Merge tag 'libnvdimm-fixes-5.11-rc7' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 - 2021 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22
23
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *      be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *      regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83         REG_REQ_OK,
84         REG_REQ_IGNORE,
85         REG_REQ_INTERSECT,
86         REG_REQ_ALREADY_SET,
87 };
88
89 static struct regulatory_request core_request_world = {
90         .initiator = NL80211_REGDOM_SET_BY_CORE,
91         .alpha2[0] = '0',
92         .alpha2[1] = '0',
93         .intersect = false,
94         .processed = true,
95         .country_ie_env = ENVIRON_ANY,
96 };
97
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103         (void __force __rcu *)&core_request_world;
104
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static spinlock_t reg_indoor_lock;
130
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136
137 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
138 {
139         return rcu_dereference_rtnl(cfg80211_regdomain);
140 }
141
142 /*
143  * Returns the regulatory domain associated with the wiphy.
144  *
145  * Requires either RTNL or RCU protection
146  */
147 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
148 {
149         return rcu_dereference_rtnl(wiphy->regd);
150 }
151
152 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
153 {
154         switch (dfs_region) {
155         case NL80211_DFS_UNSET:
156                 return "unset";
157         case NL80211_DFS_FCC:
158                 return "FCC";
159         case NL80211_DFS_ETSI:
160                 return "ETSI";
161         case NL80211_DFS_JP:
162                 return "JP";
163         }
164         return "Unknown";
165 }
166
167 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
168 {
169         const struct ieee80211_regdomain *regd = NULL;
170         const struct ieee80211_regdomain *wiphy_regd = NULL;
171
172         regd = get_cfg80211_regdom();
173         if (!wiphy)
174                 goto out;
175
176         wiphy_regd = get_wiphy_regdom(wiphy);
177         if (!wiphy_regd)
178                 goto out;
179
180         if (wiphy_regd->dfs_region == regd->dfs_region)
181                 goto out;
182
183         pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
184                  dev_name(&wiphy->dev),
185                  reg_dfs_region_str(wiphy_regd->dfs_region),
186                  reg_dfs_region_str(regd->dfs_region));
187
188 out:
189         return regd->dfs_region;
190 }
191
192 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
193 {
194         if (!r)
195                 return;
196         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
197 }
198
199 static struct regulatory_request *get_last_request(void)
200 {
201         return rcu_dereference_rtnl(last_request);
202 }
203
204 /* Used to queue up regulatory hints */
205 static LIST_HEAD(reg_requests_list);
206 static spinlock_t reg_requests_lock;
207
208 /* Used to queue up beacon hints for review */
209 static LIST_HEAD(reg_pending_beacons);
210 static spinlock_t reg_pending_beacons_lock;
211
212 /* Used to keep track of processed beacon hints */
213 static LIST_HEAD(reg_beacon_list);
214
215 struct reg_beacon {
216         struct list_head list;
217         struct ieee80211_channel chan;
218 };
219
220 static void reg_check_chans_work(struct work_struct *work);
221 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
222
223 static void reg_todo(struct work_struct *work);
224 static DECLARE_WORK(reg_work, reg_todo);
225
226 /* We keep a static world regulatory domain in case of the absence of CRDA */
227 static const struct ieee80211_regdomain world_regdom = {
228         .n_reg_rules = 8,
229         .alpha2 =  "00",
230         .reg_rules = {
231                 /* IEEE 802.11b/g, channels 1..11 */
232                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
233                 /* IEEE 802.11b/g, channels 12..13. */
234                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
235                         NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
236                 /* IEEE 802.11 channel 14 - Only JP enables
237                  * this and for 802.11b only */
238                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
239                         NL80211_RRF_NO_IR |
240                         NL80211_RRF_NO_OFDM),
241                 /* IEEE 802.11a, channel 36..48 */
242                 REG_RULE(5180-10, 5240+10, 80, 6, 20,
243                         NL80211_RRF_NO_IR |
244                         NL80211_RRF_AUTO_BW),
245
246                 /* IEEE 802.11a, channel 52..64 - DFS required */
247                 REG_RULE(5260-10, 5320+10, 80, 6, 20,
248                         NL80211_RRF_NO_IR |
249                         NL80211_RRF_AUTO_BW |
250                         NL80211_RRF_DFS),
251
252                 /* IEEE 802.11a, channel 100..144 - DFS required */
253                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
254                         NL80211_RRF_NO_IR |
255                         NL80211_RRF_DFS),
256
257                 /* IEEE 802.11a, channel 149..165 */
258                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
259                         NL80211_RRF_NO_IR),
260
261                 /* IEEE 802.11ad (60GHz), channels 1..3 */
262                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
263         }
264 };
265
266 /* protected by RTNL */
267 static const struct ieee80211_regdomain *cfg80211_world_regdom =
268         &world_regdom;
269
270 static char *ieee80211_regdom = "00";
271 static char user_alpha2[2];
272 static const struct ieee80211_regdomain *cfg80211_user_regdom;
273
274 module_param(ieee80211_regdom, charp, 0444);
275 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
276
277 static void reg_free_request(struct regulatory_request *request)
278 {
279         if (request == &core_request_world)
280                 return;
281
282         if (request != get_last_request())
283                 kfree(request);
284 }
285
286 static void reg_free_last_request(void)
287 {
288         struct regulatory_request *lr = get_last_request();
289
290         if (lr != &core_request_world && lr)
291                 kfree_rcu(lr, rcu_head);
292 }
293
294 static void reg_update_last_request(struct regulatory_request *request)
295 {
296         struct regulatory_request *lr;
297
298         lr = get_last_request();
299         if (lr == request)
300                 return;
301
302         reg_free_last_request();
303         rcu_assign_pointer(last_request, request);
304 }
305
306 static void reset_regdomains(bool full_reset,
307                              const struct ieee80211_regdomain *new_regdom)
308 {
309         const struct ieee80211_regdomain *r;
310
311         ASSERT_RTNL();
312
313         r = get_cfg80211_regdom();
314
315         /* avoid freeing static information or freeing something twice */
316         if (r == cfg80211_world_regdom)
317                 r = NULL;
318         if (cfg80211_world_regdom == &world_regdom)
319                 cfg80211_world_regdom = NULL;
320         if (r == &world_regdom)
321                 r = NULL;
322
323         rcu_free_regdom(r);
324         rcu_free_regdom(cfg80211_world_regdom);
325
326         cfg80211_world_regdom = &world_regdom;
327         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
328
329         if (!full_reset)
330                 return;
331
332         reg_update_last_request(&core_request_world);
333 }
334
335 /*
336  * Dynamic world regulatory domain requested by the wireless
337  * core upon initialization
338  */
339 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
340 {
341         struct regulatory_request *lr;
342
343         lr = get_last_request();
344
345         WARN_ON(!lr);
346
347         reset_regdomains(false, rd);
348
349         cfg80211_world_regdom = rd;
350 }
351
352 bool is_world_regdom(const char *alpha2)
353 {
354         if (!alpha2)
355                 return false;
356         return alpha2[0] == '0' && alpha2[1] == '0';
357 }
358
359 static bool is_alpha2_set(const char *alpha2)
360 {
361         if (!alpha2)
362                 return false;
363         return alpha2[0] && alpha2[1];
364 }
365
366 static bool is_unknown_alpha2(const char *alpha2)
367 {
368         if (!alpha2)
369                 return false;
370         /*
371          * Special case where regulatory domain was built by driver
372          * but a specific alpha2 cannot be determined
373          */
374         return alpha2[0] == '9' && alpha2[1] == '9';
375 }
376
377 static bool is_intersected_alpha2(const char *alpha2)
378 {
379         if (!alpha2)
380                 return false;
381         /*
382          * Special case where regulatory domain is the
383          * result of an intersection between two regulatory domain
384          * structures
385          */
386         return alpha2[0] == '9' && alpha2[1] == '8';
387 }
388
389 static bool is_an_alpha2(const char *alpha2)
390 {
391         if (!alpha2)
392                 return false;
393         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
394 }
395
396 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
397 {
398         if (!alpha2_x || !alpha2_y)
399                 return false;
400         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
401 }
402
403 static bool regdom_changes(const char *alpha2)
404 {
405         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
406
407         if (!r)
408                 return true;
409         return !alpha2_equal(r->alpha2, alpha2);
410 }
411
412 /*
413  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
414  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
415  * has ever been issued.
416  */
417 static bool is_user_regdom_saved(void)
418 {
419         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
420                 return false;
421
422         /* This would indicate a mistake on the design */
423         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
424                  "Unexpected user alpha2: %c%c\n",
425                  user_alpha2[0], user_alpha2[1]))
426                 return false;
427
428         return true;
429 }
430
431 static const struct ieee80211_regdomain *
432 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
433 {
434         struct ieee80211_regdomain *regd;
435         unsigned int i;
436
437         regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
438                        GFP_KERNEL);
439         if (!regd)
440                 return ERR_PTR(-ENOMEM);
441
442         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
443
444         for (i = 0; i < src_regd->n_reg_rules; i++)
445                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
446                        sizeof(struct ieee80211_reg_rule));
447
448         return regd;
449 }
450
451 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
452 {
453         ASSERT_RTNL();
454
455         if (!IS_ERR(cfg80211_user_regdom))
456                 kfree(cfg80211_user_regdom);
457         cfg80211_user_regdom = reg_copy_regd(rd);
458 }
459
460 struct reg_regdb_apply_request {
461         struct list_head list;
462         const struct ieee80211_regdomain *regdom;
463 };
464
465 static LIST_HEAD(reg_regdb_apply_list);
466 static DEFINE_MUTEX(reg_regdb_apply_mutex);
467
468 static void reg_regdb_apply(struct work_struct *work)
469 {
470         struct reg_regdb_apply_request *request;
471
472         rtnl_lock();
473
474         mutex_lock(&reg_regdb_apply_mutex);
475         while (!list_empty(&reg_regdb_apply_list)) {
476                 request = list_first_entry(&reg_regdb_apply_list,
477                                            struct reg_regdb_apply_request,
478                                            list);
479                 list_del(&request->list);
480
481                 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
482                 kfree(request);
483         }
484         mutex_unlock(&reg_regdb_apply_mutex);
485
486         rtnl_unlock();
487 }
488
489 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
490
491 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
492 {
493         struct reg_regdb_apply_request *request;
494
495         request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
496         if (!request) {
497                 kfree(regdom);
498                 return -ENOMEM;
499         }
500
501         request->regdom = regdom;
502
503         mutex_lock(&reg_regdb_apply_mutex);
504         list_add_tail(&request->list, &reg_regdb_apply_list);
505         mutex_unlock(&reg_regdb_apply_mutex);
506
507         schedule_work(&reg_regdb_work);
508         return 0;
509 }
510
511 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
512 /* Max number of consecutive attempts to communicate with CRDA  */
513 #define REG_MAX_CRDA_TIMEOUTS 10
514
515 static u32 reg_crda_timeouts;
516
517 static void crda_timeout_work(struct work_struct *work);
518 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
519
520 static void crda_timeout_work(struct work_struct *work)
521 {
522         pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
523         rtnl_lock();
524         reg_crda_timeouts++;
525         restore_regulatory_settings(true, false);
526         rtnl_unlock();
527 }
528
529 static void cancel_crda_timeout(void)
530 {
531         cancel_delayed_work(&crda_timeout);
532 }
533
534 static void cancel_crda_timeout_sync(void)
535 {
536         cancel_delayed_work_sync(&crda_timeout);
537 }
538
539 static void reset_crda_timeouts(void)
540 {
541         reg_crda_timeouts = 0;
542 }
543
544 /*
545  * This lets us keep regulatory code which is updated on a regulatory
546  * basis in userspace.
547  */
548 static int call_crda(const char *alpha2)
549 {
550         char country[12];
551         char *env[] = { country, NULL };
552         int ret;
553
554         snprintf(country, sizeof(country), "COUNTRY=%c%c",
555                  alpha2[0], alpha2[1]);
556
557         if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
558                 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
559                 return -EINVAL;
560         }
561
562         if (!is_world_regdom((char *) alpha2))
563                 pr_debug("Calling CRDA for country: %c%c\n",
564                          alpha2[0], alpha2[1]);
565         else
566                 pr_debug("Calling CRDA to update world regulatory domain\n");
567
568         ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
569         if (ret)
570                 return ret;
571
572         queue_delayed_work(system_power_efficient_wq,
573                            &crda_timeout, msecs_to_jiffies(3142));
574         return 0;
575 }
576 #else
577 static inline void cancel_crda_timeout(void) {}
578 static inline void cancel_crda_timeout_sync(void) {}
579 static inline void reset_crda_timeouts(void) {}
580 static inline int call_crda(const char *alpha2)
581 {
582         return -ENODATA;
583 }
584 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
585
586 /* code to directly load a firmware database through request_firmware */
587 static const struct fwdb_header *regdb;
588
589 struct fwdb_country {
590         u8 alpha2[2];
591         __be16 coll_ptr;
592         /* this struct cannot be extended */
593 } __packed __aligned(4);
594
595 struct fwdb_collection {
596         u8 len;
597         u8 n_rules;
598         u8 dfs_region;
599         /* no optional data yet */
600         /* aligned to 2, then followed by __be16 array of rule pointers */
601 } __packed __aligned(4);
602
603 enum fwdb_flags {
604         FWDB_FLAG_NO_OFDM       = BIT(0),
605         FWDB_FLAG_NO_OUTDOOR    = BIT(1),
606         FWDB_FLAG_DFS           = BIT(2),
607         FWDB_FLAG_NO_IR         = BIT(3),
608         FWDB_FLAG_AUTO_BW       = BIT(4),
609 };
610
611 struct fwdb_wmm_ac {
612         u8 ecw;
613         u8 aifsn;
614         __be16 cot;
615 } __packed;
616
617 struct fwdb_wmm_rule {
618         struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
619         struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
620 } __packed;
621
622 struct fwdb_rule {
623         u8 len;
624         u8 flags;
625         __be16 max_eirp;
626         __be32 start, end, max_bw;
627         /* start of optional data */
628         __be16 cac_timeout;
629         __be16 wmm_ptr;
630 } __packed __aligned(4);
631
632 #define FWDB_MAGIC 0x52474442
633 #define FWDB_VERSION 20
634
635 struct fwdb_header {
636         __be32 magic;
637         __be32 version;
638         struct fwdb_country country[];
639 } __packed __aligned(4);
640
641 static int ecw2cw(int ecw)
642 {
643         return (1 << ecw) - 1;
644 }
645
646 static bool valid_wmm(struct fwdb_wmm_rule *rule)
647 {
648         struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
649         int i;
650
651         for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
652                 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
653                 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
654                 u8 aifsn = ac[i].aifsn;
655
656                 if (cw_min >= cw_max)
657                         return false;
658
659                 if (aifsn < 1)
660                         return false;
661         }
662
663         return true;
664 }
665
666 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
667 {
668         struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
669
670         if ((u8 *)rule + sizeof(rule->len) > data + size)
671                 return false;
672
673         /* mandatory fields */
674         if (rule->len < offsetofend(struct fwdb_rule, max_bw))
675                 return false;
676         if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
677                 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
678                 struct fwdb_wmm_rule *wmm;
679
680                 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
681                         return false;
682
683                 wmm = (void *)(data + wmm_ptr);
684
685                 if (!valid_wmm(wmm))
686                         return false;
687         }
688         return true;
689 }
690
691 static bool valid_country(const u8 *data, unsigned int size,
692                           const struct fwdb_country *country)
693 {
694         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
695         struct fwdb_collection *coll = (void *)(data + ptr);
696         __be16 *rules_ptr;
697         unsigned int i;
698
699         /* make sure we can read len/n_rules */
700         if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
701                 return false;
702
703         /* make sure base struct and all rules fit */
704         if ((u8 *)coll + ALIGN(coll->len, 2) +
705             (coll->n_rules * 2) > data + size)
706                 return false;
707
708         /* mandatory fields must exist */
709         if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
710                 return false;
711
712         rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
713
714         for (i = 0; i < coll->n_rules; i++) {
715                 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
716
717                 if (!valid_rule(data, size, rule_ptr))
718                         return false;
719         }
720
721         return true;
722 }
723
724 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
725 static struct key *builtin_regdb_keys;
726
727 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
728 {
729         const u8 *end = p + buflen;
730         size_t plen;
731         key_ref_t key;
732
733         while (p < end) {
734                 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
735                  * than 256 bytes in size.
736                  */
737                 if (end - p < 4)
738                         goto dodgy_cert;
739                 if (p[0] != 0x30 &&
740                     p[1] != 0x82)
741                         goto dodgy_cert;
742                 plen = (p[2] << 8) | p[3];
743                 plen += 4;
744                 if (plen > end - p)
745                         goto dodgy_cert;
746
747                 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
748                                            "asymmetric", NULL, p, plen,
749                                            ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
750                                             KEY_USR_VIEW | KEY_USR_READ),
751                                            KEY_ALLOC_NOT_IN_QUOTA |
752                                            KEY_ALLOC_BUILT_IN |
753                                            KEY_ALLOC_BYPASS_RESTRICTION);
754                 if (IS_ERR(key)) {
755                         pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
756                                PTR_ERR(key));
757                 } else {
758                         pr_notice("Loaded X.509 cert '%s'\n",
759                                   key_ref_to_ptr(key)->description);
760                         key_ref_put(key);
761                 }
762                 p += plen;
763         }
764
765         return;
766
767 dodgy_cert:
768         pr_err("Problem parsing in-kernel X.509 certificate list\n");
769 }
770
771 static int __init load_builtin_regdb_keys(void)
772 {
773         builtin_regdb_keys =
774                 keyring_alloc(".builtin_regdb_keys",
775                               KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
776                               ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
777                               KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
778                               KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
779         if (IS_ERR(builtin_regdb_keys))
780                 return PTR_ERR(builtin_regdb_keys);
781
782         pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
783
784 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
785         load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
786 #endif
787 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
788         if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
789                 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
790 #endif
791
792         return 0;
793 }
794
795 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
796 {
797         const struct firmware *sig;
798         bool result;
799
800         if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
801                 return false;
802
803         result = verify_pkcs7_signature(data, size, sig->data, sig->size,
804                                         builtin_regdb_keys,
805                                         VERIFYING_UNSPECIFIED_SIGNATURE,
806                                         NULL, NULL) == 0;
807
808         release_firmware(sig);
809
810         return result;
811 }
812
813 static void free_regdb_keyring(void)
814 {
815         key_put(builtin_regdb_keys);
816 }
817 #else
818 static int load_builtin_regdb_keys(void)
819 {
820         return 0;
821 }
822
823 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
824 {
825         return true;
826 }
827
828 static void free_regdb_keyring(void)
829 {
830 }
831 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
832
833 static bool valid_regdb(const u8 *data, unsigned int size)
834 {
835         const struct fwdb_header *hdr = (void *)data;
836         const struct fwdb_country *country;
837
838         if (size < sizeof(*hdr))
839                 return false;
840
841         if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
842                 return false;
843
844         if (hdr->version != cpu_to_be32(FWDB_VERSION))
845                 return false;
846
847         if (!regdb_has_valid_signature(data, size))
848                 return false;
849
850         country = &hdr->country[0];
851         while ((u8 *)(country + 1) <= data + size) {
852                 if (!country->coll_ptr)
853                         break;
854                 if (!valid_country(data, size, country))
855                         return false;
856                 country++;
857         }
858
859         return true;
860 }
861
862 static void set_wmm_rule(const struct fwdb_header *db,
863                          const struct fwdb_country *country,
864                          const struct fwdb_rule *rule,
865                          struct ieee80211_reg_rule *rrule)
866 {
867         struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
868         struct fwdb_wmm_rule *wmm;
869         unsigned int i, wmm_ptr;
870
871         wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
872         wmm = (void *)((u8 *)db + wmm_ptr);
873
874         if (!valid_wmm(wmm)) {
875                 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
876                        be32_to_cpu(rule->start), be32_to_cpu(rule->end),
877                        country->alpha2[0], country->alpha2[1]);
878                 return;
879         }
880
881         for (i = 0; i < IEEE80211_NUM_ACS; i++) {
882                 wmm_rule->client[i].cw_min =
883                         ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
884                 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
885                 wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
886                 wmm_rule->client[i].cot =
887                         1000 * be16_to_cpu(wmm->client[i].cot);
888                 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
889                 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
890                 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
891                 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
892         }
893
894         rrule->has_wmm = true;
895 }
896
897 static int __regdb_query_wmm(const struct fwdb_header *db,
898                              const struct fwdb_country *country, int freq,
899                              struct ieee80211_reg_rule *rrule)
900 {
901         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
902         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
903         int i;
904
905         for (i = 0; i < coll->n_rules; i++) {
906                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
907                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
908                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
909
910                 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
911                         continue;
912
913                 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
914                     freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
915                         set_wmm_rule(db, country, rule, rrule);
916                         return 0;
917                 }
918         }
919
920         return -ENODATA;
921 }
922
923 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
924 {
925         const struct fwdb_header *hdr = regdb;
926         const struct fwdb_country *country;
927
928         if (!regdb)
929                 return -ENODATA;
930
931         if (IS_ERR(regdb))
932                 return PTR_ERR(regdb);
933
934         country = &hdr->country[0];
935         while (country->coll_ptr) {
936                 if (alpha2_equal(alpha2, country->alpha2))
937                         return __regdb_query_wmm(regdb, country, freq, rule);
938
939                 country++;
940         }
941
942         return -ENODATA;
943 }
944 EXPORT_SYMBOL(reg_query_regdb_wmm);
945
946 static int regdb_query_country(const struct fwdb_header *db,
947                                const struct fwdb_country *country)
948 {
949         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
950         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
951         struct ieee80211_regdomain *regdom;
952         unsigned int i;
953
954         regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
955                          GFP_KERNEL);
956         if (!regdom)
957                 return -ENOMEM;
958
959         regdom->n_reg_rules = coll->n_rules;
960         regdom->alpha2[0] = country->alpha2[0];
961         regdom->alpha2[1] = country->alpha2[1];
962         regdom->dfs_region = coll->dfs_region;
963
964         for (i = 0; i < regdom->n_reg_rules; i++) {
965                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
966                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
967                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
968                 struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
969
970                 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
971                 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
972                 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
973
974                 rrule->power_rule.max_antenna_gain = 0;
975                 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
976
977                 rrule->flags = 0;
978                 if (rule->flags & FWDB_FLAG_NO_OFDM)
979                         rrule->flags |= NL80211_RRF_NO_OFDM;
980                 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
981                         rrule->flags |= NL80211_RRF_NO_OUTDOOR;
982                 if (rule->flags & FWDB_FLAG_DFS)
983                         rrule->flags |= NL80211_RRF_DFS;
984                 if (rule->flags & FWDB_FLAG_NO_IR)
985                         rrule->flags |= NL80211_RRF_NO_IR;
986                 if (rule->flags & FWDB_FLAG_AUTO_BW)
987                         rrule->flags |= NL80211_RRF_AUTO_BW;
988
989                 rrule->dfs_cac_ms = 0;
990
991                 /* handle optional data */
992                 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
993                         rrule->dfs_cac_ms =
994                                 1000 * be16_to_cpu(rule->cac_timeout);
995                 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
996                         set_wmm_rule(db, country, rule, rrule);
997         }
998
999         return reg_schedule_apply(regdom);
1000 }
1001
1002 static int query_regdb(const char *alpha2)
1003 {
1004         const struct fwdb_header *hdr = regdb;
1005         const struct fwdb_country *country;
1006
1007         ASSERT_RTNL();
1008
1009         if (IS_ERR(regdb))
1010                 return PTR_ERR(regdb);
1011
1012         country = &hdr->country[0];
1013         while (country->coll_ptr) {
1014                 if (alpha2_equal(alpha2, country->alpha2))
1015                         return regdb_query_country(regdb, country);
1016                 country++;
1017         }
1018
1019         return -ENODATA;
1020 }
1021
1022 static void regdb_fw_cb(const struct firmware *fw, void *context)
1023 {
1024         int set_error = 0;
1025         bool restore = true;
1026         void *db;
1027
1028         if (!fw) {
1029                 pr_info("failed to load regulatory.db\n");
1030                 set_error = -ENODATA;
1031         } else if (!valid_regdb(fw->data, fw->size)) {
1032                 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1033                 set_error = -EINVAL;
1034         }
1035
1036         rtnl_lock();
1037         if (regdb && !IS_ERR(regdb)) {
1038                 /* negative case - a bug
1039                  * positive case - can happen due to race in case of multiple cb's in
1040                  * queue, due to usage of asynchronous callback
1041                  *
1042                  * Either case, just restore and free new db.
1043                  */
1044         } else if (set_error) {
1045                 regdb = ERR_PTR(set_error);
1046         } else if (fw) {
1047                 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1048                 if (db) {
1049                         regdb = db;
1050                         restore = context && query_regdb(context);
1051                 } else {
1052                         restore = true;
1053                 }
1054         }
1055
1056         if (restore)
1057                 restore_regulatory_settings(true, false);
1058
1059         rtnl_unlock();
1060
1061         kfree(context);
1062
1063         release_firmware(fw);
1064 }
1065
1066 static int query_regdb_file(const char *alpha2)
1067 {
1068         ASSERT_RTNL();
1069
1070         if (regdb)
1071                 return query_regdb(alpha2);
1072
1073         alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1074         if (!alpha2)
1075                 return -ENOMEM;
1076
1077         return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1078                                        &reg_pdev->dev, GFP_KERNEL,
1079                                        (void *)alpha2, regdb_fw_cb);
1080 }
1081
1082 int reg_reload_regdb(void)
1083 {
1084         const struct firmware *fw;
1085         void *db;
1086         int err;
1087
1088         err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1089         if (err)
1090                 return err;
1091
1092         if (!valid_regdb(fw->data, fw->size)) {
1093                 err = -ENODATA;
1094                 goto out;
1095         }
1096
1097         db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1098         if (!db) {
1099                 err = -ENOMEM;
1100                 goto out;
1101         }
1102
1103         rtnl_lock();
1104         if (!IS_ERR_OR_NULL(regdb))
1105                 kfree(regdb);
1106         regdb = db;
1107         rtnl_unlock();
1108
1109  out:
1110         release_firmware(fw);
1111         return err;
1112 }
1113
1114 static bool reg_query_database(struct regulatory_request *request)
1115 {
1116         if (query_regdb_file(request->alpha2) == 0)
1117                 return true;
1118
1119         if (call_crda(request->alpha2) == 0)
1120                 return true;
1121
1122         return false;
1123 }
1124
1125 bool reg_is_valid_request(const char *alpha2)
1126 {
1127         struct regulatory_request *lr = get_last_request();
1128
1129         if (!lr || lr->processed)
1130                 return false;
1131
1132         return alpha2_equal(lr->alpha2, alpha2);
1133 }
1134
1135 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1136 {
1137         struct regulatory_request *lr = get_last_request();
1138
1139         /*
1140          * Follow the driver's regulatory domain, if present, unless a country
1141          * IE has been processed or a user wants to help complaince further
1142          */
1143         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1144             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1145             wiphy->regd)
1146                 return get_wiphy_regdom(wiphy);
1147
1148         return get_cfg80211_regdom();
1149 }
1150
1151 static unsigned int
1152 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1153                                  const struct ieee80211_reg_rule *rule)
1154 {
1155         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1156         const struct ieee80211_freq_range *freq_range_tmp;
1157         const struct ieee80211_reg_rule *tmp;
1158         u32 start_freq, end_freq, idx, no;
1159
1160         for (idx = 0; idx < rd->n_reg_rules; idx++)
1161                 if (rule == &rd->reg_rules[idx])
1162                         break;
1163
1164         if (idx == rd->n_reg_rules)
1165                 return 0;
1166
1167         /* get start_freq */
1168         no = idx;
1169
1170         while (no) {
1171                 tmp = &rd->reg_rules[--no];
1172                 freq_range_tmp = &tmp->freq_range;
1173
1174                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1175                         break;
1176
1177                 freq_range = freq_range_tmp;
1178         }
1179
1180         start_freq = freq_range->start_freq_khz;
1181
1182         /* get end_freq */
1183         freq_range = &rule->freq_range;
1184         no = idx;
1185
1186         while (no < rd->n_reg_rules - 1) {
1187                 tmp = &rd->reg_rules[++no];
1188                 freq_range_tmp = &tmp->freq_range;
1189
1190                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1191                         break;
1192
1193                 freq_range = freq_range_tmp;
1194         }
1195
1196         end_freq = freq_range->end_freq_khz;
1197
1198         return end_freq - start_freq;
1199 }
1200
1201 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1202                                    const struct ieee80211_reg_rule *rule)
1203 {
1204         unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1205
1206         if (rule->flags & NL80211_RRF_NO_160MHZ)
1207                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1208         if (rule->flags & NL80211_RRF_NO_80MHZ)
1209                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1210
1211         /*
1212          * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1213          * are not allowed.
1214          */
1215         if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1216             rule->flags & NL80211_RRF_NO_HT40PLUS)
1217                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1218
1219         return bw;
1220 }
1221
1222 /* Sanity check on a regulatory rule */
1223 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1224 {
1225         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1226         u32 freq_diff;
1227
1228         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1229                 return false;
1230
1231         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1232                 return false;
1233
1234         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1235
1236         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1237             freq_range->max_bandwidth_khz > freq_diff)
1238                 return false;
1239
1240         return true;
1241 }
1242
1243 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1244 {
1245         const struct ieee80211_reg_rule *reg_rule = NULL;
1246         unsigned int i;
1247
1248         if (!rd->n_reg_rules)
1249                 return false;
1250
1251         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1252                 return false;
1253
1254         for (i = 0; i < rd->n_reg_rules; i++) {
1255                 reg_rule = &rd->reg_rules[i];
1256                 if (!is_valid_reg_rule(reg_rule))
1257                         return false;
1258         }
1259
1260         return true;
1261 }
1262
1263 /**
1264  * freq_in_rule_band - tells us if a frequency is in a frequency band
1265  * @freq_range: frequency rule we want to query
1266  * @freq_khz: frequency we are inquiring about
1267  *
1268  * This lets us know if a specific frequency rule is or is not relevant to
1269  * a specific frequency's band. Bands are device specific and artificial
1270  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1271  * however it is safe for now to assume that a frequency rule should not be
1272  * part of a frequency's band if the start freq or end freq are off by more
1273  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1274  * 60 GHz band.
1275  * This resolution can be lowered and should be considered as we add
1276  * regulatory rule support for other "bands".
1277  **/
1278 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1279                               u32 freq_khz)
1280 {
1281 #define ONE_GHZ_IN_KHZ  1000000
1282         /*
1283          * From 802.11ad: directional multi-gigabit (DMG):
1284          * Pertaining to operation in a frequency band containing a channel
1285          * with the Channel starting frequency above 45 GHz.
1286          */
1287         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1288                         20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1289         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1290                 return true;
1291         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1292                 return true;
1293         return false;
1294 #undef ONE_GHZ_IN_KHZ
1295 }
1296
1297 /*
1298  * Later on we can perhaps use the more restrictive DFS
1299  * region but we don't have information for that yet so
1300  * for now simply disallow conflicts.
1301  */
1302 static enum nl80211_dfs_regions
1303 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1304                          const enum nl80211_dfs_regions dfs_region2)
1305 {
1306         if (dfs_region1 != dfs_region2)
1307                 return NL80211_DFS_UNSET;
1308         return dfs_region1;
1309 }
1310
1311 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1312                                     const struct ieee80211_wmm_ac *wmm_ac2,
1313                                     struct ieee80211_wmm_ac *intersect)
1314 {
1315         intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1316         intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1317         intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1318         intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1319 }
1320
1321 /*
1322  * Helper for regdom_intersect(), this does the real
1323  * mathematical intersection fun
1324  */
1325 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1326                                const struct ieee80211_regdomain *rd2,
1327                                const struct ieee80211_reg_rule *rule1,
1328                                const struct ieee80211_reg_rule *rule2,
1329                                struct ieee80211_reg_rule *intersected_rule)
1330 {
1331         const struct ieee80211_freq_range *freq_range1, *freq_range2;
1332         struct ieee80211_freq_range *freq_range;
1333         const struct ieee80211_power_rule *power_rule1, *power_rule2;
1334         struct ieee80211_power_rule *power_rule;
1335         const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1336         struct ieee80211_wmm_rule *wmm_rule;
1337         u32 freq_diff, max_bandwidth1, max_bandwidth2;
1338
1339         freq_range1 = &rule1->freq_range;
1340         freq_range2 = &rule2->freq_range;
1341         freq_range = &intersected_rule->freq_range;
1342
1343         power_rule1 = &rule1->power_rule;
1344         power_rule2 = &rule2->power_rule;
1345         power_rule = &intersected_rule->power_rule;
1346
1347         wmm_rule1 = &rule1->wmm_rule;
1348         wmm_rule2 = &rule2->wmm_rule;
1349         wmm_rule = &intersected_rule->wmm_rule;
1350
1351         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1352                                          freq_range2->start_freq_khz);
1353         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1354                                        freq_range2->end_freq_khz);
1355
1356         max_bandwidth1 = freq_range1->max_bandwidth_khz;
1357         max_bandwidth2 = freq_range2->max_bandwidth_khz;
1358
1359         if (rule1->flags & NL80211_RRF_AUTO_BW)
1360                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1361         if (rule2->flags & NL80211_RRF_AUTO_BW)
1362                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1363
1364         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1365
1366         intersected_rule->flags = rule1->flags | rule2->flags;
1367
1368         /*
1369          * In case NL80211_RRF_AUTO_BW requested for both rules
1370          * set AUTO_BW in intersected rule also. Next we will
1371          * calculate BW correctly in handle_channel function.
1372          * In other case remove AUTO_BW flag while we calculate
1373          * maximum bandwidth correctly and auto calculation is
1374          * not required.
1375          */
1376         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1377             (rule2->flags & NL80211_RRF_AUTO_BW))
1378                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1379         else
1380                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1381
1382         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1383         if (freq_range->max_bandwidth_khz > freq_diff)
1384                 freq_range->max_bandwidth_khz = freq_diff;
1385
1386         power_rule->max_eirp = min(power_rule1->max_eirp,
1387                 power_rule2->max_eirp);
1388         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1389                 power_rule2->max_antenna_gain);
1390
1391         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1392                                            rule2->dfs_cac_ms);
1393
1394         if (rule1->has_wmm && rule2->has_wmm) {
1395                 u8 ac;
1396
1397                 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1398                         reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1399                                                 &wmm_rule2->client[ac],
1400                                                 &wmm_rule->client[ac]);
1401                         reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1402                                                 &wmm_rule2->ap[ac],
1403                                                 &wmm_rule->ap[ac]);
1404                 }
1405
1406                 intersected_rule->has_wmm = true;
1407         } else if (rule1->has_wmm) {
1408                 *wmm_rule = *wmm_rule1;
1409                 intersected_rule->has_wmm = true;
1410         } else if (rule2->has_wmm) {
1411                 *wmm_rule = *wmm_rule2;
1412                 intersected_rule->has_wmm = true;
1413         } else {
1414                 intersected_rule->has_wmm = false;
1415         }
1416
1417         if (!is_valid_reg_rule(intersected_rule))
1418                 return -EINVAL;
1419
1420         return 0;
1421 }
1422
1423 /* check whether old rule contains new rule */
1424 static bool rule_contains(struct ieee80211_reg_rule *r1,
1425                           struct ieee80211_reg_rule *r2)
1426 {
1427         /* for simplicity, currently consider only same flags */
1428         if (r1->flags != r2->flags)
1429                 return false;
1430
1431         /* verify r1 is more restrictive */
1432         if ((r1->power_rule.max_antenna_gain >
1433              r2->power_rule.max_antenna_gain) ||
1434             r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1435                 return false;
1436
1437         /* make sure r2's range is contained within r1 */
1438         if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1439             r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1440                 return false;
1441
1442         /* and finally verify that r1.max_bw >= r2.max_bw */
1443         if (r1->freq_range.max_bandwidth_khz <
1444             r2->freq_range.max_bandwidth_khz)
1445                 return false;
1446
1447         return true;
1448 }
1449
1450 /* add or extend current rules. do nothing if rule is already contained */
1451 static void add_rule(struct ieee80211_reg_rule *rule,
1452                      struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1453 {
1454         struct ieee80211_reg_rule *tmp_rule;
1455         int i;
1456
1457         for (i = 0; i < *n_rules; i++) {
1458                 tmp_rule = &reg_rules[i];
1459                 /* rule is already contained - do nothing */
1460                 if (rule_contains(tmp_rule, rule))
1461                         return;
1462
1463                 /* extend rule if possible */
1464                 if (rule_contains(rule, tmp_rule)) {
1465                         memcpy(tmp_rule, rule, sizeof(*rule));
1466                         return;
1467                 }
1468         }
1469
1470         memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1471         (*n_rules)++;
1472 }
1473
1474 /**
1475  * regdom_intersect - do the intersection between two regulatory domains
1476  * @rd1: first regulatory domain
1477  * @rd2: second regulatory domain
1478  *
1479  * Use this function to get the intersection between two regulatory domains.
1480  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1481  * as no one single alpha2 can represent this regulatory domain.
1482  *
1483  * Returns a pointer to the regulatory domain structure which will hold the
1484  * resulting intersection of rules between rd1 and rd2. We will
1485  * kzalloc() this structure for you.
1486  */
1487 static struct ieee80211_regdomain *
1488 regdom_intersect(const struct ieee80211_regdomain *rd1,
1489                  const struct ieee80211_regdomain *rd2)
1490 {
1491         int r;
1492         unsigned int x, y;
1493         unsigned int num_rules = 0;
1494         const struct ieee80211_reg_rule *rule1, *rule2;
1495         struct ieee80211_reg_rule intersected_rule;
1496         struct ieee80211_regdomain *rd;
1497
1498         if (!rd1 || !rd2)
1499                 return NULL;
1500
1501         /*
1502          * First we get a count of the rules we'll need, then we actually
1503          * build them. This is to so we can malloc() and free() a
1504          * regdomain once. The reason we use reg_rules_intersect() here
1505          * is it will return -EINVAL if the rule computed makes no sense.
1506          * All rules that do check out OK are valid.
1507          */
1508
1509         for (x = 0; x < rd1->n_reg_rules; x++) {
1510                 rule1 = &rd1->reg_rules[x];
1511                 for (y = 0; y < rd2->n_reg_rules; y++) {
1512                         rule2 = &rd2->reg_rules[y];
1513                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1514                                                  &intersected_rule))
1515                                 num_rules++;
1516                 }
1517         }
1518
1519         if (!num_rules)
1520                 return NULL;
1521
1522         rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1523         if (!rd)
1524                 return NULL;
1525
1526         for (x = 0; x < rd1->n_reg_rules; x++) {
1527                 rule1 = &rd1->reg_rules[x];
1528                 for (y = 0; y < rd2->n_reg_rules; y++) {
1529                         rule2 = &rd2->reg_rules[y];
1530                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1531                                                 &intersected_rule);
1532                         /*
1533                          * No need to memset here the intersected rule here as
1534                          * we're not using the stack anymore
1535                          */
1536                         if (r)
1537                                 continue;
1538
1539                         add_rule(&intersected_rule, rd->reg_rules,
1540                                  &rd->n_reg_rules);
1541                 }
1542         }
1543
1544         rd->alpha2[0] = '9';
1545         rd->alpha2[1] = '8';
1546         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1547                                                   rd2->dfs_region);
1548
1549         return rd;
1550 }
1551
1552 /*
1553  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1554  * want to just have the channel structure use these
1555  */
1556 static u32 map_regdom_flags(u32 rd_flags)
1557 {
1558         u32 channel_flags = 0;
1559         if (rd_flags & NL80211_RRF_NO_IR_ALL)
1560                 channel_flags |= IEEE80211_CHAN_NO_IR;
1561         if (rd_flags & NL80211_RRF_DFS)
1562                 channel_flags |= IEEE80211_CHAN_RADAR;
1563         if (rd_flags & NL80211_RRF_NO_OFDM)
1564                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1565         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1566                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1567         if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1568                 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1569         if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1570                 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1571         if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1572                 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1573         if (rd_flags & NL80211_RRF_NO_80MHZ)
1574                 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1575         if (rd_flags & NL80211_RRF_NO_160MHZ)
1576                 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1577         if (rd_flags & NL80211_RRF_NO_HE)
1578                 channel_flags |= IEEE80211_CHAN_NO_HE;
1579         return channel_flags;
1580 }
1581
1582 static const struct ieee80211_reg_rule *
1583 freq_reg_info_regd(u32 center_freq,
1584                    const struct ieee80211_regdomain *regd, u32 bw)
1585 {
1586         int i;
1587         bool band_rule_found = false;
1588         bool bw_fits = false;
1589
1590         if (!regd)
1591                 return ERR_PTR(-EINVAL);
1592
1593         for (i = 0; i < regd->n_reg_rules; i++) {
1594                 const struct ieee80211_reg_rule *rr;
1595                 const struct ieee80211_freq_range *fr = NULL;
1596
1597                 rr = &regd->reg_rules[i];
1598                 fr = &rr->freq_range;
1599
1600                 /*
1601                  * We only need to know if one frequency rule was
1602                  * in center_freq's band, that's enough, so let's
1603                  * not overwrite it once found
1604                  */
1605                 if (!band_rule_found)
1606                         band_rule_found = freq_in_rule_band(fr, center_freq);
1607
1608                 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1609
1610                 if (band_rule_found && bw_fits)
1611                         return rr;
1612         }
1613
1614         if (!band_rule_found)
1615                 return ERR_PTR(-ERANGE);
1616
1617         return ERR_PTR(-EINVAL);
1618 }
1619
1620 static const struct ieee80211_reg_rule *
1621 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1622 {
1623         const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1624         static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1625         const struct ieee80211_reg_rule *reg_rule;
1626         int i = ARRAY_SIZE(bws) - 1;
1627         u32 bw;
1628
1629         for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1630                 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1631                 if (!IS_ERR(reg_rule))
1632                         return reg_rule;
1633         }
1634
1635         return reg_rule;
1636 }
1637
1638 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1639                                                u32 center_freq)
1640 {
1641         u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1642
1643         return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1644 }
1645 EXPORT_SYMBOL(freq_reg_info);
1646
1647 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1648 {
1649         switch (initiator) {
1650         case NL80211_REGDOM_SET_BY_CORE:
1651                 return "core";
1652         case NL80211_REGDOM_SET_BY_USER:
1653                 return "user";
1654         case NL80211_REGDOM_SET_BY_DRIVER:
1655                 return "driver";
1656         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1657                 return "country element";
1658         default:
1659                 WARN_ON(1);
1660                 return "bug";
1661         }
1662 }
1663 EXPORT_SYMBOL(reg_initiator_name);
1664
1665 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1666                                           const struct ieee80211_reg_rule *reg_rule,
1667                                           const struct ieee80211_channel *chan)
1668 {
1669         const struct ieee80211_freq_range *freq_range = NULL;
1670         u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1671         bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1672
1673         freq_range = &reg_rule->freq_range;
1674
1675         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1676         center_freq_khz = ieee80211_channel_to_khz(chan);
1677         /* Check if auto calculation requested */
1678         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1679                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1680
1681         /* If we get a reg_rule we can assume that at least 5Mhz fit */
1682         if (!cfg80211_does_bw_fit_range(freq_range,
1683                                         center_freq_khz,
1684                                         MHZ_TO_KHZ(10)))
1685                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1686         if (!cfg80211_does_bw_fit_range(freq_range,
1687                                         center_freq_khz,
1688                                         MHZ_TO_KHZ(20)))
1689                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1690
1691         if (is_s1g) {
1692                 /* S1G is strict about non overlapping channels. We can
1693                  * calculate which bandwidth is allowed per channel by finding
1694                  * the largest bandwidth which cleanly divides the freq_range.
1695                  */
1696                 int edge_offset;
1697                 int ch_bw = max_bandwidth_khz;
1698
1699                 while (ch_bw) {
1700                         edge_offset = (center_freq_khz - ch_bw / 2) -
1701                                       freq_range->start_freq_khz;
1702                         if (edge_offset % ch_bw == 0) {
1703                                 switch (KHZ_TO_MHZ(ch_bw)) {
1704                                 case 1:
1705                                         bw_flags |= IEEE80211_CHAN_1MHZ;
1706                                         break;
1707                                 case 2:
1708                                         bw_flags |= IEEE80211_CHAN_2MHZ;
1709                                         break;
1710                                 case 4:
1711                                         bw_flags |= IEEE80211_CHAN_4MHZ;
1712                                         break;
1713                                 case 8:
1714                                         bw_flags |= IEEE80211_CHAN_8MHZ;
1715                                         break;
1716                                 case 16:
1717                                         bw_flags |= IEEE80211_CHAN_16MHZ;
1718                                         break;
1719                                 default:
1720                                         /* If we got here, no bandwidths fit on
1721                                          * this frequency, ie. band edge.
1722                                          */
1723                                         bw_flags |= IEEE80211_CHAN_DISABLED;
1724                                         break;
1725                                 }
1726                                 break;
1727                         }
1728                         ch_bw /= 2;
1729                 }
1730         } else {
1731                 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1732                         bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1733                 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1734                         bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1735                 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1736                         bw_flags |= IEEE80211_CHAN_NO_HT40;
1737                 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1738                         bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1739                 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1740                         bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1741         }
1742         return bw_flags;
1743 }
1744
1745 static void handle_channel_single_rule(struct wiphy *wiphy,
1746                                        enum nl80211_reg_initiator initiator,
1747                                        struct ieee80211_channel *chan,
1748                                        u32 flags,
1749                                        struct regulatory_request *lr,
1750                                        struct wiphy *request_wiphy,
1751                                        const struct ieee80211_reg_rule *reg_rule)
1752 {
1753         u32 bw_flags = 0;
1754         const struct ieee80211_power_rule *power_rule = NULL;
1755         const struct ieee80211_regdomain *regd;
1756
1757         regd = reg_get_regdomain(wiphy);
1758
1759         power_rule = &reg_rule->power_rule;
1760         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1761
1762         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1763             request_wiphy && request_wiphy == wiphy &&
1764             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1765                 /*
1766                  * This guarantees the driver's requested regulatory domain
1767                  * will always be used as a base for further regulatory
1768                  * settings
1769                  */
1770                 chan->flags = chan->orig_flags =
1771                         map_regdom_flags(reg_rule->flags) | bw_flags;
1772                 chan->max_antenna_gain = chan->orig_mag =
1773                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1774                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1775                         (int) MBM_TO_DBM(power_rule->max_eirp);
1776
1777                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1778                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1779                         if (reg_rule->dfs_cac_ms)
1780                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1781                 }
1782
1783                 return;
1784         }
1785
1786         chan->dfs_state = NL80211_DFS_USABLE;
1787         chan->dfs_state_entered = jiffies;
1788
1789         chan->beacon_found = false;
1790         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1791         chan->max_antenna_gain =
1792                 min_t(int, chan->orig_mag,
1793                       MBI_TO_DBI(power_rule->max_antenna_gain));
1794         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1795
1796         if (chan->flags & IEEE80211_CHAN_RADAR) {
1797                 if (reg_rule->dfs_cac_ms)
1798                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1799                 else
1800                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1801         }
1802
1803         if (chan->orig_mpwr) {
1804                 /*
1805                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1806                  * will always follow the passed country IE power settings.
1807                  */
1808                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1809                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1810                         chan->max_power = chan->max_reg_power;
1811                 else
1812                         chan->max_power = min(chan->orig_mpwr,
1813                                               chan->max_reg_power);
1814         } else
1815                 chan->max_power = chan->max_reg_power;
1816 }
1817
1818 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1819                                           enum nl80211_reg_initiator initiator,
1820                                           struct ieee80211_channel *chan,
1821                                           u32 flags,
1822                                           struct regulatory_request *lr,
1823                                           struct wiphy *request_wiphy,
1824                                           const struct ieee80211_reg_rule *rrule1,
1825                                           const struct ieee80211_reg_rule *rrule2,
1826                                           struct ieee80211_freq_range *comb_range)
1827 {
1828         u32 bw_flags1 = 0;
1829         u32 bw_flags2 = 0;
1830         const struct ieee80211_power_rule *power_rule1 = NULL;
1831         const struct ieee80211_power_rule *power_rule2 = NULL;
1832         const struct ieee80211_regdomain *regd;
1833
1834         regd = reg_get_regdomain(wiphy);
1835
1836         power_rule1 = &rrule1->power_rule;
1837         power_rule2 = &rrule2->power_rule;
1838         bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1839         bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1840
1841         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1842             request_wiphy && request_wiphy == wiphy &&
1843             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1844                 /* This guarantees the driver's requested regulatory domain
1845                  * will always be used as a base for further regulatory
1846                  * settings
1847                  */
1848                 chan->flags =
1849                         map_regdom_flags(rrule1->flags) |
1850                         map_regdom_flags(rrule2->flags) |
1851                         bw_flags1 |
1852                         bw_flags2;
1853                 chan->orig_flags = chan->flags;
1854                 chan->max_antenna_gain =
1855                         min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1856                               MBI_TO_DBI(power_rule2->max_antenna_gain));
1857                 chan->orig_mag = chan->max_antenna_gain;
1858                 chan->max_reg_power =
1859                         min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1860                               MBM_TO_DBM(power_rule2->max_eirp));
1861                 chan->max_power = chan->max_reg_power;
1862                 chan->orig_mpwr = chan->max_reg_power;
1863
1864                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1865                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1866                         if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1867                                 chan->dfs_cac_ms = max_t(unsigned int,
1868                                                          rrule1->dfs_cac_ms,
1869                                                          rrule2->dfs_cac_ms);
1870                 }
1871
1872                 return;
1873         }
1874
1875         chan->dfs_state = NL80211_DFS_USABLE;
1876         chan->dfs_state_entered = jiffies;
1877
1878         chan->beacon_found = false;
1879         chan->flags = flags | bw_flags1 | bw_flags2 |
1880                       map_regdom_flags(rrule1->flags) |
1881                       map_regdom_flags(rrule2->flags);
1882
1883         /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1884          * (otherwise no adj. rule case), recheck therefore
1885          */
1886         if (cfg80211_does_bw_fit_range(comb_range,
1887                                        ieee80211_channel_to_khz(chan),
1888                                        MHZ_TO_KHZ(10)))
1889                 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1890         if (cfg80211_does_bw_fit_range(comb_range,
1891                                        ieee80211_channel_to_khz(chan),
1892                                        MHZ_TO_KHZ(20)))
1893                 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1894
1895         chan->max_antenna_gain =
1896                 min_t(int, chan->orig_mag,
1897                       min_t(int,
1898                             MBI_TO_DBI(power_rule1->max_antenna_gain),
1899                             MBI_TO_DBI(power_rule2->max_antenna_gain)));
1900         chan->max_reg_power = min_t(int,
1901                                     MBM_TO_DBM(power_rule1->max_eirp),
1902                                     MBM_TO_DBM(power_rule2->max_eirp));
1903
1904         if (chan->flags & IEEE80211_CHAN_RADAR) {
1905                 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1906                         chan->dfs_cac_ms = max_t(unsigned int,
1907                                                  rrule1->dfs_cac_ms,
1908                                                  rrule2->dfs_cac_ms);
1909                 else
1910                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1911         }
1912
1913         if (chan->orig_mpwr) {
1914                 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1915                  * will always follow the passed country IE power settings.
1916                  */
1917                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1918                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1919                         chan->max_power = chan->max_reg_power;
1920                 else
1921                         chan->max_power = min(chan->orig_mpwr,
1922                                               chan->max_reg_power);
1923         } else {
1924                 chan->max_power = chan->max_reg_power;
1925         }
1926 }
1927
1928 /* Note that right now we assume the desired channel bandwidth
1929  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1930  * per channel, the primary and the extension channel).
1931  */
1932 static void handle_channel(struct wiphy *wiphy,
1933                            enum nl80211_reg_initiator initiator,
1934                            struct ieee80211_channel *chan)
1935 {
1936         const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1937         struct regulatory_request *lr = get_last_request();
1938         struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1939         const struct ieee80211_reg_rule *rrule = NULL;
1940         const struct ieee80211_reg_rule *rrule1 = NULL;
1941         const struct ieee80211_reg_rule *rrule2 = NULL;
1942
1943         u32 flags = chan->orig_flags;
1944
1945         rrule = freq_reg_info(wiphy, orig_chan_freq);
1946         if (IS_ERR(rrule)) {
1947                 /* check for adjacent match, therefore get rules for
1948                  * chan - 20 MHz and chan + 20 MHz and test
1949                  * if reg rules are adjacent
1950                  */
1951                 rrule1 = freq_reg_info(wiphy,
1952                                        orig_chan_freq - MHZ_TO_KHZ(20));
1953                 rrule2 = freq_reg_info(wiphy,
1954                                        orig_chan_freq + MHZ_TO_KHZ(20));
1955                 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1956                         struct ieee80211_freq_range comb_range;
1957
1958                         if (rrule1->freq_range.end_freq_khz !=
1959                             rrule2->freq_range.start_freq_khz)
1960                                 goto disable_chan;
1961
1962                         comb_range.start_freq_khz =
1963                                 rrule1->freq_range.start_freq_khz;
1964                         comb_range.end_freq_khz =
1965                                 rrule2->freq_range.end_freq_khz;
1966                         comb_range.max_bandwidth_khz =
1967                                 min_t(u32,
1968                                       rrule1->freq_range.max_bandwidth_khz,
1969                                       rrule2->freq_range.max_bandwidth_khz);
1970
1971                         if (!cfg80211_does_bw_fit_range(&comb_range,
1972                                                         orig_chan_freq,
1973                                                         MHZ_TO_KHZ(20)))
1974                                 goto disable_chan;
1975
1976                         handle_channel_adjacent_rules(wiphy, initiator, chan,
1977                                                       flags, lr, request_wiphy,
1978                                                       rrule1, rrule2,
1979                                                       &comb_range);
1980                         return;
1981                 }
1982
1983 disable_chan:
1984                 /* We will disable all channels that do not match our
1985                  * received regulatory rule unless the hint is coming
1986                  * from a Country IE and the Country IE had no information
1987                  * about a band. The IEEE 802.11 spec allows for an AP
1988                  * to send only a subset of the regulatory rules allowed,
1989                  * so an AP in the US that only supports 2.4 GHz may only send
1990                  * a country IE with information for the 2.4 GHz band
1991                  * while 5 GHz is still supported.
1992                  */
1993                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1994                     PTR_ERR(rrule) == -ERANGE)
1995                         return;
1996
1997                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1998                     request_wiphy && request_wiphy == wiphy &&
1999                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2000                         pr_debug("Disabling freq %d.%03d MHz for good\n",
2001                                  chan->center_freq, chan->freq_offset);
2002                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2003                         chan->flags = chan->orig_flags;
2004                 } else {
2005                         pr_debug("Disabling freq %d.%03d MHz\n",
2006                                  chan->center_freq, chan->freq_offset);
2007                         chan->flags |= IEEE80211_CHAN_DISABLED;
2008                 }
2009                 return;
2010         }
2011
2012         handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2013                                    request_wiphy, rrule);
2014 }
2015
2016 static void handle_band(struct wiphy *wiphy,
2017                         enum nl80211_reg_initiator initiator,
2018                         struct ieee80211_supported_band *sband)
2019 {
2020         unsigned int i;
2021
2022         if (!sband)
2023                 return;
2024
2025         for (i = 0; i < sband->n_channels; i++)
2026                 handle_channel(wiphy, initiator, &sband->channels[i]);
2027 }
2028
2029 static bool reg_request_cell_base(struct regulatory_request *request)
2030 {
2031         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2032                 return false;
2033         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2034 }
2035
2036 bool reg_last_request_cell_base(void)
2037 {
2038         return reg_request_cell_base(get_last_request());
2039 }
2040
2041 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2042 /* Core specific check */
2043 static enum reg_request_treatment
2044 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2045 {
2046         struct regulatory_request *lr = get_last_request();
2047
2048         if (!reg_num_devs_support_basehint)
2049                 return REG_REQ_IGNORE;
2050
2051         if (reg_request_cell_base(lr) &&
2052             !regdom_changes(pending_request->alpha2))
2053                 return REG_REQ_ALREADY_SET;
2054
2055         return REG_REQ_OK;
2056 }
2057
2058 /* Device specific check */
2059 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2060 {
2061         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2062 }
2063 #else
2064 static enum reg_request_treatment
2065 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2066 {
2067         return REG_REQ_IGNORE;
2068 }
2069
2070 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2071 {
2072         return true;
2073 }
2074 #endif
2075
2076 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2077 {
2078         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2079             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2080                 return true;
2081         return false;
2082 }
2083
2084 static bool ignore_reg_update(struct wiphy *wiphy,
2085                               enum nl80211_reg_initiator initiator)
2086 {
2087         struct regulatory_request *lr = get_last_request();
2088
2089         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2090                 return true;
2091
2092         if (!lr) {
2093                 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2094                          reg_initiator_name(initiator));
2095                 return true;
2096         }
2097
2098         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2099             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2100                 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2101                          reg_initiator_name(initiator));
2102                 return true;
2103         }
2104
2105         /*
2106          * wiphy->regd will be set once the device has its own
2107          * desired regulatory domain set
2108          */
2109         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2110             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2111             !is_world_regdom(lr->alpha2)) {
2112                 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2113                          reg_initiator_name(initiator));
2114                 return true;
2115         }
2116
2117         if (reg_request_cell_base(lr))
2118                 return reg_dev_ignore_cell_hint(wiphy);
2119
2120         return false;
2121 }
2122
2123 static bool reg_is_world_roaming(struct wiphy *wiphy)
2124 {
2125         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2126         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2127         struct regulatory_request *lr = get_last_request();
2128
2129         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2130                 return true;
2131
2132         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2133             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2134                 return true;
2135
2136         return false;
2137 }
2138
2139 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2140                               struct reg_beacon *reg_beacon)
2141 {
2142         struct ieee80211_supported_band *sband;
2143         struct ieee80211_channel *chan;
2144         bool channel_changed = false;
2145         struct ieee80211_channel chan_before;
2146
2147         sband = wiphy->bands[reg_beacon->chan.band];
2148         chan = &sband->channels[chan_idx];
2149
2150         if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2151                 return;
2152
2153         if (chan->beacon_found)
2154                 return;
2155
2156         chan->beacon_found = true;
2157
2158         if (!reg_is_world_roaming(wiphy))
2159                 return;
2160
2161         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2162                 return;
2163
2164         chan_before = *chan;
2165
2166         if (chan->flags & IEEE80211_CHAN_NO_IR) {
2167                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
2168                 channel_changed = true;
2169         }
2170
2171         if (channel_changed)
2172                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2173 }
2174
2175 /*
2176  * Called when a scan on a wiphy finds a beacon on
2177  * new channel
2178  */
2179 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2180                                     struct reg_beacon *reg_beacon)
2181 {
2182         unsigned int i;
2183         struct ieee80211_supported_band *sband;
2184
2185         if (!wiphy->bands[reg_beacon->chan.band])
2186                 return;
2187
2188         sband = wiphy->bands[reg_beacon->chan.band];
2189
2190         for (i = 0; i < sband->n_channels; i++)
2191                 handle_reg_beacon(wiphy, i, reg_beacon);
2192 }
2193
2194 /*
2195  * Called upon reg changes or a new wiphy is added
2196  */
2197 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2198 {
2199         unsigned int i;
2200         struct ieee80211_supported_band *sband;
2201         struct reg_beacon *reg_beacon;
2202
2203         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2204                 if (!wiphy->bands[reg_beacon->chan.band])
2205                         continue;
2206                 sband = wiphy->bands[reg_beacon->chan.band];
2207                 for (i = 0; i < sband->n_channels; i++)
2208                         handle_reg_beacon(wiphy, i, reg_beacon);
2209         }
2210 }
2211
2212 /* Reap the advantages of previously found beacons */
2213 static void reg_process_beacons(struct wiphy *wiphy)
2214 {
2215         /*
2216          * Means we are just firing up cfg80211, so no beacons would
2217          * have been processed yet.
2218          */
2219         if (!last_request)
2220                 return;
2221         wiphy_update_beacon_reg(wiphy);
2222 }
2223
2224 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2225 {
2226         if (!chan)
2227                 return false;
2228         if (chan->flags & IEEE80211_CHAN_DISABLED)
2229                 return false;
2230         /* This would happen when regulatory rules disallow HT40 completely */
2231         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2232                 return false;
2233         return true;
2234 }
2235
2236 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2237                                          struct ieee80211_channel *channel)
2238 {
2239         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2240         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2241         const struct ieee80211_regdomain *regd;
2242         unsigned int i;
2243         u32 flags;
2244
2245         if (!is_ht40_allowed(channel)) {
2246                 channel->flags |= IEEE80211_CHAN_NO_HT40;
2247                 return;
2248         }
2249
2250         /*
2251          * We need to ensure the extension channels exist to
2252          * be able to use HT40- or HT40+, this finds them (or not)
2253          */
2254         for (i = 0; i < sband->n_channels; i++) {
2255                 struct ieee80211_channel *c = &sband->channels[i];
2256
2257                 if (c->center_freq == (channel->center_freq - 20))
2258                         channel_before = c;
2259                 if (c->center_freq == (channel->center_freq + 20))
2260                         channel_after = c;
2261         }
2262
2263         flags = 0;
2264         regd = get_wiphy_regdom(wiphy);
2265         if (regd) {
2266                 const struct ieee80211_reg_rule *reg_rule =
2267                         freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2268                                            regd, MHZ_TO_KHZ(20));
2269
2270                 if (!IS_ERR(reg_rule))
2271                         flags = reg_rule->flags;
2272         }
2273
2274         /*
2275          * Please note that this assumes target bandwidth is 20 MHz,
2276          * if that ever changes we also need to change the below logic
2277          * to include that as well.
2278          */
2279         if (!is_ht40_allowed(channel_before) ||
2280             flags & NL80211_RRF_NO_HT40MINUS)
2281                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2282         else
2283                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2284
2285         if (!is_ht40_allowed(channel_after) ||
2286             flags & NL80211_RRF_NO_HT40PLUS)
2287                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2288         else
2289                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2290 }
2291
2292 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2293                                       struct ieee80211_supported_band *sband)
2294 {
2295         unsigned int i;
2296
2297         if (!sband)
2298                 return;
2299
2300         for (i = 0; i < sband->n_channels; i++)
2301                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2302 }
2303
2304 static void reg_process_ht_flags(struct wiphy *wiphy)
2305 {
2306         enum nl80211_band band;
2307
2308         if (!wiphy)
2309                 return;
2310
2311         for (band = 0; band < NUM_NL80211_BANDS; band++)
2312                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2313 }
2314
2315 static void reg_call_notifier(struct wiphy *wiphy,
2316                               struct regulatory_request *request)
2317 {
2318         if (wiphy->reg_notifier)
2319                 wiphy->reg_notifier(wiphy, request);
2320 }
2321
2322 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2323 {
2324         struct cfg80211_chan_def chandef = {};
2325         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2326         enum nl80211_iftype iftype;
2327
2328         wdev_lock(wdev);
2329         iftype = wdev->iftype;
2330
2331         /* make sure the interface is active */
2332         if (!wdev->netdev || !netif_running(wdev->netdev))
2333                 goto wdev_inactive_unlock;
2334
2335         switch (iftype) {
2336         case NL80211_IFTYPE_AP:
2337         case NL80211_IFTYPE_P2P_GO:
2338                 if (!wdev->beacon_interval)
2339                         goto wdev_inactive_unlock;
2340                 chandef = wdev->chandef;
2341                 break;
2342         case NL80211_IFTYPE_ADHOC:
2343                 if (!wdev->ssid_len)
2344                         goto wdev_inactive_unlock;
2345                 chandef = wdev->chandef;
2346                 break;
2347         case NL80211_IFTYPE_STATION:
2348         case NL80211_IFTYPE_P2P_CLIENT:
2349                 if (!wdev->current_bss ||
2350                     !wdev->current_bss->pub.channel)
2351                         goto wdev_inactive_unlock;
2352
2353                 if (!rdev->ops->get_channel ||
2354                     rdev_get_channel(rdev, wdev, &chandef))
2355                         cfg80211_chandef_create(&chandef,
2356                                                 wdev->current_bss->pub.channel,
2357                                                 NL80211_CHAN_NO_HT);
2358                 break;
2359         case NL80211_IFTYPE_MONITOR:
2360         case NL80211_IFTYPE_AP_VLAN:
2361         case NL80211_IFTYPE_P2P_DEVICE:
2362                 /* no enforcement required */
2363                 break;
2364         default:
2365                 /* others not implemented for now */
2366                 WARN_ON(1);
2367                 break;
2368         }
2369
2370         wdev_unlock(wdev);
2371
2372         switch (iftype) {
2373         case NL80211_IFTYPE_AP:
2374         case NL80211_IFTYPE_P2P_GO:
2375         case NL80211_IFTYPE_ADHOC:
2376                 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2377         case NL80211_IFTYPE_STATION:
2378         case NL80211_IFTYPE_P2P_CLIENT:
2379                 return cfg80211_chandef_usable(wiphy, &chandef,
2380                                                IEEE80211_CHAN_DISABLED);
2381         default:
2382                 break;
2383         }
2384
2385         return true;
2386
2387 wdev_inactive_unlock:
2388         wdev_unlock(wdev);
2389         return true;
2390 }
2391
2392 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2393 {
2394         struct wireless_dev *wdev;
2395         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2396
2397         ASSERT_RTNL();
2398
2399         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2400                 if (!reg_wdev_chan_valid(wiphy, wdev))
2401                         cfg80211_leave(rdev, wdev);
2402 }
2403
2404 static void reg_check_chans_work(struct work_struct *work)
2405 {
2406         struct cfg80211_registered_device *rdev;
2407
2408         pr_debug("Verifying active interfaces after reg change\n");
2409         rtnl_lock();
2410
2411         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2412                 if (!(rdev->wiphy.regulatory_flags &
2413                       REGULATORY_IGNORE_STALE_KICKOFF))
2414                         reg_leave_invalid_chans(&rdev->wiphy);
2415
2416         rtnl_unlock();
2417 }
2418
2419 static void reg_check_channels(void)
2420 {
2421         /*
2422          * Give usermode a chance to do something nicer (move to another
2423          * channel, orderly disconnection), before forcing a disconnection.
2424          */
2425         mod_delayed_work(system_power_efficient_wq,
2426                          &reg_check_chans,
2427                          msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2428 }
2429
2430 static void wiphy_update_regulatory(struct wiphy *wiphy,
2431                                     enum nl80211_reg_initiator initiator)
2432 {
2433         enum nl80211_band band;
2434         struct regulatory_request *lr = get_last_request();
2435
2436         if (ignore_reg_update(wiphy, initiator)) {
2437                 /*
2438                  * Regulatory updates set by CORE are ignored for custom
2439                  * regulatory cards. Let us notify the changes to the driver,
2440                  * as some drivers used this to restore its orig_* reg domain.
2441                  */
2442                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2443                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2444                     !(wiphy->regulatory_flags &
2445                       REGULATORY_WIPHY_SELF_MANAGED))
2446                         reg_call_notifier(wiphy, lr);
2447                 return;
2448         }
2449
2450         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2451
2452         for (band = 0; band < NUM_NL80211_BANDS; band++)
2453                 handle_band(wiphy, initiator, wiphy->bands[band]);
2454
2455         reg_process_beacons(wiphy);
2456         reg_process_ht_flags(wiphy);
2457         reg_call_notifier(wiphy, lr);
2458 }
2459
2460 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2461 {
2462         struct cfg80211_registered_device *rdev;
2463         struct wiphy *wiphy;
2464
2465         ASSERT_RTNL();
2466
2467         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2468                 wiphy = &rdev->wiphy;
2469                 wiphy_update_regulatory(wiphy, initiator);
2470         }
2471
2472         reg_check_channels();
2473 }
2474
2475 static void handle_channel_custom(struct wiphy *wiphy,
2476                                   struct ieee80211_channel *chan,
2477                                   const struct ieee80211_regdomain *regd,
2478                                   u32 min_bw)
2479 {
2480         u32 bw_flags = 0;
2481         const struct ieee80211_reg_rule *reg_rule = NULL;
2482         const struct ieee80211_power_rule *power_rule = NULL;
2483         u32 bw, center_freq_khz;
2484
2485         center_freq_khz = ieee80211_channel_to_khz(chan);
2486         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2487                 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2488                 if (!IS_ERR(reg_rule))
2489                         break;
2490         }
2491
2492         if (IS_ERR_OR_NULL(reg_rule)) {
2493                 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2494                          chan->center_freq, chan->freq_offset);
2495                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2496                         chan->flags |= IEEE80211_CHAN_DISABLED;
2497                 } else {
2498                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2499                         chan->flags = chan->orig_flags;
2500                 }
2501                 return;
2502         }
2503
2504         power_rule = &reg_rule->power_rule;
2505         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2506
2507         chan->dfs_state_entered = jiffies;
2508         chan->dfs_state = NL80211_DFS_USABLE;
2509
2510         chan->beacon_found = false;
2511
2512         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2513                 chan->flags = chan->orig_flags | bw_flags |
2514                               map_regdom_flags(reg_rule->flags);
2515         else
2516                 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2517
2518         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2519         chan->max_reg_power = chan->max_power =
2520                 (int) MBM_TO_DBM(power_rule->max_eirp);
2521
2522         if (chan->flags & IEEE80211_CHAN_RADAR) {
2523                 if (reg_rule->dfs_cac_ms)
2524                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2525                 else
2526                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2527         }
2528
2529         chan->max_power = chan->max_reg_power;
2530 }
2531
2532 static void handle_band_custom(struct wiphy *wiphy,
2533                                struct ieee80211_supported_band *sband,
2534                                const struct ieee80211_regdomain *regd)
2535 {
2536         unsigned int i;
2537
2538         if (!sband)
2539                 return;
2540
2541         /*
2542          * We currently assume that you always want at least 20 MHz,
2543          * otherwise channel 12 might get enabled if this rule is
2544          * compatible to US, which permits 2402 - 2472 MHz.
2545          */
2546         for (i = 0; i < sband->n_channels; i++)
2547                 handle_channel_custom(wiphy, &sband->channels[i], regd,
2548                                       MHZ_TO_KHZ(20));
2549 }
2550
2551 /* Used by drivers prior to wiphy registration */
2552 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2553                                    const struct ieee80211_regdomain *regd)
2554 {
2555         const struct ieee80211_regdomain *new_regd, *tmp;
2556         enum nl80211_band band;
2557         unsigned int bands_set = 0;
2558
2559         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2560              "wiphy should have REGULATORY_CUSTOM_REG\n");
2561         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2562
2563         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2564                 if (!wiphy->bands[band])
2565                         continue;
2566                 handle_band_custom(wiphy, wiphy->bands[band], regd);
2567                 bands_set++;
2568         }
2569
2570         /*
2571          * no point in calling this if it won't have any effect
2572          * on your device's supported bands.
2573          */
2574         WARN_ON(!bands_set);
2575         new_regd = reg_copy_regd(regd);
2576         if (IS_ERR(new_regd))
2577                 return;
2578
2579         rtnl_lock();
2580
2581         tmp = get_wiphy_regdom(wiphy);
2582         rcu_assign_pointer(wiphy->regd, new_regd);
2583         rcu_free_regdom(tmp);
2584
2585         rtnl_unlock();
2586 }
2587 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2588
2589 static void reg_set_request_processed(void)
2590 {
2591         bool need_more_processing = false;
2592         struct regulatory_request *lr = get_last_request();
2593
2594         lr->processed = true;
2595
2596         spin_lock(&reg_requests_lock);
2597         if (!list_empty(&reg_requests_list))
2598                 need_more_processing = true;
2599         spin_unlock(&reg_requests_lock);
2600
2601         cancel_crda_timeout();
2602
2603         if (need_more_processing)
2604                 schedule_work(&reg_work);
2605 }
2606
2607 /**
2608  * reg_process_hint_core - process core regulatory requests
2609  * @core_request: a pending core regulatory request
2610  *
2611  * The wireless subsystem can use this function to process
2612  * a regulatory request issued by the regulatory core.
2613  */
2614 static enum reg_request_treatment
2615 reg_process_hint_core(struct regulatory_request *core_request)
2616 {
2617         if (reg_query_database(core_request)) {
2618                 core_request->intersect = false;
2619                 core_request->processed = false;
2620                 reg_update_last_request(core_request);
2621                 return REG_REQ_OK;
2622         }
2623
2624         return REG_REQ_IGNORE;
2625 }
2626
2627 static enum reg_request_treatment
2628 __reg_process_hint_user(struct regulatory_request *user_request)
2629 {
2630         struct regulatory_request *lr = get_last_request();
2631
2632         if (reg_request_cell_base(user_request))
2633                 return reg_ignore_cell_hint(user_request);
2634
2635         if (reg_request_cell_base(lr))
2636                 return REG_REQ_IGNORE;
2637
2638         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2639                 return REG_REQ_INTERSECT;
2640         /*
2641          * If the user knows better the user should set the regdom
2642          * to their country before the IE is picked up
2643          */
2644         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2645             lr->intersect)
2646                 return REG_REQ_IGNORE;
2647         /*
2648          * Process user requests only after previous user/driver/core
2649          * requests have been processed
2650          */
2651         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2652              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2653              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2654             regdom_changes(lr->alpha2))
2655                 return REG_REQ_IGNORE;
2656
2657         if (!regdom_changes(user_request->alpha2))
2658                 return REG_REQ_ALREADY_SET;
2659
2660         return REG_REQ_OK;
2661 }
2662
2663 /**
2664  * reg_process_hint_user - process user regulatory requests
2665  * @user_request: a pending user regulatory request
2666  *
2667  * The wireless subsystem can use this function to process
2668  * a regulatory request initiated by userspace.
2669  */
2670 static enum reg_request_treatment
2671 reg_process_hint_user(struct regulatory_request *user_request)
2672 {
2673         enum reg_request_treatment treatment;
2674
2675         treatment = __reg_process_hint_user(user_request);
2676         if (treatment == REG_REQ_IGNORE ||
2677             treatment == REG_REQ_ALREADY_SET)
2678                 return REG_REQ_IGNORE;
2679
2680         user_request->intersect = treatment == REG_REQ_INTERSECT;
2681         user_request->processed = false;
2682
2683         if (reg_query_database(user_request)) {
2684                 reg_update_last_request(user_request);
2685                 user_alpha2[0] = user_request->alpha2[0];
2686                 user_alpha2[1] = user_request->alpha2[1];
2687                 return REG_REQ_OK;
2688         }
2689
2690         return REG_REQ_IGNORE;
2691 }
2692
2693 static enum reg_request_treatment
2694 __reg_process_hint_driver(struct regulatory_request *driver_request)
2695 {
2696         struct regulatory_request *lr = get_last_request();
2697
2698         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2699                 if (regdom_changes(driver_request->alpha2))
2700                         return REG_REQ_OK;
2701                 return REG_REQ_ALREADY_SET;
2702         }
2703
2704         /*
2705          * This would happen if you unplug and plug your card
2706          * back in or if you add a new device for which the previously
2707          * loaded card also agrees on the regulatory domain.
2708          */
2709         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2710             !regdom_changes(driver_request->alpha2))
2711                 return REG_REQ_ALREADY_SET;
2712
2713         return REG_REQ_INTERSECT;
2714 }
2715
2716 /**
2717  * reg_process_hint_driver - process driver regulatory requests
2718  * @wiphy: the wireless device for the regulatory request
2719  * @driver_request: a pending driver regulatory request
2720  *
2721  * The wireless subsystem can use this function to process
2722  * a regulatory request issued by an 802.11 driver.
2723  *
2724  * Returns one of the different reg request treatment values.
2725  */
2726 static enum reg_request_treatment
2727 reg_process_hint_driver(struct wiphy *wiphy,
2728                         struct regulatory_request *driver_request)
2729 {
2730         const struct ieee80211_regdomain *regd, *tmp;
2731         enum reg_request_treatment treatment;
2732
2733         treatment = __reg_process_hint_driver(driver_request);
2734
2735         switch (treatment) {
2736         case REG_REQ_OK:
2737                 break;
2738         case REG_REQ_IGNORE:
2739                 return REG_REQ_IGNORE;
2740         case REG_REQ_INTERSECT:
2741         case REG_REQ_ALREADY_SET:
2742                 regd = reg_copy_regd(get_cfg80211_regdom());
2743                 if (IS_ERR(regd))
2744                         return REG_REQ_IGNORE;
2745
2746                 tmp = get_wiphy_regdom(wiphy);
2747                 rcu_assign_pointer(wiphy->regd, regd);
2748                 rcu_free_regdom(tmp);
2749         }
2750
2751
2752         driver_request->intersect = treatment == REG_REQ_INTERSECT;
2753         driver_request->processed = false;
2754
2755         /*
2756          * Since CRDA will not be called in this case as we already
2757          * have applied the requested regulatory domain before we just
2758          * inform userspace we have processed the request
2759          */
2760         if (treatment == REG_REQ_ALREADY_SET) {
2761                 nl80211_send_reg_change_event(driver_request);
2762                 reg_update_last_request(driver_request);
2763                 reg_set_request_processed();
2764                 return REG_REQ_ALREADY_SET;
2765         }
2766
2767         if (reg_query_database(driver_request)) {
2768                 reg_update_last_request(driver_request);
2769                 return REG_REQ_OK;
2770         }
2771
2772         return REG_REQ_IGNORE;
2773 }
2774
2775 static enum reg_request_treatment
2776 __reg_process_hint_country_ie(struct wiphy *wiphy,
2777                               struct regulatory_request *country_ie_request)
2778 {
2779         struct wiphy *last_wiphy = NULL;
2780         struct regulatory_request *lr = get_last_request();
2781
2782         if (reg_request_cell_base(lr)) {
2783                 /* Trust a Cell base station over the AP's country IE */
2784                 if (regdom_changes(country_ie_request->alpha2))
2785                         return REG_REQ_IGNORE;
2786                 return REG_REQ_ALREADY_SET;
2787         } else {
2788                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2789                         return REG_REQ_IGNORE;
2790         }
2791
2792         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2793                 return -EINVAL;
2794
2795         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2796                 return REG_REQ_OK;
2797
2798         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2799
2800         if (last_wiphy != wiphy) {
2801                 /*
2802                  * Two cards with two APs claiming different
2803                  * Country IE alpha2s. We could
2804                  * intersect them, but that seems unlikely
2805                  * to be correct. Reject second one for now.
2806                  */
2807                 if (regdom_changes(country_ie_request->alpha2))
2808                         return REG_REQ_IGNORE;
2809                 return REG_REQ_ALREADY_SET;
2810         }
2811
2812         if (regdom_changes(country_ie_request->alpha2))
2813                 return REG_REQ_OK;
2814         return REG_REQ_ALREADY_SET;
2815 }
2816
2817 /**
2818  * reg_process_hint_country_ie - process regulatory requests from country IEs
2819  * @wiphy: the wireless device for the regulatory request
2820  * @country_ie_request: a regulatory request from a country IE
2821  *
2822  * The wireless subsystem can use this function to process
2823  * a regulatory request issued by a country Information Element.
2824  *
2825  * Returns one of the different reg request treatment values.
2826  */
2827 static enum reg_request_treatment
2828 reg_process_hint_country_ie(struct wiphy *wiphy,
2829                             struct regulatory_request *country_ie_request)
2830 {
2831         enum reg_request_treatment treatment;
2832
2833         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2834
2835         switch (treatment) {
2836         case REG_REQ_OK:
2837                 break;
2838         case REG_REQ_IGNORE:
2839                 return REG_REQ_IGNORE;
2840         case REG_REQ_ALREADY_SET:
2841                 reg_free_request(country_ie_request);
2842                 return REG_REQ_ALREADY_SET;
2843         case REG_REQ_INTERSECT:
2844                 /*
2845                  * This doesn't happen yet, not sure we
2846                  * ever want to support it for this case.
2847                  */
2848                 WARN_ONCE(1, "Unexpected intersection for country elements");
2849                 return REG_REQ_IGNORE;
2850         }
2851
2852         country_ie_request->intersect = false;
2853         country_ie_request->processed = false;
2854
2855         if (reg_query_database(country_ie_request)) {
2856                 reg_update_last_request(country_ie_request);
2857                 return REG_REQ_OK;
2858         }
2859
2860         return REG_REQ_IGNORE;
2861 }
2862
2863 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2864 {
2865         const struct ieee80211_regdomain *wiphy1_regd = NULL;
2866         const struct ieee80211_regdomain *wiphy2_regd = NULL;
2867         const struct ieee80211_regdomain *cfg80211_regd = NULL;
2868         bool dfs_domain_same;
2869
2870         rcu_read_lock();
2871
2872         cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2873         wiphy1_regd = rcu_dereference(wiphy1->regd);
2874         if (!wiphy1_regd)
2875                 wiphy1_regd = cfg80211_regd;
2876
2877         wiphy2_regd = rcu_dereference(wiphy2->regd);
2878         if (!wiphy2_regd)
2879                 wiphy2_regd = cfg80211_regd;
2880
2881         dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2882
2883         rcu_read_unlock();
2884
2885         return dfs_domain_same;
2886 }
2887
2888 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2889                                     struct ieee80211_channel *src_chan)
2890 {
2891         if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2892             !(src_chan->flags & IEEE80211_CHAN_RADAR))
2893                 return;
2894
2895         if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2896             src_chan->flags & IEEE80211_CHAN_DISABLED)
2897                 return;
2898
2899         if (src_chan->center_freq == dst_chan->center_freq &&
2900             dst_chan->dfs_state == NL80211_DFS_USABLE) {
2901                 dst_chan->dfs_state = src_chan->dfs_state;
2902                 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2903         }
2904 }
2905
2906 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2907                                        struct wiphy *src_wiphy)
2908 {
2909         struct ieee80211_supported_band *src_sband, *dst_sband;
2910         struct ieee80211_channel *src_chan, *dst_chan;
2911         int i, j, band;
2912
2913         if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2914                 return;
2915
2916         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2917                 dst_sband = dst_wiphy->bands[band];
2918                 src_sband = src_wiphy->bands[band];
2919                 if (!dst_sband || !src_sband)
2920                         continue;
2921
2922                 for (i = 0; i < dst_sband->n_channels; i++) {
2923                         dst_chan = &dst_sband->channels[i];
2924                         for (j = 0; j < src_sband->n_channels; j++) {
2925                                 src_chan = &src_sband->channels[j];
2926                                 reg_copy_dfs_chan_state(dst_chan, src_chan);
2927                         }
2928                 }
2929         }
2930 }
2931
2932 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2933 {
2934         struct cfg80211_registered_device *rdev;
2935
2936         ASSERT_RTNL();
2937
2938         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2939                 if (wiphy == &rdev->wiphy)
2940                         continue;
2941                 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2942         }
2943 }
2944
2945 /* This processes *all* regulatory hints */
2946 static void reg_process_hint(struct regulatory_request *reg_request)
2947 {
2948         struct wiphy *wiphy = NULL;
2949         enum reg_request_treatment treatment;
2950         enum nl80211_reg_initiator initiator = reg_request->initiator;
2951
2952         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2953                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2954
2955         switch (initiator) {
2956         case NL80211_REGDOM_SET_BY_CORE:
2957                 treatment = reg_process_hint_core(reg_request);
2958                 break;
2959         case NL80211_REGDOM_SET_BY_USER:
2960                 treatment = reg_process_hint_user(reg_request);
2961                 break;
2962         case NL80211_REGDOM_SET_BY_DRIVER:
2963                 if (!wiphy)
2964                         goto out_free;
2965                 treatment = reg_process_hint_driver(wiphy, reg_request);
2966                 break;
2967         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2968                 if (!wiphy)
2969                         goto out_free;
2970                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2971                 break;
2972         default:
2973                 WARN(1, "invalid initiator %d\n", initiator);
2974                 goto out_free;
2975         }
2976
2977         if (treatment == REG_REQ_IGNORE)
2978                 goto out_free;
2979
2980         WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2981              "unexpected treatment value %d\n", treatment);
2982
2983         /* This is required so that the orig_* parameters are saved.
2984          * NOTE: treatment must be set for any case that reaches here!
2985          */
2986         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2987             wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2988                 wiphy_update_regulatory(wiphy, initiator);
2989                 wiphy_all_share_dfs_chan_state(wiphy);
2990                 reg_check_channels();
2991         }
2992
2993         return;
2994
2995 out_free:
2996         reg_free_request(reg_request);
2997 }
2998
2999 static void notify_self_managed_wiphys(struct regulatory_request *request)
3000 {
3001         struct cfg80211_registered_device *rdev;
3002         struct wiphy *wiphy;
3003
3004         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3005                 wiphy = &rdev->wiphy;
3006                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3007                     request->initiator == NL80211_REGDOM_SET_BY_USER)
3008                         reg_call_notifier(wiphy, request);
3009         }
3010 }
3011
3012 /*
3013  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3014  * Regulatory hints come on a first come first serve basis and we
3015  * must process each one atomically.
3016  */
3017 static void reg_process_pending_hints(void)
3018 {
3019         struct regulatory_request *reg_request, *lr;
3020
3021         lr = get_last_request();
3022
3023         /* When last_request->processed becomes true this will be rescheduled */
3024         if (lr && !lr->processed) {
3025                 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3026                 return;
3027         }
3028
3029         spin_lock(&reg_requests_lock);
3030
3031         if (list_empty(&reg_requests_list)) {
3032                 spin_unlock(&reg_requests_lock);
3033                 return;
3034         }
3035
3036         reg_request = list_first_entry(&reg_requests_list,
3037                                        struct regulatory_request,
3038                                        list);
3039         list_del_init(&reg_request->list);
3040
3041         spin_unlock(&reg_requests_lock);
3042
3043         notify_self_managed_wiphys(reg_request);
3044
3045         reg_process_hint(reg_request);
3046
3047         lr = get_last_request();
3048
3049         spin_lock(&reg_requests_lock);
3050         if (!list_empty(&reg_requests_list) && lr && lr->processed)
3051                 schedule_work(&reg_work);
3052         spin_unlock(&reg_requests_lock);
3053 }
3054
3055 /* Processes beacon hints -- this has nothing to do with country IEs */
3056 static void reg_process_pending_beacon_hints(void)
3057 {
3058         struct cfg80211_registered_device *rdev;
3059         struct reg_beacon *pending_beacon, *tmp;
3060
3061         /* This goes through the _pending_ beacon list */
3062         spin_lock_bh(&reg_pending_beacons_lock);
3063
3064         list_for_each_entry_safe(pending_beacon, tmp,
3065                                  &reg_pending_beacons, list) {
3066                 list_del_init(&pending_beacon->list);
3067
3068                 /* Applies the beacon hint to current wiphys */
3069                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3070                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3071
3072                 /* Remembers the beacon hint for new wiphys or reg changes */
3073                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
3074         }
3075
3076         spin_unlock_bh(&reg_pending_beacons_lock);
3077 }
3078
3079 static void reg_process_self_managed_hints(void)
3080 {
3081         struct cfg80211_registered_device *rdev;
3082         struct wiphy *wiphy;
3083         const struct ieee80211_regdomain *tmp;
3084         const struct ieee80211_regdomain *regd;
3085         enum nl80211_band band;
3086         struct regulatory_request request = {};
3087
3088         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3089                 wiphy = &rdev->wiphy;
3090
3091                 spin_lock(&reg_requests_lock);
3092                 regd = rdev->requested_regd;
3093                 rdev->requested_regd = NULL;
3094                 spin_unlock(&reg_requests_lock);
3095
3096                 if (regd == NULL)
3097                         continue;
3098
3099                 tmp = get_wiphy_regdom(wiphy);
3100                 rcu_assign_pointer(wiphy->regd, regd);
3101                 rcu_free_regdom(tmp);
3102
3103                 for (band = 0; band < NUM_NL80211_BANDS; band++)
3104                         handle_band_custom(wiphy, wiphy->bands[band], regd);
3105
3106                 reg_process_ht_flags(wiphy);
3107
3108                 request.wiphy_idx = get_wiphy_idx(wiphy);
3109                 request.alpha2[0] = regd->alpha2[0];
3110                 request.alpha2[1] = regd->alpha2[1];
3111                 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3112
3113                 nl80211_send_wiphy_reg_change_event(&request);
3114         }
3115
3116         reg_check_channels();
3117 }
3118
3119 static void reg_todo(struct work_struct *work)
3120 {
3121         rtnl_lock();
3122         reg_process_pending_hints();
3123         reg_process_pending_beacon_hints();
3124         reg_process_self_managed_hints();
3125         rtnl_unlock();
3126 }
3127
3128 static void queue_regulatory_request(struct regulatory_request *request)
3129 {
3130         request->alpha2[0] = toupper(request->alpha2[0]);
3131         request->alpha2[1] = toupper(request->alpha2[1]);
3132
3133         spin_lock(&reg_requests_lock);
3134         list_add_tail(&request->list, &reg_requests_list);
3135         spin_unlock(&reg_requests_lock);
3136
3137         schedule_work(&reg_work);
3138 }
3139
3140 /*
3141  * Core regulatory hint -- happens during cfg80211_init()
3142  * and when we restore regulatory settings.
3143  */
3144 static int regulatory_hint_core(const char *alpha2)
3145 {
3146         struct regulatory_request *request;
3147
3148         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3149         if (!request)
3150                 return -ENOMEM;
3151
3152         request->alpha2[0] = alpha2[0];
3153         request->alpha2[1] = alpha2[1];
3154         request->initiator = NL80211_REGDOM_SET_BY_CORE;
3155         request->wiphy_idx = WIPHY_IDX_INVALID;
3156
3157         queue_regulatory_request(request);
3158
3159         return 0;
3160 }
3161
3162 /* User hints */
3163 int regulatory_hint_user(const char *alpha2,
3164                          enum nl80211_user_reg_hint_type user_reg_hint_type)
3165 {
3166         struct regulatory_request *request;
3167
3168         if (WARN_ON(!alpha2))
3169                 return -EINVAL;
3170
3171         if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3172                 return -EINVAL;
3173
3174         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3175         if (!request)
3176                 return -ENOMEM;
3177
3178         request->wiphy_idx = WIPHY_IDX_INVALID;
3179         request->alpha2[0] = alpha2[0];
3180         request->alpha2[1] = alpha2[1];
3181         request->initiator = NL80211_REGDOM_SET_BY_USER;
3182         request->user_reg_hint_type = user_reg_hint_type;
3183
3184         /* Allow calling CRDA again */
3185         reset_crda_timeouts();
3186
3187         queue_regulatory_request(request);
3188
3189         return 0;
3190 }
3191
3192 int regulatory_hint_indoor(bool is_indoor, u32 portid)
3193 {
3194         spin_lock(&reg_indoor_lock);
3195
3196         /* It is possible that more than one user space process is trying to
3197          * configure the indoor setting. To handle such cases, clear the indoor
3198          * setting in case that some process does not think that the device
3199          * is operating in an indoor environment. In addition, if a user space
3200          * process indicates that it is controlling the indoor setting, save its
3201          * portid, i.e., make it the owner.
3202          */
3203         reg_is_indoor = is_indoor;
3204         if (reg_is_indoor) {
3205                 if (!reg_is_indoor_portid)
3206                         reg_is_indoor_portid = portid;
3207         } else {
3208                 reg_is_indoor_portid = 0;
3209         }
3210
3211         spin_unlock(&reg_indoor_lock);
3212
3213         if (!is_indoor)
3214                 reg_check_channels();
3215
3216         return 0;
3217 }
3218
3219 void regulatory_netlink_notify(u32 portid)
3220 {
3221         spin_lock(&reg_indoor_lock);
3222
3223         if (reg_is_indoor_portid != portid) {
3224                 spin_unlock(&reg_indoor_lock);
3225                 return;
3226         }
3227
3228         reg_is_indoor = false;
3229         reg_is_indoor_portid = 0;
3230
3231         spin_unlock(&reg_indoor_lock);
3232
3233         reg_check_channels();
3234 }
3235
3236 /* Driver hints */
3237 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3238 {
3239         struct regulatory_request *request;
3240
3241         if (WARN_ON(!alpha2 || !wiphy))
3242                 return -EINVAL;
3243
3244         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3245
3246         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3247         if (!request)
3248                 return -ENOMEM;
3249
3250         request->wiphy_idx = get_wiphy_idx(wiphy);
3251
3252         request->alpha2[0] = alpha2[0];
3253         request->alpha2[1] = alpha2[1];
3254         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3255
3256         /* Allow calling CRDA again */
3257         reset_crda_timeouts();
3258
3259         queue_regulatory_request(request);
3260
3261         return 0;
3262 }
3263 EXPORT_SYMBOL(regulatory_hint);
3264
3265 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3266                                 const u8 *country_ie, u8 country_ie_len)
3267 {
3268         char alpha2[2];
3269         enum environment_cap env = ENVIRON_ANY;
3270         struct regulatory_request *request = NULL, *lr;
3271
3272         /* IE len must be evenly divisible by 2 */
3273         if (country_ie_len & 0x01)
3274                 return;
3275
3276         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3277                 return;
3278
3279         request = kzalloc(sizeof(*request), GFP_KERNEL);
3280         if (!request)
3281                 return;
3282
3283         alpha2[0] = country_ie[0];
3284         alpha2[1] = country_ie[1];
3285
3286         if (country_ie[2] == 'I')
3287                 env = ENVIRON_INDOOR;
3288         else if (country_ie[2] == 'O')
3289                 env = ENVIRON_OUTDOOR;
3290
3291         rcu_read_lock();
3292         lr = get_last_request();
3293
3294         if (unlikely(!lr))
3295                 goto out;
3296
3297         /*
3298          * We will run this only upon a successful connection on cfg80211.
3299          * We leave conflict resolution to the workqueue, where can hold
3300          * the RTNL.
3301          */
3302         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3303             lr->wiphy_idx != WIPHY_IDX_INVALID)
3304                 goto out;
3305
3306         request->wiphy_idx = get_wiphy_idx(wiphy);
3307         request->alpha2[0] = alpha2[0];
3308         request->alpha2[1] = alpha2[1];
3309         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3310         request->country_ie_env = env;
3311
3312         /* Allow calling CRDA again */
3313         reset_crda_timeouts();
3314
3315         queue_regulatory_request(request);
3316         request = NULL;
3317 out:
3318         kfree(request);
3319         rcu_read_unlock();
3320 }
3321
3322 static void restore_alpha2(char *alpha2, bool reset_user)
3323 {
3324         /* indicates there is no alpha2 to consider for restoration */
3325         alpha2[0] = '9';
3326         alpha2[1] = '7';
3327
3328         /* The user setting has precedence over the module parameter */
3329         if (is_user_regdom_saved()) {
3330                 /* Unless we're asked to ignore it and reset it */
3331                 if (reset_user) {
3332                         pr_debug("Restoring regulatory settings including user preference\n");
3333                         user_alpha2[0] = '9';
3334                         user_alpha2[1] = '7';
3335
3336                         /*
3337                          * If we're ignoring user settings, we still need to
3338                          * check the module parameter to ensure we put things
3339                          * back as they were for a full restore.
3340                          */
3341                         if (!is_world_regdom(ieee80211_regdom)) {
3342                                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3343                                          ieee80211_regdom[0], ieee80211_regdom[1]);
3344                                 alpha2[0] = ieee80211_regdom[0];
3345                                 alpha2[1] = ieee80211_regdom[1];
3346                         }
3347                 } else {
3348                         pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3349                                  user_alpha2[0], user_alpha2[1]);
3350                         alpha2[0] = user_alpha2[0];
3351                         alpha2[1] = user_alpha2[1];
3352                 }
3353         } else if (!is_world_regdom(ieee80211_regdom)) {
3354                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3355                          ieee80211_regdom[0], ieee80211_regdom[1]);
3356                 alpha2[0] = ieee80211_regdom[0];
3357                 alpha2[1] = ieee80211_regdom[1];
3358         } else
3359                 pr_debug("Restoring regulatory settings\n");
3360 }
3361
3362 static void restore_custom_reg_settings(struct wiphy *wiphy)
3363 {
3364         struct ieee80211_supported_band *sband;
3365         enum nl80211_band band;
3366         struct ieee80211_channel *chan;
3367         int i;
3368
3369         for (band = 0; band < NUM_NL80211_BANDS; band++) {
3370                 sband = wiphy->bands[band];
3371                 if (!sband)
3372                         continue;
3373                 for (i = 0; i < sband->n_channels; i++) {
3374                         chan = &sband->channels[i];
3375                         chan->flags = chan->orig_flags;
3376                         chan->max_antenna_gain = chan->orig_mag;
3377                         chan->max_power = chan->orig_mpwr;
3378                         chan->beacon_found = false;
3379                 }
3380         }
3381 }
3382
3383 /*
3384  * Restoring regulatory settings involves ingoring any
3385  * possibly stale country IE information and user regulatory
3386  * settings if so desired, this includes any beacon hints
3387  * learned as we could have traveled outside to another country
3388  * after disconnection. To restore regulatory settings we do
3389  * exactly what we did at bootup:
3390  *
3391  *   - send a core regulatory hint
3392  *   - send a user regulatory hint if applicable
3393  *
3394  * Device drivers that send a regulatory hint for a specific country
3395  * keep their own regulatory domain on wiphy->regd so that does
3396  * not need to be remembered.
3397  */
3398 static void restore_regulatory_settings(bool reset_user, bool cached)
3399 {
3400         char alpha2[2];
3401         char world_alpha2[2];
3402         struct reg_beacon *reg_beacon, *btmp;
3403         LIST_HEAD(tmp_reg_req_list);
3404         struct cfg80211_registered_device *rdev;
3405
3406         ASSERT_RTNL();
3407
3408         /*
3409          * Clear the indoor setting in case that it is not controlled by user
3410          * space, as otherwise there is no guarantee that the device is still
3411          * operating in an indoor environment.
3412          */
3413         spin_lock(&reg_indoor_lock);
3414         if (reg_is_indoor && !reg_is_indoor_portid) {
3415                 reg_is_indoor = false;
3416                 reg_check_channels();
3417         }
3418         spin_unlock(&reg_indoor_lock);
3419
3420         reset_regdomains(true, &world_regdom);
3421         restore_alpha2(alpha2, reset_user);
3422
3423         /*
3424          * If there's any pending requests we simply
3425          * stash them to a temporary pending queue and
3426          * add then after we've restored regulatory
3427          * settings.
3428          */
3429         spin_lock(&reg_requests_lock);
3430         list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3431         spin_unlock(&reg_requests_lock);
3432
3433         /* Clear beacon hints */
3434         spin_lock_bh(&reg_pending_beacons_lock);
3435         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3436                 list_del(&reg_beacon->list);
3437                 kfree(reg_beacon);
3438         }
3439         spin_unlock_bh(&reg_pending_beacons_lock);
3440
3441         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3442                 list_del(&reg_beacon->list);
3443                 kfree(reg_beacon);
3444         }
3445
3446         /* First restore to the basic regulatory settings */
3447         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3448         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3449
3450         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3451                 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3452                         continue;
3453                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3454                         restore_custom_reg_settings(&rdev->wiphy);
3455         }
3456
3457         if (cached && (!is_an_alpha2(alpha2) ||
3458                        !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3459                 reset_regdomains(false, cfg80211_world_regdom);
3460                 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3461                 print_regdomain(get_cfg80211_regdom());
3462                 nl80211_send_reg_change_event(&core_request_world);
3463                 reg_set_request_processed();
3464
3465                 if (is_an_alpha2(alpha2) &&
3466                     !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3467                         struct regulatory_request *ureq;
3468
3469                         spin_lock(&reg_requests_lock);
3470                         ureq = list_last_entry(&reg_requests_list,
3471                                                struct regulatory_request,
3472                                                list);
3473                         list_del(&ureq->list);
3474                         spin_unlock(&reg_requests_lock);
3475
3476                         notify_self_managed_wiphys(ureq);
3477                         reg_update_last_request(ureq);
3478                         set_regdom(reg_copy_regd(cfg80211_user_regdom),
3479                                    REGD_SOURCE_CACHED);
3480                 }
3481         } else {
3482                 regulatory_hint_core(world_alpha2);
3483
3484                 /*
3485                  * This restores the ieee80211_regdom module parameter
3486                  * preference or the last user requested regulatory
3487                  * settings, user regulatory settings takes precedence.
3488                  */
3489                 if (is_an_alpha2(alpha2))
3490                         regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3491         }
3492
3493         spin_lock(&reg_requests_lock);
3494         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3495         spin_unlock(&reg_requests_lock);
3496
3497         pr_debug("Kicking the queue\n");
3498
3499         schedule_work(&reg_work);
3500 }
3501
3502 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3503 {
3504         struct cfg80211_registered_device *rdev;
3505         struct wireless_dev *wdev;
3506
3507         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3508                 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3509                         wdev_lock(wdev);
3510                         if (!(wdev->wiphy->regulatory_flags & flag)) {
3511                                 wdev_unlock(wdev);
3512                                 return false;
3513                         }
3514                         wdev_unlock(wdev);
3515                 }
3516         }
3517
3518         return true;
3519 }
3520
3521 void regulatory_hint_disconnect(void)
3522 {
3523         /* Restore of regulatory settings is not required when wiphy(s)
3524          * ignore IE from connected access point but clearance of beacon hints
3525          * is required when wiphy(s) supports beacon hints.
3526          */
3527         if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3528                 struct reg_beacon *reg_beacon, *btmp;
3529
3530                 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3531                         return;
3532
3533                 spin_lock_bh(&reg_pending_beacons_lock);
3534                 list_for_each_entry_safe(reg_beacon, btmp,
3535                                          &reg_pending_beacons, list) {
3536                         list_del(&reg_beacon->list);
3537                         kfree(reg_beacon);
3538                 }
3539                 spin_unlock_bh(&reg_pending_beacons_lock);
3540
3541                 list_for_each_entry_safe(reg_beacon, btmp,
3542                                          &reg_beacon_list, list) {
3543                         list_del(&reg_beacon->list);
3544                         kfree(reg_beacon);
3545                 }
3546
3547                 return;
3548         }
3549
3550         pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3551         restore_regulatory_settings(false, true);
3552 }
3553
3554 static bool freq_is_chan_12_13_14(u32 freq)
3555 {
3556         if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3557             freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3558             freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3559                 return true;
3560         return false;
3561 }
3562
3563 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3564 {
3565         struct reg_beacon *pending_beacon;
3566
3567         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3568                 if (ieee80211_channel_equal(beacon_chan,
3569                                             &pending_beacon->chan))
3570                         return true;
3571         return false;
3572 }
3573
3574 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3575                                  struct ieee80211_channel *beacon_chan,
3576                                  gfp_t gfp)
3577 {
3578         struct reg_beacon *reg_beacon;
3579         bool processing;
3580
3581         if (beacon_chan->beacon_found ||
3582             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3583             (beacon_chan->band == NL80211_BAND_2GHZ &&
3584              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3585                 return 0;
3586
3587         spin_lock_bh(&reg_pending_beacons_lock);
3588         processing = pending_reg_beacon(beacon_chan);
3589         spin_unlock_bh(&reg_pending_beacons_lock);
3590
3591         if (processing)
3592                 return 0;
3593
3594         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3595         if (!reg_beacon)
3596                 return -ENOMEM;
3597
3598         pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3599                  beacon_chan->center_freq, beacon_chan->freq_offset,
3600                  ieee80211_freq_khz_to_channel(
3601                          ieee80211_channel_to_khz(beacon_chan)),
3602                  wiphy_name(wiphy));
3603
3604         memcpy(&reg_beacon->chan, beacon_chan,
3605                sizeof(struct ieee80211_channel));
3606
3607         /*
3608          * Since we can be called from BH or and non-BH context
3609          * we must use spin_lock_bh()
3610          */
3611         spin_lock_bh(&reg_pending_beacons_lock);
3612         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3613         spin_unlock_bh(&reg_pending_beacons_lock);
3614
3615         schedule_work(&reg_work);
3616
3617         return 0;
3618 }
3619
3620 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3621 {
3622         unsigned int i;
3623         const struct ieee80211_reg_rule *reg_rule = NULL;
3624         const struct ieee80211_freq_range *freq_range = NULL;
3625         const struct ieee80211_power_rule *power_rule = NULL;
3626         char bw[32], cac_time[32];
3627
3628         pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3629
3630         for (i = 0; i < rd->n_reg_rules; i++) {
3631                 reg_rule = &rd->reg_rules[i];
3632                 freq_range = &reg_rule->freq_range;
3633                 power_rule = &reg_rule->power_rule;
3634
3635                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3636                         snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3637                                  freq_range->max_bandwidth_khz,
3638                                  reg_get_max_bandwidth(rd, reg_rule));
3639                 else
3640                         snprintf(bw, sizeof(bw), "%d KHz",
3641                                  freq_range->max_bandwidth_khz);
3642
3643                 if (reg_rule->flags & NL80211_RRF_DFS)
3644                         scnprintf(cac_time, sizeof(cac_time), "%u s",
3645                                   reg_rule->dfs_cac_ms/1000);
3646                 else
3647                         scnprintf(cac_time, sizeof(cac_time), "N/A");
3648
3649
3650                 /*
3651                  * There may not be documentation for max antenna gain
3652                  * in certain regions
3653                  */
3654                 if (power_rule->max_antenna_gain)
3655                         pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3656                                 freq_range->start_freq_khz,
3657                                 freq_range->end_freq_khz,
3658                                 bw,
3659                                 power_rule->max_antenna_gain,
3660                                 power_rule->max_eirp,
3661                                 cac_time);
3662                 else
3663                         pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3664                                 freq_range->start_freq_khz,
3665                                 freq_range->end_freq_khz,
3666                                 bw,
3667                                 power_rule->max_eirp,
3668                                 cac_time);
3669         }
3670 }
3671
3672 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3673 {
3674         switch (dfs_region) {
3675         case NL80211_DFS_UNSET:
3676         case NL80211_DFS_FCC:
3677         case NL80211_DFS_ETSI:
3678         case NL80211_DFS_JP:
3679                 return true;
3680         default:
3681                 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3682                 return false;
3683         }
3684 }
3685
3686 static void print_regdomain(const struct ieee80211_regdomain *rd)
3687 {
3688         struct regulatory_request *lr = get_last_request();
3689
3690         if (is_intersected_alpha2(rd->alpha2)) {
3691                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3692                         struct cfg80211_registered_device *rdev;
3693                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3694                         if (rdev) {
3695                                 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3696                                         rdev->country_ie_alpha2[0],
3697                                         rdev->country_ie_alpha2[1]);
3698                         } else
3699                                 pr_debug("Current regulatory domain intersected:\n");
3700                 } else
3701                         pr_debug("Current regulatory domain intersected:\n");
3702         } else if (is_world_regdom(rd->alpha2)) {
3703                 pr_debug("World regulatory domain updated:\n");
3704         } else {
3705                 if (is_unknown_alpha2(rd->alpha2))
3706                         pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3707                 else {
3708                         if (reg_request_cell_base(lr))
3709                                 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3710                                         rd->alpha2[0], rd->alpha2[1]);
3711                         else
3712                                 pr_debug("Regulatory domain changed to country: %c%c\n",
3713                                         rd->alpha2[0], rd->alpha2[1]);
3714                 }
3715         }
3716
3717         pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3718         print_rd_rules(rd);
3719 }
3720
3721 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3722 {
3723         pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3724         print_rd_rules(rd);
3725 }
3726
3727 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3728 {
3729         if (!is_world_regdom(rd->alpha2))
3730                 return -EINVAL;
3731         update_world_regdomain(rd);
3732         return 0;
3733 }
3734
3735 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3736                            struct regulatory_request *user_request)
3737 {
3738         const struct ieee80211_regdomain *intersected_rd = NULL;
3739
3740         if (!regdom_changes(rd->alpha2))
3741                 return -EALREADY;
3742
3743         if (!is_valid_rd(rd)) {
3744                 pr_err("Invalid regulatory domain detected: %c%c\n",
3745                        rd->alpha2[0], rd->alpha2[1]);
3746                 print_regdomain_info(rd);
3747                 return -EINVAL;
3748         }
3749
3750         if (!user_request->intersect) {
3751                 reset_regdomains(false, rd);
3752                 return 0;
3753         }
3754
3755         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3756         if (!intersected_rd)
3757                 return -EINVAL;
3758
3759         kfree(rd);
3760         rd = NULL;
3761         reset_regdomains(false, intersected_rd);
3762
3763         return 0;
3764 }
3765
3766 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3767                              struct regulatory_request *driver_request)
3768 {
3769         const struct ieee80211_regdomain *regd;
3770         const struct ieee80211_regdomain *intersected_rd = NULL;
3771         const struct ieee80211_regdomain *tmp;
3772         struct wiphy *request_wiphy;
3773
3774         if (is_world_regdom(rd->alpha2))
3775                 return -EINVAL;
3776
3777         if (!regdom_changes(rd->alpha2))
3778                 return -EALREADY;
3779
3780         if (!is_valid_rd(rd)) {
3781                 pr_err("Invalid regulatory domain detected: %c%c\n",
3782                        rd->alpha2[0], rd->alpha2[1]);
3783                 print_regdomain_info(rd);
3784                 return -EINVAL;
3785         }
3786
3787         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3788         if (!request_wiphy)
3789                 return -ENODEV;
3790
3791         if (!driver_request->intersect) {
3792                 if (request_wiphy->regd)
3793                         return -EALREADY;
3794
3795                 regd = reg_copy_regd(rd);
3796                 if (IS_ERR(regd))
3797                         return PTR_ERR(regd);
3798
3799                 rcu_assign_pointer(request_wiphy->regd, regd);
3800                 reset_regdomains(false, rd);
3801                 return 0;
3802         }
3803
3804         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3805         if (!intersected_rd)
3806                 return -EINVAL;
3807
3808         /*
3809          * We can trash what CRDA provided now.
3810          * However if a driver requested this specific regulatory
3811          * domain we keep it for its private use
3812          */
3813         tmp = get_wiphy_regdom(request_wiphy);
3814         rcu_assign_pointer(request_wiphy->regd, rd);
3815         rcu_free_regdom(tmp);
3816
3817         rd = NULL;
3818
3819         reset_regdomains(false, intersected_rd);
3820
3821         return 0;
3822 }
3823
3824 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3825                                  struct regulatory_request *country_ie_request)
3826 {
3827         struct wiphy *request_wiphy;
3828
3829         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3830             !is_unknown_alpha2(rd->alpha2))
3831                 return -EINVAL;
3832
3833         /*
3834          * Lets only bother proceeding on the same alpha2 if the current
3835          * rd is non static (it means CRDA was present and was used last)
3836          * and the pending request came in from a country IE
3837          */
3838
3839         if (!is_valid_rd(rd)) {
3840                 pr_err("Invalid regulatory domain detected: %c%c\n",
3841                        rd->alpha2[0], rd->alpha2[1]);
3842                 print_regdomain_info(rd);
3843                 return -EINVAL;
3844         }
3845
3846         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3847         if (!request_wiphy)
3848                 return -ENODEV;
3849
3850         if (country_ie_request->intersect)
3851                 return -EINVAL;
3852
3853         reset_regdomains(false, rd);
3854         return 0;
3855 }
3856
3857 /*
3858  * Use this call to set the current regulatory domain. Conflicts with
3859  * multiple drivers can be ironed out later. Caller must've already
3860  * kmalloc'd the rd structure.
3861  */
3862 int set_regdom(const struct ieee80211_regdomain *rd,
3863                enum ieee80211_regd_source regd_src)
3864 {
3865         struct regulatory_request *lr;
3866         bool user_reset = false;
3867         int r;
3868
3869         if (IS_ERR_OR_NULL(rd))
3870                 return -ENODATA;
3871
3872         if (!reg_is_valid_request(rd->alpha2)) {
3873                 kfree(rd);
3874                 return -EINVAL;
3875         }
3876
3877         if (regd_src == REGD_SOURCE_CRDA)
3878                 reset_crda_timeouts();
3879
3880         lr = get_last_request();
3881
3882         /* Note that this doesn't update the wiphys, this is done below */
3883         switch (lr->initiator) {
3884         case NL80211_REGDOM_SET_BY_CORE:
3885                 r = reg_set_rd_core(rd);
3886                 break;
3887         case NL80211_REGDOM_SET_BY_USER:
3888                 cfg80211_save_user_regdom(rd);
3889                 r = reg_set_rd_user(rd, lr);
3890                 user_reset = true;
3891                 break;
3892         case NL80211_REGDOM_SET_BY_DRIVER:
3893                 r = reg_set_rd_driver(rd, lr);
3894                 break;
3895         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3896                 r = reg_set_rd_country_ie(rd, lr);
3897                 break;
3898         default:
3899                 WARN(1, "invalid initiator %d\n", lr->initiator);
3900                 kfree(rd);
3901                 return -EINVAL;
3902         }
3903
3904         if (r) {
3905                 switch (r) {
3906                 case -EALREADY:
3907                         reg_set_request_processed();
3908                         break;
3909                 default:
3910                         /* Back to world regulatory in case of errors */
3911                         restore_regulatory_settings(user_reset, false);
3912                 }
3913
3914                 kfree(rd);
3915                 return r;
3916         }
3917
3918         /* This would make this whole thing pointless */
3919         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3920                 return -EINVAL;
3921
3922         /* update all wiphys now with the new established regulatory domain */
3923         update_all_wiphy_regulatory(lr->initiator);
3924
3925         print_regdomain(get_cfg80211_regdom());
3926
3927         nl80211_send_reg_change_event(lr);
3928
3929         reg_set_request_processed();
3930
3931         return 0;
3932 }
3933
3934 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3935                                        struct ieee80211_regdomain *rd)
3936 {
3937         const struct ieee80211_regdomain *regd;
3938         const struct ieee80211_regdomain *prev_regd;
3939         struct cfg80211_registered_device *rdev;
3940
3941         if (WARN_ON(!wiphy || !rd))
3942                 return -EINVAL;
3943
3944         if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3945                  "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3946                 return -EPERM;
3947
3948         if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3949                 print_regdomain_info(rd);
3950                 return -EINVAL;
3951         }
3952
3953         regd = reg_copy_regd(rd);
3954         if (IS_ERR(regd))
3955                 return PTR_ERR(regd);
3956
3957         rdev = wiphy_to_rdev(wiphy);
3958
3959         spin_lock(&reg_requests_lock);
3960         prev_regd = rdev->requested_regd;
3961         rdev->requested_regd = regd;
3962         spin_unlock(&reg_requests_lock);
3963
3964         kfree(prev_regd);
3965         return 0;
3966 }
3967
3968 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3969                               struct ieee80211_regdomain *rd)
3970 {
3971         int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3972
3973         if (ret)
3974                 return ret;
3975
3976         schedule_work(&reg_work);
3977         return 0;
3978 }
3979 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3980
3981 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3982                                         struct ieee80211_regdomain *rd)
3983 {
3984         int ret;
3985
3986         ASSERT_RTNL();
3987
3988         ret = __regulatory_set_wiphy_regd(wiphy, rd);
3989         if (ret)
3990                 return ret;
3991
3992         /* process the request immediately */
3993         reg_process_self_managed_hints();
3994         return 0;
3995 }
3996 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3997
3998 void wiphy_regulatory_register(struct wiphy *wiphy)
3999 {
4000         struct regulatory_request *lr = get_last_request();
4001
4002         /* self-managed devices ignore beacon hints and country IE */
4003         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4004                 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4005                                            REGULATORY_COUNTRY_IE_IGNORE;
4006
4007                 /*
4008                  * The last request may have been received before this
4009                  * registration call. Call the driver notifier if
4010                  * initiator is USER.
4011                  */
4012                 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4013                         reg_call_notifier(wiphy, lr);
4014         }
4015
4016         if (!reg_dev_ignore_cell_hint(wiphy))
4017                 reg_num_devs_support_basehint++;
4018
4019         wiphy_update_regulatory(wiphy, lr->initiator);
4020         wiphy_all_share_dfs_chan_state(wiphy);
4021 }
4022
4023 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4024 {
4025         struct wiphy *request_wiphy = NULL;
4026         struct regulatory_request *lr;
4027
4028         lr = get_last_request();
4029
4030         if (!reg_dev_ignore_cell_hint(wiphy))
4031                 reg_num_devs_support_basehint--;
4032
4033         rcu_free_regdom(get_wiphy_regdom(wiphy));
4034         RCU_INIT_POINTER(wiphy->regd, NULL);
4035
4036         if (lr)
4037                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4038
4039         if (!request_wiphy || request_wiphy != wiphy)
4040                 return;
4041
4042         lr->wiphy_idx = WIPHY_IDX_INVALID;
4043         lr->country_ie_env = ENVIRON_ANY;
4044 }
4045
4046 /*
4047  * See FCC notices for UNII band definitions
4048  *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4049  *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4050  */
4051 int cfg80211_get_unii(int freq)
4052 {
4053         /* UNII-1 */
4054         if (freq >= 5150 && freq <= 5250)
4055                 return 0;
4056
4057         /* UNII-2A */
4058         if (freq > 5250 && freq <= 5350)
4059                 return 1;
4060
4061         /* UNII-2B */
4062         if (freq > 5350 && freq <= 5470)
4063                 return 2;
4064
4065         /* UNII-2C */
4066         if (freq > 5470 && freq <= 5725)
4067                 return 3;
4068
4069         /* UNII-3 */
4070         if (freq > 5725 && freq <= 5825)
4071                 return 4;
4072
4073         /* UNII-5 */
4074         if (freq > 5925 && freq <= 6425)
4075                 return 5;
4076
4077         /* UNII-6 */
4078         if (freq > 6425 && freq <= 6525)
4079                 return 6;
4080
4081         /* UNII-7 */
4082         if (freq > 6525 && freq <= 6875)
4083                 return 7;
4084
4085         /* UNII-8 */
4086         if (freq > 6875 && freq <= 7125)
4087                 return 8;
4088
4089         return -EINVAL;
4090 }
4091
4092 bool regulatory_indoor_allowed(void)
4093 {
4094         return reg_is_indoor;
4095 }
4096
4097 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4098 {
4099         const struct ieee80211_regdomain *regd = NULL;
4100         const struct ieee80211_regdomain *wiphy_regd = NULL;
4101         bool pre_cac_allowed = false;
4102
4103         rcu_read_lock();
4104
4105         regd = rcu_dereference(cfg80211_regdomain);
4106         wiphy_regd = rcu_dereference(wiphy->regd);
4107         if (!wiphy_regd) {
4108                 if (regd->dfs_region == NL80211_DFS_ETSI)
4109                         pre_cac_allowed = true;
4110
4111                 rcu_read_unlock();
4112
4113                 return pre_cac_allowed;
4114         }
4115
4116         if (regd->dfs_region == wiphy_regd->dfs_region &&
4117             wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4118                 pre_cac_allowed = true;
4119
4120         rcu_read_unlock();
4121
4122         return pre_cac_allowed;
4123 }
4124 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4125
4126 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4127 {
4128         struct wireless_dev *wdev;
4129         /* If we finished CAC or received radar, we should end any
4130          * CAC running on the same channels.
4131          * the check !cfg80211_chandef_dfs_usable contain 2 options:
4132          * either all channels are available - those the CAC_FINISHED
4133          * event has effected another wdev state, or there is a channel
4134          * in unavailable state in wdev chandef - those the RADAR_DETECTED
4135          * event has effected another wdev state.
4136          * In both cases we should end the CAC on the wdev.
4137          */
4138         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4139                 if (wdev->cac_started &&
4140                     !cfg80211_chandef_dfs_usable(&rdev->wiphy, &wdev->chandef))
4141                         rdev_end_cac(rdev, wdev->netdev);
4142         }
4143 }
4144
4145 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4146                                     struct cfg80211_chan_def *chandef,
4147                                     enum nl80211_dfs_state dfs_state,
4148                                     enum nl80211_radar_event event)
4149 {
4150         struct cfg80211_registered_device *rdev;
4151
4152         ASSERT_RTNL();
4153
4154         if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4155                 return;
4156
4157         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4158                 if (wiphy == &rdev->wiphy)
4159                         continue;
4160
4161                 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4162                         continue;
4163
4164                 if (!ieee80211_get_channel(&rdev->wiphy,
4165                                            chandef->chan->center_freq))
4166                         continue;
4167
4168                 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4169
4170                 if (event == NL80211_RADAR_DETECTED ||
4171                     event == NL80211_RADAR_CAC_FINISHED) {
4172                         cfg80211_sched_dfs_chan_update(rdev);
4173                         cfg80211_check_and_end_cac(rdev);
4174                 }
4175
4176                 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4177         }
4178 }
4179
4180 static int __init regulatory_init_db(void)
4181 {
4182         int err;
4183
4184         /*
4185          * It's possible that - due to other bugs/issues - cfg80211
4186          * never called regulatory_init() below, or that it failed;
4187          * in that case, don't try to do any further work here as
4188          * it's doomed to lead to crashes.
4189          */
4190         if (IS_ERR_OR_NULL(reg_pdev))
4191                 return -EINVAL;
4192
4193         err = load_builtin_regdb_keys();
4194         if (err)
4195                 return err;
4196
4197         /* We always try to get an update for the static regdomain */
4198         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4199         if (err) {
4200                 if (err == -ENOMEM) {
4201                         platform_device_unregister(reg_pdev);
4202                         return err;
4203                 }
4204                 /*
4205                  * N.B. kobject_uevent_env() can fail mainly for when we're out
4206                  * memory which is handled and propagated appropriately above
4207                  * but it can also fail during a netlink_broadcast() or during
4208                  * early boot for call_usermodehelper(). For now treat these
4209                  * errors as non-fatal.
4210                  */
4211                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4212         }
4213
4214         /*
4215          * Finally, if the user set the module parameter treat it
4216          * as a user hint.
4217          */
4218         if (!is_world_regdom(ieee80211_regdom))
4219                 regulatory_hint_user(ieee80211_regdom,
4220                                      NL80211_USER_REG_HINT_USER);
4221
4222         return 0;
4223 }
4224 #ifndef MODULE
4225 late_initcall(regulatory_init_db);
4226 #endif
4227
4228 int __init regulatory_init(void)
4229 {
4230         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4231         if (IS_ERR(reg_pdev))
4232                 return PTR_ERR(reg_pdev);
4233
4234         spin_lock_init(&reg_requests_lock);
4235         spin_lock_init(&reg_pending_beacons_lock);
4236         spin_lock_init(&reg_indoor_lock);
4237
4238         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4239
4240         user_alpha2[0] = '9';
4241         user_alpha2[1] = '7';
4242
4243 #ifdef MODULE
4244         return regulatory_init_db();
4245 #else
4246         return 0;
4247 #endif
4248 }
4249
4250 void regulatory_exit(void)
4251 {
4252         struct regulatory_request *reg_request, *tmp;
4253         struct reg_beacon *reg_beacon, *btmp;
4254
4255         cancel_work_sync(&reg_work);
4256         cancel_crda_timeout_sync();
4257         cancel_delayed_work_sync(&reg_check_chans);
4258
4259         /* Lock to suppress warnings */
4260         rtnl_lock();
4261         reset_regdomains(true, NULL);
4262         rtnl_unlock();
4263
4264         dev_set_uevent_suppress(&reg_pdev->dev, true);
4265
4266         platform_device_unregister(reg_pdev);
4267
4268         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4269                 list_del(&reg_beacon->list);
4270                 kfree(reg_beacon);
4271         }
4272
4273         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4274                 list_del(&reg_beacon->list);
4275                 kfree(reg_beacon);
4276         }
4277
4278         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4279                 list_del(&reg_request->list);
4280                 kfree(reg_request);
4281         }
4282
4283         if (!IS_ERR_OR_NULL(regdb))
4284                 kfree(regdb);
4285         if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4286                 kfree(cfg80211_user_regdom);
4287
4288         free_regdb_keyring();
4289 }