_treatment treatment;
2889
2890         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2891
2892         switch (treatment) {
2893         case REG_REQ_OK:
2894                 break;
2895         case REG_REQ_IGNORE:
2896                 return REG_REQ_IGNORE;
2897         case REG_REQ_ALREADY_SET:
2898                 reg_free_request(country_ie_request);
2899                 return REG_REQ_ALREADY_SET;
2900         case REG_REQ_INTERSECT:
2901                 /*
2902                  * This doesn't happen yet, not sure we
2903                  * ever want to support it for this case.
2904                  */
2905                 WARN_ONCE(1, "Unexpected intersection for country elements");
2906                 return REG_REQ_IGNORE;
2907         }
2908
2909         country_ie_request->intersect = false;
2910         country_ie_request->processed = false;
2911
2912         if (reg_query_database(country_ie_request)) {
2913                 reg_update_last_request(country_ie_request);
2914                 return REG_REQ_OK;
2915         }
2916
2917         return REG_REQ_IGNORE;
2918 }
2919
2920 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2921 {
2922         const struct ieee80211_regdomain *wiphy1_regd = NULL;
2923         const struct ieee80211_regdomain *wiphy2_regd = NULL;
2924         const struct ieee80211_regdomain *cfg80211_regd = NULL;
2925         bool dfs_domain_same;
2926
2927         rcu_read_lock();
2928
2929         cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2930         wiphy1_regd = rcu_dereference(wiphy1->regd);
2931         if (!wiphy1_regd)
2932                 wiphy1_regd = cfg80211_regd;
2933
2934         wiphy2_regd = rcu_dereference(wiphy2->regd);
2935         if (!wiphy2_regd)
2936                 wiphy2_regd = cfg80211_regd;
2937
2938         dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2939
2940         rcu_read_unlock();
2941
2942         return dfs_domain_same;
2943 }
2944
2945 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2946                                     struct ieee80211_channel *src_chan)
2947 {
2948         if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2949             !(src_chan->flags & IEEE80211_CHAN_RADAR))
2950                 return;
2951
2952         if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2953             src_chan->flags & IEEE80211_CHAN_DISABLED)
2954                 return;
2955
2956         if (src_chan->center_freq == dst_chan->center_freq &&
2957             dst_chan->dfs_state == NL80211_DFS_USABLE) {
2958                 dst_chan->dfs_state = src_chan->dfs_state;
2959                 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2960         }
2961 }
2962
2963 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2964                                        struct wiphy *src_wiphy)
2965 {
2966         struct ieee80211_supported_band *src_sband, *dst_sband;
2967         struct ieee80211_channel *src_chan, *dst_chan;
2968         int i, j, band;
2969
2970         if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2971                 return;
2972
2973         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2974                 dst_sband = dst_wiphy->bands[band];
2975                 src_sband = src_wiphy->bands[band];
2976                 if (!dst_sband || !src_sband)
2977                         continue;
2978
2979                 for (i = 0; i < dst_sband->n_channels; i++) {
2980                         dst_chan = &dst_sband->channels[i];
2981                         for (j = 0; j < src_sband->n_channels; j++) {
2982                                 src_chan = &src_sband->channels[j];
2983                                 reg_copy_dfs_chan_state(dst_chan, src_chan);
2984                         }
2985                 }
2986         }
2987 }
2988
2989 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2990 {
2991         struct cfg80211_registered_device *rdev;
2992
2993         ASSERT_RTNL();
2994
2995         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2996                 if (wiphy == &rdev->wiphy)
2997                         continue;
2998                 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2999         }
3000 }
3001
3002 /* This processes *all* regulatory hints */
3003 static void reg_process_hint(struct regulatory_request *reg_request)
3004 {
3005         struct wiphy *wiphy = NULL;
3006         enum reg_request_treatment treatment;
3007         enum nl80211_reg_initiator initiator = reg_request->initiator;
3008
3009         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3010                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3011
3012         switch (initiator) {
3013         case NL80211_REGDOM_SET_BY_CORE:
3014                 treatment = reg_process_hint_core(reg_request);
3015                 break;
3016         case NL80211_REGDOM_SET_BY_USER:
3017                 treatment = reg_process_hint_user(reg_request);
3018                 break;
3019         case NL80211_REGDOM_SET_BY_DRIVER:
3020                 if (!wiphy)
3021                         goto out_free;
3022                 treatment = reg_process_hint_driver(wiphy, reg_request);
3023                 break;
3024         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3025                 if (!wiphy)
3026                         goto out_free;
3027                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
3028                 break;
3029         default:
3030                 WARN(1, "invalid initiator %d\n", initiator);
3031                 goto out_free;
3032         }
3033
3034         if (treatment == REG_REQ_IGNORE)
3035                 goto out_free;
3036
3037         WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3038              "unexpected treatment value %d\n", treatment);
3039
3040         /* This is required so that the orig_* parameters are saved.
3041          * NOTE: treatment must be set for any case that reaches here!
3042          */
3043         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3044             wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3045                 wiphy_update_regulatory(wiphy, initiator);
3046                 wiphy_all_share_dfs_chan_state(wiphy);
3047                 reg_check_channels();
3048         }
3049
3050         return;
3051
3052 out_free:
3053         reg_free_request(reg_request);
3054 }
3055
3056 static void notify_self_managed_wiphys(struct regulatory_request *request)
3057 {
3058         struct cfg80211_registered_device *rdev;
3059         struct wiphy *wiphy;
3060
3061         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3062                 wiphy = &rdev->wiphy;
3063                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3064                     request->initiator == NL80211_REGDOM_SET_BY_USER)
3065                         reg_call_notifier(wiphy, request);
3066         }
3067 }
3068
3069 /*
3070  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3071  * Regulatory hints come on a first come first serve basis and we
3072  * must process each one atomically.
3073  */
3074 static void reg_process_pending_hints(void)
3075 {
3076         struct regulatory_request *reg_request, *lr;
3077
3078         lr = get_last_request();
3079
3080         /* When last_request->processed becomes true this will be rescheduled */
3081         if (lr && !lr->processed) {
3082                 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3083                 return;
3084         }
3085
3086         spin_lock(&reg_requests_lock);
3087
3088         if (list_empty(&reg_requests_list)) {
3089                 spin_unlock(&reg_requests_lock);
3090                 return;
3091         }
3092
3093         reg_request = list_first_entry(&reg_requests_list,
3094                                        struct regulatory_request,
3095                                        list);
3096         list_del_init(&reg_request->list);
3097
3098         spin_unlock(&reg_requests_lock);
3099
3100         notify_self_managed_wiphys(reg_request);
3101
3102         reg_process_hint(reg_request);
3103
3104         lr = get_last_request();
3105
3106         spin_lock(&reg_requests_lock);
3107         if (!list_empty(&reg_requests_list) && lr && lr->processed)
3108                 schedule_work(&reg_work);
3109         spin_unlock(&reg_requests_lock);
3110 }
3111
3112 /* Processes beacon hints -- this has nothing to do with country IEs */
3113 static void reg_process_pending_beacon_hints(void)
3114 {
3115         struct cfg80211_registered_device *rdev;
3116         struct reg_beacon *pending_beacon, *tmp;
3117
3118         /* This goes through the _pending_ beacon list */
3119         spin_lock_bh(&reg_pending_beacons_lock);
3120
3121         list_for_each_entry_safe(pending_beacon, tmp,
3122                                  &reg_pending_beacons, list) {
3123                 list_del_init(&pending_beacon->list);
3124
3125                 /* Applies the beacon hint to current wiphys */
3126                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3127                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3128
3129                 /* Remembers the beacon hint for new wiphys or reg changes */
3130                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
3131         }
3132
3133         spin_unlock_bh(&reg_pending_beacons_lock);
3134 }
3135
3136 static void reg_process_self_managed_hint(struct wiphy *wiphy)
3137 {
3138         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3139         const struct ieee80211_regdomain *tmp;
3140         const struct ieee80211_regdomain *regd;
3141         enum nl80211_band band;
3142         struct regulatory_request request = {};
3143
3144         ASSERT_RTNL();
3145         lockdep_assert_wiphy(wiphy);
3146
3147         spin_lock(&reg_requests_lock);
3148         regd = rdev->requested_regd;
3149         rdev->requested_regd = NULL;
3150         spin_unlock(&reg_requests_lock);
3151
3152         if (!regd)
3153                 return;
3154
3155         tmp = get_wiphy_regdom(wiphy);
3156         rcu_assign_pointer(wiphy->regd, regd);
3157         rcu_free_regdom(tmp);
3158
3159         for (band = 0; band < NUM_NL80211_BANDS; band++)
3160                 handle_band_custom(wiphy, wiphy->bands[band], regd);
3161
3162         reg_process_ht_flags(wiphy);
3163
3164         request.wiphy_idx = get_wiphy_idx(wiphy);
3165         request.alpha2[0] = regd->alpha2[0];
3166         request.alpha2[1] = regd->alpha2[1];
3167         request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3168
3169         nl80211_send_wiphy_reg_change_event(&request);
3170 }
3171
3172 static void reg_process_self_managed_hints(void)
3173 {
3174         struct cfg80211_registered_device *rdev;
3175
3176         ASSERT_RTNL();
3177
3178         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3179                 wiphy_lock(&rdev->wiphy);
3180                 reg_process_self_managed_hint(&rdev->wiphy);
3181                 wiphy_unlock(&rdev->wiphy);
3182         }
3183
3184         reg_check_channels();
3185 }
3186
3187 static void reg_todo(struct work_struct *work)
3188 {
3189         rtnl_lock();
3190         reg_process_pending_hints();
3191         reg_process_pending_beacon_hints();
3192         reg_process_self_managed_hints();
3193         rtnl_unlock();
3194 }
3195
3196 static void queue_regulatory_request(struct regulatory_request *request)
3197 {
3198         request->alpha2[0] = toupper(request->alpha2[0]);
3199         request->alpha2[1] = toupper(request->alpha2[1]);
3200
3201         spin_lock(&reg_requests_lock);
3202         list_add_tail(&request->list, &reg_requests_list);
3203         spin_unlock(&reg_requests_lock);
3204
3205         schedule_work(&reg_work);
3206 }
3207
3208 /*
3209  * Core regulatory hint -- happens during cfg80211_init()
3210  * and when we restore regulatory settings.
3211  */
3212 static int regulatory_hint_core(const char *alpha2)
3213 {
3214         struct regulatory_request *request;
3215
3216         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3217         if (!request)
3218                 return -ENOMEM;
3219
3220         request->alpha2[0] = alpha2[0];
3221         request->alpha2[1] = alpha2[1];
3222         request->initiator = NL80211_REGDOM_SET_BY_CORE;
3223         request->wiphy_idx = WIPHY_IDX_INVALID;
3224
3225         queue_regulatory_request(request);
3226
3227         return 0;
3228 }
3229
3230 /* User hints */
3231 int regulatory_hint_user(const char *alpha2,
3232                          enum nl80211_user_reg_hint_type user_reg_hint_type)
3233 {
3234         struct regulatory_request *request;
3235
3236         if (WARN_ON(!alpha2))
3237                 return -EINVAL;
3238
3239         if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3240                 return -EINVAL;
3241
3242         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3243         if (!request)
3244                 return -ENOMEM;
3245
3246         request->wiphy_idx = WIPHY_IDX_INVALID;
3247         request->alpha2[0] = alpha2[0];
3248         request->alpha2[1] = alpha2[1];
3249         request->initiator = NL80211_REGDOM_SET_BY_USER;
3250         request->user_reg_hint_type = user_reg_hint_type;
3251
3252         /* Allow calling CRDA again */
3253         reset_crda_timeouts();
3254
3255         queue_regulatory_request(request);
3256
3257         return 0;
3258 }
3259
3260 int regulatory_hint_indoor(bool is_indoor, u32 portid)
3261 {
3262         spin_lock(&reg_indoor_lock);
3263
3264         /* It is possible that more than one user space process is trying to
3265          * configure the indoor setting. To handle such cases, clear the indoor
3266          * setting in case that some process does not think that the device
3267          * is operating in an indoor environment. In addition, if a user space
3268          * process indicates that it is controlling the indoor setting, save its
3269          * portid, i.e., make it the owner.
3270          */
3271         reg_is_indoor = is_indoor;
3272         if (reg_is_indoor) {
3273                 if (!reg_is_indoor_portid)
3274                         reg_is_indoor_portid = portid;
3275         } else {
3276                 reg_is_indoor_portid = 0;
3277         }
3278
3279         spin_unlock(&reg_indoor_lock);
3280
3281         if (!is_indoor)
3282                 reg_check_channels();
3283
3284         return 0;
3285 }
3286
3287 void regulatory_netlink_notify(u32 portid)
3288 {
3289         spin_lock(&reg_indoor_lock);
3290
3291         if (reg_is_indoor_portid != portid) {
3292                 spin_unlock(&reg_indoor_lock);
3293                 return;
3294         }
3295
3296         reg_is_indoor = false;
3297         reg_is_indoor_portid = 0;
3298
3299         spin_unlock(&reg_indoor_lock);
3300
3301         reg_check_channels();
3302 }
3303
3304 /* Driver hints */
3305 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3306 {
3307         struct regulatory_request *request;
3308
3309         if (WARN_ON(!alpha2 || !wiphy))
3310                 return -EINVAL;
3311
3312         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3313
3314         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3315         if (!request)
3316                 return -ENOMEM;
3317
3318         request->wiphy_idx = get_wiphy_idx(wiphy);
3319
3320         request->alpha2[0] = alpha2[0];
3321         request->alpha2[1] = alpha2[1];
3322         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3323
3324         /* Allow calling CRDA again */
3325         reset_crda_timeouts();
3326
3327         queue_regulatory_request(request);
3328
3329         return 0;
3330 }
3331 EXPORT_SYMBOL(regulatory_hint);
3332
3333 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3334                                 const u8 *country_ie, u8 country_ie_len)
3335 {
3336         char alpha2[2];
3337         enum environment_cap env = ENVIRON_ANY;
3338         struct regulatory_request *request = NULL, *lr;
3339
3340         /* IE len must be evenly divisible by 2 */
3341         if (country_ie_len & 0x01)
3342                 return;
3343
3344         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3345                 return;
3346
3347         request = kzalloc(sizeof(*request), GFP_KERNEL);
3348         if (!request)
3349                 return;
3350
3351         alpha2[0] = country_ie[0];
3352         alpha2[1] = country_ie[1];
3353
3354         if (country_ie[2] == 'I')
3355                 env = ENVIRON_INDOOR;
3356         else if (country_ie[2] == 'O')
3357                 env = ENVIRON_OUTDOOR;
3358
3359         rcu_read_lock();
3360         lr = get_last_request();
3361
3362         if (unlikely(!lr))
3363                 goto out;
3364
3365         /*
3366          * We will run this only upon a successful connection on cfg80211.
3367          * We leave conflict resolution to the workqueue, where can hold
3368          * the RTNL.
3369          */
3370         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3371             lr->wiphy_idx != WIPHY_IDX_INVALID)
3372                 goto out;
3373
3374         request->wiphy_idx = get_wiphy_idx(wiphy);
3375         request->alpha2[0] = alpha2[0];
3376         request->alpha2[1] = alpha2[1];
3377         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3378         request->country_ie_env = env;
3379
3380         /* Allow calling CRDA again */
3381         reset_crda_timeouts();
3382
3383         queue_regulatory_request(request);
3384         request = NULL;
3385 out:
3386         kfree(request);
3387         rcu_read_unlock();
3388 }
3389
3390 static void restore_alpha2(char *alpha2, bool reset_user)
3391 {
3392         /* indicates there is no alpha2 to consider for restoration */
3393         alpha2[0] = '9';
3394         alpha2[1] = '7';
3395
3396         /* The user setting has precedence over the module parameter */
3397         if (is_user_regdom_saved()) {
3398                 /* Unless we're asked to ignore it and reset it */
3399                 if (reset_user) {
3400                         pr_debug("Restoring regulatory settings including user preference\n");
3401                         user_alpha2[0] = '9';
3402                         user_alpha2[1] = '7';
3403
3404                         /*
3405                          * If we're ignoring user settings, we still need to
3406                          * check the module parameter to ensure we put things
3407                          * back as they were for a full restore.
3408                          */
3409                         if (!is_world_regdom(ieee80211_regdom)) {
3410                                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3411                                          ieee80211_regdom[0], ieee80211_regdom[1]);
3412                                 alpha2[0] = ieee80211_regdom[0];
3413                                 alpha2[1] = ieee80211_regdom[1];
3414                         }
3415                 } else {
3416                         pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3417                                  user_alpha2[0], user_alpha2[1]);
3418                         alpha2[0] = user_alpha2[0];
3419                         alpha2[1] = user_alpha2[1];
3420                 }
3421         } else if (!is_world_regdom(ieee80211_regdom)) {
3422                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3423                          ieee80211_regdom[0], ieee80211_regdom[1]);
3424                 alpha2[0] = ieee80211_regdom[0];
3425                 alpha2[1] = ieee80211_regdom[1];
3426         } else
3427                 pr_debug("Restoring regulatory settings\n");
3428 }
3429
3430 static void restore_custom_reg_settings(struct wiphy *wiphy)
3431 {
3432         struct ieee80211_supported_band *sband;
3433         enum nl80211_band band;
3434         struct ieee80211_channel *chan;
3435         int i;
3436
3437         for (band = 0; band < NUM_NL80211_BANDS; band++) {
3438                 sband = wiphy->bands[band];
3439                 if (!sband)
3440                         continue;
3441                 for (i = 0; i < sband->n_channels; i++) {
3442                         chan = &sband->channels[i];
3443                         chan->flags = chan->orig_flags;
3444                         chan->max_antenna_gain = chan->orig_mag;
3445                         chan->max_power = chan->orig_mpwr;
3446                         chan->beacon_found = false;
3447                 }
3448         }
3449 }
3450
3451 /*
3452  * Restoring regulatory settings involves ignoring any
3453  * possibly stale country IE information and user regulatory
3454  * settings if so desired, this includes any beacon hints
3455  * learned as we could have traveled outside to another country
3456  * after disconnection. To restore regulatory settings we do
3457  * exactly what we did at bootup:
3458  *
3459  *   - send a core regulatory hint
3460  *   - send a user regulatory hint if applicable
3461  *
3462  * Device drivers that send a regulatory hint for a specific country
3463  * keep their own regulatory domain on wiphy->regd so that does
3464  * not need to be remembered.
3465  */
3466 static void restore_regulatory_settings(bool reset_user, bool cached)
3467 {
3468         char alpha2[2];
3469         char world_alpha2[2];
3470         struct reg_beacon *reg_beacon, *btmp;
3471         LIST_HEAD(tmp_reg_req_list);
3472         struct cfg80211_registered_device *rdev;
3473
3474         ASSERT_RTNL();
3475
3476         /*
3477          * Clear the indoor setting in case that it is not controlled by user
3478          * space, as otherwise there is no guarantee that the device is still
3479          * operating in an indoor environment.
3480          */
3481         spin_lock(&reg_indoor_lock);
3482         if (reg_is_indoor && !reg_is_indoor_portid) {
3483                 reg_is_indoor = false;
3484                 reg_check_channels();
3485         }
3486         spin_unlock(&reg_indoor_lock);
3487
3488         reset_regdomains(true, &world_regdom);
3489         restore_alpha2(alpha2, reset_user);
3490
3491         /*
3492          * If there's any pending requests we simply
3493          * stash them to a temporary pending queue and
3494          * add then after we've restored regulatory
3495          * settings.
3496          */
3497         spin_lock(&reg_requests_lock);
3498         list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3499         spin_unlock(&reg_requests_lock);
3500
3501         /* Clear beacon hints */
3502         spin_lock_bh(&reg_pending_beacons_lock);
3503         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3504                 list_del(&reg_beacon->list);
3505                 kfree(reg_beacon);
3506         }
3507         spin_unlock_bh(&reg_pending_beacons_lock);
3508
3509         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3510                 list_del(&reg_beacon->list);
3511                 kfree(reg_beacon);
3512         }
3513
3514         /* First restore to the basic regulatory settings */
3515         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3516         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3517
3518         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3519                 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3520                         continue;
3521                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3522                         restore_custom_reg_settings(&rdev->wiphy);
3523         }
3524
3525         if (cached && (!is_an_alpha2(alpha2) ||
3526                        !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3527                 reset_regdomains(false, cfg80211_world_regdom);
3528                 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3529                 print_regdomain(get_cfg80211_regdom());
3530                 nl80211_send_reg_change_event(&core_request_world);
3531                 reg_set_request_processed();
3532
3533                 if (is_an_alpha2(alpha2) &&
3534                     !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3535                         struct regulatory_request *ureq;
3536
3537                         spin_lock(&reg_requests_lock);
3538                         ureq = list_last_entry(&reg_requests_list,
3539                                                struct regulatory_request,
3540                                                list);
3541                         list_del(&ureq->list);
3542                         spin_unlock(&reg_requests_lock);
3543
3544                         notify_self_managed_wiphys(ureq);
3545                         reg_update_last_request(ureq);
3546                         set_regdom(reg_copy_regd(cfg80211_user_regdom),
3547                                    REGD_SOURCE_CACHED);
3548                 }
3549         } else {
3550                 regulatory_hint_core(world_alpha2);
3551
3552                 /*
3553                  * This restores the ieee80211_regdom module parameter
3554                  * preference or the last user requested regulatory
3555                  * settings, user regulatory settings takes precedence.
3556                  */
3557                 if (is_an_alpha2(alpha2))
3558                         regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3559         }
3560
3561         spin_lock(&reg_requests_lock);
3562         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3563         spin_unlock(&reg_requests_lock);
3564
3565         pr_debug("Kicking the queue\n");
3566
3567         schedule_work(&reg_work);
3568 }
3569
3570 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3571 {
3572         struct cfg80211_registered_device *rdev;
3573         struct wireless_dev *wdev;
3574
3575         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3576                 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3577                         wdev_lock(wdev);
3578                         if (!(wdev->wiphy->regulatory_flags & flag)) {
3579                                 wdev_unlock(wdev);
3580                                 return false;
3581                         }
3582                         wdev_unlock(wdev);
3583                 }
3584         }
3585
3586         return true;
3587 }
3588
3589 void regulatory_hint_disconnect(void)
3590 {
3591         /* Restore of regulatory settings is not required when wiphy(s)
3592          * ignore IE from connected access point but clearance of beacon hints
3593          * is required when wiphy(s) supports beacon hints.
3594          */
3595         if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3596                 struct reg_beacon *reg_beacon, *btmp;
3597
3598                 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3599                         return;
3600
3601                 spin_lock_bh(&reg_pending_beacons_lock);
3602                 list_for_each_entry_safe(reg_beacon, btmp,
3603                                          &reg_pending_beacons, list) {
3604                         list_del(&reg_beacon->list);
3605                         kfree(reg_beacon);
3606                 }
3607                 spin_unlock_bh(&reg_pending_beacons_lock);
3608
3609                 list_for_each_entry_safe(reg_beacon, btmp,
3610                                          &reg_beacon_list, list) {
3611                         list_del(&reg_beacon->list);
3612                         kfree(reg_beacon);
3613                 }
3614
3615                 return;
3616         }
3617
3618         pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3619         restore_regulatory_settings(false, true);
3620 }
3621
3622 static bool freq_is_chan_12_13_14(u32 freq)
3623 {
3624         if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3625             freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3626             freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3627                 return true;
3628         return false;
3629 }
3630
3631 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3632 {
3633         struct reg_beacon *pending_beacon;
3634
3635         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3636                 if (ieee80211_channel_equal(beacon_chan,
3637                                             &pending_beacon->chan))
3638                         return true;
3639         return false;
3640 }
3641
3642 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3643                                  struct ieee80211_channel *beacon_chan,
3644                                  gfp_t gfp)
3645 {
3646         struct reg_beacon *reg_beacon;
3647         bool processing;
3648
3649         if (beacon_chan->beacon_found ||
3650             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3651             (beacon_chan->band == NL80211_BAND_2GHZ &&
3652              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3653                 return 0;
3654
3655         spin_lock_bh(&reg_pending_beacons_lock);
3656         processing = pending_reg_beacon(beacon_chan);
3657         spin_unlock_bh(&reg_pending_beacons_lock);
3658
3659         if (processing)
3660                 return 0;
3661
3662         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3663         if (!reg_beacon)
3664                 return -ENOMEM;
3665
3666         pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3667                  beacon_chan->center_freq, beacon_chan->freq_offset,
3668                  ieee80211_freq_khz_to_channel(
3669                          ieee80211_channel_to_khz(beacon_chan)),
3670                  wiphy_name(wiphy));
3671
3672         memcpy(&reg_beacon->chan, beacon_chan,
3673                sizeof(struct ieee80211_channel));
3674
3675         /*
3676          * Since we can be called from BH or and non-BH context
3677          * we must use spin_lock_bh()
3678          */
3679         spin_lock_bh(&reg_pending_beacons_lock);
3680         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3681         spin_unlock_bh(&reg_pending_beacons_lock);
3682
3683         schedule_work(&reg_work);
3684
3685         return 0;
3686 }
3687
3688 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3689 {
3690         unsigned int i;
3691         const struct ieee80211_reg_rule *reg_rule = NULL;
3692         const struct ieee80211_freq_range *freq_range = NULL;
3693         const struct ieee80211_power_rule *power_rule = NULL;
3694         char bw[32], cac_time[32];
3695
3696         pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3697
3698         for (i = 0; i < rd->n_reg_rules; i++) {
3699                 reg_rule = &rd->reg_rules[i];
3700                 freq_range = &reg_rule->freq_range;
3701                 power_rule = &reg_rule->power_rule;
3702
3703                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3704                         snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3705                                  freq_range->max_bandwidth_khz,
3706                                  reg_get_max_bandwidth(rd, reg_rule));
3707                 else
3708                         snprintf(bw, sizeof(bw), "%d KHz",
3709                                  freq_range->max_bandwidth_khz);
3710
3711                 if (reg_rule->flags & NL80211_RRF_DFS)
3712                         scnprintf(cac_time, sizeof(cac_time), "%u s",
3713                                   reg_rule->dfs_cac_ms/1000);
3714                 else
3715                         scnprintf(cac_time, sizeof(cac_time), "N/A");
3716
3717
3718                 /*
3719                  * There may not be documentation for max antenna gain
3720                  * in certain regions
3721                  */
3722                 if (power_rule->max_antenna_gain)
3723                         pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3724                                 freq_range->start_freq_khz,
3725                                 freq_range->end_freq_khz,
3726                                 bw,
3727                                 power_rule->max_antenna_gain,
3728                                 power_rule->max_eirp,
3729                                 cac_time);
3730                 else
3731                         pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3732                                 freq_range->start_freq_khz,
3733                                 freq_range->end_freq_khz,
3734                                 bw,
3735                                 power_rule->max_eirp,
3736                                 cac_time);
3737         }
3738 }
3739
3740 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3741 {
3742         switch (dfs_region) {
3743         case NL80211_DFS_UNSET:
3744         case NL80211_DFS_FCC:
3745         case NL80211_DFS_ETSI:
3746         case NL80211_DFS_JP:
3747                 return true;
3748         default:
3749                 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3750                 return false;
3751         }
3752 }
3753
3754 static void print_regdomain(const struct ieee80211_regdomain *rd)
3755 {
3756         struct regulatory_request *lr = get_last_request();
3757
3758         if (is_intersected_alpha2(rd->alpha2)) {
3759                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3760                         struct cfg80211_registered_device *rdev;
3761                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3762                         if (rdev) {
3763                                 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3764                                         rdev->country_ie_alpha2[0],
3765                                         rdev->country_ie_alpha2[1]);
3766                         } else
3767                                 pr_debug("Current regulatory domain intersected:\n");
3768                 } else
3769                         pr_debug("Current regulatory domain intersected:\n");
3770         } else if (is_world_regdom(rd->alpha2)) {
3771                 pr_debug("World regulatory domain updated:\n");
3772         } else {
3773                 if (is_unknown_alpha2(rd->alpha2))
3774                         pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3775                 else {
3776                         if (reg_request_cell_base(lr))
3777                                 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3778                                         rd->alpha2[0], rd->alpha2[1]);
3779                         else
3780                                 pr_debug("Regulatory domain changed to country: %c%c\n",
3781                                         rd->alpha2[0], rd->alpha2[1]);
3782                 }
3783         }
3784
3785         pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3786         print_rd_rules(rd);
3787 }
3788
3789 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3790 {
3791         pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3792         print_rd_rules(rd);
3793 }
3794
3795 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3796 {
3797         if (!is_world_regdom(rd->alpha2))
3798                 return -EINVAL;
3799         update_world_regdomain(rd);
3800         return 0;
3801 }
3802
3803 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3804                            struct regulatory_request *user_request)
3805 {
3806         const struct ieee80211_regdomain *intersected_rd = NULL;
3807
3808         if (!regdom_changes(rd->alpha2))
3809                 return -EALREADY;
3810
3811         if (!is_valid_rd(rd)) {
3812                 pr_err("Invalid regulatory domain detected: %c%c\n",
3813                        rd->alpha2[0], rd->alpha2[1]);
3814                 print_regdomain_info(rd);
3815                 return -EINVAL;
3816         }
3817
3818         if (!user_request->intersect) {
3819                 reset_regdomains(false, rd);
3820                 return 0;
3821         }
3822
3823         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3824         if (!intersected_rd)
3825                 return -EINVAL;
3826
3827         kfree(rd);
3828         rd = NULL;
3829         reset_regdomains(false, intersected_rd);
3830
3831         return 0;
3832 }
3833
3834 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3835                              struct regulatory_request *driver_request)
3836 {
3837         const struct ieee80211_regdomain *regd;
3838         const struct ieee80211_regdomain *intersected_rd = NULL;
3839         const struct ieee80211_regdomain *tmp;
3840         struct wiphy *request_wiphy;
3841
3842         if (is_world_regdom(rd->alpha2))
3843                 return -EINVAL;
3844
3845         if (!regdom_changes(rd->alpha2))
3846                 return -EALREADY;
3847
3848         if (!is_valid_rd(rd)) {
3849                 pr_err("Invalid regulatory domain detected: %c%c\n",
3850                        rd->alpha2[0], rd->alpha2[1]);
3851                 print_regdomain_info(rd);
3852                 return -EINVAL;
3853         }
3854
3855         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3856         if (!request_wiphy)
3857                 return -ENODEV;
3858
3859         if (!driver_request->intersect) {
3860                 ASSERT_RTNL();
3861                 wiphy_lock(request_wiphy);
3862                 if (request_wiphy->regd) {
3863                         wiphy_unlock(request_wiphy);
3864                         return -EALREADY;
3865                 }
3866
3867                 regd = reg_copy_regd(rd);
3868                 if (IS_ERR(regd)) {
3869                         wiphy_unlock(request_wiphy);
3870                         return PTR_ERR(regd);
3871                 }
3872
3873                 rcu_assign_pointer(request_wiphy->regd, regd);
3874                 wiphy_unlock(request_wiphy);
3875                 reset_regdomains(false, rd);
3876                 return 0;
3877         }
3878
3879         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3880         if (!intersected_rd)
3881                 return -EINVAL;
3882
3883         /*
3884          * We can trash what CRDA provided now.
3885          * However if a driver requested this specific regulatory
3886          * domain we keep it for its private use
3887          */
3888         tmp = get_wiphy_regdom(request_wiphy);
3889         rcu_assign_pointer(request_wiphy->regd, rd);
3890         rcu_free_regdom(tmp);
3891
3892         rd = NULL;
3893
3894         reset_regdomains(false, intersected_rd);
3895
3896         return 0;
3897 }
3898
3899 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3900                                  struct regulatory_request *country_ie_request)
3901 {
3902         struct wiphy *request_wiphy;
3903
3904         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3905             !is_unknown_alpha2(rd->alpha2))
3906                 return -EINVAL;
3907
3908         /*
3909          * Lets only bother proceeding on the same alpha2 if the current
3910          * rd is non static (it means CRDA was present and was used last)
3911          * and the pending request came in from a country IE
3912          */
3913
3914         if (!is_valid_rd(rd)) {
3915                 pr_err("Invalid regulatory domain detected: %c%c\n",
3916                        rd->alpha2[0], rd->alpha2[1]);
3917                 print_regdomain_info(rd);
3918                 return -EINVAL;
3919         }
3920
3921         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3922         if (!request_wiphy)
3923                 return -ENODEV;
3924
3925         if (country_ie_request->intersect)
3926                 return -EINVAL;
3927
3928         reset_regdomains(false, rd);
3929         return 0;
3930 }
3931
3932 /*
3933  * Use this call to set the current regulatory domain. Conflicts with
3934  * multiple drivers can be ironed out later. Caller must've already
3935  * kmalloc'd the rd structure.
3936  */
3937 int set_regdom(const struct ieee80211_regdomain *rd,
3938                enum ieee80211_regd_source regd_src)
3939 {
3940         struct regulatory_request *lr;
3941         bool user_reset = false;
3942         int r;
3943
3944         if (IS_ERR_OR_NULL(rd))
3945                 return -ENODATA;
3946
3947         if (!reg_is_valid_request(rd->alpha2)) {
3948                 kfree(rd);
3949                 return -EINVAL;
3950         }
3951
3952         if (regd_src == REGD_SOURCE_CRDA)
3953                 reset_crda_timeouts();
3954
3955         lr = get_last_request();
3956
3957         /* Note that this doesn't update the wiphys, this is done below */
3958         switch (lr->initiator) {
3959         case NL80211_REGDOM_SET_BY_CORE:
3960                 r = reg_set_rd_core(rd);
3961                 break;
3962         case NL80211_REGDOM_SET_BY_USER:
3963                 cfg80211_save_user_regdom(rd);
3964                 r = reg_set_rd_user(rd, lr);
3965                 user_reset = true;
3966                 break;
3967         case NL80211_REGDOM_SET_BY_DRIVER:
3968                 r = reg_set_rd_driver(rd, lr);
3969                 break;
3970         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3971                 r = reg_set_rd_country_ie(rd, lr);
3972                 break;
3973         default:
3974                 WARN(1, "invalid initiator %d\n", lr->initiator);
3975                 kfree(rd);
3976                 return -EINVAL;
3977         }
3978
3979         if (r) {
3980                 switch (r) {
3981                 case -EALREADY:
3982                         reg_set_request_processed();
3983                         break;
3984                 default:
3985                         /* Back to world regulatory in case of errors */
3986                         restore_regulatory_settings(user_reset, false);
3987                 }
3988
3989                 kfree(rd);
3990                 return r;
3991         }
3992
3993         /* This would make this whole thing pointless */
3994         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3995                 return -EINVAL;
3996
3997         /* update all wiphys now with the new established regulatory domain */
3998         update_all_wiphy_regulatory(lr->initiator);
3999
4000         print_regdomain(get_cfg80211_regdom());
4001
4002         nl80211_send_reg_change_event(lr);
4003
4004         reg_set_request_processed();
4005
4006         return 0;
4007 }
4008
4009 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4010                                        struct ieee80211_regdomain *rd)
4011 {
4012         const struct ieee80211_regdomain *regd;
4013         const struct ieee80211_regdomain *prev_regd;
4014         struct cfg80211_registered_device *rdev;
4015
4016         if (WARN_ON(!wiphy || !rd))
4017                 return -EINVAL;
4018
4019         if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4020                  "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4021                 return -EPERM;
4022
4023         if (WARN(!is_valid_rd(rd),
4024                  "Invalid regulatory domain detected: %c%c\n",
4025                  rd->alpha2[0], rd->alpha2[1])) {
4026                 print_regdomain_info(rd);
4027                 return -EINVAL;
4028         }
4029
4030         regd = reg_copy_regd(rd);
4031         if (IS_ERR(regd))
4032                 return PTR_ERR(regd);
4033
4034         rdev = wiphy_to_rdev(wiphy);
4035
4036         spin_lock(&reg_requests_lock);
4037         prev_regd = rdev->requested_regd;
4038         rdev->requested_regd = regd;
4039         spin_unlock(&reg_requests_lock);
4040
4041         kfree(prev_regd);
4042         return 0;
4043 }
4044
4045 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4046                               struct ieee80211_regdomain *rd)
4047 {
4048         int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4049
4050         if (ret)
4051                 return ret;
4052
4053         schedule_work(&reg_work);
4054         return 0;
4055 }
4056 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4057
4058 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4059                                    struct ieee80211_regdomain *rd)
4060 {
4061         int ret;
4062
4063         ASSERT_RTNL();
4064
4065         ret = __regulatory_set_wiphy_regd(wiphy, rd);
4066         if (ret)
4067                 return ret;
4068
4069         /* process the request immediately */
4070         reg_process_self_managed_hint(wiphy);
4071         reg_check_channels();
4072         return 0;
4073 }
4074 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4075
4076 void wiphy_regulatory_register(struct wiphy *wiphy)
4077 {
4078         struct regulatory_request *lr = get_last_request();
4079
4080         /* self-managed devices ignore beacon hints and country IE */
4081         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4082                 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4083                                            REGULATORY_COUNTRY_IE_IGNORE;
4084
4085                 /*
4086                  * The last request may have been received before this
4087                  * registration call. Call the driver notifier if
4088                  * initiator is USER.
4089                  */
4090                 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4091                         reg_call_notifier(wiphy, lr);
4092         }
4093
4094         if (!reg_dev_ignore_cell_hint(wiphy))
4095                 reg_num_devs_support_basehint++;
4096
4097         wiphy_update_regulatory(wiphy, lr->initiator);
4098         wiphy_all_share_dfs_chan_state(wiphy);
4099         reg_process_self_managed_hints();
4100 }
4101
4102 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4103 {
4104         struct wiphy *request_wiphy = NULL;
4105         struct regulatory_request *lr;
4106
4107         lr = get_last_request();
4108
4109         if (!reg_dev_ignore_cell_hint(wiphy))
4110                 reg_num_devs_support_basehint--;
4111
4112         rcu_free_regdom(get_wiphy_regdom(wiphy));
4113         RCU_INIT_POINTER(wiphy->regd, NULL);
4114
4115         if (lr)
4116                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4117
4118         if (!request_wiphy || request_wiphy != wiphy)
4119                 return;
4120
4121         lr->wiphy_idx = WIPHY_IDX_INVALID;
4122         lr->country_ie_env = ENVIRON_ANY;
4123 }
4124
4125 /*
4126  * See FCC notices for UNII band definitions
4127  *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4128  *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4129  */
4130 int cfg80211_get_unii(int freq)
4131 {
4132         /* UNII-1 */
4133         if (freq >= 5150 && freq <= 5250)
4134                 return 0;
4135
4136         /* UNII-2A */
4137         if (freq > 5250 && freq <= 5350)
4138                 return 1;
4139
4140         /* UNII-2B */
4141         if (freq > 5350 && freq <= 5470)
4142                 return 2;
4143
4144         /* UNII-2C */
4145         if (freq > 5470 && freq <= 5725)
4146                 return 3;
4147
4148         /* UNII-3 */
4149         if (freq > 5725 && freq <= 5825)
4150                 return 4;
4151
4152         /* UNII-5 */
4153         if (freq > 5925 && freq <= 6425)
4154                 return 5;
4155
4156         /* UNII-6 */
4157         if (freq > 6425 && freq <= 6525)
4158                 return 6;
4159
4160         /* UNII-7 */
4161         if (freq > 6525 && freq <= 6875)
4162                 return 7;
4163
4164         /* UNII-8 */
4165         if (freq > 6875 && freq <= 7125)
4166                 return 8;
4167
4168         return -EINVAL;
4169 }
4170
4171 bool regulatory_indoor_allowed(void)
4172 {
4173         return reg_is_indoor;
4174 }
4175
4176 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4177 {
4178         const struct ieee80211_regdomain *regd = NULL;
4179         const struct ieee80211_regdomain *wiphy_regd = NULL;
4180         bool pre_cac_allowed = false;
4181
4182         rcu_read_lock();
4183
4184         regd = rcu_dereference(cfg80211_regdomain);
4185         wiphy_regd = rcu_dereference(wiphy->regd);
4186         if (!wiphy_regd) {
4187                 if (regd->dfs_region == NL80211_DFS_ETSI)
4188                         pre_cac_allowed = true;
4189
4190                 rcu_read_unlock();
4191
4192                 return pre_cac_allowed;
4193         }
4194
4195         if (regd->dfs_region == wiphy_regd->dfs_region &&
4196             wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4197                 pre_cac_allowed = true;
4198
4199         rcu_read_unlock();
4200
4201         return pre_cac_allowed;
4202 }
4203 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4204
4205 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4206 {
4207         struct wireless_dev *wdev;
4208         /* If we finished CAC or received radar, we should end any
4209          * CAC running on the same channels.
4210          * the check !cfg80211_chandef_dfs_usable contain 2 options:
4211          * either all channels are available - those the CAC_FINISHED
4212          * event has effected another wdev state, or there is a channel
4213          * in unavailable state in wdev chandef - those the RADAR_DETECTED
4214          * event has effected another wdev state.
4215          * In both cases we should end the CAC on the wdev.
4216          */
4217         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4218                 if (wdev->cac_started &&
4219                     !cfg80211_chandef_dfs_usable(&rdev->wiphy, &wdev->chandef))
4220                         rdev_end_cac(rdev, wdev->netdev);
4221         }
4222 }
4223
4224 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4225                                     struct cfg80211_chan_def *chandef,
4226                                     enum nl80211_dfs_state dfs_state,
4227                                     enum nl80211_radar_event event)
4228 {
4229         struct cfg80211_registered_device *rdev;
4230
4231         ASSERT_RTNL();
4232
4233         if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4234                 return;
4235
4236         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4237                 if (wiphy == &rdev->wiphy)
4238                         continue;
4239
4240                 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4241                         continue;
4242
4243                 if (!ieee80211_get_channel(&rdev->wiphy,
4244                                            chandef->chan->center_freq))
4245                         continue;
4246
4247                 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4248
4249                 if (event == NL80211_RADAR_DETECTED ||
4250                     event == NL80211_RADAR_CAC_FINISHED) {
4251                         cfg80211_sched_dfs_chan_update(rdev);
4252                         cfg80211_check_and_end_cac(rdev);
4253                 }
4254
4255                 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4256         }
4257 }
4258
4259 static int __init regulatory_init_db(void)
4260 {
4261         int err;
4262
4263         /*
4264          * It's possible that - due to other bugs/issues - cfg80211
4265          * never called regulatory_init() below, or that it failed;
4266          * in that case, don't try to do any further work here as
4267          * it's doomed to lead to crashes.
4268          */
4269         if (IS_ERR_OR_NULL(reg_pdev))
4270                 return -EINVAL;
4271
4272         err = load_builtin_regdb_keys();
4273         if (err)
4274                 return err;
4275
4276         /* We always try to get an update for the static regdomain */
4277         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4278         if (err) {
4279                 if (err == -ENOMEM) {
4280                         platform_device_unregister(reg_pdev);
4281                         return err;
4282                 }
4283                 /*
4284                  * N.B. kobject_uevent_env() can fail mainly for when we're out
4285                  * memory which is handled and propagated appropriately above
4286                  * but it can also fail during a netlink_broadcast() or during
4287                  * early boot for call_usermodehelper(). For now treat these
4288                  * errors as non-fatal.
4289                  */
4290                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4291         }
4292
4293         /*
4294          * Finally, if the user set the module parameter treat it
4295          * as a user hint.
4296          */
4297         if (!is_world_regdom(ieee80211_regdom))
4298                 regulatory_hint_user(ieee80211_regdom,
4299                                      NL80211_USER_REG_HINT_USER);
4300
4301         return 0;
4302 }
4303 #ifndef MODULE
4304 late_initcall(regulatory_init_db);
4305 #endif
4306
4307 int __init regulatory_init(void)
4308 {
4309         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4310         if (IS_ERR(reg_pdev))
4311                 return PTR_ERR(reg_pdev);
4312
4313         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4314
4315         user_alpha2[0] = '9';
4316         user_alpha2[1] = '7';
4317
4318 #ifdef MODULE
4319         return regulatory_init_db();
4320 #else
4321         return 0;
4322 #endif
4323 }
4324
4325 void regulatory_exit(void)
4326 {
4327         struct regulatory_request *reg_request, *tmp;
4328         struct reg_beacon *reg_beacon, *btmp;
4329
4330         cancel_work_sync(&reg_work);
4331         cancel_crda_timeout_sync();
4332         cancel_delayed_work_sync(&reg_check_chans);
4333
4334         /* Lock to suppress warnings */
4335         rtnl_lock();
4336         reset_regdomains(true, NULL);
4337         rtnl_unlock();
4338
4339         dev_set_uevent_suppress(&reg_pdev->dev, true);
4340
4341         platform_device_unregister(reg_pdev);
4342
4343         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4344                 list_del(&reg_beacon->list);
4345                 kfree(reg_beacon);
4346         }
4347
4348         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4349                 list_del(&reg_beacon->list);
4350                 kfree(reg_beacon);
4351         }
4352
4353         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4354                 list_del(&reg_request->list);
4355                 kfree(reg_request);
4356         }
4357
4358         if (!IS_ERR_OR_NULL(regdb))
4359                 kfree(regdb);
4360         if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4361                 kfree(cfg80211_user_regdom);
4362
4363         free_regdb_keyring();
4364 }