Merge tag 'char-misc-5.16' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[linux-2.6-microblaze.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 - 2021 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22
23
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *      be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *      regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83         REG_REQ_OK,
84         REG_REQ_IGNORE,
85         REG_REQ_INTERSECT,
86         REG_REQ_ALREADY_SET,
87 };
88
89 static struct regulatory_request core_request_world = {
90         .initiator = NL80211_REGDOM_SET_BY_CORE,
91         .alpha2[0] = '0',
92         .alpha2[1] = '0',
93         .intersect = false,
94         .processed = true,
95         .country_ie_env = ENVIRON_ANY,
96 };
97
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103         (void __force __rcu *)&core_request_world;
104
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static DEFINE_SPINLOCK(reg_indoor_lock);
130
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136 static void reg_process_hint(struct regulatory_request *reg_request);
137
138 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
139 {
140         return rcu_dereference_rtnl(cfg80211_regdomain);
141 }
142
143 /*
144  * Returns the regulatory domain associated with the wiphy.
145  *
146  * Requires any of RTNL, wiphy mutex or RCU protection.
147  */
148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
149 {
150         return rcu_dereference_check(wiphy->regd,
151                                      lockdep_is_held(&wiphy->mtx) ||
152                                      lockdep_rtnl_is_held());
153 }
154 EXPORT_SYMBOL(get_wiphy_regdom);
155
156 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
157 {
158         switch (dfs_region) {
159         case NL80211_DFS_UNSET:
160                 return "unset";
161         case NL80211_DFS_FCC:
162                 return "FCC";
163         case NL80211_DFS_ETSI:
164                 return "ETSI";
165         case NL80211_DFS_JP:
166                 return "JP";
167         }
168         return "Unknown";
169 }
170
171 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
172 {
173         const struct ieee80211_regdomain *regd = NULL;
174         const struct ieee80211_regdomain *wiphy_regd = NULL;
175         enum nl80211_dfs_regions dfs_region;
176
177         rcu_read_lock();
178         regd = get_cfg80211_regdom();
179         dfs_region = regd->dfs_region;
180
181         if (!wiphy)
182                 goto out;
183
184         wiphy_regd = get_wiphy_regdom(wiphy);
185         if (!wiphy_regd)
186                 goto out;
187
188         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
189                 dfs_region = wiphy_regd->dfs_region;
190                 goto out;
191         }
192
193         if (wiphy_regd->dfs_region == regd->dfs_region)
194                 goto out;
195
196         pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
197                  dev_name(&wiphy->dev),
198                  reg_dfs_region_str(wiphy_regd->dfs_region),
199                  reg_dfs_region_str(regd->dfs_region));
200
201 out:
202         rcu_read_unlock();
203
204         return dfs_region;
205 }
206
207 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
208 {
209         if (!r)
210                 return;
211         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
212 }
213
214 static struct regulatory_request *get_last_request(void)
215 {
216         return rcu_dereference_rtnl(last_request);
217 }
218
219 /* Used to queue up regulatory hints */
220 static LIST_HEAD(reg_requests_list);
221 static DEFINE_SPINLOCK(reg_requests_lock);
222
223 /* Used to queue up beacon hints for review */
224 static LIST_HEAD(reg_pending_beacons);
225 static DEFINE_SPINLOCK(reg_pending_beacons_lock);
226
227 /* Used to keep track of processed beacon hints */
228 static LIST_HEAD(reg_beacon_list);
229
230 struct reg_beacon {
231         struct list_head list;
232         struct ieee80211_channel chan;
233 };
234
235 static void reg_check_chans_work(struct work_struct *work);
236 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
237
238 static void reg_todo(struct work_struct *work);
239 static DECLARE_WORK(reg_work, reg_todo);
240
241 /* We keep a static world regulatory domain in case of the absence of CRDA */
242 static const struct ieee80211_regdomain world_regdom = {
243         .n_reg_rules = 8,
244         .alpha2 =  "00",
245         .reg_rules = {
246                 /* IEEE 802.11b/g, channels 1..11 */
247                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
248                 /* IEEE 802.11b/g, channels 12..13. */
249                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
250                         NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
251                 /* IEEE 802.11 channel 14 - Only JP enables
252                  * this and for 802.11b only */
253                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
254                         NL80211_RRF_NO_IR |
255                         NL80211_RRF_NO_OFDM),
256                 /* IEEE 802.11a, channel 36..48 */
257                 REG_RULE(5180-10, 5240+10, 80, 6, 20,
258                         NL80211_RRF_NO_IR |
259                         NL80211_RRF_AUTO_BW),
260
261                 /* IEEE 802.11a, channel 52..64 - DFS required */
262                 REG_RULE(5260-10, 5320+10, 80, 6, 20,
263                         NL80211_RRF_NO_IR |
264                         NL80211_RRF_AUTO_BW |
265                         NL80211_RRF_DFS),
266
267                 /* IEEE 802.11a, channel 100..144 - DFS required */
268                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
269                         NL80211_RRF_NO_IR |
270                         NL80211_RRF_DFS),
271
272                 /* IEEE 802.11a, channel 149..165 */
273                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
274                         NL80211_RRF_NO_IR),
275
276                 /* IEEE 802.11ad (60GHz), channels 1..3 */
277                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
278         }
279 };
280
281 /* protected by RTNL */
282 static const struct ieee80211_regdomain *cfg80211_world_regdom =
283         &world_regdom;
284
285 static char *ieee80211_regdom = "00";
286 static char user_alpha2[2];
287 static const struct ieee80211_regdomain *cfg80211_user_regdom;
288
289 module_param(ieee80211_regdom, charp, 0444);
290 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
291
292 static void reg_free_request(struct regulatory_request *request)
293 {
294         if (request == &core_request_world)
295                 return;
296
297         if (request != get_last_request())
298                 kfree(request);
299 }
300
301 static void reg_free_last_request(void)
302 {
303         struct regulatory_request *lr = get_last_request();
304
305         if (lr != &core_request_world && lr)
306                 kfree_rcu(lr, rcu_head);
307 }
308
309 static void reg_update_last_request(struct regulatory_request *request)
310 {
311         struct regulatory_request *lr;
312
313         lr = get_last_request();
314         if (lr == request)
315                 return;
316
317         reg_free_last_request();
318         rcu_assign_pointer(last_request, request);
319 }
320
321 static void reset_regdomains(bool full_reset,
322                              const struct ieee80211_regdomain *new_regdom)
323 {
324         const struct ieee80211_regdomain *r;
325
326         ASSERT_RTNL();
327
328         r = get_cfg80211_regdom();
329
330         /* avoid freeing static information or freeing something twice */
331         if (r == cfg80211_world_regdom)
332                 r = NULL;
333         if (cfg80211_world_regdom == &world_regdom)
334                 cfg80211_world_regdom = NULL;
335         if (r == &world_regdom)
336                 r = NULL;
337
338         rcu_free_regdom(r);
339         rcu_free_regdom(cfg80211_world_regdom);
340
341         cfg80211_world_regdom = &world_regdom;
342         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
343
344         if (!full_reset)
345                 return;
346
347         reg_update_last_request(&core_request_world);
348 }
349
350 /*
351  * Dynamic world regulatory domain requested by the wireless
352  * core upon initialization
353  */
354 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
355 {
356         struct regulatory_request *lr;
357
358         lr = get_last_request();
359
360         WARN_ON(!lr);
361
362         reset_regdomains(false, rd);
363
364         cfg80211_world_regdom = rd;
365 }
366
367 bool is_world_regdom(const char *alpha2)
368 {
369         if (!alpha2)
370                 return false;
371         return alpha2[0] == '0' && alpha2[1] == '0';
372 }
373
374 static bool is_alpha2_set(const char *alpha2)
375 {
376         if (!alpha2)
377                 return false;
378         return alpha2[0] && alpha2[1];
379 }
380
381 static bool is_unknown_alpha2(const char *alpha2)
382 {
383         if (!alpha2)
384                 return false;
385         /*
386          * Special case where regulatory domain was built by driver
387          * but a specific alpha2 cannot be determined
388          */
389         return alpha2[0] == '9' && alpha2[1] == '9';
390 }
391
392 static bool is_intersected_alpha2(const char *alpha2)
393 {
394         if (!alpha2)
395                 return false;
396         /*
397          * Special case where regulatory domain is the
398          * result of an intersection between two regulatory domain
399          * structures
400          */
401         return alpha2[0] == '9' && alpha2[1] == '8';
402 }
403
404 static bool is_an_alpha2(const char *alpha2)
405 {
406         if (!alpha2)
407                 return false;
408         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
409 }
410
411 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
412 {
413         if (!alpha2_x || !alpha2_y)
414                 return false;
415         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
416 }
417
418 static bool regdom_changes(const char *alpha2)
419 {
420         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
421
422         if (!r)
423                 return true;
424         return !alpha2_equal(r->alpha2, alpha2);
425 }
426
427 /*
428  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
429  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
430  * has ever been issued.
431  */
432 static bool is_user_regdom_saved(void)
433 {
434         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
435                 return false;
436
437         /* This would indicate a mistake on the design */
438         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
439                  "Unexpected user alpha2: %c%c\n",
440                  user_alpha2[0], user_alpha2[1]))
441                 return false;
442
443         return true;
444 }
445
446 static const struct ieee80211_regdomain *
447 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
448 {
449         struct ieee80211_regdomain *regd;
450         unsigned int i;
451
452         regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
453                        GFP_KERNEL);
454         if (!regd)
455                 return ERR_PTR(-ENOMEM);
456
457         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
458
459         for (i = 0; i < src_regd->n_reg_rules; i++)
460                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
461                        sizeof(struct ieee80211_reg_rule));
462
463         return regd;
464 }
465
466 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
467 {
468         ASSERT_RTNL();
469
470         if (!IS_ERR(cfg80211_user_regdom))
471                 kfree(cfg80211_user_regdom);
472         cfg80211_user_regdom = reg_copy_regd(rd);
473 }
474
475 struct reg_regdb_apply_request {
476         struct list_head list;
477         const struct ieee80211_regdomain *regdom;
478 };
479
480 static LIST_HEAD(reg_regdb_apply_list);
481 static DEFINE_MUTEX(reg_regdb_apply_mutex);
482
483 static void reg_regdb_apply(struct work_struct *work)
484 {
485         struct reg_regdb_apply_request *request;
486
487         rtnl_lock();
488
489         mutex_lock(&reg_regdb_apply_mutex);
490         while (!list_empty(&reg_regdb_apply_list)) {
491                 request = list_first_entry(&reg_regdb_apply_list,
492                                            struct reg_regdb_apply_request,
493                                            list);
494                 list_del(&request->list);
495
496                 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
497                 kfree(request);
498         }
499         mutex_unlock(&reg_regdb_apply_mutex);
500
501         rtnl_unlock();
502 }
503
504 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
505
506 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
507 {
508         struct reg_regdb_apply_request *request;
509
510         request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
511         if (!request) {
512                 kfree(regdom);
513                 return -ENOMEM;
514         }
515
516         request->regdom = regdom;
517
518         mutex_lock(&reg_regdb_apply_mutex);
519         list_add_tail(&request->list, &reg_regdb_apply_list);
520         mutex_unlock(&reg_regdb_apply_mutex);
521
522         schedule_work(&reg_regdb_work);
523         return 0;
524 }
525
526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
527 /* Max number of consecutive attempts to communicate with CRDA  */
528 #define REG_MAX_CRDA_TIMEOUTS 10
529
530 static u32 reg_crda_timeouts;
531
532 static void crda_timeout_work(struct work_struct *work);
533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
534
535 static void crda_timeout_work(struct work_struct *work)
536 {
537         pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
538         rtnl_lock();
539         reg_crda_timeouts++;
540         restore_regulatory_settings(true, false);
541         rtnl_unlock();
542 }
543
544 static void cancel_crda_timeout(void)
545 {
546         cancel_delayed_work(&crda_timeout);
547 }
548
549 static void cancel_crda_timeout_sync(void)
550 {
551         cancel_delayed_work_sync(&crda_timeout);
552 }
553
554 static void reset_crda_timeouts(void)
555 {
556         reg_crda_timeouts = 0;
557 }
558
559 /*
560  * This lets us keep regulatory code which is updated on a regulatory
561  * basis in userspace.
562  */
563 static int call_crda(const char *alpha2)
564 {
565         char country[12];
566         char *env[] = { country, NULL };
567         int ret;
568
569         snprintf(country, sizeof(country), "COUNTRY=%c%c",
570                  alpha2[0], alpha2[1]);
571
572         if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
573                 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
574                 return -EINVAL;
575         }
576
577         if (!is_world_regdom((char *) alpha2))
578                 pr_debug("Calling CRDA for country: %c%c\n",
579                          alpha2[0], alpha2[1]);
580         else
581                 pr_debug("Calling CRDA to update world regulatory domain\n");
582
583         ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
584         if (ret)
585                 return ret;
586
587         queue_delayed_work(system_power_efficient_wq,
588                            &crda_timeout, msecs_to_jiffies(3142));
589         return 0;
590 }
591 #else
592 static inline void cancel_crda_timeout(void) {}
593 static inline void cancel_crda_timeout_sync(void) {}
594 static inline void reset_crda_timeouts(void) {}
595 static inline int call_crda(const char *alpha2)
596 {
597         return -ENODATA;
598 }
599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
600
601 /* code to directly load a firmware database through request_firmware */
602 static const struct fwdb_header *regdb;
603
604 struct fwdb_country {
605         u8 alpha2[2];
606         __be16 coll_ptr;
607         /* this struct cannot be extended */
608 } __packed __aligned(4);
609
610 struct fwdb_collection {
611         u8 len;
612         u8 n_rules;
613         u8 dfs_region;
614         /* no optional data yet */
615         /* aligned to 2, then followed by __be16 array of rule pointers */
616 } __packed __aligned(4);
617
618 enum fwdb_flags {
619         FWDB_FLAG_NO_OFDM       = BIT(0),
620         FWDB_FLAG_NO_OUTDOOR    = BIT(1),
621         FWDB_FLAG_DFS           = BIT(2),
622         FWDB_FLAG_NO_IR         = BIT(3),
623         FWDB_FLAG_AUTO_BW       = BIT(4),
624 };
625
626 struct fwdb_wmm_ac {
627         u8 ecw;
628         u8 aifsn;
629         __be16 cot;
630 } __packed;
631
632 struct fwdb_wmm_rule {
633         struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
634         struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
635 } __packed;
636
637 struct fwdb_rule {
638         u8 len;
639         u8 flags;
640         __be16 max_eirp;
641         __be32 start, end, max_bw;
642         /* start of optional data */
643         __be16 cac_timeout;
644         __be16 wmm_ptr;
645 } __packed __aligned(4);
646
647 #define FWDB_MAGIC 0x52474442
648 #define FWDB_VERSION 20
649
650 struct fwdb_header {
651         __be32 magic;
652         __be32 version;
653         struct fwdb_country country[];
654 } __packed __aligned(4);
655
656 static int ecw2cw(int ecw)
657 {
658         return (1 << ecw) - 1;
659 }
660
661 static bool valid_wmm(struct fwdb_wmm_rule *rule)
662 {
663         struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
664         int i;
665
666         for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
667                 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
668                 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
669                 u8 aifsn = ac[i].aifsn;
670
671                 if (cw_min >= cw_max)
672                         return false;
673
674                 if (aifsn < 1)
675                         return false;
676         }
677
678         return true;
679 }
680
681 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
682 {
683         struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
684
685         if ((u8 *)rule + sizeof(rule->len) > data + size)
686                 return false;
687
688         /* mandatory fields */
689         if (rule->len < offsetofend(struct fwdb_rule, max_bw))
690                 return false;
691         if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
692                 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
693                 struct fwdb_wmm_rule *wmm;
694
695                 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
696                         return false;
697
698                 wmm = (void *)(data + wmm_ptr);
699
700                 if (!valid_wmm(wmm))
701                         return false;
702         }
703         return true;
704 }
705
706 static bool valid_country(const u8 *data, unsigned int size,
707                           const struct fwdb_country *country)
708 {
709         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
710         struct fwdb_collection *coll = (void *)(data + ptr);
711         __be16 *rules_ptr;
712         unsigned int i;
713
714         /* make sure we can read len/n_rules */
715         if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
716                 return false;
717
718         /* make sure base struct and all rules fit */
719         if ((u8 *)coll + ALIGN(coll->len, 2) +
720             (coll->n_rules * 2) > data + size)
721                 return false;
722
723         /* mandatory fields must exist */
724         if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
725                 return false;
726
727         rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
728
729         for (i = 0; i < coll->n_rules; i++) {
730                 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
731
732                 if (!valid_rule(data, size, rule_ptr))
733                         return false;
734         }
735
736         return true;
737 }
738
739 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
740 static struct key *builtin_regdb_keys;
741
742 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
743 {
744         const u8 *end = p + buflen;
745         size_t plen;
746         key_ref_t key;
747
748         while (p < end) {
749                 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
750                  * than 256 bytes in size.
751                  */
752                 if (end - p < 4)
753                         goto dodgy_cert;
754                 if (p[0] != 0x30 &&
755                     p[1] != 0x82)
756                         goto dodgy_cert;
757                 plen = (p[2] << 8) | p[3];
758                 plen += 4;
759                 if (plen > end - p)
760                         goto dodgy_cert;
761
762                 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
763                                            "asymmetric", NULL, p, plen,
764                                            ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
765                                             KEY_USR_VIEW | KEY_USR_READ),
766                                            KEY_ALLOC_NOT_IN_QUOTA |
767                                            KEY_ALLOC_BUILT_IN |
768                                            KEY_ALLOC_BYPASS_RESTRICTION);
769                 if (IS_ERR(key)) {
770                         pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
771                                PTR_ERR(key));
772                 } else {
773                         pr_notice("Loaded X.509 cert '%s'\n",
774                                   key_ref_to_ptr(key)->description);
775                         key_ref_put(key);
776                 }
777                 p += plen;
778         }
779
780         return;
781
782 dodgy_cert:
783         pr_err("Problem parsing in-kernel X.509 certificate list\n");
784 }
785
786 static int __init load_builtin_regdb_keys(void)
787 {
788         builtin_regdb_keys =
789                 keyring_alloc(".builtin_regdb_keys",
790                               KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
791                               ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
792                               KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
793                               KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
794         if (IS_ERR(builtin_regdb_keys))
795                 return PTR_ERR(builtin_regdb_keys);
796
797         pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
798
799 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
800         load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
801 #endif
802 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
803         if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
804                 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
805 #endif
806
807         return 0;
808 }
809
810 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
811 {
812         const struct firmware *sig;
813         bool result;
814
815         if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
816                 return false;
817
818         result = verify_pkcs7_signature(data, size, sig->data, sig->size,
819                                         builtin_regdb_keys,
820                                         VERIFYING_UNSPECIFIED_SIGNATURE,
821                                         NULL, NULL) == 0;
822
823         release_firmware(sig);
824
825         return result;
826 }
827
828 static void free_regdb_keyring(void)
829 {
830         key_put(builtin_regdb_keys);
831 }
832 #else
833 static int load_builtin_regdb_keys(void)
834 {
835         return 0;
836 }
837
838 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
839 {
840         return true;
841 }
842
843 static void free_regdb_keyring(void)
844 {
845 }
846 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
847
848 static bool valid_regdb(const u8 *data, unsigned int size)
849 {
850         const struct fwdb_header *hdr = (void *)data;
851         const struct fwdb_country *country;
852
853         if (size < sizeof(*hdr))
854                 return false;
855
856         if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
857                 return false;
858
859         if (hdr->version != cpu_to_be32(FWDB_VERSION))
860                 return false;
861
862         if (!regdb_has_valid_signature(data, size))
863                 return false;
864
865         country = &hdr->country[0];
866         while ((u8 *)(country + 1) <= data + size) {
867                 if (!country->coll_ptr)
868                         break;
869                 if (!valid_country(data, size, country))
870                         return false;
871                 country++;
872         }
873
874         return true;
875 }
876
877 static void set_wmm_rule(const struct fwdb_header *db,
878                          const struct fwdb_country *country,
879                          const struct fwdb_rule *rule,
880                          struct ieee80211_reg_rule *rrule)
881 {
882         struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
883         struct fwdb_wmm_rule *wmm;
884         unsigned int i, wmm_ptr;
885
886         wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
887         wmm = (void *)((u8 *)db + wmm_ptr);
888
889         if (!valid_wmm(wmm)) {
890                 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
891                        be32_to_cpu(rule->start), be32_to_cpu(rule->end),
892                        country->alpha2[0], country->alpha2[1]);
893                 return;
894         }
895
896         for (i = 0; i < IEEE80211_NUM_ACS; i++) {
897                 wmm_rule->client[i].cw_min =
898                         ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
899                 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
900                 wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
901                 wmm_rule->client[i].cot =
902                         1000 * be16_to_cpu(wmm->client[i].cot);
903                 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
904                 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
905                 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
906                 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
907         }
908
909         rrule->has_wmm = true;
910 }
911
912 static int __regdb_query_wmm(const struct fwdb_header *db,
913                              const struct fwdb_country *country, int freq,
914                              struct ieee80211_reg_rule *rrule)
915 {
916         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
917         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
918         int i;
919
920         for (i = 0; i < coll->n_rules; i++) {
921                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
922                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
923                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
924
925                 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
926                         continue;
927
928                 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
929                     freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
930                         set_wmm_rule(db, country, rule, rrule);
931                         return 0;
932                 }
933         }
934
935         return -ENODATA;
936 }
937
938 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
939 {
940         const struct fwdb_header *hdr = regdb;
941         const struct fwdb_country *country;
942
943         if (!regdb)
944                 return -ENODATA;
945
946         if (IS_ERR(regdb))
947                 return PTR_ERR(regdb);
948
949         country = &hdr->country[0];
950         while (country->coll_ptr) {
951                 if (alpha2_equal(alpha2, country->alpha2))
952                         return __regdb_query_wmm(regdb, country, freq, rule);
953
954                 country++;
955         }
956
957         return -ENODATA;
958 }
959 EXPORT_SYMBOL(reg_query_regdb_wmm);
960
961 static int regdb_query_country(const struct fwdb_header *db,
962                                const struct fwdb_country *country)
963 {
964         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
965         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
966         struct ieee80211_regdomain *regdom;
967         unsigned int i;
968
969         regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
970                          GFP_KERNEL);
971         if (!regdom)
972                 return -ENOMEM;
973
974         regdom->n_reg_rules = coll->n_rules;
975         regdom->alpha2[0] = country->alpha2[0];
976         regdom->alpha2[1] = country->alpha2[1];
977         regdom->dfs_region = coll->dfs_region;
978
979         for (i = 0; i < regdom->n_reg_rules; i++) {
980                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
981                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
982                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
983                 struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
984
985                 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
986                 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
987                 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
988
989                 rrule->power_rule.max_antenna_gain = 0;
990                 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
991
992                 rrule->flags = 0;
993                 if (rule->flags & FWDB_FLAG_NO_OFDM)
994                         rrule->flags |= NL80211_RRF_NO_OFDM;
995                 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
996                         rrule->flags |= NL80211_RRF_NO_OUTDOOR;
997                 if (rule->flags & FWDB_FLAG_DFS)
998                         rrule->flags |= NL80211_RRF_DFS;
999                 if (rule->flags & FWDB_FLAG_NO_IR)
1000                         rrule->flags |= NL80211_RRF_NO_IR;
1001                 if (rule->flags & FWDB_FLAG_AUTO_BW)
1002                         rrule->flags |= NL80211_RRF_AUTO_BW;
1003
1004                 rrule->dfs_cac_ms = 0;
1005
1006                 /* handle optional data */
1007                 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
1008                         rrule->dfs_cac_ms =
1009                                 1000 * be16_to_cpu(rule->cac_timeout);
1010                 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
1011                         set_wmm_rule(db, country, rule, rrule);
1012         }
1013
1014         return reg_schedule_apply(regdom);
1015 }
1016
1017 static int query_regdb(const char *alpha2)
1018 {
1019         const struct fwdb_header *hdr = regdb;
1020         const struct fwdb_country *country;
1021
1022         ASSERT_RTNL();
1023
1024         if (IS_ERR(regdb))
1025                 return PTR_ERR(regdb);
1026
1027         country = &hdr->country[0];
1028         while (country->coll_ptr) {
1029                 if (alpha2_equal(alpha2, country->alpha2))
1030                         return regdb_query_country(regdb, country);
1031                 country++;
1032         }
1033
1034         return -ENODATA;
1035 }
1036
1037 static void regdb_fw_cb(const struct firmware *fw, void *context)
1038 {
1039         int set_error = 0;
1040         bool restore = true;
1041         void *db;
1042
1043         if (!fw) {
1044                 pr_info("failed to load regulatory.db\n");
1045                 set_error = -ENODATA;
1046         } else if (!valid_regdb(fw->data, fw->size)) {
1047                 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1048                 set_error = -EINVAL;
1049         }
1050
1051         rtnl_lock();
1052         if (regdb && !IS_ERR(regdb)) {
1053                 /* negative case - a bug
1054                  * positive case - can happen due to race in case of multiple cb's in
1055                  * queue, due to usage of asynchronous callback
1056                  *
1057                  * Either case, just restore and free new db.
1058                  */
1059         } else if (set_error) {
1060                 regdb = ERR_PTR(set_error);
1061         } else if (fw) {
1062                 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1063                 if (db) {
1064                         regdb = db;
1065                         restore = context && query_regdb(context);
1066                 } else {
1067                         restore = true;
1068                 }
1069         }
1070
1071         if (restore)
1072                 restore_regulatory_settings(true, false);
1073
1074         rtnl_unlock();
1075
1076         kfree(context);
1077
1078         release_firmware(fw);
1079 }
1080
1081 static int query_regdb_file(const char *alpha2)
1082 {
1083         ASSERT_RTNL();
1084
1085         if (regdb)
1086                 return query_regdb(alpha2);
1087
1088         alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1089         if (!alpha2)
1090                 return -ENOMEM;
1091
1092         return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1093                                        &reg_pdev->dev, GFP_KERNEL,
1094                                        (void *)alpha2, regdb_fw_cb);
1095 }
1096
1097 int reg_reload_regdb(void)
1098 {
1099         const struct firmware *fw;
1100         void *db;
1101         int err;
1102         const struct ieee80211_regdomain *current_regdomain;
1103         struct regulatory_request *request;
1104
1105         err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1106         if (err)
1107                 return err;
1108
1109         if (!valid_regdb(fw->data, fw->size)) {
1110                 err = -ENODATA;
1111                 goto out;
1112         }
1113
1114         db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1115         if (!db) {
1116                 err = -ENOMEM;
1117                 goto out;
1118         }
1119
1120         rtnl_lock();
1121         if (!IS_ERR_OR_NULL(regdb))
1122                 kfree(regdb);
1123         regdb = db;
1124
1125         /* reset regulatory domain */
1126         current_regdomain = get_cfg80211_regdom();
1127
1128         request = kzalloc(sizeof(*request), GFP_KERNEL);
1129         if (!request) {
1130                 err = -ENOMEM;
1131                 goto out_unlock;
1132         }
1133
1134         request->wiphy_idx = WIPHY_IDX_INVALID;
1135         request->alpha2[0] = current_regdomain->alpha2[0];
1136         request->alpha2[1] = current_regdomain->alpha2[1];
1137         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1138         request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1139
1140         reg_process_hint(request);
1141
1142 out_unlock:
1143         rtnl_unlock();
1144  out:
1145         release_firmware(fw);
1146         return err;
1147 }
1148
1149 static bool reg_query_database(struct regulatory_request *request)
1150 {
1151         if (query_regdb_file(request->alpha2) == 0)
1152                 return true;
1153
1154         if (call_crda(request->alpha2) == 0)
1155                 return true;
1156
1157         return false;
1158 }
1159
1160 bool reg_is_valid_request(const char *alpha2)
1161 {
1162         struct regulatory_request *lr = get_last_request();
1163
1164         if (!lr || lr->processed)
1165                 return false;
1166
1167         return alpha2_equal(lr->alpha2, alpha2);
1168 }
1169
1170 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1171 {
1172         struct regulatory_request *lr = get_last_request();
1173
1174         /*
1175          * Follow the driver's regulatory domain, if present, unless a country
1176          * IE has been processed or a user wants to help complaince further
1177          */
1178         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1179             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1180             wiphy->regd)
1181                 return get_wiphy_regdom(wiphy);
1182
1183         return get_cfg80211_regdom();
1184 }
1185
1186 static unsigned int
1187 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1188                                  const struct ieee80211_reg_rule *rule)
1189 {
1190         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1191         const struct ieee80211_freq_range *freq_range_tmp;
1192         const struct ieee80211_reg_rule *tmp;
1193         u32 start_freq, end_freq, idx, no;
1194
1195         for (idx = 0; idx < rd->n_reg_rules; idx++)
1196                 if (rule == &rd->reg_rules[idx])
1197                         break;
1198
1199         if (idx == rd->n_reg_rules)
1200                 return 0;
1201
1202         /* get start_freq */
1203         no = idx;
1204
1205         while (no) {
1206                 tmp = &rd->reg_rules[--no];
1207                 freq_range_tmp = &tmp->freq_range;
1208
1209                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1210                         break;
1211
1212                 freq_range = freq_range_tmp;
1213         }
1214
1215         start_freq = freq_range->start_freq_khz;
1216
1217         /* get end_freq */
1218         freq_range = &rule->freq_range;
1219         no = idx;
1220
1221         while (no < rd->n_reg_rules - 1) {
1222                 tmp = &rd->reg_rules[++no];
1223                 freq_range_tmp = &tmp->freq_range;
1224
1225                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1226                         break;
1227
1228                 freq_range = freq_range_tmp;
1229         }
1230
1231         end_freq = freq_range->end_freq_khz;
1232
1233         return end_freq - start_freq;
1234 }
1235
1236 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1237                                    const struct ieee80211_reg_rule *rule)
1238 {
1239         unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1240
1241         if (rule->flags & NL80211_RRF_NO_160MHZ)
1242                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1243         if (rule->flags & NL80211_RRF_NO_80MHZ)
1244                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1245
1246         /*
1247          * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1248          * are not allowed.
1249          */
1250         if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1251             rule->flags & NL80211_RRF_NO_HT40PLUS)
1252                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1253
1254         return bw;
1255 }
1256
1257 /* Sanity check on a regulatory rule */
1258 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1259 {
1260         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1261         u32 freq_diff;
1262
1263         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1264                 return false;
1265
1266         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1267                 return false;
1268
1269         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1270
1271         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1272             freq_range->max_bandwidth_khz > freq_diff)
1273                 return false;
1274
1275         return true;
1276 }
1277
1278 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1279 {
1280         const struct ieee80211_reg_rule *reg_rule = NULL;
1281         unsigned int i;
1282
1283         if (!rd->n_reg_rules)
1284                 return false;
1285
1286         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1287                 return false;
1288
1289         for (i = 0; i < rd->n_reg_rules; i++) {
1290                 reg_rule = &rd->reg_rules[i];
1291                 if (!is_valid_reg_rule(reg_rule))
1292                         return false;
1293         }
1294
1295         return true;
1296 }
1297
1298 /**
1299  * freq_in_rule_band - tells us if a frequency is in a frequency band
1300  * @freq_range: frequency rule we want to query
1301  * @freq_khz: frequency we are inquiring about
1302  *
1303  * This lets us know if a specific frequency rule is or is not relevant to
1304  * a specific frequency's band. Bands are device specific and artificial
1305  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1306  * however it is safe for now to assume that a frequency rule should not be
1307  * part of a frequency's band if the start freq or end freq are off by more
1308  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1309  * 60 GHz band.
1310  * This resolution can be lowered and should be considered as we add
1311  * regulatory rule support for other "bands".
1312  **/
1313 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1314                               u32 freq_khz)
1315 {
1316 #define ONE_GHZ_IN_KHZ  1000000
1317         /*
1318          * From 802.11ad: directional multi-gigabit (DMG):
1319          * Pertaining to operation in a frequency band containing a channel
1320          * with the Channel starting frequency above 45 GHz.
1321          */
1322         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1323                         20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1324         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1325                 return true;
1326         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1327                 return true;
1328         return false;
1329 #undef ONE_GHZ_IN_KHZ
1330 }
1331
1332 /*
1333  * Later on we can perhaps use the more restrictive DFS
1334  * region but we don't have information for that yet so
1335  * for now simply disallow conflicts.
1336  */
1337 static enum nl80211_dfs_regions
1338 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1339                          const enum nl80211_dfs_regions dfs_region2)
1340 {
1341         if (dfs_region1 != dfs_region2)
1342                 return NL80211_DFS_UNSET;
1343         return dfs_region1;
1344 }
1345
1346 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1347                                     const struct ieee80211_wmm_ac *wmm_ac2,
1348                                     struct ieee80211_wmm_ac *intersect)
1349 {
1350         intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1351         intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1352         intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1353         intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1354 }
1355
1356 /*
1357  * Helper for regdom_intersect(), this does the real
1358  * mathematical intersection fun
1359  */
1360 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1361                                const struct ieee80211_regdomain *rd2,
1362                                const struct ieee80211_reg_rule *rule1,
1363                                const struct ieee80211_reg_rule *rule2,
1364                                struct ieee80211_reg_rule *intersected_rule)
1365 {
1366         const struct ieee80211_freq_range *freq_range1, *freq_range2;
1367         struct ieee80211_freq_range *freq_range;
1368         const struct ieee80211_power_rule *power_rule1, *power_rule2;
1369         struct ieee80211_power_rule *power_rule;
1370         const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1371         struct ieee80211_wmm_rule *wmm_rule;
1372         u32 freq_diff, max_bandwidth1, max_bandwidth2;
1373
1374         freq_range1 = &rule1->freq_range;
1375         freq_range2 = &rule2->freq_range;
1376         freq_range = &intersected_rule->freq_range;
1377
1378         power_rule1 = &rule1->power_rule;
1379         power_rule2 = &rule2->power_rule;
1380         power_rule = &intersected_rule->power_rule;
1381
1382         wmm_rule1 = &rule1->wmm_rule;
1383         wmm_rule2 = &rule2->wmm_rule;
1384         wmm_rule = &intersected_rule->wmm_rule;
1385
1386         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1387                                          freq_range2->start_freq_khz);
1388         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1389                                        freq_range2->end_freq_khz);
1390
1391         max_bandwidth1 = freq_range1->max_bandwidth_khz;
1392         max_bandwidth2 = freq_range2->max_bandwidth_khz;
1393
1394         if (rule1->flags & NL80211_RRF_AUTO_BW)
1395                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1396         if (rule2->flags & NL80211_RRF_AUTO_BW)
1397                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1398
1399         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1400
1401         intersected_rule->flags = rule1->flags | rule2->flags;
1402
1403         /*
1404          * In case NL80211_RRF_AUTO_BW requested for both rules
1405          * set AUTO_BW in intersected rule also. Next we will
1406          * calculate BW correctly in handle_channel function.
1407          * In other case remove AUTO_BW flag while we calculate
1408          * maximum bandwidth correctly and auto calculation is
1409          * not required.
1410          */
1411         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1412             (rule2->flags & NL80211_RRF_AUTO_BW))
1413                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1414         else
1415                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1416
1417         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1418         if (freq_range->max_bandwidth_khz > freq_diff)
1419                 freq_range->max_bandwidth_khz = freq_diff;
1420
1421         power_rule->max_eirp = min(power_rule1->max_eirp,
1422                 power_rule2->max_eirp);
1423         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1424                 power_rule2->max_antenna_gain);
1425
1426         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1427                                            rule2->dfs_cac_ms);
1428
1429         if (rule1->has_wmm && rule2->has_wmm) {
1430                 u8 ac;
1431
1432                 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1433                         reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1434                                                 &wmm_rule2->client[ac],
1435                                                 &wmm_rule->client[ac]);
1436                         reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1437                                                 &wmm_rule2->ap[ac],
1438                                                 &wmm_rule->ap[ac]);
1439                 }
1440
1441                 intersected_rule->has_wmm = true;
1442         } else if (rule1->has_wmm) {
1443                 *wmm_rule = *wmm_rule1;
1444                 intersected_rule->has_wmm = true;
1445         } else if (rule2->has_wmm) {
1446                 *wmm_rule = *wmm_rule2;
1447                 intersected_rule->has_wmm = true;
1448         } else {
1449                 intersected_rule->has_wmm = false;
1450         }
1451
1452         if (!is_valid_reg_rule(intersected_rule))
1453                 return -EINVAL;
1454
1455         return 0;
1456 }
1457
1458 /* check whether old rule contains new rule */
1459 static bool rule_contains(struct ieee80211_reg_rule *r1,
1460                           struct ieee80211_reg_rule *r2)
1461 {
1462         /* for simplicity, currently consider only same flags */
1463         if (r1->flags != r2->flags)
1464                 return false;
1465
1466         /* verify r1 is more restrictive */
1467         if ((r1->power_rule.max_antenna_gain >
1468              r2->power_rule.max_antenna_gain) ||
1469             r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1470                 return false;
1471
1472         /* make sure r2's range is contained within r1 */
1473         if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1474             r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1475                 return false;
1476
1477         /* and finally verify that r1.max_bw >= r2.max_bw */
1478         if (r1->freq_range.max_bandwidth_khz <
1479             r2->freq_range.max_bandwidth_khz)
1480                 return false;
1481
1482         return true;
1483 }
1484
1485 /* add or extend current rules. do nothing if rule is already contained */
1486 static void add_rule(struct ieee80211_reg_rule *rule,
1487                      struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1488 {
1489         struct ieee80211_reg_rule *tmp_rule;
1490         int i;
1491
1492         for (i = 0; i < *n_rules; i++) {
1493                 tmp_rule = &reg_rules[i];
1494                 /* rule is already contained - do nothing */
1495                 if (rule_contains(tmp_rule, rule))
1496                         return;
1497
1498                 /* extend rule if possible */
1499                 if (rule_contains(rule, tmp_rule)) {
1500                         memcpy(tmp_rule, rule, sizeof(*rule));
1501                         return;
1502                 }
1503         }
1504
1505         memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1506         (*n_rules)++;
1507 }
1508
1509 /**
1510  * regdom_intersect - do the intersection between two regulatory domains
1511  * @rd1: first regulatory domain
1512  * @rd2: second regulatory domain
1513  *
1514  * Use this function to get the intersection between two regulatory domains.
1515  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1516  * as no one single alpha2 can represent this regulatory domain.
1517  *
1518  * Returns a pointer to the regulatory domain structure which will hold the
1519  * resulting intersection of rules between rd1 and rd2. We will
1520  * kzalloc() this structure for you.
1521  */
1522 static struct ieee80211_regdomain *
1523 regdom_intersect(const struct ieee80211_regdomain *rd1,
1524                  const struct ieee80211_regdomain *rd2)
1525 {
1526         int r;
1527         unsigned int x, y;
1528         unsigned int num_rules = 0;
1529         const struct ieee80211_reg_rule *rule1, *rule2;
1530         struct ieee80211_reg_rule intersected_rule;
1531         struct ieee80211_regdomain *rd;
1532
1533         if (!rd1 || !rd2)
1534                 return NULL;
1535
1536         /*
1537          * First we get a count of the rules we'll need, then we actually
1538          * build them. This is to so we can malloc() and free() a
1539          * regdomain once. The reason we use reg_rules_intersect() here
1540          * is it will return -EINVAL if the rule computed makes no sense.
1541          * All rules that do check out OK are valid.
1542          */
1543
1544         for (x = 0; x < rd1->n_reg_rules; x++) {
1545                 rule1 = &rd1->reg_rules[x];
1546                 for (y = 0; y < rd2->n_reg_rules; y++) {
1547                         rule2 = &rd2->reg_rules[y];
1548                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1549                                                  &intersected_rule))
1550                                 num_rules++;
1551                 }
1552         }
1553
1554         if (!num_rules)
1555                 return NULL;
1556
1557         rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1558         if (!rd)
1559                 return NULL;
1560
1561         for (x = 0; x < rd1->n_reg_rules; x++) {
1562                 rule1 = &rd1->reg_rules[x];
1563                 for (y = 0; y < rd2->n_reg_rules; y++) {
1564                         rule2 = &rd2->reg_rules[y];
1565                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1566                                                 &intersected_rule);
1567                         /*
1568                          * No need to memset here the intersected rule here as
1569                          * we're not using the stack anymore
1570                          */
1571                         if (r)
1572                                 continue;
1573
1574                         add_rule(&intersected_rule, rd->reg_rules,
1575                                  &rd->n_reg_rules);
1576                 }
1577         }
1578
1579         rd->alpha2[0] = '9';
1580         rd->alpha2[1] = '8';
1581         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1582                                                   rd2->dfs_region);
1583
1584         return rd;
1585 }
1586
1587 /*
1588  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1589  * want to just have the channel structure use these
1590  */
1591 static u32 map_regdom_flags(u32 rd_flags)
1592 {
1593         u32 channel_flags = 0;
1594         if (rd_flags & NL80211_RRF_NO_IR_ALL)
1595                 channel_flags |= IEEE80211_CHAN_NO_IR;
1596         if (rd_flags & NL80211_RRF_DFS)
1597                 channel_flags |= IEEE80211_CHAN_RADAR;
1598         if (rd_flags & NL80211_RRF_NO_OFDM)
1599                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1600         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1601                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1602         if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1603                 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1604         if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1605                 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1606         if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1607                 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1608         if (rd_flags & NL80211_RRF_NO_80MHZ)
1609                 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1610         if (rd_flags & NL80211_RRF_NO_160MHZ)
1611                 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1612         if (rd_flags & NL80211_RRF_NO_HE)
1613                 channel_flags |= IEEE80211_CHAN_NO_HE;
1614         return channel_flags;
1615 }
1616
1617 static const struct ieee80211_reg_rule *
1618 freq_reg_info_regd(u32 center_freq,
1619                    const struct ieee80211_regdomain *regd, u32 bw)
1620 {
1621         int i;
1622         bool band_rule_found = false;
1623         bool bw_fits = false;
1624
1625         if (!regd)
1626                 return ERR_PTR(-EINVAL);
1627
1628         for (i = 0; i < regd->n_reg_rules; i++) {
1629                 const struct ieee80211_reg_rule *rr;
1630                 const struct ieee80211_freq_range *fr = NULL;
1631
1632                 rr = &regd->reg_rules[i];
1633                 fr = &rr->freq_range;
1634
1635                 /*
1636                  * We only need to know if one frequency rule was
1637                  * in center_freq's band, that's enough, so let's
1638                  * not overwrite it once found
1639                  */
1640                 if (!band_rule_found)
1641                         band_rule_found = freq_in_rule_band(fr, center_freq);
1642
1643                 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1644
1645                 if (band_rule_found && bw_fits)
1646                         return rr;
1647         }
1648
1649         if (!band_rule_found)
1650                 return ERR_PTR(-ERANGE);
1651
1652         return ERR_PTR(-EINVAL);
1653 }
1654
1655 static const struct ieee80211_reg_rule *
1656 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1657 {
1658         const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1659         static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1660         const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1661         int i = ARRAY_SIZE(bws) - 1;
1662         u32 bw;
1663
1664         for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1665                 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1666                 if (!IS_ERR(reg_rule))
1667                         return reg_rule;
1668         }
1669
1670         return reg_rule;
1671 }
1672
1673 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1674                                                u32 center_freq)
1675 {
1676         u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1677
1678         return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1679 }
1680 EXPORT_SYMBOL(freq_reg_info);
1681
1682 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1683 {
1684         switch (initiator) {
1685         case NL80211_REGDOM_SET_BY_CORE:
1686                 return "core";
1687         case NL80211_REGDOM_SET_BY_USER:
1688                 return "user";
1689         case NL80211_REGDOM_SET_BY_DRIVER:
1690                 return "driver";
1691         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1692                 return "country element";
1693         default:
1694                 WARN_ON(1);
1695                 return "bug";
1696         }
1697 }
1698 EXPORT_SYMBOL(reg_initiator_name);
1699
1700 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1701                                           const struct ieee80211_reg_rule *reg_rule,
1702                                           const struct ieee80211_channel *chan)
1703 {
1704         const struct ieee80211_freq_range *freq_range = NULL;
1705         u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1706         bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1707
1708         freq_range = &reg_rule->freq_range;
1709
1710         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1711         center_freq_khz = ieee80211_channel_to_khz(chan);
1712         /* Check if auto calculation requested */
1713         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1714                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1715
1716         /* If we get a reg_rule we can assume that at least 5Mhz fit */
1717         if (!cfg80211_does_bw_fit_range(freq_range,
1718                                         center_freq_khz,
1719                                         MHZ_TO_KHZ(10)))
1720                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1721         if (!cfg80211_does_bw_fit_range(freq_range,
1722                                         center_freq_khz,
1723                                         MHZ_TO_KHZ(20)))
1724                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1725
1726         if (is_s1g) {
1727                 /* S1G is strict about non overlapping channels. We can
1728                  * calculate which bandwidth is allowed per channel by finding
1729                  * the largest bandwidth which cleanly divides the freq_range.
1730                  */
1731                 int edge_offset;
1732                 int ch_bw = max_bandwidth_khz;
1733
1734                 while (ch_bw) {
1735                         edge_offset = (center_freq_khz - ch_bw / 2) -
1736                                       freq_range->start_freq_khz;
1737                         if (edge_offset % ch_bw == 0) {
1738                                 switch (KHZ_TO_MHZ(ch_bw)) {
1739                                 case 1:
1740                                         bw_flags |= IEEE80211_CHAN_1MHZ;
1741                                         break;
1742                                 case 2:
1743                                         bw_flags |= IEEE80211_CHAN_2MHZ;
1744                                         break;
1745                                 case 4:
1746                                         bw_flags |= IEEE80211_CHAN_4MHZ;
1747                                         break;
1748                                 case 8:
1749                                         bw_flags |= IEEE80211_CHAN_8MHZ;
1750                                         break;
1751                                 case 16:
1752                                         bw_flags |= IEEE80211_CHAN_16MHZ;
1753                                         break;
1754                                 default:
1755                                         /* If we got here, no bandwidths fit on
1756                                          * this frequency, ie. band edge.
1757                                          */
1758                                         bw_flags |= IEEE80211_CHAN_DISABLED;
1759                                         break;
1760                                 }
1761                                 break;
1762                         }
1763                         ch_bw /= 2;
1764                 }
1765         } else {
1766                 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1767                         bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1768                 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1769                         bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1770                 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1771                         bw_flags |= IEEE80211_CHAN_NO_HT40;
1772                 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1773                         bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1774                 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1775                         bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1776         }
1777         return bw_flags;
1778 }
1779
1780 static void handle_channel_single_rule(struct wiphy *wiphy,
1781                                        enum nl80211_reg_initiator initiator,
1782                                        struct ieee80211_channel *chan,
1783                                        u32 flags,
1784                                        struct regulatory_request *lr,
1785                                        struct wiphy *request_wiphy,
1786                                        const struct ieee80211_reg_rule *reg_rule)
1787 {
1788         u32 bw_flags = 0;
1789         const struct ieee80211_power_rule *power_rule = NULL;
1790         const struct ieee80211_regdomain *regd;
1791
1792         regd = reg_get_regdomain(wiphy);
1793
1794         power_rule = &reg_rule->power_rule;
1795         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1796
1797         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1798             request_wiphy && request_wiphy == wiphy &&
1799             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1800                 /*
1801                  * This guarantees the driver's requested regulatory domain
1802                  * will always be used as a base for further regulatory
1803                  * settings
1804                  */
1805                 chan->flags = chan->orig_flags =
1806                         map_regdom_flags(reg_rule->flags) | bw_flags;
1807                 chan->max_antenna_gain = chan->orig_mag =
1808                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1809                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1810                         (int) MBM_TO_DBM(power_rule->max_eirp);
1811
1812                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1813                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1814                         if (reg_rule->dfs_cac_ms)
1815                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1816                 }
1817
1818                 return;
1819         }
1820
1821         chan->dfs_state = NL80211_DFS_USABLE;
1822         chan->dfs_state_entered = jiffies;
1823
1824         chan->beacon_found = false;
1825         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1826         chan->max_antenna_gain =
1827                 min_t(int, chan->orig_mag,
1828                       MBI_TO_DBI(power_rule->max_antenna_gain));
1829         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1830
1831         if (chan->flags & IEEE80211_CHAN_RADAR) {
1832                 if (reg_rule->dfs_cac_ms)
1833                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1834                 else
1835                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1836         }
1837
1838         if (chan->orig_mpwr) {
1839                 /*
1840                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1841                  * will always follow the passed country IE power settings.
1842                  */
1843                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1844                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1845                         chan->max_power = chan->max_reg_power;
1846                 else
1847                         chan->max_power = min(chan->orig_mpwr,
1848                                               chan->max_reg_power);
1849         } else
1850                 chan->max_power = chan->max_reg_power;
1851 }
1852
1853 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1854                                           enum nl80211_reg_initiator initiator,
1855                                           struct ieee80211_channel *chan,
1856                                           u32 flags,
1857                                           struct regulatory_request *lr,
1858                                           struct wiphy *request_wiphy,
1859                                           const struct ieee80211_reg_rule *rrule1,
1860                                           const struct ieee80211_reg_rule *rrule2,
1861                                           struct ieee80211_freq_range *comb_range)
1862 {
1863         u32 bw_flags1 = 0;
1864         u32 bw_flags2 = 0;
1865         const struct ieee80211_power_rule *power_rule1 = NULL;
1866         const struct ieee80211_power_rule *power_rule2 = NULL;
1867         const struct ieee80211_regdomain *regd;
1868
1869         regd = reg_get_regdomain(wiphy);
1870
1871         power_rule1 = &rrule1->power_rule;
1872         power_rule2 = &rrule2->power_rule;
1873         bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1874         bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1875
1876         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1877             request_wiphy && request_wiphy == wiphy &&
1878             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1879                 /* This guarantees the driver's requested regulatory domain
1880                  * will always be used as a base for further regulatory
1881                  * settings
1882                  */
1883                 chan->flags =
1884                         map_regdom_flags(rrule1->flags) |
1885                         map_regdom_flags(rrule2->flags) |
1886                         bw_flags1 |
1887                         bw_flags2;
1888                 chan->orig_flags = chan->flags;
1889                 chan->max_antenna_gain =
1890                         min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1891                               MBI_TO_DBI(power_rule2->max_antenna_gain));
1892                 chan->orig_mag = chan->max_antenna_gain;
1893                 chan->max_reg_power =
1894                         min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1895                               MBM_TO_DBM(power_rule2->max_eirp));
1896                 chan->max_power = chan->max_reg_power;
1897                 chan->orig_mpwr = chan->max_reg_power;
1898
1899                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1900                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1901                         if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1902                                 chan->dfs_cac_ms = max_t(unsigned int,
1903                                                          rrule1->dfs_cac_ms,
1904                                                          rrule2->dfs_cac_ms);
1905                 }
1906
1907                 return;
1908         }
1909
1910         chan->dfs_state = NL80211_DFS_USABLE;
1911         chan->dfs_state_entered = jiffies;
1912
1913         chan->beacon_found = false;
1914         chan->flags = flags | bw_flags1 | bw_flags2 |
1915                       map_regdom_flags(rrule1->flags) |
1916                       map_regdom_flags(rrule2->flags);
1917
1918         /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1919          * (otherwise no adj. rule case), recheck therefore
1920          */
1921         if (cfg80211_does_bw_fit_range(comb_range,
1922                                        ieee80211_channel_to_khz(chan),
1923                                        MHZ_TO_KHZ(10)))
1924                 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1925         if (cfg80211_does_bw_fit_range(comb_range,
1926                                        ieee80211_channel_to_khz(chan),
1927                                        MHZ_TO_KHZ(20)))
1928                 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1929
1930         chan->max_antenna_gain =
1931                 min_t(int, chan->orig_mag,
1932                       min_t(int,
1933                             MBI_TO_DBI(power_rule1->max_antenna_gain),
1934                             MBI_TO_DBI(power_rule2->max_antenna_gain)));
1935         chan->max_reg_power = min_t(int,
1936                                     MBM_TO_DBM(power_rule1->max_eirp),
1937                                     MBM_TO_DBM(power_rule2->max_eirp));
1938
1939         if (chan->flags & IEEE80211_CHAN_RADAR) {
1940                 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1941                         chan->dfs_cac_ms = max_t(unsigned int,
1942                                                  rrule1->dfs_cac_ms,
1943                                                  rrule2->dfs_cac_ms);
1944                 else
1945                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1946         }
1947
1948         if (chan->orig_mpwr) {
1949                 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1950                  * will always follow the passed country IE power settings.
1951                  */
1952                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1953                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1954                         chan->max_power = chan->max_reg_power;
1955                 else
1956                         chan->max_power = min(chan->orig_mpwr,
1957                                               chan->max_reg_power);
1958         } else {
1959                 chan->max_power = chan->max_reg_power;
1960         }
1961 }
1962
1963 /* Note that right now we assume the desired channel bandwidth
1964  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1965  * per channel, the primary and the extension channel).
1966  */
1967 static void handle_channel(struct wiphy *wiphy,
1968                            enum nl80211_reg_initiator initiator,
1969                            struct ieee80211_channel *chan)
1970 {
1971         const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1972         struct regulatory_request *lr = get_last_request();
1973         struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1974         const struct ieee80211_reg_rule *rrule = NULL;
1975         const struct ieee80211_reg_rule *rrule1 = NULL;
1976         const struct ieee80211_reg_rule *rrule2 = NULL;
1977
1978         u32 flags = chan->orig_flags;
1979
1980         rrule = freq_reg_info(wiphy, orig_chan_freq);
1981         if (IS_ERR(rrule)) {
1982                 /* check for adjacent match, therefore get rules for
1983                  * chan - 20 MHz and chan + 20 MHz and test
1984                  * if reg rules are adjacent
1985                  */
1986                 rrule1 = freq_reg_info(wiphy,
1987                                        orig_chan_freq - MHZ_TO_KHZ(20));
1988                 rrule2 = freq_reg_info(wiphy,
1989                                        orig_chan_freq + MHZ_TO_KHZ(20));
1990                 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1991                         struct ieee80211_freq_range comb_range;
1992
1993                         if (rrule1->freq_range.end_freq_khz !=
1994                             rrule2->freq_range.start_freq_khz)
1995                                 goto disable_chan;
1996
1997                         comb_range.start_freq_khz =
1998                                 rrule1->freq_range.start_freq_khz;
1999                         comb_range.end_freq_khz =
2000                                 rrule2->freq_range.end_freq_khz;
2001                         comb_range.max_bandwidth_khz =
2002                                 min_t(u32,
2003                                       rrule1->freq_range.max_bandwidth_khz,
2004                                       rrule2->freq_range.max_bandwidth_khz);
2005
2006                         if (!cfg80211_does_bw_fit_range(&comb_range,
2007                                                         orig_chan_freq,
2008                                                         MHZ_TO_KHZ(20)))
2009                                 goto disable_chan;
2010
2011                         handle_channel_adjacent_rules(wiphy, initiator, chan,
2012                                                       flags, lr, request_wiphy,
2013                                                       rrule1, rrule2,
2014                                                       &comb_range);
2015                         return;
2016                 }
2017
2018 disable_chan:
2019                 /* We will disable all channels that do not match our
2020                  * received regulatory rule unless the hint is coming
2021                  * from a Country IE and the Country IE had no information
2022                  * about a band. The IEEE 802.11 spec allows for an AP
2023                  * to send only a subset of the regulatory rules allowed,
2024                  * so an AP in the US that only supports 2.4 GHz may only send
2025                  * a country IE with information for the 2.4 GHz band
2026                  * while 5 GHz is still supported.
2027                  */
2028                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2029                     PTR_ERR(rrule) == -ERANGE)
2030                         return;
2031
2032                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2033                     request_wiphy && request_wiphy == wiphy &&
2034                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2035                         pr_debug("Disabling freq %d.%03d MHz for good\n",
2036                                  chan->center_freq, chan->freq_offset);
2037                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2038                         chan->flags = chan->orig_flags;
2039                 } else {
2040                         pr_debug("Disabling freq %d.%03d MHz\n",
2041                                  chan->center_freq, chan->freq_offset);
2042                         chan->flags |= IEEE80211_CHAN_DISABLED;
2043                 }
2044                 return;
2045         }
2046
2047         handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2048                                    request_wiphy, rrule);
2049 }
2050
2051 static void handle_band(struct wiphy *wiphy,
2052                         enum nl80211_reg_initiator initiator,
2053                         struct ieee80211_supported_band *sband)
2054 {
2055         unsigned int i;
2056
2057         if (!sband)
2058                 return;
2059
2060         for (i = 0; i < sband->n_channels; i++)
2061                 handle_channel(wiphy, initiator, &sband->channels[i]);
2062 }
2063
2064 static bool reg_request_cell_base(struct regulatory_request *request)
2065 {
2066         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2067                 return false;
2068         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2069 }
2070
2071 bool reg_last_request_cell_base(void)
2072 {
2073         return reg_request_cell_base(get_last_request());
2074 }
2075
2076 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2077 /* Core specific check */
2078 static enum reg_request_treatment
2079 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2080 {
2081         struct regulatory_request *lr = get_last_request();
2082
2083         if (!reg_num_devs_support_basehint)
2084                 return REG_REQ_IGNORE;
2085
2086         if (reg_request_cell_base(lr) &&
2087             !regdom_changes(pending_request->alpha2))
2088                 return REG_REQ_ALREADY_SET;
2089
2090         return REG_REQ_OK;
2091 }
2092
2093 /* Device specific check */
2094 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2095 {
2096         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2097 }
2098 #else
2099 static enum reg_request_treatment
2100 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2101 {
2102         return REG_REQ_IGNORE;
2103 }
2104
2105 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2106 {
2107         return true;
2108 }
2109 #endif
2110
2111 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2112 {
2113         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2114             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2115                 return true;
2116         return false;
2117 }
2118
2119 static bool ignore_reg_update(struct wiphy *wiphy,
2120                               enum nl80211_reg_initiator initiator)
2121 {
2122         struct regulatory_request *lr = get_last_request();
2123
2124         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2125                 return true;
2126
2127         if (!lr) {
2128                 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2129                          reg_initiator_name(initiator));
2130                 return true;
2131         }
2132
2133         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2134             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2135                 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2136                          reg_initiator_name(initiator));
2137                 return true;
2138         }
2139
2140         /*
2141          * wiphy->regd will be set once the device has its own
2142          * desired regulatory domain set
2143          */
2144         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2145             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2146             !is_world_regdom(lr->alpha2)) {
2147                 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2148                          reg_initiator_name(initiator));
2149                 return true;
2150         }
2151
2152         if (reg_request_cell_base(lr))
2153                 return reg_dev_ignore_cell_hint(wiphy);
2154
2155         return false;
2156 }
2157
2158 static bool reg_is_world_roaming(struct wiphy *wiphy)
2159 {
2160         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2161         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2162         struct regulatory_request *lr = get_last_request();
2163
2164         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2165                 return true;
2166
2167         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2168             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2169                 return true;
2170
2171         return false;
2172 }
2173
2174 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2175                               struct reg_beacon *reg_beacon)
2176 {
2177         struct ieee80211_supported_band *sband;
2178         struct ieee80211_channel *chan;
2179         bool channel_changed = false;
2180         struct ieee80211_channel chan_before;
2181
2182         sband = wiphy->bands[reg_beacon->chan.band];
2183         chan = &sband->channels[chan_idx];
2184
2185         if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2186                 return;
2187
2188         if (chan->beacon_found)
2189                 return;
2190
2191         chan->beacon_found = true;
2192
2193         if (!reg_is_world_roaming(wiphy))
2194                 return;
2195
2196         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2197                 return;
2198
2199         chan_before = *chan;
2200
2201         if (chan->flags & IEEE80211_CHAN_NO_IR) {
2202                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
2203                 channel_changed = true;
2204         }
2205
2206         if (channel_changed)
2207                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2208 }
2209
2210 /*
2211  * Called when a scan on a wiphy finds a beacon on
2212  * new channel
2213  */
2214 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2215                                     struct reg_beacon *reg_beacon)
2216 {
2217         unsigned int i;
2218         struct ieee80211_supported_band *sband;
2219
2220         if (!wiphy->bands[reg_beacon->chan.band])
2221                 return;
2222
2223         sband = wiphy->bands[reg_beacon->chan.band];
2224
2225         for (i = 0; i < sband->n_channels; i++)
2226                 handle_reg_beacon(wiphy, i, reg_beacon);
2227 }
2228
2229 /*
2230  * Called upon reg changes or a new wiphy is added
2231  */
2232 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2233 {
2234         unsigned int i;
2235         struct ieee80211_supported_band *sband;
2236         struct reg_beacon *reg_beacon;
2237
2238         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2239                 if (!wiphy->bands[reg_beacon->chan.band])
2240                         continue;
2241                 sband = wiphy->bands[reg_beacon->chan.band];
2242                 for (i = 0; i < sband->n_channels; i++)
2243                         handle_reg_beacon(wiphy, i, reg_beacon);
2244         }
2245 }
2246
2247 /* Reap the advantages of previously found beacons */
2248 static void reg_process_beacons(struct wiphy *wiphy)
2249 {
2250         /*
2251          * Means we are just firing up cfg80211, so no beacons would
2252          * have been processed yet.
2253          */
2254         if (!last_request)
2255                 return;
2256         wiphy_update_beacon_reg(wiphy);
2257 }
2258
2259 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2260 {
2261         if (!chan)
2262                 return false;
2263         if (chan->flags & IEEE80211_CHAN_DISABLED)
2264                 return false;
2265         /* This would happen when regulatory rules disallow HT40 completely */
2266         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2267                 return false;
2268         return true;
2269 }
2270
2271 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2272                                          struct ieee80211_channel *channel)
2273 {
2274         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2275         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2276         const struct ieee80211_regdomain *regd;
2277         unsigned int i;
2278         u32 flags;
2279
2280         if (!is_ht40_allowed(channel)) {
2281                 channel->flags |= IEEE80211_CHAN_NO_HT40;
2282                 return;
2283         }
2284
2285         /*
2286          * We need to ensure the extension channels exist to
2287          * be able to use HT40- or HT40+, this finds them (or not)
2288          */
2289         for (i = 0; i < sband->n_channels; i++) {
2290                 struct ieee80211_channel *c = &sband->channels[i];
2291
2292                 if (c->center_freq == (channel->center_freq - 20))
2293                         channel_before = c;
2294                 if (c->center_freq == (channel->center_freq + 20))
2295                         channel_after = c;
2296         }
2297
2298         flags = 0;
2299         regd = get_wiphy_regdom(wiphy);
2300         if (regd) {
2301                 const struct ieee80211_reg_rule *reg_rule =
2302                         freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2303                                            regd, MHZ_TO_KHZ(20));
2304
2305                 if (!IS_ERR(reg_rule))
2306                         flags = reg_rule->flags;
2307         }
2308
2309         /*
2310          * Please note that this assumes target bandwidth is 20 MHz,
2311          * if that ever changes we also need to change the below logic
2312          * to include that as well.
2313          */
2314         if (!is_ht40_allowed(channel_before) ||
2315             flags & NL80211_RRF_NO_HT40MINUS)
2316                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2317         else
2318                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2319
2320         if (!is_ht40_allowed(channel_after) ||
2321             flags & NL80211_RRF_NO_HT40PLUS)
2322                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2323         else
2324                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2325 }
2326
2327 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2328                                       struct ieee80211_supported_band *sband)
2329 {
2330         unsigned int i;
2331
2332         if (!sband)
2333                 return;
2334
2335         for (i = 0; i < sband->n_channels; i++)
2336                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2337 }
2338
2339 static void reg_process_ht_flags(struct wiphy *wiphy)
2340 {
2341         enum nl80211_band band;
2342
2343         if (!wiphy)
2344                 return;
2345
2346         for (band = 0; band < NUM_NL80211_BANDS; band++)
2347                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2348 }
2349
2350 static void reg_call_notifier(struct wiphy *wiphy,
2351                               struct regulatory_request *request)
2352 {
2353         if (wiphy->reg_notifier)
2354                 wiphy->reg_notifier(wiphy, request);
2355 }
2356
2357 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2358 {
2359         struct cfg80211_chan_def chandef = {};
2360         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2361         enum nl80211_iftype iftype;
2362         bool ret;
2363
2364         wdev_lock(wdev);
2365         iftype = wdev->iftype;
2366
2367         /* make sure the interface is active */
2368         if (!wdev->netdev || !netif_running(wdev->netdev))
2369                 goto wdev_inactive_unlock;
2370
2371         switch (iftype) {
2372         case NL80211_IFTYPE_AP:
2373         case NL80211_IFTYPE_P2P_GO:
2374                 if (!wdev->beacon_interval)
2375                         goto wdev_inactive_unlock;
2376                 chandef = wdev->chandef;
2377                 break;
2378         case NL80211_IFTYPE_ADHOC:
2379                 if (!wdev->ssid_len)
2380                         goto wdev_inactive_unlock;
2381                 chandef = wdev->chandef;
2382                 break;
2383         case NL80211_IFTYPE_STATION:
2384         case NL80211_IFTYPE_P2P_CLIENT:
2385                 if (!wdev->current_bss ||
2386                     !wdev->current_bss->pub.channel)
2387                         goto wdev_inactive_unlock;
2388
2389                 if (!rdev->ops->get_channel ||
2390                     rdev_get_channel(rdev, wdev, &chandef))
2391                         cfg80211_chandef_create(&chandef,
2392                                                 wdev->current_bss->pub.channel,
2393                                                 NL80211_CHAN_NO_HT);
2394                 break;
2395         case NL80211_IFTYPE_MONITOR:
2396         case NL80211_IFTYPE_AP_VLAN:
2397         case NL80211_IFTYPE_P2P_DEVICE:
2398                 /* no enforcement required */
2399                 break;
2400         default:
2401                 /* others not implemented for now */
2402                 WARN_ON(1);
2403                 break;
2404         }
2405
2406         wdev_unlock(wdev);
2407
2408         switch (iftype) {
2409         case NL80211_IFTYPE_AP:
2410         case NL80211_IFTYPE_P2P_GO:
2411         case NL80211_IFTYPE_ADHOC:
2412                 wiphy_lock(wiphy);
2413                 ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2414                 wiphy_unlock(wiphy);
2415
2416                 return ret;
2417         case NL80211_IFTYPE_STATION:
2418         case NL80211_IFTYPE_P2P_CLIENT:
2419                 return cfg80211_chandef_usable(wiphy, &chandef,
2420                                                IEEE80211_CHAN_DISABLED);
2421         default:
2422                 break;
2423         }
2424
2425         return true;
2426
2427 wdev_inactive_unlock:
2428         wdev_unlock(wdev);
2429         return true;
2430 }
2431
2432 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2433 {
2434         struct wireless_dev *wdev;
2435         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2436
2437         ASSERT_RTNL();
2438
2439         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2440                 if (!reg_wdev_chan_valid(wiphy, wdev))
2441                         cfg80211_leave(rdev, wdev);
2442 }
2443
2444 static void reg_check_chans_work(struct work_struct *work)
2445 {
2446         struct cfg80211_registered_device *rdev;
2447
2448         pr_debug("Verifying active interfaces after reg change\n");
2449         rtnl_lock();
2450
2451         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2452                 if (!(rdev->wiphy.regulatory_flags &
2453                       REGULATORY_IGNORE_STALE_KICKOFF))
2454                         reg_leave_invalid_chans(&rdev->wiphy);
2455
2456         rtnl_unlock();
2457 }
2458
2459 static void reg_check_channels(void)
2460 {
2461         /*
2462          * Give usermode a chance to do something nicer (move to another
2463          * channel, orderly disconnection), before forcing a disconnection.
2464          */
2465         mod_delayed_work(system_power_efficient_wq,
2466                          &reg_check_chans,
2467                          msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2468 }
2469
2470 static void wiphy_update_regulatory(struct wiphy *wiphy,
2471                                     enum nl80211_reg_initiator initiator)
2472 {
2473         enum nl80211_band band;
2474         struct regulatory_request *lr = get_last_request();
2475
2476         if (ignore_reg_update(wiphy, initiator)) {
2477                 /*
2478                  * Regulatory updates set by CORE are ignored for custom
2479                  * regulatory cards. Let us notify the changes to the driver,
2480                  * as some drivers used this to restore its orig_* reg domain.
2481                  */
2482                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2483                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2484                     !(wiphy->regulatory_flags &
2485                       REGULATORY_WIPHY_SELF_MANAGED))
2486                         reg_call_notifier(wiphy, lr);
2487                 return;
2488         }
2489
2490         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2491
2492         for (band = 0; band < NUM_NL80211_BANDS; band++)
2493                 handle_band(wiphy, initiator, wiphy->bands[band]);
2494
2495         reg_process_beacons(wiphy);
2496         reg_process_ht_flags(wiphy);
2497         reg_call_notifier(wiphy, lr);
2498 }
2499
2500 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2501 {
2502         struct cfg80211_registered_device *rdev;
2503         struct wiphy *wiphy;
2504
2505         ASSERT_RTNL();
2506
2507         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2508                 wiphy = &rdev->wiphy;
2509                 wiphy_update_regulatory(wiphy, initiator);
2510         }
2511
2512         reg_check_channels();
2513 }
2514
2515 static void handle_channel_custom(struct wiphy *wiphy,
2516                                   struct ieee80211_channel *chan,
2517                                   const struct ieee80211_regdomain *regd,
2518                                   u32 min_bw)
2519 {
2520         u32 bw_flags = 0;
2521         const struct ieee80211_reg_rule *reg_rule = NULL;
2522         const struct ieee80211_power_rule *power_rule = NULL;
2523         u32 bw, center_freq_khz;
2524
2525         center_freq_khz = ieee80211_channel_to_khz(chan);
2526         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2527                 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2528                 if (!IS_ERR(reg_rule))
2529                         break;
2530         }
2531
2532         if (IS_ERR_OR_NULL(reg_rule)) {
2533                 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2534                          chan->center_freq, chan->freq_offset);
2535                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2536                         chan->flags |= IEEE80211_CHAN_DISABLED;
2537                 } else {
2538                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2539                         chan->flags = chan->orig_flags;
2540                 }
2541                 return;
2542         }
2543
2544         power_rule = &reg_rule->power_rule;
2545         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2546
2547         chan->dfs_state_entered = jiffies;
2548         chan->dfs_state = NL80211_DFS_USABLE;
2549
2550         chan->beacon_found = false;
2551
2552         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2553                 chan->flags = chan->orig_flags | bw_flags |
2554                               map_regdom_flags(reg_rule->flags);
2555         else
2556                 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2557
2558         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2559         chan->max_reg_power = chan->max_power =
2560                 (int) MBM_TO_DBM(power_rule->max_eirp);
2561
2562         if (chan->flags & IEEE80211_CHAN_RADAR) {
2563                 if (reg_rule->dfs_cac_ms)
2564                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2565                 else
2566                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2567         }
2568
2569         chan->max_power = chan->max_reg_power;
2570 }
2571
2572 static void handle_band_custom(struct wiphy *wiphy,
2573                                struct ieee80211_supported_band *sband,
2574                                const struct ieee80211_regdomain *regd)
2575 {
2576         unsigned int i;
2577
2578         if (!sband)
2579                 return;
2580
2581         /*
2582          * We currently assume that you always want at least 20 MHz,
2583          * otherwise channel 12 might get enabled if this rule is
2584          * compatible to US, which permits 2402 - 2472 MHz.
2585          */
2586         for (i = 0; i < sband->n_channels; i++)
2587                 handle_channel_custom(wiphy, &sband->channels[i], regd,
2588                                       MHZ_TO_KHZ(20));
2589 }
2590
2591 /* Used by drivers prior to wiphy registration */
2592 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2593                                    const struct ieee80211_regdomain *regd)
2594 {
2595         const struct ieee80211_regdomain *new_regd, *tmp;
2596         enum nl80211_band band;
2597         unsigned int bands_set = 0;
2598
2599         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2600              "wiphy should have REGULATORY_CUSTOM_REG\n");
2601         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2602
2603         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2604                 if (!wiphy->bands[band])
2605                         continue;
2606                 handle_band_custom(wiphy, wiphy->bands[band], regd);
2607                 bands_set++;
2608         }
2609
2610         /*
2611          * no point in calling this if it won't have any effect
2612          * on your device's supported bands.
2613          */
2614         WARN_ON(!bands_set);
2615         new_regd = reg_copy_regd(regd);
2616         if (IS_ERR(new_regd))
2617                 return;
2618
2619         rtnl_lock();
2620         wiphy_lock(wiphy);
2621
2622         tmp = get_wiphy_regdom(wiphy);
2623         rcu_assign_pointer(wiphy->regd, new_regd);
2624         rcu_free_regdom(tmp);
2625
2626         wiphy_unlock(wiphy);
2627         rtnl_unlock();
2628 }
2629 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2630
2631 static void reg_set_request_processed(void)
2632 {
2633         bool need_more_processing = false;
2634         struct regulatory_request *lr = get_last_request();
2635
2636         lr->processed = true;
2637
2638         spin_lock(&reg_requests_lock);
2639         if (!list_empty(&reg_requests_list))
2640                 need_more_processing = true;
2641         spin_unlock(&reg_requests_lock);
2642
2643         cancel_crda_timeout();
2644
2645         if (need_more_processing)
2646                 schedule_work(&reg_work);
2647 }
2648
2649 /**
2650  * reg_process_hint_core - process core regulatory requests
2651  * @core_request: a pending core regulatory request
2652  *
2653  * The wireless subsystem can use this function to process
2654  * a regulatory request issued by the regulatory core.
2655  */
2656 static enum reg_request_treatment
2657 reg_process_hint_core(struct regulatory_request *core_request)
2658 {
2659         if (reg_query_database(core_request)) {
2660                 core_request->intersect = false;
2661                 core_request->processed = false;
2662                 reg_update_last_request(core_request);
2663                 return REG_REQ_OK;
2664         }
2665
2666         return REG_REQ_IGNORE;
2667 }
2668
2669 static enum reg_request_treatment
2670 __reg_process_hint_user(struct regulatory_request *user_request)
2671 {
2672         struct regulatory_request *lr = get_last_request();
2673
2674         if (reg_request_cell_base(user_request))
2675                 return reg_ignore_cell_hint(user_request);
2676
2677         if (reg_request_cell_base(lr))
2678                 return REG_REQ_IGNORE;
2679
2680         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2681                 return REG_REQ_INTERSECT;
2682         /*
2683          * If the user knows better the user should set the regdom
2684          * to their country before the IE is picked up
2685          */
2686         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2687             lr->intersect)
2688                 return REG_REQ_IGNORE;
2689         /*
2690          * Process user requests only after previous user/driver/core
2691          * requests have been processed
2692          */
2693         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2694              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2695              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2696             regdom_changes(lr->alpha2))
2697                 return REG_REQ_IGNORE;
2698
2699         if (!regdom_changes(user_request->alpha2))
2700                 return REG_REQ_ALREADY_SET;
2701
2702         return REG_REQ_OK;
2703 }
2704
2705 /**
2706  * reg_process_hint_user - process user regulatory requests
2707  * @user_request: a pending user regulatory request
2708  *
2709  * The wireless subsystem can use this function to process
2710  * a regulatory request initiated by userspace.
2711  */
2712 static enum reg_request_treatment
2713 reg_process_hint_user(struct regulatory_request *user_request)
2714 {
2715         enum reg_request_treatment treatment;
2716
2717         treatment = __reg_process_hint_user(user_request);
2718         if (treatment == REG_REQ_IGNORE ||
2719             treatment == REG_REQ_ALREADY_SET)
2720                 return REG_REQ_IGNORE;
2721
2722         user_request->intersect = treatment == REG_REQ_INTERSECT;
2723         user_request->processed = false;
2724
2725         if (reg_query_database(user_request)) {
2726                 reg_update_last_request(user_request);
2727                 user_alpha2[0] = user_request->alpha2[0];
2728                 user_alpha2[1] = user_request->alpha2[1];
2729                 return REG_REQ_OK;
2730         }
2731
2732         return REG_REQ_IGNORE;
2733 }
2734
2735 static enum reg_request_treatment
2736 __reg_process_hint_driver(struct regulatory_request *driver_request)
2737 {
2738         struct regulatory_request *lr = get_last_request();
2739
2740         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2741                 if (regdom_changes(driver_request->alpha2))
2742                         return REG_REQ_OK;
2743                 return REG_REQ_ALREADY_SET;
2744         }
2745
2746         /*
2747          * This would happen if you unplug and plug your card
2748          * back in or if you add a new device for which the previously
2749          * loaded card also agrees on the regulatory domain.
2750          */
2751         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2752             !regdom_changes(driver_request->alpha2))
2753                 return REG_REQ_ALREADY_SET;
2754
2755         return REG_REQ_INTERSECT;
2756 }
2757
2758 /**
2759  * reg_process_hint_driver - process driver regulatory requests
2760  * @wiphy: the wireless device for the regulatory request
2761  * @driver_request: a pending driver regulatory request
2762  *
2763  * The wireless subsystem can use this function to process
2764  * a regulatory request issued by an 802.11 driver.
2765  *
2766  * Returns one of the different reg request treatment values.
2767  */
2768 static enum reg_request_treatment
2769 reg_process_hint_driver(struct wiphy *wiphy,
2770                         struct regulatory_request *driver_request)
2771 {
2772         const struct ieee80211_regdomain *regd, *tmp;
2773         enum reg_request_treatment treatment;
2774
2775         treatment = __reg_process_hint_driver(driver_request);
2776
2777         switch (treatment) {
2778         case REG_REQ_OK:
2779                 break;
2780         case REG_REQ_IGNORE:
2781                 return REG_REQ_IGNORE;
2782         case REG_REQ_INTERSECT:
2783         case REG_REQ_ALREADY_SET:
2784                 regd = reg_copy_regd(get_cfg80211_regdom());
2785                 if (IS_ERR(regd))
2786                         return REG_REQ_IGNORE;
2787
2788                 tmp = get_wiphy_regdom(wiphy);
2789                 ASSERT_RTNL();
2790                 wiphy_lock(wiphy);
2791                 rcu_assign_pointer(wiphy->regd, regd);
2792                 wiphy_unlock(wiphy);
2793                 rcu_free_regdom(tmp);
2794         }
2795
2796
2797         driver_request->intersect = treatment == REG_REQ_INTERSECT;
2798         driver_request->processed = false;
2799
2800         /*
2801          * Since CRDA will not be called in this case as we already
2802          * have applied the requested regulatory domain before we just
2803          * inform userspace we have processed the request
2804          */
2805         if (treatment == REG_REQ_ALREADY_SET) {
2806                 nl80211_send_reg_change_event(driver_request);
2807                 reg_update_last_request(driver_request);
2808                 reg_set_request_processed();
2809                 return REG_REQ_ALREADY_SET;
2810         }
2811
2812         if (reg_query_database(driver_request)) {
2813                 reg_update_last_request(driver_request);
2814                 return REG_REQ_OK;
2815         }
2816
2817         return REG_REQ_IGNORE;
2818 }
2819
2820 static enum reg_request_treatment
2821 __reg_process_hint_country_ie(struct wiphy *wiphy,
2822                               struct regulatory_request *country_ie_request)
2823 {
2824         struct wiphy *last_wiphy = NULL;
2825         struct regulatory_request *lr = get_last_request();
2826
2827         if (reg_request_cell_base(lr)) {
2828                 /* Trust a Cell base station over the AP's country IE */
2829                 if (regdom_changes(country_ie_request->alpha2))
2830                         return REG_REQ_IGNORE;
2831                 return REG_REQ_ALREADY_SET;
2832         } else {
2833                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2834                         return REG_REQ_IGNORE;
2835         }
2836
2837         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2838                 return -EINVAL;
2839
2840         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2841                 return REG_REQ_OK;
2842
2843         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2844
2845         if (last_wiphy != wiphy) {
2846                 /*
2847                  * Two cards with two APs claiming different
2848                  * Country IE alpha2s. We could
2849                  * intersect them, but that seems unlikely
2850                  * to be correct. Reject second one for now.
2851                  */
2852                 if (regdom_changes(country_ie_request->alpha2))
2853                         return REG_REQ_IGNORE;
2854                 return REG_REQ_ALREADY_SET;
2855         }
2856
2857         if (regdom_changes(country_ie_request->alpha2))
2858                 return REG_REQ_OK;
2859         return REG_REQ_ALREADY_SET;
2860 }
2861
2862 /**
2863  * reg_process_hint_country_ie - process regulatory requests from country IEs
2864  * @wiphy: the wireless device for the regulatory request
2865  * @country_ie_request: a regulatory request from a country IE
2866  *
2867  * The wireless subsystem can use this function to process
2868  * a regulatory request issued by a country Information Element.
2869  *
2870  * Returns one of the different reg request treatment values.
2871  */
2872 static enum reg_request_treatment
2873 reg_process_hint_country_ie(struct wiphy *wiphy,
2874                             struct regulatory_request *country_ie_request)
2875 {
2876         enum reg_request_treatment treatment;
2877
2878         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2879
2880         switch (treatment) {
2881         case REG_REQ_OK:
2882                 break;
2883         case REG_REQ_IGNORE:
2884                 return REG_REQ_IGNORE;
2885         case REG_REQ_ALREADY_SET:
2886                 reg_free_request(country_ie_request);
2887                 return REG_REQ_ALREADY_SET;
2888         case REG_REQ_INTERSECT:
2889                 /*
2890                  * This doesn't happen yet, not sure we
2891                  * ever want to support it for this case.
2892                  */
2893                 WARN_ONCE(1, "Unexpected intersection for country elements");
2894                 return REG_REQ_IGNORE;
2895         }
2896
2897         country_ie_request->intersect = false;
2898         country_ie_request->processed = false;
2899
2900         if (reg_query_database(country_ie_request)) {
2901                 reg_update_last_request(country_ie_request);
2902                 return REG_REQ_OK;
2903         }
2904
2905         return REG_REQ_IGNORE;
2906 }
2907
2908 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2909 {
2910         const struct ieee80211_regdomain *wiphy1_regd = NULL;
2911         const struct ieee80211_regdomain *wiphy2_regd = NULL;
2912         const struct ieee80211_regdomain *cfg80211_regd = NULL;
2913         bool dfs_domain_same;
2914
2915         rcu_read_lock();
2916
2917         cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2918         wiphy1_regd = rcu_dereference(wiphy1->regd);
2919         if (!wiphy1_regd)
2920                 wiphy1_regd = cfg80211_regd;
2921
2922         wiphy2_regd = rcu_dereference(wiphy2->regd);
2923         if (!wiphy2_regd)
2924                 wiphy2_regd = cfg80211_regd;
2925
2926         dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2927
2928         rcu_read_unlock();
2929
2930         return dfs_domain_same;
2931 }
2932
2933 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2934                                     struct ieee80211_channel *src_chan)
2935 {
2936         if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2937             !(src_chan->flags & IEEE80211_CHAN_RADAR))
2938                 return;
2939
2940         if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2941             src_chan->flags & IEEE80211_CHAN_DISABLED)
2942                 return;
2943
2944         if (src_chan->center_freq == dst_chan->center_freq &&
2945             dst_chan->dfs_state == NL80211_DFS_USABLE) {
2946                 dst_chan->dfs_state = src_chan->dfs_state;
2947                 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2948         }
2949 }
2950
2951 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2952                                        struct wiphy *src_wiphy)
2953 {
2954         struct ieee80211_supported_band *src_sband, *dst_sband;
2955         struct ieee80211_channel *src_chan, *dst_chan;
2956         int i, j, band;
2957
2958         if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2959                 return;
2960
2961         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2962                 dst_sband = dst_wiphy->bands[band];
2963                 src_sband = src_wiphy->bands[band];
2964                 if (!dst_sband || !src_sband)
2965                         continue;
2966
2967                 for (i = 0; i < dst_sband->n_channels; i++) {
2968                         dst_chan = &dst_sband->channels[i];
2969                         for (j = 0; j < src_sband->n_channels; j++) {
2970                                 src_chan = &src_sband->channels[j];
2971                                 reg_copy_dfs_chan_state(dst_chan, src_chan);
2972                         }
2973                 }
2974         }
2975 }
2976
2977 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2978 {
2979         struct cfg80211_registered_device *rdev;
2980
2981         ASSERT_RTNL();
2982
2983         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2984                 if (wiphy == &rdev->wiphy)
2985                         continue;
2986                 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2987         }
2988 }
2989
2990 /* This processes *all* regulatory hints */
2991 static void reg_process_hint(struct regulatory_request *reg_request)
2992 {
2993         struct wiphy *wiphy = NULL;
2994         enum reg_request_treatment treatment;
2995         enum nl80211_reg_initiator initiator = reg_request->initiator;
2996
2997         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2998                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2999
3000         switch (initiator) {
3001         case NL80211_REGDOM_SET_BY_CORE:
3002                 treatment = reg_process_hint_core(reg_request);
3003                 break;
3004         case NL80211_REGDOM_SET_BY_USER:
3005                 treatment = reg_process_hint_user(reg_request);
3006                 break;
3007         case NL80211_REGDOM_SET_BY_DRIVER:
3008                 if (!wiphy)
3009                         goto out_free;
3010                 treatment = reg_process_hint_driver(wiphy, reg_request);
3011                 break;
3012         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3013                 if (!wiphy)
3014                         goto out_free;
3015                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
3016                 break;
3017         default:
3018                 WARN(1, "invalid initiator %d\n", initiator);
3019                 goto out_free;
3020         }
3021
3022         if (treatment == REG_REQ_IGNORE)
3023                 goto out_free;
3024
3025         WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3026              "unexpected treatment value %d\n", treatment);
3027
3028         /* This is required so that the orig_* parameters are saved.
3029          * NOTE: treatment must be set for any case that reaches here!
3030          */
3031         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3032             wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3033                 wiphy_update_regulatory(wiphy, initiator);
3034                 wiphy_all_share_dfs_chan_state(wiphy);
3035                 reg_check_channels();
3036         }
3037
3038         return;
3039
3040 out_free:
3041         reg_free_request(reg_request);
3042 }
3043
3044 static void notify_self_managed_wiphys(struct regulatory_request *request)
3045 {
3046         struct cfg80211_registered_device *rdev;
3047         struct wiphy *wiphy;
3048
3049         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3050                 wiphy = &rdev->wiphy;
3051                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3052                     request->initiator == NL80211_REGDOM_SET_BY_USER)
3053                         reg_call_notifier(wiphy, request);
3054         }
3055 }
3056
3057 /*
3058  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3059  * Regulatory hints come on a first come first serve basis and we
3060  * must process each one atomically.
3061  */
3062 static void reg_process_pending_hints(void)
3063 {
3064         struct regulatory_request *reg_request, *lr;
3065
3066         lr = get_last_request();
3067
3068         /* When last_request->processed becomes true this will be rescheduled */
3069         if (lr && !lr->processed) {
3070                 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3071                 return;
3072         }
3073
3074         spin_lock(&reg_requests_lock);
3075
3076         if (list_empty(&reg_requests_list)) {
3077                 spin_unlock(&reg_requests_lock);
3078                 return;
3079         }
3080
3081         reg_request = list_first_entry(&reg_requests_list,
3082                                        struct regulatory_request,
3083                                        list);
3084         list_del_init(&reg_request->list);
3085
3086         spin_unlock(&reg_requests_lock);
3087
3088         notify_self_managed_wiphys(reg_request);
3089
3090         reg_process_hint(reg_request);
3091
3092         lr = get_last_request();
3093
3094         spin_lock(&reg_requests_lock);
3095         if (!list_empty(&reg_requests_list) && lr && lr->processed)
3096                 schedule_work(&reg_work);
3097         spin_unlock(&reg_requests_lock);
3098 }
3099
3100 /* Processes beacon hints -- this has nothing to do with country IEs */
3101 static void reg_process_pending_beacon_hints(void)
3102 {
3103         struct cfg80211_registered_device *rdev;
3104         struct reg_beacon *pending_beacon, *tmp;
3105
3106         /* This goes through the _pending_ beacon list */
3107         spin_lock_bh(&reg_pending_beacons_lock);
3108
3109         list_for_each_entry_safe(pending_beacon, tmp,
3110                                  &reg_pending_beacons, list) {
3111                 list_del_init(&pending_beacon->list);
3112
3113                 /* Applies the beacon hint to current wiphys */
3114                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3115                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3116
3117                 /* Remembers the beacon hint for new wiphys or reg changes */
3118                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
3119         }
3120
3121         spin_unlock_bh(&reg_pending_beacons_lock);
3122 }
3123
3124 static void reg_process_self_managed_hint(struct wiphy *wiphy)
3125 {
3126         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3127         const struct ieee80211_regdomain *tmp;
3128         const struct ieee80211_regdomain *regd;
3129         enum nl80211_band band;
3130         struct regulatory_request request = {};
3131
3132         ASSERT_RTNL();
3133         lockdep_assert_wiphy(wiphy);
3134
3135         spin_lock(&reg_requests_lock);
3136         regd = rdev->requested_regd;
3137         rdev->requested_regd = NULL;
3138         spin_unlock(&reg_requests_lock);
3139
3140         if (!regd)
3141                 return;
3142
3143         tmp = get_wiphy_regdom(wiphy);
3144         rcu_assign_pointer(wiphy->regd, regd);
3145         rcu_free_regdom(tmp);
3146
3147         for (band = 0; band < NUM_NL80211_BANDS; band++)
3148                 handle_band_custom(wiphy, wiphy->bands[band], regd);
3149
3150         reg_process_ht_flags(wiphy);
3151
3152         request.wiphy_idx = get_wiphy_idx(wiphy);
3153         request.alpha2[0] = regd->alpha2[0];
3154         request.alpha2[1] = regd->alpha2[1];
3155         request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3156
3157         nl80211_send_wiphy_reg_change_event(&request);
3158 }
3159
3160 static void reg_process_self_managed_hints(void)
3161 {
3162         struct cfg80211_registered_device *rdev;
3163
3164         ASSERT_RTNL();
3165
3166         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3167                 wiphy_lock(&rdev->wiphy);
3168                 reg_process_self_managed_hint(&rdev->wiphy);
3169                 wiphy_unlock(&rdev->wiphy);
3170         }
3171
3172         reg_check_channels();
3173 }
3174
3175 static void reg_todo(struct work_struct *work)
3176 {
3177         rtnl_lock();
3178         reg_process_pending_hints();
3179         reg_process_pending_beacon_hints();
3180         reg_process_self_managed_hints();
3181         rtnl_unlock();
3182 }
3183
3184 static void queue_regulatory_request(struct regulatory_request *request)
3185 {
3186         request->alpha2[0] = toupper(request->alpha2[0]);
3187         request->alpha2[1] = toupper(request->alpha2[1]);
3188
3189         spin_lock(&reg_requests_lock);
3190         list_add_tail(&request->list, &reg_requests_list);
3191         spin_unlock(&reg_requests_lock);
3192
3193         schedule_work(&reg_work);
3194 }
3195
3196 /*
3197  * Core regulatory hint -- happens during cfg80211_init()
3198  * and when we restore regulatory settings.
3199  */
3200 static int regulatory_hint_core(const char *alpha2)
3201 {
3202         struct regulatory_request *request;
3203
3204         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3205         if (!request)
3206                 return -ENOMEM;
3207
3208         request->alpha2[0] = alpha2[0];
3209         request->alpha2[1] = alpha2[1];
3210         request->initiator = NL80211_REGDOM_SET_BY_CORE;
3211         request->wiphy_idx = WIPHY_IDX_INVALID;
3212
3213         queue_regulatory_request(request);
3214
3215         return 0;
3216 }
3217
3218 /* User hints */
3219 int regulatory_hint_user(const char *alpha2,
3220                          enum nl80211_user_reg_hint_type user_reg_hint_type)
3221 {
3222         struct regulatory_request *request;
3223
3224         if (WARN_ON(!alpha2))
3225                 return -EINVAL;
3226
3227         if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3228                 return -EINVAL;
3229
3230         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3231         if (!request)
3232                 return -ENOMEM;
3233
3234         request->wiphy_idx = WIPHY_IDX_INVALID;
3235         request->alpha2[0] = alpha2[0];
3236         request->alpha2[1] = alpha2[1];
3237         request->initiator = NL80211_REGDOM_SET_BY_USER;
3238         request->user_reg_hint_type = user_reg_hint_type;
3239
3240         /* Allow calling CRDA again */
3241         reset_crda_timeouts();
3242
3243         queue_regulatory_request(request);
3244
3245         return 0;
3246 }
3247
3248 int regulatory_hint_indoor(bool is_indoor, u32 portid)
3249 {
3250         spin_lock(&reg_indoor_lock);
3251
3252         /* It is possible that more than one user space process is trying to
3253          * configure the indoor setting. To handle such cases, clear the indoor
3254          * setting in case that some process does not think that the device
3255          * is operating in an indoor environment. In addition, if a user space
3256          * process indicates that it is controlling the indoor setting, save its
3257          * portid, i.e., make it the owner.
3258          */
3259         reg_is_indoor = is_indoor;
3260         if (reg_is_indoor) {
3261                 if (!reg_is_indoor_portid)
3262                         reg_is_indoor_portid = portid;
3263         } else {
3264                 reg_is_indoor_portid = 0;
3265         }
3266
3267         spin_unlock(&reg_indoor_lock);
3268
3269         if (!is_indoor)
3270                 reg_check_channels();
3271
3272         return 0;
3273 }
3274
3275 void regulatory_netlink_notify(u32 portid)
3276 {
3277         spin_lock(&reg_indoor_lock);
3278
3279         if (reg_is_indoor_portid != portid) {
3280                 spin_unlock(&reg_indoor_lock);
3281                 return;
3282         }
3283
3284         reg_is_indoor = false;
3285         reg_is_indoor_portid = 0;
3286
3287         spin_unlock(&reg_indoor_lock);
3288
3289         reg_check_channels();
3290 }
3291
3292 /* Driver hints */
3293 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3294 {
3295         struct regulatory_request *request;
3296
3297         if (WARN_ON(!alpha2 || !wiphy))
3298                 return -EINVAL;
3299
3300         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3301
3302         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3303         if (!request)
3304                 return -ENOMEM;
3305
3306         request->wiphy_idx = get_wiphy_idx(wiphy);
3307
3308         request->alpha2[0] = alpha2[0];
3309         request->alpha2[1] = alpha2[1];
3310         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3311
3312         /* Allow calling CRDA again */
3313         reset_crda_timeouts();
3314
3315         queue_regulatory_request(request);
3316
3317         return 0;
3318 }
3319 EXPORT_SYMBOL(regulatory_hint);
3320
3321 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3322                                 const u8 *country_ie, u8 country_ie_len)
3323 {
3324         char alpha2[2];
3325         enum environment_cap env = ENVIRON_ANY;
3326         struct regulatory_request *request = NULL, *lr;
3327
3328         /* IE len must be evenly divisible by 2 */
3329         if (country_ie_len & 0x01)
3330                 return;
3331
3332         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3333                 return;
3334
3335         request = kzalloc(sizeof(*request), GFP_KERNEL);
3336         if (!request)
3337                 return;
3338
3339         alpha2[0] = country_ie[0];
3340         alpha2[1] = country_ie[1];
3341
3342         if (country_ie[2] == 'I')
3343                 env = ENVIRON_INDOOR;
3344         else if (country_ie[2] == 'O')
3345                 env = ENVIRON_OUTDOOR;
3346
3347         rcu_read_lock();
3348         lr = get_last_request();
3349
3350         if (unlikely(!lr))
3351                 goto out;
3352
3353         /*
3354          * We will run this only upon a successful connection on cfg80211.
3355          * We leave conflict resolution to the workqueue, where can hold
3356          * the RTNL.
3357          */
3358         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3359             lr->wiphy_idx != WIPHY_IDX_INVALID)
3360                 goto out;
3361
3362         request->wiphy_idx = get_wiphy_idx(wiphy);
3363         request->alpha2[0] = alpha2[0];
3364         request->alpha2[1] = alpha2[1];
3365         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3366         request->country_ie_env = env;
3367
3368         /* Allow calling CRDA again */
3369         reset_crda_timeouts();
3370
3371         queue_regulatory_request(request);
3372         request = NULL;
3373 out:
3374         kfree(request);
3375         rcu_read_unlock();
3376 }
3377
3378 static void restore_alpha2(char *alpha2, bool reset_user)
3379 {
3380         /* indicates there is no alpha2 to consider for restoration */
3381         alpha2[0] = '9';
3382         alpha2[1] = '7';
3383
3384         /* The user setting has precedence over the module parameter */
3385         if (is_user_regdom_saved()) {
3386                 /* Unless we're asked to ignore it and reset it */
3387                 if (reset_user) {
3388                         pr_debug("Restoring regulatory settings including user preference\n");
3389                         user_alpha2[0] = '9';
3390                         user_alpha2[1] = '7';
3391
3392                         /*
3393                          * If we're ignoring user settings, we still need to
3394                          * check the module parameter to ensure we put things
3395                          * back as they were for a full restore.
3396                          */
3397                         if (!is_world_regdom(ieee80211_regdom)) {
3398                                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3399                                          ieee80211_regdom[0], ieee80211_regdom[1]);
3400                                 alpha2[0] = ieee80211_regdom[0];
3401                                 alpha2[1] = ieee80211_regdom[1];
3402                         }
3403                 } else {
3404                         pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3405                                  user_alpha2[0], user_alpha2[1]);
3406                         alpha2[0] = user_alpha2[0];
3407                         alpha2[1] = user_alpha2[1];
3408                 }
3409         } else if (!is_world_regdom(ieee80211_regdom)) {
3410                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3411                          ieee80211_regdom[0], ieee80211_regdom[1]);
3412                 alpha2[0] = ieee80211_regdom[0];
3413                 alpha2[1] = ieee80211_regdom[1];
3414         } else
3415                 pr_debug("Restoring regulatory settings\n");
3416 }
3417
3418 static void restore_custom_reg_settings(struct wiphy *wiphy)
3419 {
3420         struct ieee80211_supported_band *sband;
3421         enum nl80211_band band;
3422         struct ieee80211_channel *chan;
3423         int i;
3424
3425         for (band = 0; band < NUM_NL80211_BANDS; band++) {
3426                 sband = wiphy->bands[band];
3427                 if (!sband)
3428                         continue;
3429                 for (i = 0; i < sband->n_channels; i++) {
3430                         chan = &sband->channels[i];
3431                         chan->flags = chan->orig_flags;
3432                         chan->max_antenna_gain = chan->orig_mag;
3433                         chan->max_power = chan->orig_mpwr;
3434                         chan->beacon_found = false;
3435                 }
3436         }
3437 }
3438
3439 /*
3440  * Restoring regulatory settings involves ignoring any
3441  * possibly stale country IE information and user regulatory
3442  * settings if so desired, this includes any beacon hints
3443  * learned as we could have traveled outside to another country
3444  * after disconnection. To restore regulatory settings we do
3445  * exactly what we did at bootup:
3446  *
3447  *   - send a core regulatory hint
3448  *   - send a user regulatory hint if applicable
3449  *
3450  * Device drivers that send a regulatory hint for a specific country
3451  * keep their own regulatory domain on wiphy->regd so that does
3452  * not need to be remembered.
3453  */
3454 static void restore_regulatory_settings(bool reset_user, bool cached)
3455 {
3456         char alpha2[2];
3457         char world_alpha2[2];
3458         struct reg_beacon *reg_beacon, *btmp;
3459         LIST_HEAD(tmp_reg_req_list);
3460         struct cfg80211_registered_device *rdev;
3461
3462         ASSERT_RTNL();
3463
3464         /*
3465          * Clear the indoor setting in case that it is not controlled by user
3466          * space, as otherwise there is no guarantee that the device is still
3467          * operating in an indoor environment.
3468          */
3469         spin_lock(&reg_indoor_lock);
3470         if (reg_is_indoor && !reg_is_indoor_portid) {
3471                 reg_is_indoor = false;
3472                 reg_check_channels();
3473         }
3474         spin_unlock(&reg_indoor_lock);
3475
3476         reset_regdomains(true, &world_regdom);
3477         restore_alpha2(alpha2, reset_user);
3478
3479         /*
3480          * If there's any pending requests we simply
3481          * stash them to a temporary pending queue and
3482          * add then after we've restored regulatory
3483          * settings.
3484          */
3485         spin_lock(&reg_requests_lock);
3486         list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3487         spin_unlock(&reg_requests_lock);
3488
3489         /* Clear beacon hints */
3490         spin_lock_bh(&reg_pending_beacons_lock);
3491         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3492                 list_del(&reg_beacon->list);
3493                 kfree(reg_beacon);
3494         }
3495         spin_unlock_bh(&reg_pending_beacons_lock);
3496
3497         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3498                 list_del(&reg_beacon->list);
3499                 kfree(reg_beacon);
3500         }
3501
3502         /* First restore to the basic regulatory settings */
3503         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3504         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3505
3506         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3507                 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3508                         continue;
3509                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3510                         restore_custom_reg_settings(&rdev->wiphy);
3511         }
3512
3513         if (cached && (!is_an_alpha2(alpha2) ||
3514                        !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3515                 reset_regdomains(false, cfg80211_world_regdom);
3516                 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3517                 print_regdomain(get_cfg80211_regdom());
3518                 nl80211_send_reg_change_event(&core_request_world);
3519                 reg_set_request_processed();
3520
3521                 if (is_an_alpha2(alpha2) &&
3522                     !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3523                         struct regulatory_request *ureq;
3524
3525                         spin_lock(&reg_requests_lock);
3526                         ureq = list_last_entry(&reg_requests_list,
3527                                                struct regulatory_request,
3528                                                list);
3529                         list_del(&ureq->list);
3530                         spin_unlock(&reg_requests_lock);
3531
3532                         notify_self_managed_wiphys(ureq);
3533                         reg_update_last_request(ureq);
3534                         set_regdom(reg_copy_regd(cfg80211_user_regdom),
3535                                    REGD_SOURCE_CACHED);
3536                 }
3537         } else {
3538                 regulatory_hint_core(world_alpha2);
3539
3540                 /*
3541                  * This restores the ieee80211_regdom module parameter
3542                  * preference or the last user requested regulatory
3543                  * settings, user regulatory settings takes precedence.
3544                  */
3545                 if (is_an_alpha2(alpha2))
3546                         regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3547         }
3548
3549         spin_lock(&reg_requests_lock);
3550         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3551         spin_unlock(&reg_requests_lock);
3552
3553         pr_debug("Kicking the queue\n");
3554
3555         schedule_work(&reg_work);
3556 }
3557
3558 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3559 {
3560         struct cfg80211_registered_device *rdev;
3561         struct wireless_dev *wdev;
3562
3563         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3564                 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3565                         wdev_lock(wdev);
3566                         if (!(wdev->wiphy->regulatory_flags & flag)) {
3567                                 wdev_unlock(wdev);
3568                                 return false;
3569                         }
3570                         wdev_unlock(wdev);
3571                 }
3572         }
3573
3574         return true;
3575 }
3576
3577 void regulatory_hint_disconnect(void)
3578 {
3579         /* Restore of regulatory settings is not required when wiphy(s)
3580          * ignore IE from connected access point but clearance of beacon hints
3581          * is required when wiphy(s) supports beacon hints.
3582          */
3583         if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3584                 struct reg_beacon *reg_beacon, *btmp;
3585
3586                 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3587                         return;
3588
3589                 spin_lock_bh(&reg_pending_beacons_lock);
3590                 list_for_each_entry_safe(reg_beacon, btmp,
3591                                          &reg_pending_beacons, list) {
3592                         list_del(&reg_beacon->list);
3593                         kfree(reg_beacon);
3594                 }
3595                 spin_unlock_bh(&reg_pending_beacons_lock);
3596
3597                 list_for_each_entry_safe(reg_beacon, btmp,
3598                                          &reg_beacon_list, list) {
3599                         list_del(&reg_beacon->list);
3600                         kfree(reg_beacon);
3601                 }
3602
3603                 return;
3604         }
3605
3606         pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3607         restore_regulatory_settings(false, true);
3608 }
3609
3610 static bool freq_is_chan_12_13_14(u32 freq)
3611 {
3612         if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3613             freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3614             freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3615                 return true;
3616         return false;
3617 }
3618
3619 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3620 {
3621         struct reg_beacon *pending_beacon;
3622
3623         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3624                 if (ieee80211_channel_equal(beacon_chan,
3625                                             &pending_beacon->chan))
3626                         return true;
3627         return false;
3628 }
3629
3630 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3631                                  struct ieee80211_channel *beacon_chan,
3632                                  gfp_t gfp)
3633 {
3634         struct reg_beacon *reg_beacon;
3635         bool processing;
3636
3637         if (beacon_chan->beacon_found ||
3638             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3639             (beacon_chan->band == NL80211_BAND_2GHZ &&
3640              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3641                 return 0;
3642
3643         spin_lock_bh(&reg_pending_beacons_lock);
3644         processing = pending_reg_beacon(beacon_chan);
3645         spin_unlock_bh(&reg_pending_beacons_lock);
3646
3647         if (processing)
3648                 return 0;
3649
3650         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3651         if (!reg_beacon)
3652                 return -ENOMEM;
3653
3654         pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3655                  beacon_chan->center_freq, beacon_chan->freq_offset,
3656                  ieee80211_freq_khz_to_channel(
3657                          ieee80211_channel_to_khz(beacon_chan)),
3658                  wiphy_name(wiphy));
3659
3660         memcpy(&reg_beacon->chan, beacon_chan,
3661                sizeof(struct ieee80211_channel));
3662
3663         /*
3664          * Since we can be called from BH or and non-BH context
3665          * we must use spin_lock_bh()
3666          */
3667         spin_lock_bh(&reg_pending_beacons_lock);
3668         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3669         spin_unlock_bh(&reg_pending_beacons_lock);
3670
3671         schedule_work(&reg_work);
3672
3673         return 0;
3674 }
3675
3676 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3677 {
3678         unsigned int i;
3679         const struct ieee80211_reg_rule *reg_rule = NULL;
3680         const struct ieee80211_freq_range *freq_range = NULL;
3681         const struct ieee80211_power_rule *power_rule = NULL;
3682         char bw[32], cac_time[32];
3683
3684         pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3685
3686         for (i = 0; i < rd->n_reg_rules; i++) {
3687                 reg_rule = &rd->reg_rules[i];
3688                 freq_range = &reg_rule->freq_range;
3689                 power_rule = &reg_rule->power_rule;
3690
3691                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3692                         snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3693                                  freq_range->max_bandwidth_khz,
3694                                  reg_get_max_bandwidth(rd, reg_rule));
3695                 else
3696                         snprintf(bw, sizeof(bw), "%d KHz",
3697                                  freq_range->max_bandwidth_khz);
3698
3699                 if (reg_rule->flags & NL80211_RRF_DFS)
3700                         scnprintf(cac_time, sizeof(cac_time), "%u s",
3701                                   reg_rule->dfs_cac_ms/1000);
3702                 else
3703                         scnprintf(cac_time, sizeof(cac_time), "N/A");
3704
3705
3706                 /*
3707                  * There may not be documentation for max antenna gain
3708                  * in certain regions
3709                  */
3710                 if (power_rule->max_antenna_gain)
3711                         pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3712                                 freq_range->start_freq_khz,
3713                                 freq_range->end_freq_khz,
3714                                 bw,
3715                                 power_rule->max_antenna_gain,
3716                                 power_rule->max_eirp,
3717                                 cac_time);
3718                 else
3719                         pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3720                                 freq_range->start_freq_khz,
3721                                 freq_range->end_freq_khz,
3722                                 bw,
3723                                 power_rule->max_eirp,
3724                                 cac_time);
3725         }
3726 }
3727
3728 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3729 {
3730         switch (dfs_region) {
3731         case NL80211_DFS_UNSET:
3732         case NL80211_DFS_FCC:
3733         case NL80211_DFS_ETSI:
3734         case NL80211_DFS_JP:
3735                 return true;
3736         default:
3737                 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3738                 return false;
3739         }
3740 }
3741
3742 static void print_regdomain(const struct ieee80211_regdomain *rd)
3743 {
3744         struct regulatory_request *lr = get_last_request();
3745
3746         if (is_intersected_alpha2(rd->alpha2)) {
3747                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3748                         struct cfg80211_registered_device *rdev;
3749                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3750                         if (rdev) {
3751                                 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3752                                         rdev->country_ie_alpha2[0],
3753                                         rdev->country_ie_alpha2[1]);
3754                         } else
3755                                 pr_debug("Current regulatory domain intersected:\n");
3756                 } else
3757                         pr_debug("Current regulatory domain intersected:\n");
3758         } else if (is_world_regdom(rd->alpha2)) {
3759                 pr_debug("World regulatory domain updated:\n");
3760         } else {
3761                 if (is_unknown_alpha2(rd->alpha2))
3762                         pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3763                 else {
3764                         if (reg_request_cell_base(lr))
3765                                 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3766                                         rd->alpha2[0], rd->alpha2[1]);
3767                         else
3768                                 pr_debug("Regulatory domain changed to country: %c%c\n",
3769                                         rd->alpha2[0], rd->alpha2[1]);
3770                 }
3771         }
3772
3773         pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3774         print_rd_rules(rd);
3775 }
3776
3777 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3778 {
3779         pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3780         print_rd_rules(rd);
3781 }
3782
3783 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3784 {
3785         if (!is_world_regdom(rd->alpha2))
3786                 return -EINVAL;
3787         update_world_regdomain(rd);
3788         return 0;
3789 }
3790
3791 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3792                            struct regulatory_request *user_request)
3793 {
3794         const struct ieee80211_regdomain *intersected_rd = NULL;
3795
3796         if (!regdom_changes(rd->alpha2))
3797                 return -EALREADY;
3798
3799         if (!is_valid_rd(rd)) {
3800                 pr_err("Invalid regulatory domain detected: %c%c\n",
3801                        rd->alpha2[0], rd->alpha2[1]);
3802                 print_regdomain_info(rd);
3803                 return -EINVAL;
3804         }
3805
3806         if (!user_request->intersect) {
3807                 reset_regdomains(false, rd);
3808                 return 0;
3809         }
3810
3811         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3812         if (!intersected_rd)
3813                 return -EINVAL;
3814
3815         kfree(rd);
3816         rd = NULL;
3817         reset_regdomains(false, intersected_rd);
3818
3819         return 0;
3820 }
3821
3822 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3823                              struct regulatory_request *driver_request)
3824 {
3825         const struct ieee80211_regdomain *regd;
3826         const struct ieee80211_regdomain *intersected_rd = NULL;
3827         const struct ieee80211_regdomain *tmp;
3828         struct wiphy *request_wiphy;
3829
3830         if (is_world_regdom(rd->alpha2))
3831                 return -EINVAL;
3832
3833         if (!regdom_changes(rd->alpha2))
3834                 return -EALREADY;
3835
3836         if (!is_valid_rd(rd)) {
3837                 pr_err("Invalid regulatory domain detected: %c%c\n",
3838                        rd->alpha2[0], rd->alpha2[1]);
3839                 print_regdomain_info(rd);
3840                 return -EINVAL;
3841         }
3842
3843         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3844         if (!request_wiphy)
3845                 return -ENODEV;
3846
3847         if (!driver_request->intersect) {
3848                 ASSERT_RTNL();
3849                 wiphy_lock(request_wiphy);
3850                 if (request_wiphy->regd) {
3851                         wiphy_unlock(request_wiphy);
3852                         return -EALREADY;
3853                 }
3854
3855                 regd = reg_copy_regd(rd);
3856                 if (IS_ERR(regd)) {
3857                         wiphy_unlock(request_wiphy);
3858                         return PTR_ERR(regd);
3859                 }
3860
3861                 rcu_assign_pointer(request_wiphy->regd, regd);
3862                 wiphy_unlock(request_wiphy);
3863                 reset_regdomains(false, rd);
3864                 return 0;
3865         }
3866
3867         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3868         if (!intersected_rd)
3869                 return -EINVAL;
3870
3871         /*
3872          * We can trash what CRDA provided now.
3873          * However if a driver requested this specific regulatory
3874          * domain we keep it for its private use
3875          */
3876         tmp = get_wiphy_regdom(request_wiphy);
3877         rcu_assign_pointer(request_wiphy->regd, rd);
3878         rcu_free_regdom(tmp);
3879
3880         rd = NULL;
3881
3882         reset_regdomains(false, intersected_rd);
3883
3884         return 0;
3885 }
3886
3887 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3888                                  struct regulatory_request *country_ie_request)
3889 {
3890         struct wiphy *request_wiphy;
3891
3892         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3893             !is_unknown_alpha2(rd->alpha2))
3894                 return -EINVAL;
3895
3896         /*
3897          * Lets only bother proceeding on the same alpha2 if the current
3898          * rd is non static (it means CRDA was present and was used last)
3899          * and the pending request came in from a country IE
3900          */
3901
3902         if (!is_valid_rd(rd)) {
3903                 pr_err("Invalid regulatory domain detected: %c%c\n",
3904                        rd->alpha2[0], rd->alpha2[1]);
3905                 print_regdomain_info(rd);
3906                 return -EINVAL;
3907         }
3908
3909         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3910         if (!request_wiphy)
3911                 return -ENODEV;
3912
3913         if (country_ie_request->intersect)
3914                 return -EINVAL;
3915
3916         reset_regdomains(false, rd);
3917         return 0;
3918 }
3919
3920 /*
3921  * Use this call to set the current regulatory domain. Conflicts with
3922  * multiple drivers can be ironed out later. Caller must've already
3923  * kmalloc'd the rd structure.
3924  */
3925 int set_regdom(const struct ieee80211_regdomain *rd,
3926                enum ieee80211_regd_source regd_src)
3927 {
3928         struct regulatory_request *lr;
3929         bool user_reset = false;
3930         int r;
3931
3932         if (IS_ERR_OR_NULL(rd))
3933                 return -ENODATA;
3934
3935         if (!reg_is_valid_request(rd->alpha2)) {
3936                 kfree(rd);
3937                 return -EINVAL;
3938         }
3939
3940         if (regd_src == REGD_SOURCE_CRDA)
3941                 reset_crda_timeouts();
3942
3943         lr = get_last_request();
3944
3945         /* Note that this doesn't update the wiphys, this is done below */
3946         switch (lr->initiator) {
3947         case NL80211_REGDOM_SET_BY_CORE:
3948                 r = reg_set_rd_core(rd);
3949                 break;
3950         case NL80211_REGDOM_SET_BY_USER:
3951                 cfg80211_save_user_regdom(rd);
3952                 r = reg_set_rd_user(rd, lr);
3953                 user_reset = true;
3954                 break;
3955         case NL80211_REGDOM_SET_BY_DRIVER:
3956                 r = reg_set_rd_driver(rd, lr);
3957                 break;
3958         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3959                 r = reg_set_rd_country_ie(rd, lr);
3960                 break;
3961         default:
3962                 WARN(1, "invalid initiator %d\n", lr->initiator);
3963                 kfree(rd);
3964                 return -EINVAL;
3965         }
3966
3967         if (r) {
3968                 switch (r) {
3969                 case -EALREADY:
3970                         reg_set_request_processed();
3971                         break;
3972                 default:
3973                         /* Back to world regulatory in case of errors */
3974                         restore_regulatory_settings(user_reset, false);
3975                 }
3976
3977                 kfree(rd);
3978                 return r;
3979         }
3980
3981         /* This would make this whole thing pointless */
3982         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3983                 return -EINVAL;
3984
3985         /* update all wiphys now with the new established regulatory domain */
3986         update_all_wiphy_regulatory(lr->initiator);
3987
3988         print_regdomain(get_cfg80211_regdom());
3989
3990         nl80211_send_reg_change_event(lr);
3991
3992         reg_set_request_processed();
3993
3994         return 0;
3995 }
3996
3997 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3998                                        struct ieee80211_regdomain *rd)
3999 {
4000         const struct ieee80211_regdomain *regd;
4001         const struct ieee80211_regdomain *prev_regd;
4002         struct cfg80211_registered_device *rdev;
4003
4004         if (WARN_ON(!wiphy || !rd))
4005                 return -EINVAL;
4006
4007         if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4008                  "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4009                 return -EPERM;
4010
4011         if (WARN(!is_valid_rd(rd),
4012                  "Invalid regulatory domain detected: %c%c\n",
4013                  rd->alpha2[0], rd->alpha2[1])) {
4014                 print_regdomain_info(rd);
4015                 return -EINVAL;
4016         }
4017
4018         regd = reg_copy_regd(rd);
4019         if (IS_ERR(regd))
4020                 return PTR_ERR(regd);
4021
4022         rdev = wiphy_to_rdev(wiphy);
4023
4024         spin_lock(&reg_requests_lock);
4025         prev_regd = rdev->requested_regd;
4026         rdev->requested_regd = regd;
4027         spin_unlock(&reg_requests_lock);
4028
4029         kfree(prev_regd);
4030         return 0;
4031 }
4032
4033 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4034                               struct ieee80211_regdomain *rd)
4035 {
4036         int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4037
4038         if (ret)
4039                 return ret;
4040
4041         schedule_work(&reg_work);
4042         return 0;
4043 }
4044 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4045
4046 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4047                                    struct ieee80211_regdomain *rd)
4048 {
4049         int ret;
4050
4051         ASSERT_RTNL();
4052
4053         ret = __regulatory_set_wiphy_regd(wiphy, rd);
4054         if (ret)
4055                 return ret;
4056
4057         /* process the request immediately */
4058         reg_process_self_managed_hint(wiphy);
4059         reg_check_channels();
4060         return 0;
4061 }
4062 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4063
4064 void wiphy_regulatory_register(struct wiphy *wiphy)
4065 {
4066         struct regulatory_request *lr = get_last_request();
4067
4068         /* self-managed devices ignore beacon hints and country IE */
4069         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4070                 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4071                                            REGULATORY_COUNTRY_IE_IGNORE;
4072
4073                 /*
4074                  * The last request may have been received before this
4075                  * registration call. Call the driver notifier if
4076                  * initiator is USER.
4077                  */
4078                 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4079                         reg_call_notifier(wiphy, lr);
4080         }
4081
4082         if (!reg_dev_ignore_cell_hint(wiphy))
4083                 reg_num_devs_support_basehint++;
4084
4085         wiphy_update_regulatory(wiphy, lr->initiator);
4086         wiphy_all_share_dfs_chan_state(wiphy);
4087         reg_process_self_managed_hints();
4088 }
4089
4090 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4091 {
4092         struct wiphy *request_wiphy = NULL;
4093         struct regulatory_request *lr;
4094
4095         lr = get_last_request();
4096
4097         if (!reg_dev_ignore_cell_hint(wiphy))
4098                 reg_num_devs_support_basehint--;
4099
4100         rcu_free_regdom(get_wiphy_regdom(wiphy));
4101         RCU_INIT_POINTER(wiphy->regd, NULL);
4102
4103         if (lr)
4104                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4105
4106         if (!request_wiphy || request_wiphy != wiphy)
4107                 return;
4108
4109         lr->wiphy_idx = WIPHY_IDX_INVALID;
4110         lr->country_ie_env = ENVIRON_ANY;
4111 }
4112
4113 /*
4114  * See FCC notices for UNII band definitions
4115  *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4116  *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4117  */
4118 int cfg80211_get_unii(int freq)
4119 {
4120         /* UNII-1 */
4121         if (freq >= 5150 && freq <= 5250)
4122                 return 0;
4123
4124         /* UNII-2A */
4125         if (freq > 5250 && freq <= 5350)
4126                 return 1;
4127
4128         /* UNII-2B */
4129         if (freq > 5350 && freq <= 5470)
4130                 return 2;
4131
4132         /* UNII-2C */
4133         if (freq > 5470 && freq <= 5725)
4134                 return 3;
4135
4136         /* UNII-3 */
4137         if (freq > 5725 && freq <= 5825)
4138                 return 4;
4139
4140         /* UNII-5 */
4141         if (freq > 5925 && freq <= 6425)
4142                 return 5;
4143
4144         /* UNII-6 */
4145         if (freq > 6425 && freq <= 6525)
4146                 return 6;
4147
4148         /* UNII-7 */
4149         if (freq > 6525 && freq <= 6875)
4150                 return 7;
4151
4152         /* UNII-8 */
4153         if (freq > 6875 && freq <= 7125)
4154                 return 8;
4155
4156         return -EINVAL;
4157 }
4158
4159 bool regulatory_indoor_allowed(void)
4160 {
4161         return reg_is_indoor;
4162 }
4163
4164 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4165 {
4166         const struct ieee80211_regdomain *regd = NULL;
4167         const struct ieee80211_regdomain *wiphy_regd = NULL;
4168         bool pre_cac_allowed = false;
4169
4170         rcu_read_lock();
4171
4172         regd = rcu_dereference(cfg80211_regdomain);
4173         wiphy_regd = rcu_dereference(wiphy->regd);
4174         if (!wiphy_regd) {
4175                 if (regd->dfs_region == NL80211_DFS_ETSI)
4176                         pre_cac_allowed = true;
4177
4178                 rcu_read_unlock();
4179
4180                 return pre_cac_allowed;
4181         }
4182
4183         if (regd->dfs_region == wiphy_regd->dfs_region &&
4184             wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4185                 pre_cac_allowed = true;
4186
4187         rcu_read_unlock();
4188
4189         return pre_cac_allowed;
4190 }
4191 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4192
4193 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4194 {
4195         struct wireless_dev *wdev;
4196         /* If we finished CAC or received radar, we should end any
4197          * CAC running on the same channels.
4198          * the check !cfg80211_chandef_dfs_usable contain 2 options:
4199          * either all channels are available - those the CAC_FINISHED
4200          * event has effected another wdev state, or there is a channel
4201          * in unavailable state in wdev chandef - those the RADAR_DETECTED
4202          * event has effected another wdev state.
4203          * In both cases we should end the CAC on the wdev.
4204          */
4205         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4206                 if (wdev->cac_started &&
4207                     !cfg80211_chandef_dfs_usable(&rdev->wiphy, &wdev->chandef))
4208                         rdev_end_cac(rdev, wdev->netdev);
4209         }
4210 }
4211
4212 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4213                                     struct cfg80211_chan_def *chandef,
4214                                     enum nl80211_dfs_state dfs_state,
4215                                     enum nl80211_radar_event event)
4216 {
4217         struct cfg80211_registered_device *rdev;
4218
4219         ASSERT_RTNL();
4220
4221         if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4222                 return;
4223
4224         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4225                 if (wiphy == &rdev->wiphy)
4226                         continue;
4227
4228                 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4229                         continue;
4230
4231                 if (!ieee80211_get_channel(&rdev->wiphy,
4232                                            chandef->chan->center_freq))
4233                         continue;
4234
4235                 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4236
4237                 if (event == NL80211_RADAR_DETECTED ||
4238                     event == NL80211_RADAR_CAC_FINISHED) {
4239                         cfg80211_sched_dfs_chan_update(rdev);
4240                         cfg80211_check_and_end_cac(rdev);
4241                 }
4242
4243                 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4244         }
4245 }
4246
4247 static int __init regulatory_init_db(void)
4248 {
4249         int err;
4250
4251         /*
4252          * It's possible that - due to other bugs/issues - cfg80211
4253          * never called regulatory_init() below, or that it failed;
4254          * in that case, don't try to do any further work here as
4255          * it's doomed to lead to crashes.
4256          */
4257         if (IS_ERR_OR_NULL(reg_pdev))
4258                 return -EINVAL;
4259
4260         err = load_builtin_regdb_keys();
4261         if (err)
4262                 return err;
4263
4264         /* We always try to get an update for the static regdomain */
4265         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4266         if (err) {
4267                 if (err == -ENOMEM) {
4268                         platform_device_unregister(reg_pdev);
4269                         return err;
4270                 }
4271                 /*
4272                  * N.B. kobject_uevent_env() can fail mainly for when we're out
4273                  * memory which is handled and propagated appropriately above
4274                  * but it can also fail during a netlink_broadcast() or during
4275                  * early boot for call_usermodehelper(). For now treat these
4276                  * errors as non-fatal.
4277                  */
4278                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4279         }
4280
4281         /*
4282          * Finally, if the user set the module parameter treat it
4283          * as a user hint.
4284          */
4285         if (!is_world_regdom(ieee80211_regdom))
4286                 regulatory_hint_user(ieee80211_regdom,
4287                                      NL80211_USER_REG_HINT_USER);
4288
4289         return 0;
4290 }
4291 #ifndef MODULE
4292 late_initcall(regulatory_init_db);
4293 #endif
4294
4295 int __init regulatory_init(void)
4296 {
4297         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4298         if (IS_ERR(reg_pdev))
4299                 return PTR_ERR(reg_pdev);
4300
4301         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4302
4303         user_alpha2[0] = '9';
4304         user_alpha2[1] = '7';
4305
4306 #ifdef MODULE
4307         return regulatory_init_db();
4308 #else
4309         return 0;
4310 #endif
4311 }
4312
4313 void regulatory_exit(void)
4314 {
4315         struct regulatory_request *reg_request, *tmp;
4316         struct reg_beacon *reg_beacon, *btmp;
4317
4318         cancel_work_sync(&reg_work);
4319         cancel_crda_timeout_sync();
4320         cancel_delayed_work_sync(&reg_check_chans);
4321
4322         /* Lock to suppress warnings */
4323         rtnl_lock();
4324         reset_regdomains(true, NULL);
4325         rtnl_unlock();
4326
4327         dev_set_uevent_suppress(&reg_pdev->dev, true);
4328
4329         platform_device_unregister(reg_pdev);
4330
4331         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4332                 list_del(&reg_beacon->list);
4333                 kfree(reg_beacon);
4334         }
4335
4336         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4337                 list_del(&reg_beacon->list);
4338                 kfree(reg_beacon);
4339         }
4340
4341         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4342                 list_del(&reg_request->list);
4343                 kfree(reg_request);
4344         }
4345
4346         if (!IS_ERR_OR_NULL(regdb))
4347                 kfree(regdb);
4348         if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4349                 kfree(cfg80211_user_regdom);
4350
4351         free_regdb_keyring();
4352 }