ipv6: add ipv6_fragment hook in ipv6_stub
[linux-2.6-microblaze.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 - 2019 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22
23
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *      be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *      regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83         REG_REQ_OK,
84         REG_REQ_IGNORE,
85         REG_REQ_INTERSECT,
86         REG_REQ_ALREADY_SET,
87 };
88
89 static struct regulatory_request core_request_world = {
90         .initiator = NL80211_REGDOM_SET_BY_CORE,
91         .alpha2[0] = '0',
92         .alpha2[1] = '0',
93         .intersect = false,
94         .processed = true,
95         .country_ie_env = ENVIRON_ANY,
96 };
97
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103         (void __force __rcu *)&core_request_world;
104
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static spinlock_t reg_indoor_lock;
130
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136
137 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
138 {
139         return rcu_dereference_rtnl(cfg80211_regdomain);
140 }
141
142 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
143 {
144         return rcu_dereference_rtnl(wiphy->regd);
145 }
146
147 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
148 {
149         switch (dfs_region) {
150         case NL80211_DFS_UNSET:
151                 return "unset";
152         case NL80211_DFS_FCC:
153                 return "FCC";
154         case NL80211_DFS_ETSI:
155                 return "ETSI";
156         case NL80211_DFS_JP:
157                 return "JP";
158         }
159         return "Unknown";
160 }
161
162 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
163 {
164         const struct ieee80211_regdomain *regd = NULL;
165         const struct ieee80211_regdomain *wiphy_regd = NULL;
166
167         regd = get_cfg80211_regdom();
168         if (!wiphy)
169                 goto out;
170
171         wiphy_regd = get_wiphy_regdom(wiphy);
172         if (!wiphy_regd)
173                 goto out;
174
175         if (wiphy_regd->dfs_region == regd->dfs_region)
176                 goto out;
177
178         pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
179                  dev_name(&wiphy->dev),
180                  reg_dfs_region_str(wiphy_regd->dfs_region),
181                  reg_dfs_region_str(regd->dfs_region));
182
183 out:
184         return regd->dfs_region;
185 }
186
187 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
188 {
189         if (!r)
190                 return;
191         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
192 }
193
194 static struct regulatory_request *get_last_request(void)
195 {
196         return rcu_dereference_rtnl(last_request);
197 }
198
199 /* Used to queue up regulatory hints */
200 static LIST_HEAD(reg_requests_list);
201 static spinlock_t reg_requests_lock;
202
203 /* Used to queue up beacon hints for review */
204 static LIST_HEAD(reg_pending_beacons);
205 static spinlock_t reg_pending_beacons_lock;
206
207 /* Used to keep track of processed beacon hints */
208 static LIST_HEAD(reg_beacon_list);
209
210 struct reg_beacon {
211         struct list_head list;
212         struct ieee80211_channel chan;
213 };
214
215 static void reg_check_chans_work(struct work_struct *work);
216 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
217
218 static void reg_todo(struct work_struct *work);
219 static DECLARE_WORK(reg_work, reg_todo);
220
221 /* We keep a static world regulatory domain in case of the absence of CRDA */
222 static const struct ieee80211_regdomain world_regdom = {
223         .n_reg_rules = 8,
224         .alpha2 =  "00",
225         .reg_rules = {
226                 /* IEEE 802.11b/g, channels 1..11 */
227                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
228                 /* IEEE 802.11b/g, channels 12..13. */
229                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
230                         NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
231                 /* IEEE 802.11 channel 14 - Only JP enables
232                  * this and for 802.11b only */
233                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
234                         NL80211_RRF_NO_IR |
235                         NL80211_RRF_NO_OFDM),
236                 /* IEEE 802.11a, channel 36..48 */
237                 REG_RULE(5180-10, 5240+10, 80, 6, 20,
238                         NL80211_RRF_NO_IR |
239                         NL80211_RRF_AUTO_BW),
240
241                 /* IEEE 802.11a, channel 52..64 - DFS required */
242                 REG_RULE(5260-10, 5320+10, 80, 6, 20,
243                         NL80211_RRF_NO_IR |
244                         NL80211_RRF_AUTO_BW |
245                         NL80211_RRF_DFS),
246
247                 /* IEEE 802.11a, channel 100..144 - DFS required */
248                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
249                         NL80211_RRF_NO_IR |
250                         NL80211_RRF_DFS),
251
252                 /* IEEE 802.11a, channel 149..165 */
253                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
254                         NL80211_RRF_NO_IR),
255
256                 /* IEEE 802.11ad (60GHz), channels 1..3 */
257                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
258         }
259 };
260
261 /* protected by RTNL */
262 static const struct ieee80211_regdomain *cfg80211_world_regdom =
263         &world_regdom;
264
265 static char *ieee80211_regdom = "00";
266 static char user_alpha2[2];
267 static const struct ieee80211_regdomain *cfg80211_user_regdom;
268
269 module_param(ieee80211_regdom, charp, 0444);
270 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
271
272 static void reg_free_request(struct regulatory_request *request)
273 {
274         if (request == &core_request_world)
275                 return;
276
277         if (request != get_last_request())
278                 kfree(request);
279 }
280
281 static void reg_free_last_request(void)
282 {
283         struct regulatory_request *lr = get_last_request();
284
285         if (lr != &core_request_world && lr)
286                 kfree_rcu(lr, rcu_head);
287 }
288
289 static void reg_update_last_request(struct regulatory_request *request)
290 {
291         struct regulatory_request *lr;
292
293         lr = get_last_request();
294         if (lr == request)
295                 return;
296
297         reg_free_last_request();
298         rcu_assign_pointer(last_request, request);
299 }
300
301 static void reset_regdomains(bool full_reset,
302                              const struct ieee80211_regdomain *new_regdom)
303 {
304         const struct ieee80211_regdomain *r;
305
306         ASSERT_RTNL();
307
308         r = get_cfg80211_regdom();
309
310         /* avoid freeing static information or freeing something twice */
311         if (r == cfg80211_world_regdom)
312                 r = NULL;
313         if (cfg80211_world_regdom == &world_regdom)
314                 cfg80211_world_regdom = NULL;
315         if (r == &world_regdom)
316                 r = NULL;
317
318         rcu_free_regdom(r);
319         rcu_free_regdom(cfg80211_world_regdom);
320
321         cfg80211_world_regdom = &world_regdom;
322         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
323
324         if (!full_reset)
325                 return;
326
327         reg_update_last_request(&core_request_world);
328 }
329
330 /*
331  * Dynamic world regulatory domain requested by the wireless
332  * core upon initialization
333  */
334 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
335 {
336         struct regulatory_request *lr;
337
338         lr = get_last_request();
339
340         WARN_ON(!lr);
341
342         reset_regdomains(false, rd);
343
344         cfg80211_world_regdom = rd;
345 }
346
347 bool is_world_regdom(const char *alpha2)
348 {
349         if (!alpha2)
350                 return false;
351         return alpha2[0] == '0' && alpha2[1] == '0';
352 }
353
354 static bool is_alpha2_set(const char *alpha2)
355 {
356         if (!alpha2)
357                 return false;
358         return alpha2[0] && alpha2[1];
359 }
360
361 static bool is_unknown_alpha2(const char *alpha2)
362 {
363         if (!alpha2)
364                 return false;
365         /*
366          * Special case where regulatory domain was built by driver
367          * but a specific alpha2 cannot be determined
368          */
369         return alpha2[0] == '9' && alpha2[1] == '9';
370 }
371
372 static bool is_intersected_alpha2(const char *alpha2)
373 {
374         if (!alpha2)
375                 return false;
376         /*
377          * Special case where regulatory domain is the
378          * result of an intersection between two regulatory domain
379          * structures
380          */
381         return alpha2[0] == '9' && alpha2[1] == '8';
382 }
383
384 static bool is_an_alpha2(const char *alpha2)
385 {
386         if (!alpha2)
387                 return false;
388         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
389 }
390
391 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
392 {
393         if (!alpha2_x || !alpha2_y)
394                 return false;
395         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
396 }
397
398 static bool regdom_changes(const char *alpha2)
399 {
400         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
401
402         if (!r)
403                 return true;
404         return !alpha2_equal(r->alpha2, alpha2);
405 }
406
407 /*
408  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
409  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
410  * has ever been issued.
411  */
412 static bool is_user_regdom_saved(void)
413 {
414         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
415                 return false;
416
417         /* This would indicate a mistake on the design */
418         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
419                  "Unexpected user alpha2: %c%c\n",
420                  user_alpha2[0], user_alpha2[1]))
421                 return false;
422
423         return true;
424 }
425
426 static const struct ieee80211_regdomain *
427 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
428 {
429         struct ieee80211_regdomain *regd;
430         unsigned int i;
431
432         regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
433                        GFP_KERNEL);
434         if (!regd)
435                 return ERR_PTR(-ENOMEM);
436
437         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
438
439         for (i = 0; i < src_regd->n_reg_rules; i++)
440                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
441                        sizeof(struct ieee80211_reg_rule));
442
443         return regd;
444 }
445
446 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
447 {
448         ASSERT_RTNL();
449
450         if (!IS_ERR(cfg80211_user_regdom))
451                 kfree(cfg80211_user_regdom);
452         cfg80211_user_regdom = reg_copy_regd(rd);
453 }
454
455 struct reg_regdb_apply_request {
456         struct list_head list;
457         const struct ieee80211_regdomain *regdom;
458 };
459
460 static LIST_HEAD(reg_regdb_apply_list);
461 static DEFINE_MUTEX(reg_regdb_apply_mutex);
462
463 static void reg_regdb_apply(struct work_struct *work)
464 {
465         struct reg_regdb_apply_request *request;
466
467         rtnl_lock();
468
469         mutex_lock(&reg_regdb_apply_mutex);
470         while (!list_empty(&reg_regdb_apply_list)) {
471                 request = list_first_entry(&reg_regdb_apply_list,
472                                            struct reg_regdb_apply_request,
473                                            list);
474                 list_del(&request->list);
475
476                 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
477                 kfree(request);
478         }
479         mutex_unlock(&reg_regdb_apply_mutex);
480
481         rtnl_unlock();
482 }
483
484 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
485
486 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
487 {
488         struct reg_regdb_apply_request *request;
489
490         request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
491         if (!request) {
492                 kfree(regdom);
493                 return -ENOMEM;
494         }
495
496         request->regdom = regdom;
497
498         mutex_lock(&reg_regdb_apply_mutex);
499         list_add_tail(&request->list, &reg_regdb_apply_list);
500         mutex_unlock(&reg_regdb_apply_mutex);
501
502         schedule_work(&reg_regdb_work);
503         return 0;
504 }
505
506 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
507 /* Max number of consecutive attempts to communicate with CRDA  */
508 #define REG_MAX_CRDA_TIMEOUTS 10
509
510 static u32 reg_crda_timeouts;
511
512 static void crda_timeout_work(struct work_struct *work);
513 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
514
515 static void crda_timeout_work(struct work_struct *work)
516 {
517         pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
518         rtnl_lock();
519         reg_crda_timeouts++;
520         restore_regulatory_settings(true, false);
521         rtnl_unlock();
522 }
523
524 static void cancel_crda_timeout(void)
525 {
526         cancel_delayed_work(&crda_timeout);
527 }
528
529 static void cancel_crda_timeout_sync(void)
530 {
531         cancel_delayed_work_sync(&crda_timeout);
532 }
533
534 static void reset_crda_timeouts(void)
535 {
536         reg_crda_timeouts = 0;
537 }
538
539 /*
540  * This lets us keep regulatory code which is updated on a regulatory
541  * basis in userspace.
542  */
543 static int call_crda(const char *alpha2)
544 {
545         char country[12];
546         char *env[] = { country, NULL };
547         int ret;
548
549         snprintf(country, sizeof(country), "COUNTRY=%c%c",
550                  alpha2[0], alpha2[1]);
551
552         if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
553                 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
554                 return -EINVAL;
555         }
556
557         if (!is_world_regdom((char *) alpha2))
558                 pr_debug("Calling CRDA for country: %c%c\n",
559                          alpha2[0], alpha2[1]);
560         else
561                 pr_debug("Calling CRDA to update world regulatory domain\n");
562
563         ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
564         if (ret)
565                 return ret;
566
567         queue_delayed_work(system_power_efficient_wq,
568                            &crda_timeout, msecs_to_jiffies(3142));
569         return 0;
570 }
571 #else
572 static inline void cancel_crda_timeout(void) {}
573 static inline void cancel_crda_timeout_sync(void) {}
574 static inline void reset_crda_timeouts(void) {}
575 static inline int call_crda(const char *alpha2)
576 {
577         return -ENODATA;
578 }
579 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
580
581 /* code to directly load a firmware database through request_firmware */
582 static const struct fwdb_header *regdb;
583
584 struct fwdb_country {
585         u8 alpha2[2];
586         __be16 coll_ptr;
587         /* this struct cannot be extended */
588 } __packed __aligned(4);
589
590 struct fwdb_collection {
591         u8 len;
592         u8 n_rules;
593         u8 dfs_region;
594         /* no optional data yet */
595         /* aligned to 2, then followed by __be16 array of rule pointers */
596 } __packed __aligned(4);
597
598 enum fwdb_flags {
599         FWDB_FLAG_NO_OFDM       = BIT(0),
600         FWDB_FLAG_NO_OUTDOOR    = BIT(1),
601         FWDB_FLAG_DFS           = BIT(2),
602         FWDB_FLAG_NO_IR         = BIT(3),
603         FWDB_FLAG_AUTO_BW       = BIT(4),
604 };
605
606 struct fwdb_wmm_ac {
607         u8 ecw;
608         u8 aifsn;
609         __be16 cot;
610 } __packed;
611
612 struct fwdb_wmm_rule {
613         struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
614         struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
615 } __packed;
616
617 struct fwdb_rule {
618         u8 len;
619         u8 flags;
620         __be16 max_eirp;
621         __be32 start, end, max_bw;
622         /* start of optional data */
623         __be16 cac_timeout;
624         __be16 wmm_ptr;
625 } __packed __aligned(4);
626
627 #define FWDB_MAGIC 0x52474442
628 #define FWDB_VERSION 20
629
630 struct fwdb_header {
631         __be32 magic;
632         __be32 version;
633         struct fwdb_country country[];
634 } __packed __aligned(4);
635
636 static int ecw2cw(int ecw)
637 {
638         return (1 << ecw) - 1;
639 }
640
641 static bool valid_wmm(struct fwdb_wmm_rule *rule)
642 {
643         struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
644         int i;
645
646         for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
647                 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
648                 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
649                 u8 aifsn = ac[i].aifsn;
650
651                 if (cw_min >= cw_max)
652                         return false;
653
654                 if (aifsn < 1)
655                         return false;
656         }
657
658         return true;
659 }
660
661 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
662 {
663         struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
664
665         if ((u8 *)rule + sizeof(rule->len) > data + size)
666                 return false;
667
668         /* mandatory fields */
669         if (rule->len < offsetofend(struct fwdb_rule, max_bw))
670                 return false;
671         if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
672                 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
673                 struct fwdb_wmm_rule *wmm;
674
675                 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
676                         return false;
677
678                 wmm = (void *)(data + wmm_ptr);
679
680                 if (!valid_wmm(wmm))
681                         return false;
682         }
683         return true;
684 }
685
686 static bool valid_country(const u8 *data, unsigned int size,
687                           const struct fwdb_country *country)
688 {
689         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
690         struct fwdb_collection *coll = (void *)(data + ptr);
691         __be16 *rules_ptr;
692         unsigned int i;
693
694         /* make sure we can read len/n_rules */
695         if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
696                 return false;
697
698         /* make sure base struct and all rules fit */
699         if ((u8 *)coll + ALIGN(coll->len, 2) +
700             (coll->n_rules * 2) > data + size)
701                 return false;
702
703         /* mandatory fields must exist */
704         if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
705                 return false;
706
707         rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
708
709         for (i = 0; i < coll->n_rules; i++) {
710                 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
711
712                 if (!valid_rule(data, size, rule_ptr))
713                         return false;
714         }
715
716         return true;
717 }
718
719 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
720 static struct key *builtin_regdb_keys;
721
722 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
723 {
724         const u8 *end = p + buflen;
725         size_t plen;
726         key_ref_t key;
727
728         while (p < end) {
729                 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
730                  * than 256 bytes in size.
731                  */
732                 if (end - p < 4)
733                         goto dodgy_cert;
734                 if (p[0] != 0x30 &&
735                     p[1] != 0x82)
736                         goto dodgy_cert;
737                 plen = (p[2] << 8) | p[3];
738                 plen += 4;
739                 if (plen > end - p)
740                         goto dodgy_cert;
741
742                 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
743                                            "asymmetric", NULL, p, plen,
744                                            ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
745                                             KEY_USR_VIEW | KEY_USR_READ),
746                                            KEY_ALLOC_NOT_IN_QUOTA |
747                                            KEY_ALLOC_BUILT_IN |
748                                            KEY_ALLOC_BYPASS_RESTRICTION);
749                 if (IS_ERR(key)) {
750                         pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
751                                PTR_ERR(key));
752                 } else {
753                         pr_notice("Loaded X.509 cert '%s'\n",
754                                   key_ref_to_ptr(key)->description);
755                         key_ref_put(key);
756                 }
757                 p += plen;
758         }
759
760         return;
761
762 dodgy_cert:
763         pr_err("Problem parsing in-kernel X.509 certificate list\n");
764 }
765
766 static int __init load_builtin_regdb_keys(void)
767 {
768         builtin_regdb_keys =
769                 keyring_alloc(".builtin_regdb_keys",
770                               KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
771                               ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
772                               KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
773                               KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
774         if (IS_ERR(builtin_regdb_keys))
775                 return PTR_ERR(builtin_regdb_keys);
776
777         pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
778
779 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
780         load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
781 #endif
782 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
783         if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
784                 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
785 #endif
786
787         return 0;
788 }
789
790 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
791 {
792         const struct firmware *sig;
793         bool result;
794
795         if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
796                 return false;
797
798         result = verify_pkcs7_signature(data, size, sig->data, sig->size,
799                                         builtin_regdb_keys,
800                                         VERIFYING_UNSPECIFIED_SIGNATURE,
801                                         NULL, NULL) == 0;
802
803         release_firmware(sig);
804
805         return result;
806 }
807
808 static void free_regdb_keyring(void)
809 {
810         key_put(builtin_regdb_keys);
811 }
812 #else
813 static int load_builtin_regdb_keys(void)
814 {
815         return 0;
816 }
817
818 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
819 {
820         return true;
821 }
822
823 static void free_regdb_keyring(void)
824 {
825 }
826 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
827
828 static bool valid_regdb(const u8 *data, unsigned int size)
829 {
830         const struct fwdb_header *hdr = (void *)data;
831         const struct fwdb_country *country;
832
833         if (size < sizeof(*hdr))
834                 return false;
835
836         if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
837                 return false;
838
839         if (hdr->version != cpu_to_be32(FWDB_VERSION))
840                 return false;
841
842         if (!regdb_has_valid_signature(data, size))
843                 return false;
844
845         country = &hdr->country[0];
846         while ((u8 *)(country + 1) <= data + size) {
847                 if (!country->coll_ptr)
848                         break;
849                 if (!valid_country(data, size, country))
850                         return false;
851                 country++;
852         }
853
854         return true;
855 }
856
857 static void set_wmm_rule(const struct fwdb_header *db,
858                          const struct fwdb_country *country,
859                          const struct fwdb_rule *rule,
860                          struct ieee80211_reg_rule *rrule)
861 {
862         struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
863         struct fwdb_wmm_rule *wmm;
864         unsigned int i, wmm_ptr;
865
866         wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
867         wmm = (void *)((u8 *)db + wmm_ptr);
868
869         if (!valid_wmm(wmm)) {
870                 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
871                        be32_to_cpu(rule->start), be32_to_cpu(rule->end),
872                        country->alpha2[0], country->alpha2[1]);
873                 return;
874         }
875
876         for (i = 0; i < IEEE80211_NUM_ACS; i++) {
877                 wmm_rule->client[i].cw_min =
878                         ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
879                 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
880                 wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
881                 wmm_rule->client[i].cot =
882                         1000 * be16_to_cpu(wmm->client[i].cot);
883                 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
884                 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
885                 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
886                 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
887         }
888
889         rrule->has_wmm = true;
890 }
891
892 static int __regdb_query_wmm(const struct fwdb_header *db,
893                              const struct fwdb_country *country, int freq,
894                              struct ieee80211_reg_rule *rrule)
895 {
896         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
897         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
898         int i;
899
900         for (i = 0; i < coll->n_rules; i++) {
901                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
902                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
903                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
904
905                 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
906                         continue;
907
908                 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
909                     freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
910                         set_wmm_rule(db, country, rule, rrule);
911                         return 0;
912                 }
913         }
914
915         return -ENODATA;
916 }
917
918 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
919 {
920         const struct fwdb_header *hdr = regdb;
921         const struct fwdb_country *country;
922
923         if (!regdb)
924                 return -ENODATA;
925
926         if (IS_ERR(regdb))
927                 return PTR_ERR(regdb);
928
929         country = &hdr->country[0];
930         while (country->coll_ptr) {
931                 if (alpha2_equal(alpha2, country->alpha2))
932                         return __regdb_query_wmm(regdb, country, freq, rule);
933
934                 country++;
935         }
936
937         return -ENODATA;
938 }
939 EXPORT_SYMBOL(reg_query_regdb_wmm);
940
941 static int regdb_query_country(const struct fwdb_header *db,
942                                const struct fwdb_country *country)
943 {
944         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
945         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
946         struct ieee80211_regdomain *regdom;
947         unsigned int i;
948
949         regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
950                          GFP_KERNEL);
951         if (!regdom)
952                 return -ENOMEM;
953
954         regdom->n_reg_rules = coll->n_rules;
955         regdom->alpha2[0] = country->alpha2[0];
956         regdom->alpha2[1] = country->alpha2[1];
957         regdom->dfs_region = coll->dfs_region;
958
959         for (i = 0; i < regdom->n_reg_rules; i++) {
960                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
961                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
962                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
963                 struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
964
965                 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
966                 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
967                 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
968
969                 rrule->power_rule.max_antenna_gain = 0;
970                 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
971
972                 rrule->flags = 0;
973                 if (rule->flags & FWDB_FLAG_NO_OFDM)
974                         rrule->flags |= NL80211_RRF_NO_OFDM;
975                 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
976                         rrule->flags |= NL80211_RRF_NO_OUTDOOR;
977                 if (rule->flags & FWDB_FLAG_DFS)
978                         rrule->flags |= NL80211_RRF_DFS;
979                 if (rule->flags & FWDB_FLAG_NO_IR)
980                         rrule->flags |= NL80211_RRF_NO_IR;
981                 if (rule->flags & FWDB_FLAG_AUTO_BW)
982                         rrule->flags |= NL80211_RRF_AUTO_BW;
983
984                 rrule->dfs_cac_ms = 0;
985
986                 /* handle optional data */
987                 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
988                         rrule->dfs_cac_ms =
989                                 1000 * be16_to_cpu(rule->cac_timeout);
990                 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
991                         set_wmm_rule(db, country, rule, rrule);
992         }
993
994         return reg_schedule_apply(regdom);
995 }
996
997 static int query_regdb(const char *alpha2)
998 {
999         const struct fwdb_header *hdr = regdb;
1000         const struct fwdb_country *country;
1001
1002         ASSERT_RTNL();
1003
1004         if (IS_ERR(regdb))
1005                 return PTR_ERR(regdb);
1006
1007         country = &hdr->country[0];
1008         while (country->coll_ptr) {
1009                 if (alpha2_equal(alpha2, country->alpha2))
1010                         return regdb_query_country(regdb, country);
1011                 country++;
1012         }
1013
1014         return -ENODATA;
1015 }
1016
1017 static void regdb_fw_cb(const struct firmware *fw, void *context)
1018 {
1019         int set_error = 0;
1020         bool restore = true;
1021         void *db;
1022
1023         if (!fw) {
1024                 pr_info("failed to load regulatory.db\n");
1025                 set_error = -ENODATA;
1026         } else if (!valid_regdb(fw->data, fw->size)) {
1027                 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1028                 set_error = -EINVAL;
1029         }
1030
1031         rtnl_lock();
1032         if (regdb && !IS_ERR(regdb)) {
1033                 /* negative case - a bug
1034                  * positive case - can happen due to race in case of multiple cb's in
1035                  * queue, due to usage of asynchronous callback
1036                  *
1037                  * Either case, just restore and free new db.
1038                  */
1039         } else if (set_error) {
1040                 regdb = ERR_PTR(set_error);
1041         } else if (fw) {
1042                 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1043                 if (db) {
1044                         regdb = db;
1045                         restore = context && query_regdb(context);
1046                 } else {
1047                         restore = true;
1048                 }
1049         }
1050
1051         if (restore)
1052                 restore_regulatory_settings(true, false);
1053
1054         rtnl_unlock();
1055
1056         kfree(context);
1057
1058         release_firmware(fw);
1059 }
1060
1061 static int query_regdb_file(const char *alpha2)
1062 {
1063         ASSERT_RTNL();
1064
1065         if (regdb)
1066                 return query_regdb(alpha2);
1067
1068         alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1069         if (!alpha2)
1070                 return -ENOMEM;
1071
1072         return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1073                                        &reg_pdev->dev, GFP_KERNEL,
1074                                        (void *)alpha2, regdb_fw_cb);
1075 }
1076
1077 int reg_reload_regdb(void)
1078 {
1079         const struct firmware *fw;
1080         void *db;
1081         int err;
1082
1083         err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1084         if (err)
1085                 return err;
1086
1087         if (!valid_regdb(fw->data, fw->size)) {
1088                 err = -ENODATA;
1089                 goto out;
1090         }
1091
1092         db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1093         if (!db) {
1094                 err = -ENOMEM;
1095                 goto out;
1096         }
1097
1098         rtnl_lock();
1099         if (!IS_ERR_OR_NULL(regdb))
1100                 kfree(regdb);
1101         regdb = db;
1102         rtnl_unlock();
1103
1104  out:
1105         release_firmware(fw);
1106         return err;
1107 }
1108
1109 static bool reg_query_database(struct regulatory_request *request)
1110 {
1111         if (query_regdb_file(request->alpha2) == 0)
1112                 return true;
1113
1114         if (call_crda(request->alpha2) == 0)
1115                 return true;
1116
1117         return false;
1118 }
1119
1120 bool reg_is_valid_request(const char *alpha2)
1121 {
1122         struct regulatory_request *lr = get_last_request();
1123
1124         if (!lr || lr->processed)
1125                 return false;
1126
1127         return alpha2_equal(lr->alpha2, alpha2);
1128 }
1129
1130 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1131 {
1132         struct regulatory_request *lr = get_last_request();
1133
1134         /*
1135          * Follow the driver's regulatory domain, if present, unless a country
1136          * IE has been processed or a user wants to help complaince further
1137          */
1138         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1139             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1140             wiphy->regd)
1141                 return get_wiphy_regdom(wiphy);
1142
1143         return get_cfg80211_regdom();
1144 }
1145
1146 static unsigned int
1147 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1148                                  const struct ieee80211_reg_rule *rule)
1149 {
1150         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1151         const struct ieee80211_freq_range *freq_range_tmp;
1152         const struct ieee80211_reg_rule *tmp;
1153         u32 start_freq, end_freq, idx, no;
1154
1155         for (idx = 0; idx < rd->n_reg_rules; idx++)
1156                 if (rule == &rd->reg_rules[idx])
1157                         break;
1158
1159         if (idx == rd->n_reg_rules)
1160                 return 0;
1161
1162         /* get start_freq */
1163         no = idx;
1164
1165         while (no) {
1166                 tmp = &rd->reg_rules[--no];
1167                 freq_range_tmp = &tmp->freq_range;
1168
1169                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1170                         break;
1171
1172                 freq_range = freq_range_tmp;
1173         }
1174
1175         start_freq = freq_range->start_freq_khz;
1176
1177         /* get end_freq */
1178         freq_range = &rule->freq_range;
1179         no = idx;
1180
1181         while (no < rd->n_reg_rules - 1) {
1182                 tmp = &rd->reg_rules[++no];
1183                 freq_range_tmp = &tmp->freq_range;
1184
1185                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1186                         break;
1187
1188                 freq_range = freq_range_tmp;
1189         }
1190
1191         end_freq = freq_range->end_freq_khz;
1192
1193         return end_freq - start_freq;
1194 }
1195
1196 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1197                                    const struct ieee80211_reg_rule *rule)
1198 {
1199         unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1200
1201         if (rule->flags & NL80211_RRF_NO_160MHZ)
1202                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1203         if (rule->flags & NL80211_RRF_NO_80MHZ)
1204                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1205
1206         /*
1207          * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1208          * are not allowed.
1209          */
1210         if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1211             rule->flags & NL80211_RRF_NO_HT40PLUS)
1212                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1213
1214         return bw;
1215 }
1216
1217 /* Sanity check on a regulatory rule */
1218 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1219 {
1220         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1221         u32 freq_diff;
1222
1223         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1224                 return false;
1225
1226         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1227                 return false;
1228
1229         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1230
1231         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1232             freq_range->max_bandwidth_khz > freq_diff)
1233                 return false;
1234
1235         return true;
1236 }
1237
1238 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1239 {
1240         const struct ieee80211_reg_rule *reg_rule = NULL;
1241         unsigned int i;
1242
1243         if (!rd->n_reg_rules)
1244                 return false;
1245
1246         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1247                 return false;
1248
1249         for (i = 0; i < rd->n_reg_rules; i++) {
1250                 reg_rule = &rd->reg_rules[i];
1251                 if (!is_valid_reg_rule(reg_rule))
1252                         return false;
1253         }
1254
1255         return true;
1256 }
1257
1258 /**
1259  * freq_in_rule_band - tells us if a frequency is in a frequency band
1260  * @freq_range: frequency rule we want to query
1261  * @freq_khz: frequency we are inquiring about
1262  *
1263  * This lets us know if a specific frequency rule is or is not relevant to
1264  * a specific frequency's band. Bands are device specific and artificial
1265  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1266  * however it is safe for now to assume that a frequency rule should not be
1267  * part of a frequency's band if the start freq or end freq are off by more
1268  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1269  * 60 GHz band.
1270  * This resolution can be lowered and should be considered as we add
1271  * regulatory rule support for other "bands".
1272  **/
1273 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1274                               u32 freq_khz)
1275 {
1276 #define ONE_GHZ_IN_KHZ  1000000
1277         /*
1278          * From 802.11ad: directional multi-gigabit (DMG):
1279          * Pertaining to operation in a frequency band containing a channel
1280          * with the Channel starting frequency above 45 GHz.
1281          */
1282         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1283                         20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1284         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1285                 return true;
1286         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1287                 return true;
1288         return false;
1289 #undef ONE_GHZ_IN_KHZ
1290 }
1291
1292 /*
1293  * Later on we can perhaps use the more restrictive DFS
1294  * region but we don't have information for that yet so
1295  * for now simply disallow conflicts.
1296  */
1297 static enum nl80211_dfs_regions
1298 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1299                          const enum nl80211_dfs_regions dfs_region2)
1300 {
1301         if (dfs_region1 != dfs_region2)
1302                 return NL80211_DFS_UNSET;
1303         return dfs_region1;
1304 }
1305
1306 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1307                                     const struct ieee80211_wmm_ac *wmm_ac2,
1308                                     struct ieee80211_wmm_ac *intersect)
1309 {
1310         intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1311         intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1312         intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1313         intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1314 }
1315
1316 /*
1317  * Helper for regdom_intersect(), this does the real
1318  * mathematical intersection fun
1319  */
1320 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1321                                const struct ieee80211_regdomain *rd2,
1322                                const struct ieee80211_reg_rule *rule1,
1323                                const struct ieee80211_reg_rule *rule2,
1324                                struct ieee80211_reg_rule *intersected_rule)
1325 {
1326         const struct ieee80211_freq_range *freq_range1, *freq_range2;
1327         struct ieee80211_freq_range *freq_range;
1328         const struct ieee80211_power_rule *power_rule1, *power_rule2;
1329         struct ieee80211_power_rule *power_rule;
1330         const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1331         struct ieee80211_wmm_rule *wmm_rule;
1332         u32 freq_diff, max_bandwidth1, max_bandwidth2;
1333
1334         freq_range1 = &rule1->freq_range;
1335         freq_range2 = &rule2->freq_range;
1336         freq_range = &intersected_rule->freq_range;
1337
1338         power_rule1 = &rule1->power_rule;
1339         power_rule2 = &rule2->power_rule;
1340         power_rule = &intersected_rule->power_rule;
1341
1342         wmm_rule1 = &rule1->wmm_rule;
1343         wmm_rule2 = &rule2->wmm_rule;
1344         wmm_rule = &intersected_rule->wmm_rule;
1345
1346         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1347                                          freq_range2->start_freq_khz);
1348         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1349                                        freq_range2->end_freq_khz);
1350
1351         max_bandwidth1 = freq_range1->max_bandwidth_khz;
1352         max_bandwidth2 = freq_range2->max_bandwidth_khz;
1353
1354         if (rule1->flags & NL80211_RRF_AUTO_BW)
1355                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1356         if (rule2->flags & NL80211_RRF_AUTO_BW)
1357                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1358
1359         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1360
1361         intersected_rule->flags = rule1->flags | rule2->flags;
1362
1363         /*
1364          * In case NL80211_RRF_AUTO_BW requested for both rules
1365          * set AUTO_BW in intersected rule also. Next we will
1366          * calculate BW correctly in handle_channel function.
1367          * In other case remove AUTO_BW flag while we calculate
1368          * maximum bandwidth correctly and auto calculation is
1369          * not required.
1370          */
1371         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1372             (rule2->flags & NL80211_RRF_AUTO_BW))
1373                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1374         else
1375                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1376
1377         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1378         if (freq_range->max_bandwidth_khz > freq_diff)
1379                 freq_range->max_bandwidth_khz = freq_diff;
1380
1381         power_rule->max_eirp = min(power_rule1->max_eirp,
1382                 power_rule2->max_eirp);
1383         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1384                 power_rule2->max_antenna_gain);
1385
1386         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1387                                            rule2->dfs_cac_ms);
1388
1389         if (rule1->has_wmm && rule2->has_wmm) {
1390                 u8 ac;
1391
1392                 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1393                         reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1394                                                 &wmm_rule2->client[ac],
1395                                                 &wmm_rule->client[ac]);
1396                         reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1397                                                 &wmm_rule2->ap[ac],
1398                                                 &wmm_rule->ap[ac]);
1399                 }
1400
1401                 intersected_rule->has_wmm = true;
1402         } else if (rule1->has_wmm) {
1403                 *wmm_rule = *wmm_rule1;
1404                 intersected_rule->has_wmm = true;
1405         } else if (rule2->has_wmm) {
1406                 *wmm_rule = *wmm_rule2;
1407                 intersected_rule->has_wmm = true;
1408         } else {
1409                 intersected_rule->has_wmm = false;
1410         }
1411
1412         if (!is_valid_reg_rule(intersected_rule))
1413                 return -EINVAL;
1414
1415         return 0;
1416 }
1417
1418 /* check whether old rule contains new rule */
1419 static bool rule_contains(struct ieee80211_reg_rule *r1,
1420                           struct ieee80211_reg_rule *r2)
1421 {
1422         /* for simplicity, currently consider only same flags */
1423         if (r1->flags != r2->flags)
1424                 return false;
1425
1426         /* verify r1 is more restrictive */
1427         if ((r1->power_rule.max_antenna_gain >
1428              r2->power_rule.max_antenna_gain) ||
1429             r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1430                 return false;
1431
1432         /* make sure r2's range is contained within r1 */
1433         if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1434             r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1435                 return false;
1436
1437         /* and finally verify that r1.max_bw >= r2.max_bw */
1438         if (r1->freq_range.max_bandwidth_khz <
1439             r2->freq_range.max_bandwidth_khz)
1440                 return false;
1441
1442         return true;
1443 }
1444
1445 /* add or extend current rules. do nothing if rule is already contained */
1446 static void add_rule(struct ieee80211_reg_rule *rule,
1447                      struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1448 {
1449         struct ieee80211_reg_rule *tmp_rule;
1450         int i;
1451
1452         for (i = 0; i < *n_rules; i++) {
1453                 tmp_rule = &reg_rules[i];
1454                 /* rule is already contained - do nothing */
1455                 if (rule_contains(tmp_rule, rule))
1456                         return;
1457
1458                 /* extend rule if possible */
1459                 if (rule_contains(rule, tmp_rule)) {
1460                         memcpy(tmp_rule, rule, sizeof(*rule));
1461                         return;
1462                 }
1463         }
1464
1465         memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1466         (*n_rules)++;
1467 }
1468
1469 /**
1470  * regdom_intersect - do the intersection between two regulatory domains
1471  * @rd1: first regulatory domain
1472  * @rd2: second regulatory domain
1473  *
1474  * Use this function to get the intersection between two regulatory domains.
1475  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1476  * as no one single alpha2 can represent this regulatory domain.
1477  *
1478  * Returns a pointer to the regulatory domain structure which will hold the
1479  * resulting intersection of rules between rd1 and rd2. We will
1480  * kzalloc() this structure for you.
1481  */
1482 static struct ieee80211_regdomain *
1483 regdom_intersect(const struct ieee80211_regdomain *rd1,
1484                  const struct ieee80211_regdomain *rd2)
1485 {
1486         int r;
1487         unsigned int x, y;
1488         unsigned int num_rules = 0;
1489         const struct ieee80211_reg_rule *rule1, *rule2;
1490         struct ieee80211_reg_rule intersected_rule;
1491         struct ieee80211_regdomain *rd;
1492
1493         if (!rd1 || !rd2)
1494                 return NULL;
1495
1496         /*
1497          * First we get a count of the rules we'll need, then we actually
1498          * build them. This is to so we can malloc() and free() a
1499          * regdomain once. The reason we use reg_rules_intersect() here
1500          * is it will return -EINVAL if the rule computed makes no sense.
1501          * All rules that do check out OK are valid.
1502          */
1503
1504         for (x = 0; x < rd1->n_reg_rules; x++) {
1505                 rule1 = &rd1->reg_rules[x];
1506                 for (y = 0; y < rd2->n_reg_rules; y++) {
1507                         rule2 = &rd2->reg_rules[y];
1508                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1509                                                  &intersected_rule))
1510                                 num_rules++;
1511                 }
1512         }
1513
1514         if (!num_rules)
1515                 return NULL;
1516
1517         rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1518         if (!rd)
1519                 return NULL;
1520
1521         for (x = 0; x < rd1->n_reg_rules; x++) {
1522                 rule1 = &rd1->reg_rules[x];
1523                 for (y = 0; y < rd2->n_reg_rules; y++) {
1524                         rule2 = &rd2->reg_rules[y];
1525                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1526                                                 &intersected_rule);
1527                         /*
1528                          * No need to memset here the intersected rule here as
1529                          * we're not using the stack anymore
1530                          */
1531                         if (r)
1532                                 continue;
1533
1534                         add_rule(&intersected_rule, rd->reg_rules,
1535                                  &rd->n_reg_rules);
1536                 }
1537         }
1538
1539         rd->alpha2[0] = '9';
1540         rd->alpha2[1] = '8';
1541         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1542                                                   rd2->dfs_region);
1543
1544         return rd;
1545 }
1546
1547 /*
1548  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1549  * want to just have the channel structure use these
1550  */
1551 static u32 map_regdom_flags(u32 rd_flags)
1552 {
1553         u32 channel_flags = 0;
1554         if (rd_flags & NL80211_RRF_NO_IR_ALL)
1555                 channel_flags |= IEEE80211_CHAN_NO_IR;
1556         if (rd_flags & NL80211_RRF_DFS)
1557                 channel_flags |= IEEE80211_CHAN_RADAR;
1558         if (rd_flags & NL80211_RRF_NO_OFDM)
1559                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1560         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1561                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1562         if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1563                 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1564         if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1565                 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1566         if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1567                 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1568         if (rd_flags & NL80211_RRF_NO_80MHZ)
1569                 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1570         if (rd_flags & NL80211_RRF_NO_160MHZ)
1571                 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1572         if (rd_flags & NL80211_RRF_NO_HE)
1573                 channel_flags |= IEEE80211_CHAN_NO_HE;
1574         return channel_flags;
1575 }
1576
1577 static const struct ieee80211_reg_rule *
1578 freq_reg_info_regd(u32 center_freq,
1579                    const struct ieee80211_regdomain *regd, u32 bw)
1580 {
1581         int i;
1582         bool band_rule_found = false;
1583         bool bw_fits = false;
1584
1585         if (!regd)
1586                 return ERR_PTR(-EINVAL);
1587
1588         for (i = 0; i < regd->n_reg_rules; i++) {
1589                 const struct ieee80211_reg_rule *rr;
1590                 const struct ieee80211_freq_range *fr = NULL;
1591
1592                 rr = &regd->reg_rules[i];
1593                 fr = &rr->freq_range;
1594
1595                 /*
1596                  * We only need to know if one frequency rule was
1597                  * in center_freq's band, that's enough, so let's
1598                  * not overwrite it once found
1599                  */
1600                 if (!band_rule_found)
1601                         band_rule_found = freq_in_rule_band(fr, center_freq);
1602
1603                 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1604
1605                 if (band_rule_found && bw_fits)
1606                         return rr;
1607         }
1608
1609         if (!band_rule_found)
1610                 return ERR_PTR(-ERANGE);
1611
1612         return ERR_PTR(-EINVAL);
1613 }
1614
1615 static const struct ieee80211_reg_rule *
1616 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1617 {
1618         const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1619         const struct ieee80211_reg_rule *reg_rule = NULL;
1620         u32 bw;
1621
1622         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1623                 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1624                 if (!IS_ERR(reg_rule))
1625                         return reg_rule;
1626         }
1627
1628         return reg_rule;
1629 }
1630
1631 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1632                                                u32 center_freq)
1633 {
1634         return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1635 }
1636 EXPORT_SYMBOL(freq_reg_info);
1637
1638 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1639 {
1640         switch (initiator) {
1641         case NL80211_REGDOM_SET_BY_CORE:
1642                 return "core";
1643         case NL80211_REGDOM_SET_BY_USER:
1644                 return "user";
1645         case NL80211_REGDOM_SET_BY_DRIVER:
1646                 return "driver";
1647         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1648                 return "country element";
1649         default:
1650                 WARN_ON(1);
1651                 return "bug";
1652         }
1653 }
1654 EXPORT_SYMBOL(reg_initiator_name);
1655
1656 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1657                                           const struct ieee80211_reg_rule *reg_rule,
1658                                           const struct ieee80211_channel *chan)
1659 {
1660         const struct ieee80211_freq_range *freq_range = NULL;
1661         u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1662
1663         freq_range = &reg_rule->freq_range;
1664
1665         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1666         center_freq_khz = ieee80211_channel_to_khz(chan);
1667         /* Check if auto calculation requested */
1668         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1669                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1670
1671         /* If we get a reg_rule we can assume that at least 5Mhz fit */
1672         if (!cfg80211_does_bw_fit_range(freq_range,
1673                                         center_freq_khz,
1674                                         MHZ_TO_KHZ(10)))
1675                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1676         if (!cfg80211_does_bw_fit_range(freq_range,
1677                                         center_freq_khz,
1678                                         MHZ_TO_KHZ(20)))
1679                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1680
1681         if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1682                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1683         if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1684                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1685         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1686                 bw_flags |= IEEE80211_CHAN_NO_HT40;
1687         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1688                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1689         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1690                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1691         return bw_flags;
1692 }
1693
1694 static void handle_channel_single_rule(struct wiphy *wiphy,
1695                                        enum nl80211_reg_initiator initiator,
1696                                        struct ieee80211_channel *chan,
1697                                        u32 flags,
1698                                        struct regulatory_request *lr,
1699                                        struct wiphy *request_wiphy,
1700                                        const struct ieee80211_reg_rule *reg_rule)
1701 {
1702         u32 bw_flags = 0;
1703         const struct ieee80211_power_rule *power_rule = NULL;
1704         const struct ieee80211_regdomain *regd;
1705
1706         regd = reg_get_regdomain(wiphy);
1707
1708         power_rule = &reg_rule->power_rule;
1709         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1710
1711         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1712             request_wiphy && request_wiphy == wiphy &&
1713             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1714                 /*
1715                  * This guarantees the driver's requested regulatory domain
1716                  * will always be used as a base for further regulatory
1717                  * settings
1718                  */
1719                 chan->flags = chan->orig_flags =
1720                         map_regdom_flags(reg_rule->flags) | bw_flags;
1721                 chan->max_antenna_gain = chan->orig_mag =
1722                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1723                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1724                         (int) MBM_TO_DBM(power_rule->max_eirp);
1725
1726                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1727                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1728                         if (reg_rule->dfs_cac_ms)
1729                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1730                 }
1731
1732                 return;
1733         }
1734
1735         chan->dfs_state = NL80211_DFS_USABLE;
1736         chan->dfs_state_entered = jiffies;
1737
1738         chan->beacon_found = false;
1739         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1740         chan->max_antenna_gain =
1741                 min_t(int, chan->orig_mag,
1742                       MBI_TO_DBI(power_rule->max_antenna_gain));
1743         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1744
1745         if (chan->flags & IEEE80211_CHAN_RADAR) {
1746                 if (reg_rule->dfs_cac_ms)
1747                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1748                 else
1749                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1750         }
1751
1752         if (chan->orig_mpwr) {
1753                 /*
1754                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1755                  * will always follow the passed country IE power settings.
1756                  */
1757                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1758                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1759                         chan->max_power = chan->max_reg_power;
1760                 else
1761                         chan->max_power = min(chan->orig_mpwr,
1762                                               chan->max_reg_power);
1763         } else
1764                 chan->max_power = chan->max_reg_power;
1765 }
1766
1767 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1768                                           enum nl80211_reg_initiator initiator,
1769                                           struct ieee80211_channel *chan,
1770                                           u32 flags,
1771                                           struct regulatory_request *lr,
1772                                           struct wiphy *request_wiphy,
1773                                           const struct ieee80211_reg_rule *rrule1,
1774                                           const struct ieee80211_reg_rule *rrule2,
1775                                           struct ieee80211_freq_range *comb_range)
1776 {
1777         u32 bw_flags1 = 0;
1778         u32 bw_flags2 = 0;
1779         const struct ieee80211_power_rule *power_rule1 = NULL;
1780         const struct ieee80211_power_rule *power_rule2 = NULL;
1781         const struct ieee80211_regdomain *regd;
1782
1783         regd = reg_get_regdomain(wiphy);
1784
1785         power_rule1 = &rrule1->power_rule;
1786         power_rule2 = &rrule2->power_rule;
1787         bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1788         bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1789
1790         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1791             request_wiphy && request_wiphy == wiphy &&
1792             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1793                 /* This guarantees the driver's requested regulatory domain
1794                  * will always be used as a base for further regulatory
1795                  * settings
1796                  */
1797                 chan->flags =
1798                         map_regdom_flags(rrule1->flags) |
1799                         map_regdom_flags(rrule2->flags) |
1800                         bw_flags1 |
1801                         bw_flags2;
1802                 chan->orig_flags = chan->flags;
1803                 chan->max_antenna_gain =
1804                         min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1805                               MBI_TO_DBI(power_rule2->max_antenna_gain));
1806                 chan->orig_mag = chan->max_antenna_gain;
1807                 chan->max_reg_power =
1808                         min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1809                               MBM_TO_DBM(power_rule2->max_eirp));
1810                 chan->max_power = chan->max_reg_power;
1811                 chan->orig_mpwr = chan->max_reg_power;
1812
1813                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1814                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1815                         if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1816                                 chan->dfs_cac_ms = max_t(unsigned int,
1817                                                          rrule1->dfs_cac_ms,
1818                                                          rrule2->dfs_cac_ms);
1819                 }
1820
1821                 return;
1822         }
1823
1824         chan->dfs_state = NL80211_DFS_USABLE;
1825         chan->dfs_state_entered = jiffies;
1826
1827         chan->beacon_found = false;
1828         chan->flags = flags | bw_flags1 | bw_flags2 |
1829                       map_regdom_flags(rrule1->flags) |
1830                       map_regdom_flags(rrule2->flags);
1831
1832         /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1833          * (otherwise no adj. rule case), recheck therefore
1834          */
1835         if (cfg80211_does_bw_fit_range(comb_range,
1836                                        ieee80211_channel_to_khz(chan),
1837                                        MHZ_TO_KHZ(10)))
1838                 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1839         if (cfg80211_does_bw_fit_range(comb_range,
1840                                        ieee80211_channel_to_khz(chan),
1841                                        MHZ_TO_KHZ(20)))
1842                 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1843
1844         chan->max_antenna_gain =
1845                 min_t(int, chan->orig_mag,
1846                       min_t(int,
1847                             MBI_TO_DBI(power_rule1->max_antenna_gain),
1848                             MBI_TO_DBI(power_rule2->max_antenna_gain)));
1849         chan->max_reg_power = min_t(int,
1850                                     MBM_TO_DBM(power_rule1->max_eirp),
1851                                     MBM_TO_DBM(power_rule2->max_eirp));
1852
1853         if (chan->flags & IEEE80211_CHAN_RADAR) {
1854                 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1855                         chan->dfs_cac_ms = max_t(unsigned int,
1856                                                  rrule1->dfs_cac_ms,
1857                                                  rrule2->dfs_cac_ms);
1858                 else
1859                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1860         }
1861
1862         if (chan->orig_mpwr) {
1863                 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1864                  * will always follow the passed country IE power settings.
1865                  */
1866                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1867                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1868                         chan->max_power = chan->max_reg_power;
1869                 else
1870                         chan->max_power = min(chan->orig_mpwr,
1871                                               chan->max_reg_power);
1872         } else {
1873                 chan->max_power = chan->max_reg_power;
1874         }
1875 }
1876
1877 /* Note that right now we assume the desired channel bandwidth
1878  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1879  * per channel, the primary and the extension channel).
1880  */
1881 static void handle_channel(struct wiphy *wiphy,
1882                            enum nl80211_reg_initiator initiator,
1883                            struct ieee80211_channel *chan)
1884 {
1885         const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1886         struct regulatory_request *lr = get_last_request();
1887         struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1888         const struct ieee80211_reg_rule *rrule = NULL;
1889         const struct ieee80211_reg_rule *rrule1 = NULL;
1890         const struct ieee80211_reg_rule *rrule2 = NULL;
1891
1892         u32 flags = chan->orig_flags;
1893
1894         rrule = freq_reg_info(wiphy, orig_chan_freq);
1895         if (IS_ERR(rrule)) {
1896                 /* check for adjacent match, therefore get rules for
1897                  * chan - 20 MHz and chan + 20 MHz and test
1898                  * if reg rules are adjacent
1899                  */
1900                 rrule1 = freq_reg_info(wiphy,
1901                                        orig_chan_freq - MHZ_TO_KHZ(20));
1902                 rrule2 = freq_reg_info(wiphy,
1903                                        orig_chan_freq + MHZ_TO_KHZ(20));
1904                 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1905                         struct ieee80211_freq_range comb_range;
1906
1907                         if (rrule1->freq_range.end_freq_khz !=
1908                             rrule2->freq_range.start_freq_khz)
1909                                 goto disable_chan;
1910
1911                         comb_range.start_freq_khz =
1912                                 rrule1->freq_range.start_freq_khz;
1913                         comb_range.end_freq_khz =
1914                                 rrule2->freq_range.end_freq_khz;
1915                         comb_range.max_bandwidth_khz =
1916                                 min_t(u32,
1917                                       rrule1->freq_range.max_bandwidth_khz,
1918                                       rrule2->freq_range.max_bandwidth_khz);
1919
1920                         if (!cfg80211_does_bw_fit_range(&comb_range,
1921                                                         orig_chan_freq,
1922                                                         MHZ_TO_KHZ(20)))
1923                                 goto disable_chan;
1924
1925                         handle_channel_adjacent_rules(wiphy, initiator, chan,
1926                                                       flags, lr, request_wiphy,
1927                                                       rrule1, rrule2,
1928                                                       &comb_range);
1929                         return;
1930                 }
1931
1932 disable_chan:
1933                 /* We will disable all channels that do not match our
1934                  * received regulatory rule unless the hint is coming
1935                  * from a Country IE and the Country IE had no information
1936                  * about a band. The IEEE 802.11 spec allows for an AP
1937                  * to send only a subset of the regulatory rules allowed,
1938                  * so an AP in the US that only supports 2.4 GHz may only send
1939                  * a country IE with information for the 2.4 GHz band
1940                  * while 5 GHz is still supported.
1941                  */
1942                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1943                     PTR_ERR(rrule) == -ERANGE)
1944                         return;
1945
1946                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1947                     request_wiphy && request_wiphy == wiphy &&
1948                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1949                         pr_debug("Disabling freq %d.%03d MHz for good\n",
1950                                  chan->center_freq, chan->freq_offset);
1951                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1952                         chan->flags = chan->orig_flags;
1953                 } else {
1954                         pr_debug("Disabling freq %d.%03d MHz\n",
1955                                  chan->center_freq, chan->freq_offset);
1956                         chan->flags |= IEEE80211_CHAN_DISABLED;
1957                 }
1958                 return;
1959         }
1960
1961         handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
1962                                    request_wiphy, rrule);
1963 }
1964
1965 static void handle_band(struct wiphy *wiphy,
1966                         enum nl80211_reg_initiator initiator,
1967                         struct ieee80211_supported_band *sband)
1968 {
1969         unsigned int i;
1970
1971         if (!sband)
1972                 return;
1973
1974         for (i = 0; i < sband->n_channels; i++)
1975                 handle_channel(wiphy, initiator, &sband->channels[i]);
1976 }
1977
1978 static bool reg_request_cell_base(struct regulatory_request *request)
1979 {
1980         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1981                 return false;
1982         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1983 }
1984
1985 bool reg_last_request_cell_base(void)
1986 {
1987         return reg_request_cell_base(get_last_request());
1988 }
1989
1990 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1991 /* Core specific check */
1992 static enum reg_request_treatment
1993 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1994 {
1995         struct regulatory_request *lr = get_last_request();
1996
1997         if (!reg_num_devs_support_basehint)
1998                 return REG_REQ_IGNORE;
1999
2000         if (reg_request_cell_base(lr) &&
2001             !regdom_changes(pending_request->alpha2))
2002                 return REG_REQ_ALREADY_SET;
2003
2004         return REG_REQ_OK;
2005 }
2006
2007 /* Device specific check */
2008 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2009 {
2010         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2011 }
2012 #else
2013 static enum reg_request_treatment
2014 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2015 {
2016         return REG_REQ_IGNORE;
2017 }
2018
2019 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2020 {
2021         return true;
2022 }
2023 #endif
2024
2025 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2026 {
2027         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2028             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2029                 return true;
2030         return false;
2031 }
2032
2033 static bool ignore_reg_update(struct wiphy *wiphy,
2034                               enum nl80211_reg_initiator initiator)
2035 {
2036         struct regulatory_request *lr = get_last_request();
2037
2038         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2039                 return true;
2040
2041         if (!lr) {
2042                 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2043                          reg_initiator_name(initiator));
2044                 return true;
2045         }
2046
2047         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2048             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2049                 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2050                          reg_initiator_name(initiator));
2051                 return true;
2052         }
2053
2054         /*
2055          * wiphy->regd will be set once the device has its own
2056          * desired regulatory domain set
2057          */
2058         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2059             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2060             !is_world_regdom(lr->alpha2)) {
2061                 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2062                          reg_initiator_name(initiator));
2063                 return true;
2064         }
2065
2066         if (reg_request_cell_base(lr))
2067                 return reg_dev_ignore_cell_hint(wiphy);
2068
2069         return false;
2070 }
2071
2072 static bool reg_is_world_roaming(struct wiphy *wiphy)
2073 {
2074         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2075         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2076         struct regulatory_request *lr = get_last_request();
2077
2078         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2079                 return true;
2080
2081         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2082             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2083                 return true;
2084
2085         return false;
2086 }
2087
2088 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2089                               struct reg_beacon *reg_beacon)
2090 {
2091         struct ieee80211_supported_band *sband;
2092         struct ieee80211_channel *chan;
2093         bool channel_changed = false;
2094         struct ieee80211_channel chan_before;
2095
2096         sband = wiphy->bands[reg_beacon->chan.band];
2097         chan = &sband->channels[chan_idx];
2098
2099         if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2100                 return;
2101
2102         if (chan->beacon_found)
2103                 return;
2104
2105         chan->beacon_found = true;
2106
2107         if (!reg_is_world_roaming(wiphy))
2108                 return;
2109
2110         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2111                 return;
2112
2113         chan_before = *chan;
2114
2115         if (chan->flags & IEEE80211_CHAN_NO_IR) {
2116                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
2117                 channel_changed = true;
2118         }
2119
2120         if (channel_changed)
2121                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2122 }
2123
2124 /*
2125  * Called when a scan on a wiphy finds a beacon on
2126  * new channel
2127  */
2128 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2129                                     struct reg_beacon *reg_beacon)
2130 {
2131         unsigned int i;
2132         struct ieee80211_supported_band *sband;
2133
2134         if (!wiphy->bands[reg_beacon->chan.band])
2135                 return;
2136
2137         sband = wiphy->bands[reg_beacon->chan.band];
2138
2139         for (i = 0; i < sband->n_channels; i++)
2140                 handle_reg_beacon(wiphy, i, reg_beacon);
2141 }
2142
2143 /*
2144  * Called upon reg changes or a new wiphy is added
2145  */
2146 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2147 {
2148         unsigned int i;
2149         struct ieee80211_supported_band *sband;
2150         struct reg_beacon *reg_beacon;
2151
2152         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2153                 if (!wiphy->bands[reg_beacon->chan.band])
2154                         continue;
2155                 sband = wiphy->bands[reg_beacon->chan.band];
2156                 for (i = 0; i < sband->n_channels; i++)
2157                         handle_reg_beacon(wiphy, i, reg_beacon);
2158         }
2159 }
2160
2161 /* Reap the advantages of previously found beacons */
2162 static void reg_process_beacons(struct wiphy *wiphy)
2163 {
2164         /*
2165          * Means we are just firing up cfg80211, so no beacons would
2166          * have been processed yet.
2167          */
2168         if (!last_request)
2169                 return;
2170         wiphy_update_beacon_reg(wiphy);
2171 }
2172
2173 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2174 {
2175         if (!chan)
2176                 return false;
2177         if (chan->flags & IEEE80211_CHAN_DISABLED)
2178                 return false;
2179         /* This would happen when regulatory rules disallow HT40 completely */
2180         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2181                 return false;
2182         return true;
2183 }
2184
2185 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2186                                          struct ieee80211_channel *channel)
2187 {
2188         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2189         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2190         const struct ieee80211_regdomain *regd;
2191         unsigned int i;
2192         u32 flags;
2193
2194         if (!is_ht40_allowed(channel)) {
2195                 channel->flags |= IEEE80211_CHAN_NO_HT40;
2196                 return;
2197         }
2198
2199         /*
2200          * We need to ensure the extension channels exist to
2201          * be able to use HT40- or HT40+, this finds them (or not)
2202          */
2203         for (i = 0; i < sband->n_channels; i++) {
2204                 struct ieee80211_channel *c = &sband->channels[i];
2205
2206                 if (c->center_freq == (channel->center_freq - 20))
2207                         channel_before = c;
2208                 if (c->center_freq == (channel->center_freq + 20))
2209                         channel_after = c;
2210         }
2211
2212         flags = 0;
2213         regd = get_wiphy_regdom(wiphy);
2214         if (regd) {
2215                 const struct ieee80211_reg_rule *reg_rule =
2216                         freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2217                                            regd, MHZ_TO_KHZ(20));
2218
2219                 if (!IS_ERR(reg_rule))
2220                         flags = reg_rule->flags;
2221         }
2222
2223         /*
2224          * Please note that this assumes target bandwidth is 20 MHz,
2225          * if that ever changes we also need to change the below logic
2226          * to include that as well.
2227          */
2228         if (!is_ht40_allowed(channel_before) ||
2229             flags & NL80211_RRF_NO_HT40MINUS)
2230                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2231         else
2232                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2233
2234         if (!is_ht40_allowed(channel_after) ||
2235             flags & NL80211_RRF_NO_HT40PLUS)
2236                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2237         else
2238                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2239 }
2240
2241 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2242                                       struct ieee80211_supported_band *sband)
2243 {
2244         unsigned int i;
2245
2246         if (!sband)
2247                 return;
2248
2249         for (i = 0; i < sband->n_channels; i++)
2250                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2251 }
2252
2253 static void reg_process_ht_flags(struct wiphy *wiphy)
2254 {
2255         enum nl80211_band band;
2256
2257         if (!wiphy)
2258                 return;
2259
2260         for (band = 0; band < NUM_NL80211_BANDS; band++)
2261                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2262 }
2263
2264 static void reg_call_notifier(struct wiphy *wiphy,
2265                               struct regulatory_request *request)
2266 {
2267         if (wiphy->reg_notifier)
2268                 wiphy->reg_notifier(wiphy, request);
2269 }
2270
2271 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2272 {
2273         struct cfg80211_chan_def chandef = {};
2274         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2275         enum nl80211_iftype iftype;
2276
2277         wdev_lock(wdev);
2278         iftype = wdev->iftype;
2279
2280         /* make sure the interface is active */
2281         if (!wdev->netdev || !netif_running(wdev->netdev))
2282                 goto wdev_inactive_unlock;
2283
2284         switch (iftype) {
2285         case NL80211_IFTYPE_AP:
2286         case NL80211_IFTYPE_P2P_GO:
2287                 if (!wdev->beacon_interval)
2288                         goto wdev_inactive_unlock;
2289                 chandef = wdev->chandef;
2290                 break;
2291         case NL80211_IFTYPE_ADHOC:
2292                 if (!wdev->ssid_len)
2293                         goto wdev_inactive_unlock;
2294                 chandef = wdev->chandef;
2295                 break;
2296         case NL80211_IFTYPE_STATION:
2297         case NL80211_IFTYPE_P2P_CLIENT:
2298                 if (!wdev->current_bss ||
2299                     !wdev->current_bss->pub.channel)
2300                         goto wdev_inactive_unlock;
2301
2302                 if (!rdev->ops->get_channel ||
2303                     rdev_get_channel(rdev, wdev, &chandef))
2304                         cfg80211_chandef_create(&chandef,
2305                                                 wdev->current_bss->pub.channel,
2306                                                 NL80211_CHAN_NO_HT);
2307                 break;
2308         case NL80211_IFTYPE_MONITOR:
2309         case NL80211_IFTYPE_AP_VLAN:
2310         case NL80211_IFTYPE_P2P_DEVICE:
2311                 /* no enforcement required */
2312                 break;
2313         default:
2314                 /* others not implemented for now */
2315                 WARN_ON(1);
2316                 break;
2317         }
2318
2319         wdev_unlock(wdev);
2320
2321         switch (iftype) {
2322         case NL80211_IFTYPE_AP:
2323         case NL80211_IFTYPE_P2P_GO:
2324         case NL80211_IFTYPE_ADHOC:
2325                 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2326         case NL80211_IFTYPE_STATION:
2327         case NL80211_IFTYPE_P2P_CLIENT:
2328                 return cfg80211_chandef_usable(wiphy, &chandef,
2329                                                IEEE80211_CHAN_DISABLED);
2330         default:
2331                 break;
2332         }
2333
2334         return true;
2335
2336 wdev_inactive_unlock:
2337         wdev_unlock(wdev);
2338         return true;
2339 }
2340
2341 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2342 {
2343         struct wireless_dev *wdev;
2344         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2345
2346         ASSERT_RTNL();
2347
2348         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2349                 if (!reg_wdev_chan_valid(wiphy, wdev))
2350                         cfg80211_leave(rdev, wdev);
2351 }
2352
2353 static void reg_check_chans_work(struct work_struct *work)
2354 {
2355         struct cfg80211_registered_device *rdev;
2356
2357         pr_debug("Verifying active interfaces after reg change\n");
2358         rtnl_lock();
2359
2360         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2361                 if (!(rdev->wiphy.regulatory_flags &
2362                       REGULATORY_IGNORE_STALE_KICKOFF))
2363                         reg_leave_invalid_chans(&rdev->wiphy);
2364
2365         rtnl_unlock();
2366 }
2367
2368 static void reg_check_channels(void)
2369 {
2370         /*
2371          * Give usermode a chance to do something nicer (move to another
2372          * channel, orderly disconnection), before forcing a disconnection.
2373          */
2374         mod_delayed_work(system_power_efficient_wq,
2375                          &reg_check_chans,
2376                          msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2377 }
2378
2379 static void wiphy_update_regulatory(struct wiphy *wiphy,
2380                                     enum nl80211_reg_initiator initiator)
2381 {
2382         enum nl80211_band band;
2383         struct regulatory_request *lr = get_last_request();
2384
2385         if (ignore_reg_update(wiphy, initiator)) {
2386                 /*
2387                  * Regulatory updates set by CORE are ignored for custom
2388                  * regulatory cards. Let us notify the changes to the driver,
2389                  * as some drivers used this to restore its orig_* reg domain.
2390                  */
2391                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2392                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2393                     !(wiphy->regulatory_flags &
2394                       REGULATORY_WIPHY_SELF_MANAGED))
2395                         reg_call_notifier(wiphy, lr);
2396                 return;
2397         }
2398
2399         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2400
2401         for (band = 0; band < NUM_NL80211_BANDS; band++)
2402                 handle_band(wiphy, initiator, wiphy->bands[band]);
2403
2404         reg_process_beacons(wiphy);
2405         reg_process_ht_flags(wiphy);
2406         reg_call_notifier(wiphy, lr);
2407 }
2408
2409 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2410 {
2411         struct cfg80211_registered_device *rdev;
2412         struct wiphy *wiphy;
2413
2414         ASSERT_RTNL();
2415
2416         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2417                 wiphy = &rdev->wiphy;
2418                 wiphy_update_regulatory(wiphy, initiator);
2419         }
2420
2421         reg_check_channels();
2422 }
2423
2424 static void handle_channel_custom(struct wiphy *wiphy,
2425                                   struct ieee80211_channel *chan,
2426                                   const struct ieee80211_regdomain *regd,
2427                                   u32 min_bw)
2428 {
2429         u32 bw_flags = 0;
2430         const struct ieee80211_reg_rule *reg_rule = NULL;
2431         const struct ieee80211_power_rule *power_rule = NULL;
2432         u32 bw, center_freq_khz;
2433
2434         center_freq_khz = ieee80211_channel_to_khz(chan);
2435         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2436                 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2437                 if (!IS_ERR(reg_rule))
2438                         break;
2439         }
2440
2441         if (IS_ERR_OR_NULL(reg_rule)) {
2442                 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2443                          chan->center_freq, chan->freq_offset);
2444                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2445                         chan->flags |= IEEE80211_CHAN_DISABLED;
2446                 } else {
2447                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2448                         chan->flags = chan->orig_flags;
2449                 }
2450                 return;
2451         }
2452
2453         power_rule = &reg_rule->power_rule;
2454         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2455
2456         chan->dfs_state_entered = jiffies;
2457         chan->dfs_state = NL80211_DFS_USABLE;
2458
2459         chan->beacon_found = false;
2460
2461         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2462                 chan->flags = chan->orig_flags | bw_flags |
2463                               map_regdom_flags(reg_rule->flags);
2464         else
2465                 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2466
2467         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2468         chan->max_reg_power = chan->max_power =
2469                 (int) MBM_TO_DBM(power_rule->max_eirp);
2470
2471         if (chan->flags & IEEE80211_CHAN_RADAR) {
2472                 if (reg_rule->dfs_cac_ms)
2473                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2474                 else
2475                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2476         }
2477
2478         chan->max_power = chan->max_reg_power;
2479 }
2480
2481 static void handle_band_custom(struct wiphy *wiphy,
2482                                struct ieee80211_supported_band *sband,
2483                                const struct ieee80211_regdomain *regd)
2484 {
2485         unsigned int i;
2486
2487         if (!sband)
2488                 return;
2489
2490         /*
2491          * We currently assume that you always want at least 20 MHz,
2492          * otherwise channel 12 might get enabled if this rule is
2493          * compatible to US, which permits 2402 - 2472 MHz.
2494          */
2495         for (i = 0; i < sband->n_channels; i++)
2496                 handle_channel_custom(wiphy, &sband->channels[i], regd,
2497                                       MHZ_TO_KHZ(20));
2498 }
2499
2500 /* Used by drivers prior to wiphy registration */
2501 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2502                                    const struct ieee80211_regdomain *regd)
2503 {
2504         enum nl80211_band band;
2505         unsigned int bands_set = 0;
2506
2507         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2508              "wiphy should have REGULATORY_CUSTOM_REG\n");
2509         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2510
2511         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2512                 if (!wiphy->bands[band])
2513                         continue;
2514                 handle_band_custom(wiphy, wiphy->bands[band], regd);
2515                 bands_set++;
2516         }
2517
2518         /*
2519          * no point in calling this if it won't have any effect
2520          * on your device's supported bands.
2521          */
2522         WARN_ON(!bands_set);
2523 }
2524 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2525
2526 static void reg_set_request_processed(void)
2527 {
2528         bool need_more_processing = false;
2529         struct regulatory_request *lr = get_last_request();
2530
2531         lr->processed = true;
2532
2533         spin_lock(&reg_requests_lock);
2534         if (!list_empty(&reg_requests_list))
2535                 need_more_processing = true;
2536         spin_unlock(&reg_requests_lock);
2537
2538         cancel_crda_timeout();
2539
2540         if (need_more_processing)
2541                 schedule_work(&reg_work);
2542 }
2543
2544 /**
2545  * reg_process_hint_core - process core regulatory requests
2546  * @core_request: a pending core regulatory request
2547  *
2548  * The wireless subsystem can use this function to process
2549  * a regulatory request issued by the regulatory core.
2550  */
2551 static enum reg_request_treatment
2552 reg_process_hint_core(struct regulatory_request *core_request)
2553 {
2554         if (reg_query_database(core_request)) {
2555                 core_request->intersect = false;
2556                 core_request->processed = false;
2557                 reg_update_last_request(core_request);
2558                 return REG_REQ_OK;
2559         }
2560
2561         return REG_REQ_IGNORE;
2562 }
2563
2564 static enum reg_request_treatment
2565 __reg_process_hint_user(struct regulatory_request *user_request)
2566 {
2567         struct regulatory_request *lr = get_last_request();
2568
2569         if (reg_request_cell_base(user_request))
2570                 return reg_ignore_cell_hint(user_request);
2571
2572         if (reg_request_cell_base(lr))
2573                 return REG_REQ_IGNORE;
2574
2575         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2576                 return REG_REQ_INTERSECT;
2577         /*
2578          * If the user knows better the user should set the regdom
2579          * to their country before the IE is picked up
2580          */
2581         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2582             lr->intersect)
2583                 return REG_REQ_IGNORE;
2584         /*
2585          * Process user requests only after previous user/driver/core
2586          * requests have been processed
2587          */
2588         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2589              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2590              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2591             regdom_changes(lr->alpha2))
2592                 return REG_REQ_IGNORE;
2593
2594         if (!regdom_changes(user_request->alpha2))
2595                 return REG_REQ_ALREADY_SET;
2596
2597         return REG_REQ_OK;
2598 }
2599
2600 /**
2601  * reg_process_hint_user - process user regulatory requests
2602  * @user_request: a pending user regulatory request
2603  *
2604  * The wireless subsystem can use this function to process
2605  * a regulatory request initiated by userspace.
2606  */
2607 static enum reg_request_treatment
2608 reg_process_hint_user(struct regulatory_request *user_request)
2609 {
2610         enum reg_request_treatment treatment;
2611
2612         treatment = __reg_process_hint_user(user_request);
2613         if (treatment == REG_REQ_IGNORE ||
2614             treatment == REG_REQ_ALREADY_SET)
2615                 return REG_REQ_IGNORE;
2616
2617         user_request->intersect = treatment == REG_REQ_INTERSECT;
2618         user_request->processed = false;
2619
2620         if (reg_query_database(user_request)) {
2621                 reg_update_last_request(user_request);
2622                 user_alpha2[0] = user_request->alpha2[0];
2623                 user_alpha2[1] = user_request->alpha2[1];
2624                 return REG_REQ_OK;
2625         }
2626
2627         return REG_REQ_IGNORE;
2628 }
2629
2630 static enum reg_request_treatment
2631 __reg_process_hint_driver(struct regulatory_request *driver_request)
2632 {
2633         struct regulatory_request *lr = get_last_request();
2634
2635         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2636                 if (regdom_changes(driver_request->alpha2))
2637                         return REG_REQ_OK;
2638                 return REG_REQ_ALREADY_SET;
2639         }
2640
2641         /*
2642          * This would happen if you unplug and plug your card
2643          * back in or if you add a new device for which the previously
2644          * loaded card also agrees on the regulatory domain.
2645          */
2646         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2647             !regdom_changes(driver_request->alpha2))
2648                 return REG_REQ_ALREADY_SET;
2649
2650         return REG_REQ_INTERSECT;
2651 }
2652
2653 /**
2654  * reg_process_hint_driver - process driver regulatory requests
2655  * @wiphy: the wireless device for the regulatory request
2656  * @driver_request: a pending driver regulatory request
2657  *
2658  * The wireless subsystem can use this function to process
2659  * a regulatory request issued by an 802.11 driver.
2660  *
2661  * Returns one of the different reg request treatment values.
2662  */
2663 static enum reg_request_treatment
2664 reg_process_hint_driver(struct wiphy *wiphy,
2665                         struct regulatory_request *driver_request)
2666 {
2667         const struct ieee80211_regdomain *regd, *tmp;
2668         enum reg_request_treatment treatment;
2669
2670         treatment = __reg_process_hint_driver(driver_request);
2671
2672         switch (treatment) {
2673         case REG_REQ_OK:
2674                 break;
2675         case REG_REQ_IGNORE:
2676                 return REG_REQ_IGNORE;
2677         case REG_REQ_INTERSECT:
2678         case REG_REQ_ALREADY_SET:
2679                 regd = reg_copy_regd(get_cfg80211_regdom());
2680                 if (IS_ERR(regd))
2681                         return REG_REQ_IGNORE;
2682
2683                 tmp = get_wiphy_regdom(wiphy);
2684                 rcu_assign_pointer(wiphy->regd, regd);
2685                 rcu_free_regdom(tmp);
2686         }
2687
2688
2689         driver_request->intersect = treatment == REG_REQ_INTERSECT;
2690         driver_request->processed = false;
2691
2692         /*
2693          * Since CRDA will not be called in this case as we already
2694          * have applied the requested regulatory domain before we just
2695          * inform userspace we have processed the request
2696          */
2697         if (treatment == REG_REQ_ALREADY_SET) {
2698                 nl80211_send_reg_change_event(driver_request);
2699                 reg_update_last_request(driver_request);
2700                 reg_set_request_processed();
2701                 return REG_REQ_ALREADY_SET;
2702         }
2703
2704         if (reg_query_database(driver_request)) {
2705                 reg_update_last_request(driver_request);
2706                 return REG_REQ_OK;
2707         }
2708
2709         return REG_REQ_IGNORE;
2710 }
2711
2712 static enum reg_request_treatment
2713 __reg_process_hint_country_ie(struct wiphy *wiphy,
2714                               struct regulatory_request *country_ie_request)
2715 {
2716         struct wiphy *last_wiphy = NULL;
2717         struct regulatory_request *lr = get_last_request();
2718
2719         if (reg_request_cell_base(lr)) {
2720                 /* Trust a Cell base station over the AP's country IE */
2721                 if (regdom_changes(country_ie_request->alpha2))
2722                         return REG_REQ_IGNORE;
2723                 return REG_REQ_ALREADY_SET;
2724         } else {
2725                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2726                         return REG_REQ_IGNORE;
2727         }
2728
2729         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2730                 return -EINVAL;
2731
2732         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2733                 return REG_REQ_OK;
2734
2735         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2736
2737         if (last_wiphy != wiphy) {
2738                 /*
2739                  * Two cards with two APs claiming different
2740                  * Country IE alpha2s. We could
2741                  * intersect them, but that seems unlikely
2742                  * to be correct. Reject second one for now.
2743                  */
2744                 if (regdom_changes(country_ie_request->alpha2))
2745                         return REG_REQ_IGNORE;
2746                 return REG_REQ_ALREADY_SET;
2747         }
2748
2749         if (regdom_changes(country_ie_request->alpha2))
2750                 return REG_REQ_OK;
2751         return REG_REQ_ALREADY_SET;
2752 }
2753
2754 /**
2755  * reg_process_hint_country_ie - process regulatory requests from country IEs
2756  * @wiphy: the wireless device for the regulatory request
2757  * @country_ie_request: a regulatory request from a country IE
2758  *
2759  * The wireless subsystem can use this function to process
2760  * a regulatory request issued by a country Information Element.
2761  *
2762  * Returns one of the different reg request treatment values.
2763  */
2764 static enum reg_request_treatment
2765 reg_process_hint_country_ie(struct wiphy *wiphy,
2766                             struct regulatory_request *country_ie_request)
2767 {
2768         enum reg_request_treatment treatment;
2769
2770         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2771
2772         switch (treatment) {
2773         case REG_REQ_OK:
2774                 break;
2775         case REG_REQ_IGNORE:
2776                 return REG_REQ_IGNORE;
2777         case REG_REQ_ALREADY_SET:
2778                 reg_free_request(country_ie_request);
2779                 return REG_REQ_ALREADY_SET;
2780         case REG_REQ_INTERSECT:
2781                 /*
2782                  * This doesn't happen yet, not sure we
2783                  * ever want to support it for this case.
2784                  */
2785                 WARN_ONCE(1, "Unexpected intersection for country elements");
2786                 return REG_REQ_IGNORE;
2787         }
2788
2789         country_ie_request->intersect = false;
2790         country_ie_request->processed = false;
2791
2792         if (reg_query_database(country_ie_request)) {
2793                 reg_update_last_request(country_ie_request);
2794                 return REG_REQ_OK;
2795         }
2796
2797         return REG_REQ_IGNORE;
2798 }
2799
2800 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2801 {
2802         const struct ieee80211_regdomain *wiphy1_regd = NULL;
2803         const struct ieee80211_regdomain *wiphy2_regd = NULL;
2804         const struct ieee80211_regdomain *cfg80211_regd = NULL;
2805         bool dfs_domain_same;
2806
2807         rcu_read_lock();
2808
2809         cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2810         wiphy1_regd = rcu_dereference(wiphy1->regd);
2811         if (!wiphy1_regd)
2812                 wiphy1_regd = cfg80211_regd;
2813
2814         wiphy2_regd = rcu_dereference(wiphy2->regd);
2815         if (!wiphy2_regd)
2816                 wiphy2_regd = cfg80211_regd;
2817
2818         dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2819
2820         rcu_read_unlock();
2821
2822         return dfs_domain_same;
2823 }
2824
2825 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2826                                     struct ieee80211_channel *src_chan)
2827 {
2828         if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2829             !(src_chan->flags & IEEE80211_CHAN_RADAR))
2830                 return;
2831
2832         if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2833             src_chan->flags & IEEE80211_CHAN_DISABLED)
2834                 return;
2835
2836         if (src_chan->center_freq == dst_chan->center_freq &&
2837             dst_chan->dfs_state == NL80211_DFS_USABLE) {
2838                 dst_chan->dfs_state = src_chan->dfs_state;
2839                 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2840         }
2841 }
2842
2843 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2844                                        struct wiphy *src_wiphy)
2845 {
2846         struct ieee80211_supported_band *src_sband, *dst_sband;
2847         struct ieee80211_channel *src_chan, *dst_chan;
2848         int i, j, band;
2849
2850         if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2851                 return;
2852
2853         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2854                 dst_sband = dst_wiphy->bands[band];
2855                 src_sband = src_wiphy->bands[band];
2856                 if (!dst_sband || !src_sband)
2857                         continue;
2858
2859                 for (i = 0; i < dst_sband->n_channels; i++) {
2860                         dst_chan = &dst_sband->channels[i];
2861                         for (j = 0; j < src_sband->n_channels; j++) {
2862                                 src_chan = &src_sband->channels[j];
2863                                 reg_copy_dfs_chan_state(dst_chan, src_chan);
2864                         }
2865                 }
2866         }
2867 }
2868
2869 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2870 {
2871         struct cfg80211_registered_device *rdev;
2872
2873         ASSERT_RTNL();
2874
2875         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2876                 if (wiphy == &rdev->wiphy)
2877                         continue;
2878                 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2879         }
2880 }
2881
2882 /* This processes *all* regulatory hints */
2883 static void reg_process_hint(struct regulatory_request *reg_request)
2884 {
2885         struct wiphy *wiphy = NULL;
2886         enum reg_request_treatment treatment;
2887         enum nl80211_reg_initiator initiator = reg_request->initiator;
2888
2889         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2890                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2891
2892         switch (initiator) {
2893         case NL80211_REGDOM_SET_BY_CORE:
2894                 treatment = reg_process_hint_core(reg_request);
2895                 break;
2896         case NL80211_REGDOM_SET_BY_USER:
2897                 treatment = reg_process_hint_user(reg_request);
2898                 break;
2899         case NL80211_REGDOM_SET_BY_DRIVER:
2900                 if (!wiphy)
2901                         goto out_free;
2902                 treatment = reg_process_hint_driver(wiphy, reg_request);
2903                 break;
2904         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2905                 if (!wiphy)
2906                         goto out_free;
2907                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2908                 break;
2909         default:
2910                 WARN(1, "invalid initiator %d\n", initiator);
2911                 goto out_free;
2912         }
2913
2914         if (treatment == REG_REQ_IGNORE)
2915                 goto out_free;
2916
2917         WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2918              "unexpected treatment value %d\n", treatment);
2919
2920         /* This is required so that the orig_* parameters are saved.
2921          * NOTE: treatment must be set for any case that reaches here!
2922          */
2923         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2924             wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2925                 wiphy_update_regulatory(wiphy, initiator);
2926                 wiphy_all_share_dfs_chan_state(wiphy);
2927                 reg_check_channels();
2928         }
2929
2930         return;
2931
2932 out_free:
2933         reg_free_request(reg_request);
2934 }
2935
2936 static void notify_self_managed_wiphys(struct regulatory_request *request)
2937 {
2938         struct cfg80211_registered_device *rdev;
2939         struct wiphy *wiphy;
2940
2941         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2942                 wiphy = &rdev->wiphy;
2943                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
2944                     request->initiator == NL80211_REGDOM_SET_BY_USER)
2945                         reg_call_notifier(wiphy, request);
2946         }
2947 }
2948
2949 /*
2950  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2951  * Regulatory hints come on a first come first serve basis and we
2952  * must process each one atomically.
2953  */
2954 static void reg_process_pending_hints(void)
2955 {
2956         struct regulatory_request *reg_request, *lr;
2957
2958         lr = get_last_request();
2959
2960         /* When last_request->processed becomes true this will be rescheduled */
2961         if (lr && !lr->processed) {
2962                 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
2963                 return;
2964         }
2965
2966         spin_lock(&reg_requests_lock);
2967
2968         if (list_empty(&reg_requests_list)) {
2969                 spin_unlock(&reg_requests_lock);
2970                 return;
2971         }
2972
2973         reg_request = list_first_entry(&reg_requests_list,
2974                                        struct regulatory_request,
2975                                        list);
2976         list_del_init(&reg_request->list);
2977
2978         spin_unlock(&reg_requests_lock);
2979
2980         notify_self_managed_wiphys(reg_request);
2981
2982         reg_process_hint(reg_request);
2983
2984         lr = get_last_request();
2985
2986         spin_lock(&reg_requests_lock);
2987         if (!list_empty(&reg_requests_list) && lr && lr->processed)
2988                 schedule_work(&reg_work);
2989         spin_unlock(&reg_requests_lock);
2990 }
2991
2992 /* Processes beacon hints -- this has nothing to do with country IEs */
2993 static void reg_process_pending_beacon_hints(void)
2994 {
2995         struct cfg80211_registered_device *rdev;
2996         struct reg_beacon *pending_beacon, *tmp;
2997
2998         /* This goes through the _pending_ beacon list */
2999         spin_lock_bh(&reg_pending_beacons_lock);
3000
3001         list_for_each_entry_safe(pending_beacon, tmp,
3002                                  &reg_pending_beacons, list) {
3003                 list_del_init(&pending_beacon->list);
3004
3005                 /* Applies the beacon hint to current wiphys */
3006                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3007                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3008
3009                 /* Remembers the beacon hint for new wiphys or reg changes */
3010                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
3011         }
3012
3013         spin_unlock_bh(&reg_pending_beacons_lock);
3014 }
3015
3016 static void reg_process_self_managed_hints(void)
3017 {
3018         struct cfg80211_registered_device *rdev;
3019         struct wiphy *wiphy;
3020         const struct ieee80211_regdomain *tmp;
3021         const struct ieee80211_regdomain *regd;
3022         enum nl80211_band band;
3023         struct regulatory_request request = {};
3024
3025         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3026                 wiphy = &rdev->wiphy;
3027
3028                 spin_lock(&reg_requests_lock);
3029                 regd = rdev->requested_regd;
3030                 rdev->requested_regd = NULL;
3031                 spin_unlock(&reg_requests_lock);
3032
3033                 if (regd == NULL)
3034                         continue;
3035
3036                 tmp = get_wiphy_regdom(wiphy);
3037                 rcu_assign_pointer(wiphy->regd, regd);
3038                 rcu_free_regdom(tmp);
3039
3040                 for (band = 0; band < NUM_NL80211_BANDS; band++)
3041                         handle_band_custom(wiphy, wiphy->bands[band], regd);
3042
3043                 reg_process_ht_flags(wiphy);
3044
3045                 request.wiphy_idx = get_wiphy_idx(wiphy);
3046                 request.alpha2[0] = regd->alpha2[0];
3047                 request.alpha2[1] = regd->alpha2[1];
3048                 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3049
3050                 nl80211_send_wiphy_reg_change_event(&request);
3051         }
3052
3053         reg_check_channels();
3054 }
3055
3056 static void reg_todo(struct work_struct *work)
3057 {
3058         rtnl_lock();
3059         reg_process_pending_hints();
3060         reg_process_pending_beacon_hints();
3061         reg_process_self_managed_hints();
3062         rtnl_unlock();
3063 }
3064
3065 static void queue_regulatory_request(struct regulatory_request *request)
3066 {
3067         request->alpha2[0] = toupper(request->alpha2[0]);
3068         request->alpha2[1] = toupper(request->alpha2[1]);
3069
3070         spin_lock(&reg_requests_lock);
3071         list_add_tail(&request->list, &reg_requests_list);
3072         spin_unlock(&reg_requests_lock);
3073
3074         schedule_work(&reg_work);
3075 }
3076
3077 /*
3078  * Core regulatory hint -- happens during cfg80211_init()
3079  * and when we restore regulatory settings.
3080  */
3081 static int regulatory_hint_core(const char *alpha2)
3082 {
3083         struct regulatory_request *request;
3084
3085         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3086         if (!request)
3087                 return -ENOMEM;
3088
3089         request->alpha2[0] = alpha2[0];
3090         request->alpha2[1] = alpha2[1];
3091         request->initiator = NL80211_REGDOM_SET_BY_CORE;
3092         request->wiphy_idx = WIPHY_IDX_INVALID;
3093
3094         queue_regulatory_request(request);
3095
3096         return 0;
3097 }
3098
3099 /* User hints */
3100 int regulatory_hint_user(const char *alpha2,
3101                          enum nl80211_user_reg_hint_type user_reg_hint_type)
3102 {
3103         struct regulatory_request *request;
3104
3105         if (WARN_ON(!alpha2))
3106                 return -EINVAL;
3107
3108         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3109         if (!request)
3110                 return -ENOMEM;
3111
3112         request->wiphy_idx = WIPHY_IDX_INVALID;
3113         request->alpha2[0] = alpha2[0];
3114         request->alpha2[1] = alpha2[1];
3115         request->initiator = NL80211_REGDOM_SET_BY_USER;
3116         request->user_reg_hint_type = user_reg_hint_type;
3117
3118         /* Allow calling CRDA again */
3119         reset_crda_timeouts();
3120
3121         queue_regulatory_request(request);
3122
3123         return 0;
3124 }
3125
3126 int regulatory_hint_indoor(bool is_indoor, u32 portid)
3127 {
3128         spin_lock(&reg_indoor_lock);
3129
3130         /* It is possible that more than one user space process is trying to
3131          * configure the indoor setting. To handle such cases, clear the indoor
3132          * setting in case that some process does not think that the device
3133          * is operating in an indoor environment. In addition, if a user space
3134          * process indicates that it is controlling the indoor setting, save its
3135          * portid, i.e., make it the owner.
3136          */
3137         reg_is_indoor = is_indoor;
3138         if (reg_is_indoor) {
3139                 if (!reg_is_indoor_portid)
3140                         reg_is_indoor_portid = portid;
3141         } else {
3142                 reg_is_indoor_portid = 0;
3143         }
3144
3145         spin_unlock(&reg_indoor_lock);
3146
3147         if (!is_indoor)
3148                 reg_check_channels();
3149
3150         return 0;
3151 }
3152
3153 void regulatory_netlink_notify(u32 portid)
3154 {
3155         spin_lock(&reg_indoor_lock);
3156
3157         if (reg_is_indoor_portid != portid) {
3158                 spin_unlock(&reg_indoor_lock);
3159                 return;
3160         }
3161
3162         reg_is_indoor = false;
3163         reg_is_indoor_portid = 0;
3164
3165         spin_unlock(&reg_indoor_lock);
3166
3167         reg_check_channels();
3168 }
3169
3170 /* Driver hints */
3171 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3172 {
3173         struct regulatory_request *request;
3174
3175         if (WARN_ON(!alpha2 || !wiphy))
3176                 return -EINVAL;
3177
3178         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3179
3180         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3181         if (!request)
3182                 return -ENOMEM;
3183
3184         request->wiphy_idx = get_wiphy_idx(wiphy);
3185
3186         request->alpha2[0] = alpha2[0];
3187         request->alpha2[1] = alpha2[1];
3188         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3189
3190         /* Allow calling CRDA again */
3191         reset_crda_timeouts();
3192
3193         queue_regulatory_request(request);
3194
3195         return 0;
3196 }
3197 EXPORT_SYMBOL(regulatory_hint);
3198
3199 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3200                                 const u8 *country_ie, u8 country_ie_len)
3201 {
3202         char alpha2[2];
3203         enum environment_cap env = ENVIRON_ANY;
3204         struct regulatory_request *request = NULL, *lr;
3205
3206         /* IE len must be evenly divisible by 2 */
3207         if (country_ie_len & 0x01)
3208                 return;
3209
3210         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3211                 return;
3212
3213         request = kzalloc(sizeof(*request), GFP_KERNEL);
3214         if (!request)
3215                 return;
3216
3217         alpha2[0] = country_ie[0];
3218         alpha2[1] = country_ie[1];
3219
3220         if (country_ie[2] == 'I')
3221                 env = ENVIRON_INDOOR;
3222         else if (country_ie[2] == 'O')
3223                 env = ENVIRON_OUTDOOR;
3224
3225         rcu_read_lock();
3226         lr = get_last_request();
3227
3228         if (unlikely(!lr))
3229                 goto out;
3230
3231         /*
3232          * We will run this only upon a successful connection on cfg80211.
3233          * We leave conflict resolution to the workqueue, where can hold
3234          * the RTNL.
3235          */
3236         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3237             lr->wiphy_idx != WIPHY_IDX_INVALID)
3238                 goto out;
3239
3240         request->wiphy_idx = get_wiphy_idx(wiphy);
3241         request->alpha2[0] = alpha2[0];
3242         request->alpha2[1] = alpha2[1];
3243         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3244         request->country_ie_env = env;
3245
3246         /* Allow calling CRDA again */
3247         reset_crda_timeouts();
3248
3249         queue_regulatory_request(request);
3250         request = NULL;
3251 out:
3252         kfree(request);
3253         rcu_read_unlock();
3254 }
3255
3256 static void restore_alpha2(char *alpha2, bool reset_user)
3257 {
3258         /* indicates there is no alpha2 to consider for restoration */
3259         alpha2[0] = '9';
3260         alpha2[1] = '7';
3261
3262         /* The user setting has precedence over the module parameter */
3263         if (is_user_regdom_saved()) {
3264                 /* Unless we're asked to ignore it and reset it */
3265                 if (reset_user) {
3266                         pr_debug("Restoring regulatory settings including user preference\n");
3267                         user_alpha2[0] = '9';
3268                         user_alpha2[1] = '7';
3269
3270                         /*
3271                          * If we're ignoring user settings, we still need to
3272                          * check the module parameter to ensure we put things
3273                          * back as they were for a full restore.
3274                          */
3275                         if (!is_world_regdom(ieee80211_regdom)) {
3276                                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3277                                          ieee80211_regdom[0], ieee80211_regdom[1]);
3278                                 alpha2[0] = ieee80211_regdom[0];
3279                                 alpha2[1] = ieee80211_regdom[1];
3280                         }
3281                 } else {
3282                         pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3283                                  user_alpha2[0], user_alpha2[1]);
3284                         alpha2[0] = user_alpha2[0];
3285                         alpha2[1] = user_alpha2[1];
3286                 }
3287         } else if (!is_world_regdom(ieee80211_regdom)) {
3288                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3289                          ieee80211_regdom[0], ieee80211_regdom[1]);
3290                 alpha2[0] = ieee80211_regdom[0];
3291                 alpha2[1] = ieee80211_regdom[1];
3292         } else
3293                 pr_debug("Restoring regulatory settings\n");
3294 }
3295
3296 static void restore_custom_reg_settings(struct wiphy *wiphy)
3297 {
3298         struct ieee80211_supported_band *sband;
3299         enum nl80211_band band;
3300         struct ieee80211_channel *chan;
3301         int i;
3302
3303         for (band = 0; band < NUM_NL80211_BANDS; band++) {
3304                 sband = wiphy->bands[band];
3305                 if (!sband)
3306                         continue;
3307                 for (i = 0; i < sband->n_channels; i++) {
3308                         chan = &sband->channels[i];
3309                         chan->flags = chan->orig_flags;
3310                         chan->max_antenna_gain = chan->orig_mag;
3311                         chan->max_power = chan->orig_mpwr;
3312                         chan->beacon_found = false;
3313                 }
3314         }
3315 }
3316
3317 /*
3318  * Restoring regulatory settings involves ingoring any
3319  * possibly stale country IE information and user regulatory
3320  * settings if so desired, this includes any beacon hints
3321  * learned as we could have traveled outside to another country
3322  * after disconnection. To restore regulatory settings we do
3323  * exactly what we did at bootup:
3324  *
3325  *   - send a core regulatory hint
3326  *   - send a user regulatory hint if applicable
3327  *
3328  * Device drivers that send a regulatory hint for a specific country
3329  * keep their own regulatory domain on wiphy->regd so that does
3330  * not need to be remembered.
3331  */
3332 static void restore_regulatory_settings(bool reset_user, bool cached)
3333 {
3334         char alpha2[2];
3335         char world_alpha2[2];
3336         struct reg_beacon *reg_beacon, *btmp;
3337         LIST_HEAD(tmp_reg_req_list);
3338         struct cfg80211_registered_device *rdev;
3339
3340         ASSERT_RTNL();
3341
3342         /*
3343          * Clear the indoor setting in case that it is not controlled by user
3344          * space, as otherwise there is no guarantee that the device is still
3345          * operating in an indoor environment.
3346          */
3347         spin_lock(&reg_indoor_lock);
3348         if (reg_is_indoor && !reg_is_indoor_portid) {
3349                 reg_is_indoor = false;
3350                 reg_check_channels();
3351         }
3352         spin_unlock(&reg_indoor_lock);
3353
3354         reset_regdomains(true, &world_regdom);
3355         restore_alpha2(alpha2, reset_user);
3356
3357         /*
3358          * If there's any pending requests we simply
3359          * stash them to a temporary pending queue and
3360          * add then after we've restored regulatory
3361          * settings.
3362          */
3363         spin_lock(&reg_requests_lock);
3364         list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3365         spin_unlock(&reg_requests_lock);
3366
3367         /* Clear beacon hints */
3368         spin_lock_bh(&reg_pending_beacons_lock);
3369         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3370                 list_del(&reg_beacon->list);
3371                 kfree(reg_beacon);
3372         }
3373         spin_unlock_bh(&reg_pending_beacons_lock);
3374
3375         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3376                 list_del(&reg_beacon->list);
3377                 kfree(reg_beacon);
3378         }
3379
3380         /* First restore to the basic regulatory settings */
3381         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3382         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3383
3384         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3385                 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3386                         continue;
3387                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3388                         restore_custom_reg_settings(&rdev->wiphy);
3389         }
3390
3391         if (cached && (!is_an_alpha2(alpha2) ||
3392                        !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3393                 reset_regdomains(false, cfg80211_world_regdom);
3394                 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3395                 print_regdomain(get_cfg80211_regdom());
3396                 nl80211_send_reg_change_event(&core_request_world);
3397                 reg_set_request_processed();
3398
3399                 if (is_an_alpha2(alpha2) &&
3400                     !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3401                         struct regulatory_request *ureq;
3402
3403                         spin_lock(&reg_requests_lock);
3404                         ureq = list_last_entry(&reg_requests_list,
3405                                                struct regulatory_request,
3406                                                list);
3407                         list_del(&ureq->list);
3408                         spin_unlock(&reg_requests_lock);
3409
3410                         notify_self_managed_wiphys(ureq);
3411                         reg_update_last_request(ureq);
3412                         set_regdom(reg_copy_regd(cfg80211_user_regdom),
3413                                    REGD_SOURCE_CACHED);
3414                 }
3415         } else {
3416                 regulatory_hint_core(world_alpha2);
3417
3418                 /*
3419                  * This restores the ieee80211_regdom module parameter
3420                  * preference or the last user requested regulatory
3421                  * settings, user regulatory settings takes precedence.
3422                  */
3423                 if (is_an_alpha2(alpha2))
3424                         regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3425         }
3426
3427         spin_lock(&reg_requests_lock);
3428         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3429         spin_unlock(&reg_requests_lock);
3430
3431         pr_debug("Kicking the queue\n");
3432
3433         schedule_work(&reg_work);
3434 }
3435
3436 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3437 {
3438         struct cfg80211_registered_device *rdev;
3439         struct wireless_dev *wdev;
3440
3441         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3442                 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3443                         wdev_lock(wdev);
3444                         if (!(wdev->wiphy->regulatory_flags & flag)) {
3445                                 wdev_unlock(wdev);
3446                                 return false;
3447                         }
3448                         wdev_unlock(wdev);
3449                 }
3450         }
3451
3452         return true;
3453 }
3454
3455 void regulatory_hint_disconnect(void)
3456 {
3457         /* Restore of regulatory settings is not required when wiphy(s)
3458          * ignore IE from connected access point but clearance of beacon hints
3459          * is required when wiphy(s) supports beacon hints.
3460          */
3461         if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3462                 struct reg_beacon *reg_beacon, *btmp;
3463
3464                 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3465                         return;
3466
3467                 spin_lock_bh(&reg_pending_beacons_lock);
3468                 list_for_each_entry_safe(reg_beacon, btmp,
3469                                          &reg_pending_beacons, list) {
3470                         list_del(&reg_beacon->list);
3471                         kfree(reg_beacon);
3472                 }
3473                 spin_unlock_bh(&reg_pending_beacons_lock);
3474
3475                 list_for_each_entry_safe(reg_beacon, btmp,
3476                                          &reg_beacon_list, list) {
3477                         list_del(&reg_beacon->list);
3478                         kfree(reg_beacon);
3479                 }
3480
3481                 return;
3482         }
3483
3484         pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3485         restore_regulatory_settings(false, true);
3486 }
3487
3488 static bool freq_is_chan_12_13_14(u32 freq)
3489 {
3490         if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3491             freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3492             freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3493                 return true;
3494         return false;
3495 }
3496
3497 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3498 {
3499         struct reg_beacon *pending_beacon;
3500
3501         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3502                 if (ieee80211_channel_equal(beacon_chan,
3503                                             &pending_beacon->chan))
3504                         return true;
3505         return false;
3506 }
3507
3508 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3509                                  struct ieee80211_channel *beacon_chan,
3510                                  gfp_t gfp)
3511 {
3512         struct reg_beacon *reg_beacon;
3513         bool processing;
3514
3515         if (beacon_chan->beacon_found ||
3516             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3517             (beacon_chan->band == NL80211_BAND_2GHZ &&
3518              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3519                 return 0;
3520
3521         spin_lock_bh(&reg_pending_beacons_lock);
3522         processing = pending_reg_beacon(beacon_chan);
3523         spin_unlock_bh(&reg_pending_beacons_lock);
3524
3525         if (processing)
3526                 return 0;
3527
3528         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3529         if (!reg_beacon)
3530                 return -ENOMEM;
3531
3532         pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3533                  beacon_chan->center_freq, beacon_chan->freq_offset,
3534                  ieee80211_freq_khz_to_channel(
3535                          ieee80211_channel_to_khz(beacon_chan)),
3536                  wiphy_name(wiphy));
3537
3538         memcpy(&reg_beacon->chan, beacon_chan,
3539                sizeof(struct ieee80211_channel));
3540
3541         /*
3542          * Since we can be called from BH or and non-BH context
3543          * we must use spin_lock_bh()
3544          */
3545         spin_lock_bh(&reg_pending_beacons_lock);
3546         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3547         spin_unlock_bh(&reg_pending_beacons_lock);
3548
3549         schedule_work(&reg_work);
3550
3551         return 0;
3552 }
3553
3554 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3555 {
3556         unsigned int i;
3557         const struct ieee80211_reg_rule *reg_rule = NULL;
3558         const struct ieee80211_freq_range *freq_range = NULL;
3559         const struct ieee80211_power_rule *power_rule = NULL;
3560         char bw[32], cac_time[32];
3561
3562         pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3563
3564         for (i = 0; i < rd->n_reg_rules; i++) {
3565                 reg_rule = &rd->reg_rules[i];
3566                 freq_range = &reg_rule->freq_range;
3567                 power_rule = &reg_rule->power_rule;
3568
3569                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3570                         snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
3571                                  freq_range->max_bandwidth_khz,
3572                                  reg_get_max_bandwidth(rd, reg_rule));
3573                 else
3574                         snprintf(bw, sizeof(bw), "%d KHz",
3575                                  freq_range->max_bandwidth_khz);
3576
3577                 if (reg_rule->flags & NL80211_RRF_DFS)
3578                         scnprintf(cac_time, sizeof(cac_time), "%u s",
3579                                   reg_rule->dfs_cac_ms/1000);
3580                 else
3581                         scnprintf(cac_time, sizeof(cac_time), "N/A");
3582
3583
3584                 /*
3585                  * There may not be documentation for max antenna gain
3586                  * in certain regions
3587                  */
3588                 if (power_rule->max_antenna_gain)
3589                         pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3590                                 freq_range->start_freq_khz,
3591                                 freq_range->end_freq_khz,
3592                                 bw,
3593                                 power_rule->max_antenna_gain,
3594                                 power_rule->max_eirp,
3595                                 cac_time);
3596                 else
3597                         pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3598                                 freq_range->start_freq_khz,
3599                                 freq_range->end_freq_khz,
3600                                 bw,
3601                                 power_rule->max_eirp,
3602                                 cac_time);
3603         }
3604 }
3605
3606 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3607 {
3608         switch (dfs_region) {
3609         case NL80211_DFS_UNSET:
3610         case NL80211_DFS_FCC:
3611         case NL80211_DFS_ETSI:
3612         case NL80211_DFS_JP:
3613                 return true;
3614         default:
3615                 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3616                 return false;
3617         }
3618 }
3619
3620 static void print_regdomain(const struct ieee80211_regdomain *rd)
3621 {
3622         struct regulatory_request *lr = get_last_request();
3623
3624         if (is_intersected_alpha2(rd->alpha2)) {
3625                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3626                         struct cfg80211_registered_device *rdev;
3627                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3628                         if (rdev) {
3629                                 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3630                                         rdev->country_ie_alpha2[0],
3631                                         rdev->country_ie_alpha2[1]);
3632                         } else
3633                                 pr_debug("Current regulatory domain intersected:\n");
3634                 } else
3635                         pr_debug("Current regulatory domain intersected:\n");
3636         } else if (is_world_regdom(rd->alpha2)) {
3637                 pr_debug("World regulatory domain updated:\n");
3638         } else {
3639                 if (is_unknown_alpha2(rd->alpha2))
3640                         pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3641                 else {
3642                         if (reg_request_cell_base(lr))
3643                                 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3644                                         rd->alpha2[0], rd->alpha2[1]);
3645                         else
3646                                 pr_debug("Regulatory domain changed to country: %c%c\n",
3647                                         rd->alpha2[0], rd->alpha2[1]);
3648                 }
3649         }
3650
3651         pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3652         print_rd_rules(rd);
3653 }
3654
3655 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3656 {
3657         pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3658         print_rd_rules(rd);
3659 }
3660
3661 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3662 {
3663         if (!is_world_regdom(rd->alpha2))
3664                 return -EINVAL;
3665         update_world_regdomain(rd);
3666         return 0;
3667 }
3668
3669 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3670                            struct regulatory_request *user_request)
3671 {
3672         const struct ieee80211_regdomain *intersected_rd = NULL;
3673
3674         if (!regdom_changes(rd->alpha2))
3675                 return -EALREADY;
3676
3677         if (!is_valid_rd(rd)) {
3678                 pr_err("Invalid regulatory domain detected: %c%c\n",
3679                        rd->alpha2[0], rd->alpha2[1]);
3680                 print_regdomain_info(rd);
3681                 return -EINVAL;
3682         }
3683
3684         if (!user_request->intersect) {
3685                 reset_regdomains(false, rd);
3686                 return 0;
3687         }
3688
3689         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3690         if (!intersected_rd)
3691                 return -EINVAL;
3692
3693         kfree(rd);
3694         rd = NULL;
3695         reset_regdomains(false, intersected_rd);
3696
3697         return 0;
3698 }
3699
3700 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3701                              struct regulatory_request *driver_request)
3702 {
3703         const struct ieee80211_regdomain *regd;
3704         const struct ieee80211_regdomain *intersected_rd = NULL;
3705         const struct ieee80211_regdomain *tmp;
3706         struct wiphy *request_wiphy;
3707
3708         if (is_world_regdom(rd->alpha2))
3709                 return -EINVAL;
3710
3711         if (!regdom_changes(rd->alpha2))
3712                 return -EALREADY;
3713
3714         if (!is_valid_rd(rd)) {
3715                 pr_err("Invalid regulatory domain detected: %c%c\n",
3716                        rd->alpha2[0], rd->alpha2[1]);
3717                 print_regdomain_info(rd);
3718                 return -EINVAL;
3719         }
3720
3721         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3722         if (!request_wiphy)
3723                 return -ENODEV;
3724
3725         if (!driver_request->intersect) {
3726                 if (request_wiphy->regd)
3727                         return -EALREADY;
3728
3729                 regd = reg_copy_regd(rd);
3730                 if (IS_ERR(regd))
3731                         return PTR_ERR(regd);
3732
3733                 rcu_assign_pointer(request_wiphy->regd, regd);
3734                 reset_regdomains(false, rd);
3735                 return 0;
3736         }
3737
3738         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3739         if (!intersected_rd)
3740                 return -EINVAL;
3741
3742         /*
3743          * We can trash what CRDA provided now.
3744          * However if a driver requested this specific regulatory
3745          * domain we keep it for its private use
3746          */
3747         tmp = get_wiphy_regdom(request_wiphy);
3748         rcu_assign_pointer(request_wiphy->regd, rd);
3749         rcu_free_regdom(tmp);
3750
3751         rd = NULL;
3752
3753         reset_regdomains(false, intersected_rd);
3754
3755         return 0;
3756 }
3757
3758 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3759                                  struct regulatory_request *country_ie_request)
3760 {
3761         struct wiphy *request_wiphy;
3762
3763         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3764             !is_unknown_alpha2(rd->alpha2))
3765                 return -EINVAL;
3766
3767         /*
3768          * Lets only bother proceeding on the same alpha2 if the current
3769          * rd is non static (it means CRDA was present and was used last)
3770          * and the pending request came in from a country IE
3771          */
3772
3773         if (!is_valid_rd(rd)) {
3774                 pr_err("Invalid regulatory domain detected: %c%c\n",
3775                        rd->alpha2[0], rd->alpha2[1]);
3776                 print_regdomain_info(rd);
3777                 return -EINVAL;
3778         }
3779
3780         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3781         if (!request_wiphy)
3782                 return -ENODEV;
3783
3784         if (country_ie_request->intersect)
3785                 return -EINVAL;
3786
3787         reset_regdomains(false, rd);
3788         return 0;
3789 }
3790
3791 /*
3792  * Use this call to set the current regulatory domain. Conflicts with
3793  * multiple drivers can be ironed out later. Caller must've already
3794  * kmalloc'd the rd structure.
3795  */
3796 int set_regdom(const struct ieee80211_regdomain *rd,
3797                enum ieee80211_regd_source regd_src)
3798 {
3799         struct regulatory_request *lr;
3800         bool user_reset = false;
3801         int r;
3802
3803         if (IS_ERR_OR_NULL(rd))
3804                 return -ENODATA;
3805
3806         if (!reg_is_valid_request(rd->alpha2)) {
3807                 kfree(rd);
3808                 return -EINVAL;
3809         }
3810
3811         if (regd_src == REGD_SOURCE_CRDA)
3812                 reset_crda_timeouts();
3813
3814         lr = get_last_request();
3815
3816         /* Note that this doesn't update the wiphys, this is done below */
3817         switch (lr->initiator) {
3818         case NL80211_REGDOM_SET_BY_CORE:
3819                 r = reg_set_rd_core(rd);
3820                 break;
3821         case NL80211_REGDOM_SET_BY_USER:
3822                 cfg80211_save_user_regdom(rd);
3823                 r = reg_set_rd_user(rd, lr);
3824                 user_reset = true;
3825                 break;
3826         case NL80211_REGDOM_SET_BY_DRIVER:
3827                 r = reg_set_rd_driver(rd, lr);
3828                 break;
3829         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3830                 r = reg_set_rd_country_ie(rd, lr);
3831                 break;
3832         default:
3833                 WARN(1, "invalid initiator %d\n", lr->initiator);
3834                 kfree(rd);
3835                 return -EINVAL;
3836         }
3837
3838         if (r) {
3839                 switch (r) {
3840                 case -EALREADY:
3841                         reg_set_request_processed();
3842                         break;
3843                 default:
3844                         /* Back to world regulatory in case of errors */
3845                         restore_regulatory_settings(user_reset, false);
3846                 }
3847
3848                 kfree(rd);
3849                 return r;
3850         }
3851
3852         /* This would make this whole thing pointless */
3853         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3854                 return -EINVAL;
3855
3856         /* update all wiphys now with the new established regulatory domain */
3857         update_all_wiphy_regulatory(lr->initiator);
3858
3859         print_regdomain(get_cfg80211_regdom());
3860
3861         nl80211_send_reg_change_event(lr);
3862
3863         reg_set_request_processed();
3864
3865         return 0;
3866 }
3867
3868 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3869                                        struct ieee80211_regdomain *rd)
3870 {
3871         const struct ieee80211_regdomain *regd;
3872         const struct ieee80211_regdomain *prev_regd;
3873         struct cfg80211_registered_device *rdev;
3874
3875         if (WARN_ON(!wiphy || !rd))
3876                 return -EINVAL;
3877
3878         if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3879                  "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3880                 return -EPERM;
3881
3882         if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3883                 print_regdomain_info(rd);
3884                 return -EINVAL;
3885         }
3886
3887         regd = reg_copy_regd(rd);
3888         if (IS_ERR(regd))
3889                 return PTR_ERR(regd);
3890
3891         rdev = wiphy_to_rdev(wiphy);
3892
3893         spin_lock(&reg_requests_lock);
3894         prev_regd = rdev->requested_regd;
3895         rdev->requested_regd = regd;
3896         spin_unlock(&reg_requests_lock);
3897
3898         kfree(prev_regd);
3899         return 0;
3900 }
3901
3902 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3903                               struct ieee80211_regdomain *rd)
3904 {
3905         int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3906
3907         if (ret)
3908                 return ret;
3909
3910         schedule_work(&reg_work);
3911         return 0;
3912 }
3913 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3914
3915 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3916                                         struct ieee80211_regdomain *rd)
3917 {
3918         int ret;
3919
3920         ASSERT_RTNL();
3921
3922         ret = __regulatory_set_wiphy_regd(wiphy, rd);
3923         if (ret)
3924                 return ret;
3925
3926         /* process the request immediately */
3927         reg_process_self_managed_hints();
3928         return 0;
3929 }
3930 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3931
3932 void wiphy_regulatory_register(struct wiphy *wiphy)
3933 {
3934         struct regulatory_request *lr = get_last_request();
3935
3936         /* self-managed devices ignore beacon hints and country IE */
3937         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
3938                 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3939                                            REGULATORY_COUNTRY_IE_IGNORE;
3940
3941                 /*
3942                  * The last request may have been received before this
3943                  * registration call. Call the driver notifier if
3944                  * initiator is USER.
3945                  */
3946                 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
3947                         reg_call_notifier(wiphy, lr);
3948         }
3949
3950         if (!reg_dev_ignore_cell_hint(wiphy))
3951                 reg_num_devs_support_basehint++;
3952
3953         wiphy_update_regulatory(wiphy, lr->initiator);
3954         wiphy_all_share_dfs_chan_state(wiphy);
3955 }
3956
3957 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3958 {
3959         struct wiphy *request_wiphy = NULL;
3960         struct regulatory_request *lr;
3961
3962         lr = get_last_request();
3963
3964         if (!reg_dev_ignore_cell_hint(wiphy))
3965                 reg_num_devs_support_basehint--;
3966
3967         rcu_free_regdom(get_wiphy_regdom(wiphy));
3968         RCU_INIT_POINTER(wiphy->regd, NULL);
3969
3970         if (lr)
3971                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3972
3973         if (!request_wiphy || request_wiphy != wiphy)
3974                 return;
3975
3976         lr->wiphy_idx = WIPHY_IDX_INVALID;
3977         lr->country_ie_env = ENVIRON_ANY;
3978 }
3979
3980 /*
3981  * See FCC notices for UNII band definitions
3982  *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
3983  *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
3984  */
3985 int cfg80211_get_unii(int freq)
3986 {
3987         /* UNII-1 */
3988         if (freq >= 5150 && freq <= 5250)
3989                 return 0;
3990
3991         /* UNII-2A */
3992         if (freq > 5250 && freq <= 5350)
3993                 return 1;
3994
3995         /* UNII-2B */
3996         if (freq > 5350 && freq <= 5470)
3997                 return 2;
3998
3999         /* UNII-2C */
4000         if (freq > 5470 && freq <= 5725)
4001                 return 3;
4002
4003         /* UNII-3 */
4004         if (freq > 5725 && freq <= 5825)
4005                 return 4;
4006
4007         /* UNII-5 */
4008         if (freq > 5925 && freq <= 6425)
4009                 return 5;
4010
4011         /* UNII-6 */
4012         if (freq > 6425 && freq <= 6525)
4013                 return 6;
4014
4015         /* UNII-7 */
4016         if (freq > 6525 && freq <= 6875)
4017                 return 7;
4018
4019         /* UNII-8 */
4020         if (freq > 6875 && freq <= 7125)
4021                 return 8;
4022
4023         return -EINVAL;
4024 }
4025
4026 bool regulatory_indoor_allowed(void)
4027 {
4028         return reg_is_indoor;
4029 }
4030
4031 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4032 {
4033         const struct ieee80211_regdomain *regd = NULL;
4034         const struct ieee80211_regdomain *wiphy_regd = NULL;
4035         bool pre_cac_allowed = false;
4036
4037         rcu_read_lock();
4038
4039         regd = rcu_dereference(cfg80211_regdomain);
4040         wiphy_regd = rcu_dereference(wiphy->regd);
4041         if (!wiphy_regd) {
4042                 if (regd->dfs_region == NL80211_DFS_ETSI)
4043                         pre_cac_allowed = true;
4044
4045                 rcu_read_unlock();
4046
4047                 return pre_cac_allowed;
4048         }
4049
4050         if (regd->dfs_region == wiphy_regd->dfs_region &&
4051             wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4052                 pre_cac_allowed = true;
4053
4054         rcu_read_unlock();
4055
4056         return pre_cac_allowed;
4057 }
4058 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4059
4060 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4061 {
4062         struct wireless_dev *wdev;
4063         /* If we finished CAC or received radar, we should end any
4064          * CAC running on the same channels.
4065          * the check !cfg80211_chandef_dfs_usable contain 2 options:
4066          * either all channels are available - those the CAC_FINISHED
4067          * event has effected another wdev state, or there is a channel
4068          * in unavailable state in wdev chandef - those the RADAR_DETECTED
4069          * event has effected another wdev state.
4070          * In both cases we should end the CAC on the wdev.
4071          */
4072         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4073                 if (wdev->cac_started &&
4074                     !cfg80211_chandef_dfs_usable(&rdev->wiphy, &wdev->chandef))
4075                         rdev_end_cac(rdev, wdev->netdev);
4076         }
4077 }
4078
4079 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4080                                     struct cfg80211_chan_def *chandef,
4081                                     enum nl80211_dfs_state dfs_state,
4082                                     enum nl80211_radar_event event)
4083 {
4084         struct cfg80211_registered_device *rdev;
4085
4086         ASSERT_RTNL();
4087
4088         if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4089                 return;
4090
4091         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4092                 if (wiphy == &rdev->wiphy)
4093                         continue;
4094
4095                 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4096                         continue;
4097
4098                 if (!ieee80211_get_channel(&rdev->wiphy,
4099                                            chandef->chan->center_freq))
4100                         continue;
4101
4102                 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4103
4104                 if (event == NL80211_RADAR_DETECTED ||
4105                     event == NL80211_RADAR_CAC_FINISHED) {
4106                         cfg80211_sched_dfs_chan_update(rdev);
4107                         cfg80211_check_and_end_cac(rdev);
4108                 }
4109
4110                 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4111         }
4112 }
4113
4114 static int __init regulatory_init_db(void)
4115 {
4116         int err;
4117
4118         /*
4119          * It's possible that - due to other bugs/issues - cfg80211
4120          * never called regulatory_init() below, or that it failed;
4121          * in that case, don't try to do any further work here as
4122          * it's doomed to lead to crashes.
4123          */
4124         if (IS_ERR_OR_NULL(reg_pdev))
4125                 return -EINVAL;
4126
4127         err = load_builtin_regdb_keys();
4128         if (err)
4129                 return err;
4130
4131         /* We always try to get an update for the static regdomain */
4132         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4133         if (err) {
4134                 if (err == -ENOMEM) {
4135                         platform_device_unregister(reg_pdev);
4136                         return err;
4137                 }
4138                 /*
4139                  * N.B. kobject_uevent_env() can fail mainly for when we're out
4140                  * memory which is handled and propagated appropriately above
4141                  * but it can also fail during a netlink_broadcast() or during
4142                  * early boot for call_usermodehelper(). For now treat these
4143                  * errors as non-fatal.
4144                  */
4145                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4146         }
4147
4148         /*
4149          * Finally, if the user set the module parameter treat it
4150          * as a user hint.
4151          */
4152         if (!is_world_regdom(ieee80211_regdom))
4153                 regulatory_hint_user(ieee80211_regdom,
4154                                      NL80211_USER_REG_HINT_USER);
4155
4156         return 0;
4157 }
4158 #ifndef MODULE
4159 late_initcall(regulatory_init_db);
4160 #endif
4161
4162 int __init regulatory_init(void)
4163 {
4164         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4165         if (IS_ERR(reg_pdev))
4166                 return PTR_ERR(reg_pdev);
4167
4168         spin_lock_init(&reg_requests_lock);
4169         spin_lock_init(&reg_pending_beacons_lock);
4170         spin_lock_init(&reg_indoor_lock);
4171
4172         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4173
4174         user_alpha2[0] = '9';
4175         user_alpha2[1] = '7';
4176
4177 #ifdef MODULE
4178         return regulatory_init_db();
4179 #else
4180         return 0;
4181 #endif
4182 }
4183
4184 void regulatory_exit(void)
4185 {
4186         struct regulatory_request *reg_request, *tmp;
4187         struct reg_beacon *reg_beacon, *btmp;
4188
4189         cancel_work_sync(&reg_work);
4190         cancel_crda_timeout_sync();
4191         cancel_delayed_work_sync(&reg_check_chans);
4192
4193         /* Lock to suppress warnings */
4194         rtnl_lock();
4195         reset_regdomains(true, NULL);
4196         rtnl_unlock();
4197
4198         dev_set_uevent_suppress(&reg_pdev->dev, true);
4199
4200         platform_device_unregister(reg_pdev);
4201
4202         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4203                 list_del(&reg_beacon->list);
4204                 kfree(reg_beacon);
4205         }
4206
4207         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4208                 list_del(&reg_beacon->list);
4209                 kfree(reg_beacon);
4210         }
4211
4212         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4213                 list_del(&reg_request->list);
4214                 kfree(reg_request);
4215         }
4216
4217         if (!IS_ERR_OR_NULL(regdb))
4218                 kfree(regdb);
4219         if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4220                 kfree(cfg80211_user_regdom);
4221
4222         free_regdb_keyring();
4223 }