Merge tag 'gvt-next-fixes-2020-08-05' of https://github.com/intel/gvt-linux into...
[linux-2.6-microblaze.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 - 2019 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22
23
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *      be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *      regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83         REG_REQ_OK,
84         REG_REQ_IGNORE,
85         REG_REQ_INTERSECT,
86         REG_REQ_ALREADY_SET,
87 };
88
89 static struct regulatory_request core_request_world = {
90         .initiator = NL80211_REGDOM_SET_BY_CORE,
91         .alpha2[0] = '0',
92         .alpha2[1] = '0',
93         .intersect = false,
94         .processed = true,
95         .country_ie_env = ENVIRON_ANY,
96 };
97
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103         (void __force __rcu *)&core_request_world;
104
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static spinlock_t reg_indoor_lock;
130
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136
137 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
138 {
139         return rcu_dereference_rtnl(cfg80211_regdomain);
140 }
141
142 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
143 {
144         return rcu_dereference_rtnl(wiphy->regd);
145 }
146
147 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
148 {
149         switch (dfs_region) {
150         case NL80211_DFS_UNSET:
151                 return "unset";
152         case NL80211_DFS_FCC:
153                 return "FCC";
154         case NL80211_DFS_ETSI:
155                 return "ETSI";
156         case NL80211_DFS_JP:
157                 return "JP";
158         }
159         return "Unknown";
160 }
161
162 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
163 {
164         const struct ieee80211_regdomain *regd = NULL;
165         const struct ieee80211_regdomain *wiphy_regd = NULL;
166
167         regd = get_cfg80211_regdom();
168         if (!wiphy)
169                 goto out;
170
171         wiphy_regd = get_wiphy_regdom(wiphy);
172         if (!wiphy_regd)
173                 goto out;
174
175         if (wiphy_regd->dfs_region == regd->dfs_region)
176                 goto out;
177
178         pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
179                  dev_name(&wiphy->dev),
180                  reg_dfs_region_str(wiphy_regd->dfs_region),
181                  reg_dfs_region_str(regd->dfs_region));
182
183 out:
184         return regd->dfs_region;
185 }
186
187 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
188 {
189         if (!r)
190                 return;
191         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
192 }
193
194 static struct regulatory_request *get_last_request(void)
195 {
196         return rcu_dereference_rtnl(last_request);
197 }
198
199 /* Used to queue up regulatory hints */
200 static LIST_HEAD(reg_requests_list);
201 static spinlock_t reg_requests_lock;
202
203 /* Used to queue up beacon hints for review */
204 static LIST_HEAD(reg_pending_beacons);
205 static spinlock_t reg_pending_beacons_lock;
206
207 /* Used to keep track of processed beacon hints */
208 static LIST_HEAD(reg_beacon_list);
209
210 struct reg_beacon {
211         struct list_head list;
212         struct ieee80211_channel chan;
213 };
214
215 static void reg_check_chans_work(struct work_struct *work);
216 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
217
218 static void reg_todo(struct work_struct *work);
219 static DECLARE_WORK(reg_work, reg_todo);
220
221 /* We keep a static world regulatory domain in case of the absence of CRDA */
222 static const struct ieee80211_regdomain world_regdom = {
223         .n_reg_rules = 8,
224         .alpha2 =  "00",
225         .reg_rules = {
226                 /* IEEE 802.11b/g, channels 1..11 */
227                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
228                 /* IEEE 802.11b/g, channels 12..13. */
229                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
230                         NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
231                 /* IEEE 802.11 channel 14 - Only JP enables
232                  * this and for 802.11b only */
233                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
234                         NL80211_RRF_NO_IR |
235                         NL80211_RRF_NO_OFDM),
236                 /* IEEE 802.11a, channel 36..48 */
237                 REG_RULE(5180-10, 5240+10, 80, 6, 20,
238                         NL80211_RRF_NO_IR |
239                         NL80211_RRF_AUTO_BW),
240
241                 /* IEEE 802.11a, channel 52..64 - DFS required */
242                 REG_RULE(5260-10, 5320+10, 80, 6, 20,
243                         NL80211_RRF_NO_IR |
244                         NL80211_RRF_AUTO_BW |
245                         NL80211_RRF_DFS),
246
247                 /* IEEE 802.11a, channel 100..144 - DFS required */
248                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
249                         NL80211_RRF_NO_IR |
250                         NL80211_RRF_DFS),
251
252                 /* IEEE 802.11a, channel 149..165 */
253                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
254                         NL80211_RRF_NO_IR),
255
256                 /* IEEE 802.11ad (60GHz), channels 1..3 */
257                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
258         }
259 };
260
261 /* protected by RTNL */
262 static const struct ieee80211_regdomain *cfg80211_world_regdom =
263         &world_regdom;
264
265 static char *ieee80211_regdom = "00";
266 static char user_alpha2[2];
267 static const struct ieee80211_regdomain *cfg80211_user_regdom;
268
269 module_param(ieee80211_regdom, charp, 0444);
270 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
271
272 static void reg_free_request(struct regulatory_request *request)
273 {
274         if (request == &core_request_world)
275                 return;
276
277         if (request != get_last_request())
278                 kfree(request);
279 }
280
281 static void reg_free_last_request(void)
282 {
283         struct regulatory_request *lr = get_last_request();
284
285         if (lr != &core_request_world && lr)
286                 kfree_rcu(lr, rcu_head);
287 }
288
289 static void reg_update_last_request(struct regulatory_request *request)
290 {
291         struct regulatory_request *lr;
292
293         lr = get_last_request();
294         if (lr == request)
295                 return;
296
297         reg_free_last_request();
298         rcu_assign_pointer(last_request, request);
299 }
300
301 static void reset_regdomains(bool full_reset,
302                              const struct ieee80211_regdomain *new_regdom)
303 {
304         const struct ieee80211_regdomain *r;
305
306         ASSERT_RTNL();
307
308         r = get_cfg80211_regdom();
309
310         /* avoid freeing static information or freeing something twice */
311         if (r == cfg80211_world_regdom)
312                 r = NULL;
313         if (cfg80211_world_regdom == &world_regdom)
314                 cfg80211_world_regdom = NULL;
315         if (r == &world_regdom)
316                 r = NULL;
317
318         rcu_free_regdom(r);
319         rcu_free_regdom(cfg80211_world_regdom);
320
321         cfg80211_world_regdom = &world_regdom;
322         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
323
324         if (!full_reset)
325                 return;
326
327         reg_update_last_request(&core_request_world);
328 }
329
330 /*
331  * Dynamic world regulatory domain requested by the wireless
332  * core upon initialization
333  */
334 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
335 {
336         struct regulatory_request *lr;
337
338         lr = get_last_request();
339
340         WARN_ON(!lr);
341
342         reset_regdomains(false, rd);
343
344         cfg80211_world_regdom = rd;
345 }
346
347 bool is_world_regdom(const char *alpha2)
348 {
349         if (!alpha2)
350                 return false;
351         return alpha2[0] == '0' && alpha2[1] == '0';
352 }
353
354 static bool is_alpha2_set(const char *alpha2)
355 {
356         if (!alpha2)
357                 return false;
358         return alpha2[0] && alpha2[1];
359 }
360
361 static bool is_unknown_alpha2(const char *alpha2)
362 {
363         if (!alpha2)
364                 return false;
365         /*
366          * Special case where regulatory domain was built by driver
367          * but a specific alpha2 cannot be determined
368          */
369         return alpha2[0] == '9' && alpha2[1] == '9';
370 }
371
372 static bool is_intersected_alpha2(const char *alpha2)
373 {
374         if (!alpha2)
375                 return false;
376         /*
377          * Special case where regulatory domain is the
378          * result of an intersection between two regulatory domain
379          * structures
380          */
381         return alpha2[0] == '9' && alpha2[1] == '8';
382 }
383
384 static bool is_an_alpha2(const char *alpha2)
385 {
386         if (!alpha2)
387                 return false;
388         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
389 }
390
391 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
392 {
393         if (!alpha2_x || !alpha2_y)
394                 return false;
395         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
396 }
397
398 static bool regdom_changes(const char *alpha2)
399 {
400         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
401
402         if (!r)
403                 return true;
404         return !alpha2_equal(r->alpha2, alpha2);
405 }
406
407 /*
408  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
409  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
410  * has ever been issued.
411  */
412 static bool is_user_regdom_saved(void)
413 {
414         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
415                 return false;
416
417         /* This would indicate a mistake on the design */
418         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
419                  "Unexpected user alpha2: %c%c\n",
420                  user_alpha2[0], user_alpha2[1]))
421                 return false;
422
423         return true;
424 }
425
426 static const struct ieee80211_regdomain *
427 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
428 {
429         struct ieee80211_regdomain *regd;
430         unsigned int i;
431
432         regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
433                        GFP_KERNEL);
434         if (!regd)
435                 return ERR_PTR(-ENOMEM);
436
437         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
438
439         for (i = 0; i < src_regd->n_reg_rules; i++)
440                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
441                        sizeof(struct ieee80211_reg_rule));
442
443         return regd;
444 }
445
446 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
447 {
448         ASSERT_RTNL();
449
450         if (!IS_ERR(cfg80211_user_regdom))
451                 kfree(cfg80211_user_regdom);
452         cfg80211_user_regdom = reg_copy_regd(rd);
453 }
454
455 struct reg_regdb_apply_request {
456         struct list_head list;
457         const struct ieee80211_regdomain *regdom;
458 };
459
460 static LIST_HEAD(reg_regdb_apply_list);
461 static DEFINE_MUTEX(reg_regdb_apply_mutex);
462
463 static void reg_regdb_apply(struct work_struct *work)
464 {
465         struct reg_regdb_apply_request *request;
466
467         rtnl_lock();
468
469         mutex_lock(&reg_regdb_apply_mutex);
470         while (!list_empty(&reg_regdb_apply_list)) {
471                 request = list_first_entry(&reg_regdb_apply_list,
472                                            struct reg_regdb_apply_request,
473                                            list);
474                 list_del(&request->list);
475
476                 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
477                 kfree(request);
478         }
479         mutex_unlock(&reg_regdb_apply_mutex);
480
481         rtnl_unlock();
482 }
483
484 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
485
486 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
487 {
488         struct reg_regdb_apply_request *request;
489
490         request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
491         if (!request) {
492                 kfree(regdom);
493                 return -ENOMEM;
494         }
495
496         request->regdom = regdom;
497
498         mutex_lock(&reg_regdb_apply_mutex);
499         list_add_tail(&request->list, &reg_regdb_apply_list);
500         mutex_unlock(&reg_regdb_apply_mutex);
501
502         schedule_work(&reg_regdb_work);
503         return 0;
504 }
505
506 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
507 /* Max number of consecutive attempts to communicate with CRDA  */
508 #define REG_MAX_CRDA_TIMEOUTS 10
509
510 static u32 reg_crda_timeouts;
511
512 static void crda_timeout_work(struct work_struct *work);
513 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
514
515 static void crda_timeout_work(struct work_struct *work)
516 {
517         pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
518         rtnl_lock();
519         reg_crda_timeouts++;
520         restore_regulatory_settings(true, false);
521         rtnl_unlock();
522 }
523
524 static void cancel_crda_timeout(void)
525 {
526         cancel_delayed_work(&crda_timeout);
527 }
528
529 static void cancel_crda_timeout_sync(void)
530 {
531         cancel_delayed_work_sync(&crda_timeout);
532 }
533
534 static void reset_crda_timeouts(void)
535 {
536         reg_crda_timeouts = 0;
537 }
538
539 /*
540  * This lets us keep regulatory code which is updated on a regulatory
541  * basis in userspace.
542  */
543 static int call_crda(const char *alpha2)
544 {
545         char country[12];
546         char *env[] = { country, NULL };
547         int ret;
548
549         snprintf(country, sizeof(country), "COUNTRY=%c%c",
550                  alpha2[0], alpha2[1]);
551
552         if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
553                 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
554                 return -EINVAL;
555         }
556
557         if (!is_world_regdom((char *) alpha2))
558                 pr_debug("Calling CRDA for country: %c%c\n",
559                          alpha2[0], alpha2[1]);
560         else
561                 pr_debug("Calling CRDA to update world regulatory domain\n");
562
563         ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
564         if (ret)
565                 return ret;
566
567         queue_delayed_work(system_power_efficient_wq,
568                            &crda_timeout, msecs_to_jiffies(3142));
569         return 0;
570 }
571 #else
572 static inline void cancel_crda_timeout(void) {}
573 static inline void cancel_crda_timeout_sync(void) {}
574 static inline void reset_crda_timeouts(void) {}
575 static inline int call_crda(const char *alpha2)
576 {
577         return -ENODATA;
578 }
579 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
580
581 /* code to directly load a firmware database through request_firmware */
582 static const struct fwdb_header *regdb;
583
584 struct fwdb_country {
585         u8 alpha2[2];
586         __be16 coll_ptr;
587         /* this struct cannot be extended */
588 } __packed __aligned(4);
589
590 struct fwdb_collection {
591         u8 len;
592         u8 n_rules;
593         u8 dfs_region;
594         /* no optional data yet */
595         /* aligned to 2, then followed by __be16 array of rule pointers */
596 } __packed __aligned(4);
597
598 enum fwdb_flags {
599         FWDB_FLAG_NO_OFDM       = BIT(0),
600         FWDB_FLAG_NO_OUTDOOR    = BIT(1),
601         FWDB_FLAG_DFS           = BIT(2),
602         FWDB_FLAG_NO_IR         = BIT(3),
603         FWDB_FLAG_AUTO_BW       = BIT(4),
604 };
605
606 struct fwdb_wmm_ac {
607         u8 ecw;
608         u8 aifsn;
609         __be16 cot;
610 } __packed;
611
612 struct fwdb_wmm_rule {
613         struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
614         struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
615 } __packed;
616
617 struct fwdb_rule {
618         u8 len;
619         u8 flags;
620         __be16 max_eirp;
621         __be32 start, end, max_bw;
622         /* start of optional data */
623         __be16 cac_timeout;
624         __be16 wmm_ptr;
625 } __packed __aligned(4);
626
627 #define FWDB_MAGIC 0x52474442
628 #define FWDB_VERSION 20
629
630 struct fwdb_header {
631         __be32 magic;
632         __be32 version;
633         struct fwdb_country country[];
634 } __packed __aligned(4);
635
636 static int ecw2cw(int ecw)
637 {
638         return (1 << ecw) - 1;
639 }
640
641 static bool valid_wmm(struct fwdb_wmm_rule *rule)
642 {
643         struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
644         int i;
645
646         for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
647                 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
648                 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
649                 u8 aifsn = ac[i].aifsn;
650
651                 if (cw_min >= cw_max)
652                         return false;
653
654                 if (aifsn < 1)
655                         return false;
656         }
657
658         return true;
659 }
660
661 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
662 {
663         struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
664
665         if ((u8 *)rule + sizeof(rule->len) > data + size)
666                 return false;
667
668         /* mandatory fields */
669         if (rule->len < offsetofend(struct fwdb_rule, max_bw))
670                 return false;
671         if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
672                 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
673                 struct fwdb_wmm_rule *wmm;
674
675                 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
676                         return false;
677
678                 wmm = (void *)(data + wmm_ptr);
679
680                 if (!valid_wmm(wmm))
681                         return false;
682         }
683         return true;
684 }
685
686 static bool valid_country(const u8 *data, unsigned int size,
687                           const struct fwdb_country *country)
688 {
689         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
690         struct fwdb_collection *coll = (void *)(data + ptr);
691         __be16 *rules_ptr;
692         unsigned int i;
693
694         /* make sure we can read len/n_rules */
695         if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
696                 return false;
697
698         /* make sure base struct and all rules fit */
699         if ((u8 *)coll + ALIGN(coll->len, 2) +
700             (coll->n_rules * 2) > data + size)
701                 return false;
702
703         /* mandatory fields must exist */
704         if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
705                 return false;
706
707         rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
708
709         for (i = 0; i < coll->n_rules; i++) {
710                 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
711
712                 if (!valid_rule(data, size, rule_ptr))
713                         return false;
714         }
715
716         return true;
717 }
718
719 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
720 static struct key *builtin_regdb_keys;
721
722 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
723 {
724         const u8 *end = p + buflen;
725         size_t plen;
726         key_ref_t key;
727
728         while (p < end) {
729                 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
730                  * than 256 bytes in size.
731                  */
732                 if (end - p < 4)
733                         goto dodgy_cert;
734                 if (p[0] != 0x30 &&
735                     p[1] != 0x82)
736                         goto dodgy_cert;
737                 plen = (p[2] << 8) | p[3];
738                 plen += 4;
739                 if (plen > end - p)
740                         goto dodgy_cert;
741
742                 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
743                                            "asymmetric", NULL, p, plen,
744                                            ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
745                                             KEY_USR_VIEW | KEY_USR_READ),
746                                            KEY_ALLOC_NOT_IN_QUOTA |
747                                            KEY_ALLOC_BUILT_IN |
748                                            KEY_ALLOC_BYPASS_RESTRICTION);
749                 if (IS_ERR(key)) {
750                         pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
751                                PTR_ERR(key));
752                 } else {
753                         pr_notice("Loaded X.509 cert '%s'\n",
754                                   key_ref_to_ptr(key)->description);
755                         key_ref_put(key);
756                 }
757                 p += plen;
758         }
759
760         return;
761
762 dodgy_cert:
763         pr_err("Problem parsing in-kernel X.509 certificate list\n");
764 }
765
766 static int __init load_builtin_regdb_keys(void)
767 {
768         builtin_regdb_keys =
769                 keyring_alloc(".builtin_regdb_keys",
770                               KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
771                               ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
772                               KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
773                               KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
774         if (IS_ERR(builtin_regdb_keys))
775                 return PTR_ERR(builtin_regdb_keys);
776
777         pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
778
779 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
780         load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
781 #endif
782 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
783         if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
784                 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
785 #endif
786
787         return 0;
788 }
789
790 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
791 {
792         const struct firmware *sig;
793         bool result;
794
795         if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
796                 return false;
797
798         result = verify_pkcs7_signature(data, size, sig->data, sig->size,
799                                         builtin_regdb_keys,
800                                         VERIFYING_UNSPECIFIED_SIGNATURE,
801                                         NULL, NULL) == 0;
802
803         release_firmware(sig);
804
805         return result;
806 }
807
808 static void free_regdb_keyring(void)
809 {
810         key_put(builtin_regdb_keys);
811 }
812 #else
813 static int load_builtin_regdb_keys(void)
814 {
815         return 0;
816 }
817
818 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
819 {
820         return true;
821 }
822
823 static void free_regdb_keyring(void)
824 {
825 }
826 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
827
828 static bool valid_regdb(const u8 *data, unsigned int size)
829 {
830         const struct fwdb_header *hdr = (void *)data;
831         const struct fwdb_country *country;
832
833         if (size < sizeof(*hdr))
834                 return false;
835
836         if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
837                 return false;
838
839         if (hdr->version != cpu_to_be32(FWDB_VERSION))
840                 return false;
841
842         if (!regdb_has_valid_signature(data, size))
843                 return false;
844
845         country = &hdr->country[0];
846         while ((u8 *)(country + 1) <= data + size) {
847                 if (!country->coll_ptr)
848                         break;
849                 if (!valid_country(data, size, country))
850                         return false;
851                 country++;
852         }
853
854         return true;
855 }
856
857 static void set_wmm_rule(const struct fwdb_header *db,
858                          const struct fwdb_country *country,
859                          const struct fwdb_rule *rule,
860                          struct ieee80211_reg_rule *rrule)
861 {
862         struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
863         struct fwdb_wmm_rule *wmm;
864         unsigned int i, wmm_ptr;
865
866         wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
867         wmm = (void *)((u8 *)db + wmm_ptr);
868
869         if (!valid_wmm(wmm)) {
870                 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
871                        be32_to_cpu(rule->start), be32_to_cpu(rule->end),
872                        country->alpha2[0], country->alpha2[1]);
873                 return;
874         }
875
876         for (i = 0; i < IEEE80211_NUM_ACS; i++) {
877                 wmm_rule->client[i].cw_min =
878                         ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
879                 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
880                 wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
881                 wmm_rule->client[i].cot =
882                         1000 * be16_to_cpu(wmm->client[i].cot);
883                 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
884                 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
885                 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
886                 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
887         }
888
889         rrule->has_wmm = true;
890 }
891
892 static int __regdb_query_wmm(const struct fwdb_header *db,
893                              const struct fwdb_country *country, int freq,
894                              struct ieee80211_reg_rule *rrule)
895 {
896         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
897         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
898         int i;
899
900         for (i = 0; i < coll->n_rules; i++) {
901                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
902                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
903                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
904
905                 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
906                         continue;
907
908                 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
909                     freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
910                         set_wmm_rule(db, country, rule, rrule);
911                         return 0;
912                 }
913         }
914
915         return -ENODATA;
916 }
917
918 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
919 {
920         const struct fwdb_header *hdr = regdb;
921         const struct fwdb_country *country;
922
923         if (!regdb)
924                 return -ENODATA;
925
926         if (IS_ERR(regdb))
927                 return PTR_ERR(regdb);
928
929         country = &hdr->country[0];
930         while (country->coll_ptr) {
931                 if (alpha2_equal(alpha2, country->alpha2))
932                         return __regdb_query_wmm(regdb, country, freq, rule);
933
934                 country++;
935         }
936
937         return -ENODATA;
938 }
939 EXPORT_SYMBOL(reg_query_regdb_wmm);
940
941 static int regdb_query_country(const struct fwdb_header *db,
942                                const struct fwdb_country *country)
943 {
944         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
945         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
946         struct ieee80211_regdomain *regdom;
947         unsigned int i;
948
949         regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
950                          GFP_KERNEL);
951         if (!regdom)
952                 return -ENOMEM;
953
954         regdom->n_reg_rules = coll->n_rules;
955         regdom->alpha2[0] = country->alpha2[0];
956         regdom->alpha2[1] = country->alpha2[1];
957         regdom->dfs_region = coll->dfs_region;
958
959         for (i = 0; i < regdom->n_reg_rules; i++) {
960                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
961                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
962                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
963                 struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
964
965                 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
966                 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
967                 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
968
969                 rrule->power_rule.max_antenna_gain = 0;
970                 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
971
972                 rrule->flags = 0;
973                 if (rule->flags & FWDB_FLAG_NO_OFDM)
974                         rrule->flags |= NL80211_RRF_NO_OFDM;
975                 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
976                         rrule->flags |= NL80211_RRF_NO_OUTDOOR;
977                 if (rule->flags & FWDB_FLAG_DFS)
978                         rrule->flags |= NL80211_RRF_DFS;
979                 if (rule->flags & FWDB_FLAG_NO_IR)
980                         rrule->flags |= NL80211_RRF_NO_IR;
981                 if (rule->flags & FWDB_FLAG_AUTO_BW)
982                         rrule->flags |= NL80211_RRF_AUTO_BW;
983
984                 rrule->dfs_cac_ms = 0;
985
986                 /* handle optional data */
987                 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
988                         rrule->dfs_cac_ms =
989                                 1000 * be16_to_cpu(rule->cac_timeout);
990                 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
991                         set_wmm_rule(db, country, rule, rrule);
992         }
993
994         return reg_schedule_apply(regdom);
995 }
996
997 static int query_regdb(const char *alpha2)
998 {
999         const struct fwdb_header *hdr = regdb;
1000         const struct fwdb_country *country;
1001
1002         ASSERT_RTNL();
1003
1004         if (IS_ERR(regdb))
1005                 return PTR_ERR(regdb);
1006
1007         country = &hdr->country[0];
1008         while (country->coll_ptr) {
1009                 if (alpha2_equal(alpha2, country->alpha2))
1010                         return regdb_query_country(regdb, country);
1011                 country++;
1012         }
1013
1014         return -ENODATA;
1015 }
1016
1017 static void regdb_fw_cb(const struct firmware *fw, void *context)
1018 {
1019         int set_error = 0;
1020         bool restore = true;
1021         void *db;
1022
1023         if (!fw) {
1024                 pr_info("failed to load regulatory.db\n");
1025                 set_error = -ENODATA;
1026         } else if (!valid_regdb(fw->data, fw->size)) {
1027                 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1028                 set_error = -EINVAL;
1029         }
1030
1031         rtnl_lock();
1032         if (regdb && !IS_ERR(regdb)) {
1033                 /* negative case - a bug
1034                  * positive case - can happen due to race in case of multiple cb's in
1035                  * queue, due to usage of asynchronous callback
1036                  *
1037                  * Either case, just restore and free new db.
1038                  */
1039         } else if (set_error) {
1040                 regdb = ERR_PTR(set_error);
1041         } else if (fw) {
1042                 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1043                 if (db) {
1044                         regdb = db;
1045                         restore = context && query_regdb(context);
1046                 } else {
1047                         restore = true;
1048                 }
1049         }
1050
1051         if (restore)
1052                 restore_regulatory_settings(true, false);
1053
1054         rtnl_unlock();
1055
1056         kfree(context);
1057
1058         release_firmware(fw);
1059 }
1060
1061 static int query_regdb_file(const char *alpha2)
1062 {
1063         ASSERT_RTNL();
1064
1065         if (regdb)
1066                 return query_regdb(alpha2);
1067
1068         alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1069         if (!alpha2)
1070                 return -ENOMEM;
1071
1072         return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1073                                        &reg_pdev->dev, GFP_KERNEL,
1074                                        (void *)alpha2, regdb_fw_cb);
1075 }
1076
1077 int reg_reload_regdb(void)
1078 {
1079         const struct firmware *fw;
1080         void *db;
1081         int err;
1082
1083         err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1084         if (err)
1085                 return err;
1086
1087         if (!valid_regdb(fw->data, fw->size)) {
1088                 err = -ENODATA;
1089                 goto out;
1090         }
1091
1092         db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1093         if (!db) {
1094                 err = -ENOMEM;
1095                 goto out;
1096         }
1097
1098         rtnl_lock();
1099         if (!IS_ERR_OR_NULL(regdb))
1100                 kfree(regdb);
1101         regdb = db;
1102         rtnl_unlock();
1103
1104  out:
1105         release_firmware(fw);
1106         return err;
1107 }
1108
1109 static bool reg_query_database(struct regulatory_request *request)
1110 {
1111         if (query_regdb_file(request->alpha2) == 0)
1112                 return true;
1113
1114         if (call_crda(request->alpha2) == 0)
1115                 return true;
1116
1117         return false;
1118 }
1119
1120 bool reg_is_valid_request(const char *alpha2)
1121 {
1122         struct regulatory_request *lr = get_last_request();
1123
1124         if (!lr || lr->processed)
1125                 return false;
1126
1127         return alpha2_equal(lr->alpha2, alpha2);
1128 }
1129
1130 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1131 {
1132         struct regulatory_request *lr = get_last_request();
1133
1134         /*
1135          * Follow the driver's regulatory domain, if present, unless a country
1136          * IE has been processed or a user wants to help complaince further
1137          */
1138         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1139             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1140             wiphy->regd)
1141                 return get_wiphy_regdom(wiphy);
1142
1143         return get_cfg80211_regdom();
1144 }
1145
1146 static unsigned int
1147 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1148                                  const struct ieee80211_reg_rule *rule)
1149 {
1150         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1151         const struct ieee80211_freq_range *freq_range_tmp;
1152         const struct ieee80211_reg_rule *tmp;
1153         u32 start_freq, end_freq, idx, no;
1154
1155         for (idx = 0; idx < rd->n_reg_rules; idx++)
1156                 if (rule == &rd->reg_rules[idx])
1157                         break;
1158
1159         if (idx == rd->n_reg_rules)
1160                 return 0;
1161
1162         /* get start_freq */
1163         no = idx;
1164
1165         while (no) {
1166                 tmp = &rd->reg_rules[--no];
1167                 freq_range_tmp = &tmp->freq_range;
1168
1169                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1170                         break;
1171
1172                 freq_range = freq_range_tmp;
1173         }
1174
1175         start_freq = freq_range->start_freq_khz;
1176
1177         /* get end_freq */
1178         freq_range = &rule->freq_range;
1179         no = idx;
1180
1181         while (no < rd->n_reg_rules - 1) {
1182                 tmp = &rd->reg_rules[++no];
1183                 freq_range_tmp = &tmp->freq_range;
1184
1185                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1186                         break;
1187
1188                 freq_range = freq_range_tmp;
1189         }
1190
1191         end_freq = freq_range->end_freq_khz;
1192
1193         return end_freq - start_freq;
1194 }
1195
1196 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1197                                    const struct ieee80211_reg_rule *rule)
1198 {
1199         unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1200
1201         if (rule->flags & NL80211_RRF_NO_160MHZ)
1202                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1203         if (rule->flags & NL80211_RRF_NO_80MHZ)
1204                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1205
1206         /*
1207          * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1208          * are not allowed.
1209          */
1210         if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1211             rule->flags & NL80211_RRF_NO_HT40PLUS)
1212                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1213
1214         return bw;
1215 }
1216
1217 /* Sanity check on a regulatory rule */
1218 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1219 {
1220         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1221         u32 freq_diff;
1222
1223         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1224                 return false;
1225
1226         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1227                 return false;
1228
1229         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1230
1231         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1232             freq_range->max_bandwidth_khz > freq_diff)
1233                 return false;
1234
1235         return true;
1236 }
1237
1238 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1239 {
1240         const struct ieee80211_reg_rule *reg_rule = NULL;
1241         unsigned int i;
1242
1243         if (!rd->n_reg_rules)
1244                 return false;
1245
1246         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1247                 return false;
1248
1249         for (i = 0; i < rd->n_reg_rules; i++) {
1250                 reg_rule = &rd->reg_rules[i];
1251                 if (!is_valid_reg_rule(reg_rule))
1252                         return false;
1253         }
1254
1255         return true;
1256 }
1257
1258 /**
1259  * freq_in_rule_band - tells us if a frequency is in a frequency band
1260  * @freq_range: frequency rule we want to query
1261  * @freq_khz: frequency we are inquiring about
1262  *
1263  * This lets us know if a specific frequency rule is or is not relevant to
1264  * a specific frequency's band. Bands are device specific and artificial
1265  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1266  * however it is safe for now to assume that a frequency rule should not be
1267  * part of a frequency's band if the start freq or end freq are off by more
1268  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1269  * 60 GHz band.
1270  * This resolution can be lowered and should be considered as we add
1271  * regulatory rule support for other "bands".
1272  **/
1273 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1274                               u32 freq_khz)
1275 {
1276 #define ONE_GHZ_IN_KHZ  1000000
1277         /*
1278          * From 802.11ad: directional multi-gigabit (DMG):
1279          * Pertaining to operation in a frequency band containing a channel
1280          * with the Channel starting frequency above 45 GHz.
1281          */
1282         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1283                         20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1284         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1285                 return true;
1286         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1287                 return true;
1288         return false;
1289 #undef ONE_GHZ_IN_KHZ
1290 }
1291
1292 /*
1293  * Later on we can perhaps use the more restrictive DFS
1294  * region but we don't have information for that yet so
1295  * for now simply disallow conflicts.
1296  */
1297 static enum nl80211_dfs_regions
1298 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1299                          const enum nl80211_dfs_regions dfs_region2)
1300 {
1301         if (dfs_region1 != dfs_region2)
1302                 return NL80211_DFS_UNSET;
1303         return dfs_region1;
1304 }
1305
1306 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1307                                     const struct ieee80211_wmm_ac *wmm_ac2,
1308                                     struct ieee80211_wmm_ac *intersect)
1309 {
1310         intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1311         intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1312         intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1313         intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1314 }
1315
1316 /*
1317  * Helper for regdom_intersect(), this does the real
1318  * mathematical intersection fun
1319  */
1320 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1321                                const struct ieee80211_regdomain *rd2,
1322                                const struct ieee80211_reg_rule *rule1,
1323                                const struct ieee80211_reg_rule *rule2,
1324                                struct ieee80211_reg_rule *intersected_rule)
1325 {
1326         const struct ieee80211_freq_range *freq_range1, *freq_range2;
1327         struct ieee80211_freq_range *freq_range;
1328         const struct ieee80211_power_rule *power_rule1, *power_rule2;
1329         struct ieee80211_power_rule *power_rule;
1330         const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1331         struct ieee80211_wmm_rule *wmm_rule;
1332         u32 freq_diff, max_bandwidth1, max_bandwidth2;
1333
1334         freq_range1 = &rule1->freq_range;
1335         freq_range2 = &rule2->freq_range;
1336         freq_range = &intersected_rule->freq_range;
1337
1338         power_rule1 = &rule1->power_rule;
1339         power_rule2 = &rule2->power_rule;
1340         power_rule = &intersected_rule->power_rule;
1341
1342         wmm_rule1 = &rule1->wmm_rule;
1343         wmm_rule2 = &rule2->wmm_rule;
1344         wmm_rule = &intersected_rule->wmm_rule;
1345
1346         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1347                                          freq_range2->start_freq_khz);
1348         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1349                                        freq_range2->end_freq_khz);
1350
1351         max_bandwidth1 = freq_range1->max_bandwidth_khz;
1352         max_bandwidth2 = freq_range2->max_bandwidth_khz;
1353
1354         if (rule1->flags & NL80211_RRF_AUTO_BW)
1355                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1356         if (rule2->flags & NL80211_RRF_AUTO_BW)
1357                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1358
1359         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1360
1361         intersected_rule->flags = rule1->flags | rule2->flags;
1362
1363         /*
1364          * In case NL80211_RRF_AUTO_BW requested for both rules
1365          * set AUTO_BW in intersected rule also. Next we will
1366          * calculate BW correctly in handle_channel function.
1367          * In other case remove AUTO_BW flag while we calculate
1368          * maximum bandwidth correctly and auto calculation is
1369          * not required.
1370          */
1371         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1372             (rule2->flags & NL80211_RRF_AUTO_BW))
1373                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1374         else
1375                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1376
1377         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1378         if (freq_range->max_bandwidth_khz > freq_diff)
1379                 freq_range->max_bandwidth_khz = freq_diff;
1380
1381         power_rule->max_eirp = min(power_rule1->max_eirp,
1382                 power_rule2->max_eirp);
1383         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1384                 power_rule2->max_antenna_gain);
1385
1386         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1387                                            rule2->dfs_cac_ms);
1388
1389         if (rule1->has_wmm && rule2->has_wmm) {
1390                 u8 ac;
1391
1392                 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1393                         reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1394                                                 &wmm_rule2->client[ac],
1395                                                 &wmm_rule->client[ac]);
1396                         reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1397                                                 &wmm_rule2->ap[ac],
1398                                                 &wmm_rule->ap[ac]);
1399                 }
1400
1401                 intersected_rule->has_wmm = true;
1402         } else if (rule1->has_wmm) {
1403                 *wmm_rule = *wmm_rule1;
1404                 intersected_rule->has_wmm = true;
1405         } else if (rule2->has_wmm) {
1406                 *wmm_rule = *wmm_rule2;
1407                 intersected_rule->has_wmm = true;
1408         } else {
1409                 intersected_rule->has_wmm = false;
1410         }
1411
1412         if (!is_valid_reg_rule(intersected_rule))
1413                 return -EINVAL;
1414
1415         return 0;
1416 }
1417
1418 /* check whether old rule contains new rule */
1419 static bool rule_contains(struct ieee80211_reg_rule *r1,
1420                           struct ieee80211_reg_rule *r2)
1421 {
1422         /* for simplicity, currently consider only same flags */
1423         if (r1->flags != r2->flags)
1424                 return false;
1425
1426         /* verify r1 is more restrictive */
1427         if ((r1->power_rule.max_antenna_gain >
1428              r2->power_rule.max_antenna_gain) ||
1429             r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1430                 return false;
1431
1432         /* make sure r2's range is contained within r1 */
1433         if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1434             r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1435                 return false;
1436
1437         /* and finally verify that r1.max_bw >= r2.max_bw */
1438         if (r1->freq_range.max_bandwidth_khz <
1439             r2->freq_range.max_bandwidth_khz)
1440                 return false;
1441
1442         return true;
1443 }
1444
1445 /* add or extend current rules. do nothing if rule is already contained */
1446 static void add_rule(struct ieee80211_reg_rule *rule,
1447                      struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1448 {
1449         struct ieee80211_reg_rule *tmp_rule;
1450         int i;
1451
1452         for (i = 0; i < *n_rules; i++) {
1453                 tmp_rule = &reg_rules[i];
1454                 /* rule is already contained - do nothing */
1455                 if (rule_contains(tmp_rule, rule))
1456                         return;
1457
1458                 /* extend rule if possible */
1459                 if (rule_contains(rule, tmp_rule)) {
1460                         memcpy(tmp_rule, rule, sizeof(*rule));
1461                         return;
1462                 }
1463         }
1464
1465         memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1466         (*n_rules)++;
1467 }
1468
1469 /**
1470  * regdom_intersect - do the intersection between two regulatory domains
1471  * @rd1: first regulatory domain
1472  * @rd2: second regulatory domain
1473  *
1474  * Use this function to get the intersection between two regulatory domains.
1475  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1476  * as no one single alpha2 can represent this regulatory domain.
1477  *
1478  * Returns a pointer to the regulatory domain structure which will hold the
1479  * resulting intersection of rules between rd1 and rd2. We will
1480  * kzalloc() this structure for you.
1481  */
1482 static struct ieee80211_regdomain *
1483 regdom_intersect(const struct ieee80211_regdomain *rd1,
1484                  const struct ieee80211_regdomain *rd2)
1485 {
1486         int r;
1487         unsigned int x, y;
1488         unsigned int num_rules = 0;
1489         const struct ieee80211_reg_rule *rule1, *rule2;
1490         struct ieee80211_reg_rule intersected_rule;
1491         struct ieee80211_regdomain *rd;
1492
1493         if (!rd1 || !rd2)
1494                 return NULL;
1495
1496         /*
1497          * First we get a count of the rules we'll need, then we actually
1498          * build them. This is to so we can malloc() and free() a
1499          * regdomain once. The reason we use reg_rules_intersect() here
1500          * is it will return -EINVAL if the rule computed makes no sense.
1501          * All rules that do check out OK are valid.
1502          */
1503
1504         for (x = 0; x < rd1->n_reg_rules; x++) {
1505                 rule1 = &rd1->reg_rules[x];
1506                 for (y = 0; y < rd2->n_reg_rules; y++) {
1507                         rule2 = &rd2->reg_rules[y];
1508                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1509                                                  &intersected_rule))
1510                                 num_rules++;
1511                 }
1512         }
1513
1514         if (!num_rules)
1515                 return NULL;
1516
1517         rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1518         if (!rd)
1519                 return NULL;
1520
1521         for (x = 0; x < rd1->n_reg_rules; x++) {
1522                 rule1 = &rd1->reg_rules[x];
1523                 for (y = 0; y < rd2->n_reg_rules; y++) {
1524                         rule2 = &rd2->reg_rules[y];
1525                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1526                                                 &intersected_rule);
1527                         /*
1528                          * No need to memset here the intersected rule here as
1529                          * we're not using the stack anymore
1530                          */
1531                         if (r)
1532                                 continue;
1533
1534                         add_rule(&intersected_rule, rd->reg_rules,
1535                                  &rd->n_reg_rules);
1536                 }
1537         }
1538
1539         rd->alpha2[0] = '9';
1540         rd->alpha2[1] = '8';
1541         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1542                                                   rd2->dfs_region);
1543
1544         return rd;
1545 }
1546
1547 /*
1548  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1549  * want to just have the channel structure use these
1550  */
1551 static u32 map_regdom_flags(u32 rd_flags)
1552 {
1553         u32 channel_flags = 0;
1554         if (rd_flags & NL80211_RRF_NO_IR_ALL)
1555                 channel_flags |= IEEE80211_CHAN_NO_IR;
1556         if (rd_flags & NL80211_RRF_DFS)
1557                 channel_flags |= IEEE80211_CHAN_RADAR;
1558         if (rd_flags & NL80211_RRF_NO_OFDM)
1559                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1560         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1561                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1562         if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1563                 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1564         if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1565                 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1566         if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1567                 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1568         if (rd_flags & NL80211_RRF_NO_80MHZ)
1569                 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1570         if (rd_flags & NL80211_RRF_NO_160MHZ)
1571                 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1572         if (rd_flags & NL80211_RRF_NO_HE)
1573                 channel_flags |= IEEE80211_CHAN_NO_HE;
1574         return channel_flags;
1575 }
1576
1577 static const struct ieee80211_reg_rule *
1578 freq_reg_info_regd(u32 center_freq,
1579                    const struct ieee80211_regdomain *regd, u32 bw)
1580 {
1581         int i;
1582         bool band_rule_found = false;
1583         bool bw_fits = false;
1584
1585         if (!regd)
1586                 return ERR_PTR(-EINVAL);
1587
1588         for (i = 0; i < regd->n_reg_rules; i++) {
1589                 const struct ieee80211_reg_rule *rr;
1590                 const struct ieee80211_freq_range *fr = NULL;
1591
1592                 rr = &regd->reg_rules[i];
1593                 fr = &rr->freq_range;
1594
1595                 /*
1596                  * We only need to know if one frequency rule was
1597                  * was in center_freq's band, that's enough, so lets
1598                  * not overwrite it once found
1599                  */
1600                 if (!band_rule_found)
1601                         band_rule_found = freq_in_rule_band(fr, center_freq);
1602
1603                 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1604
1605                 if (band_rule_found && bw_fits)
1606                         return rr;
1607         }
1608
1609         if (!band_rule_found)
1610                 return ERR_PTR(-ERANGE);
1611
1612         return ERR_PTR(-EINVAL);
1613 }
1614
1615 static const struct ieee80211_reg_rule *
1616 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1617 {
1618         const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1619         const struct ieee80211_reg_rule *reg_rule = NULL;
1620         u32 bw;
1621
1622         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1623                 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1624                 if (!IS_ERR(reg_rule))
1625                         return reg_rule;
1626         }
1627
1628         return reg_rule;
1629 }
1630
1631 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1632                                                u32 center_freq)
1633 {
1634         return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1635 }
1636 EXPORT_SYMBOL(freq_reg_info);
1637
1638 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1639 {
1640         switch (initiator) {
1641         case NL80211_REGDOM_SET_BY_CORE:
1642                 return "core";
1643         case NL80211_REGDOM_SET_BY_USER:
1644                 return "user";
1645         case NL80211_REGDOM_SET_BY_DRIVER:
1646                 return "driver";
1647         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1648                 return "country element";
1649         default:
1650                 WARN_ON(1);
1651                 return "bug";
1652         }
1653 }
1654 EXPORT_SYMBOL(reg_initiator_name);
1655
1656 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1657                                           const struct ieee80211_reg_rule *reg_rule,
1658                                           const struct ieee80211_channel *chan)
1659 {
1660         const struct ieee80211_freq_range *freq_range = NULL;
1661         u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1662
1663         freq_range = &reg_rule->freq_range;
1664
1665         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1666         center_freq_khz = ieee80211_channel_to_khz(chan);
1667         /* Check if auto calculation requested */
1668         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1669                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1670
1671         /* If we get a reg_rule we can assume that at least 5Mhz fit */
1672         if (!cfg80211_does_bw_fit_range(freq_range,
1673                                         center_freq_khz,
1674                                         MHZ_TO_KHZ(10)))
1675                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1676         if (!cfg80211_does_bw_fit_range(freq_range,
1677                                         center_freq_khz,
1678                                         MHZ_TO_KHZ(20)))
1679                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1680
1681         if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1682                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1683         if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1684                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1685         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1686                 bw_flags |= IEEE80211_CHAN_NO_HT40;
1687         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1688                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1689         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1690                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1691         return bw_flags;
1692 }
1693
1694 /*
1695  * Note that right now we assume the desired channel bandwidth
1696  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1697  * per channel, the primary and the extension channel).
1698  */
1699 static void handle_channel(struct wiphy *wiphy,
1700                            enum nl80211_reg_initiator initiator,
1701                            struct ieee80211_channel *chan)
1702 {
1703         u32 flags, bw_flags = 0;
1704         const struct ieee80211_reg_rule *reg_rule = NULL;
1705         const struct ieee80211_power_rule *power_rule = NULL;
1706         struct wiphy *request_wiphy = NULL;
1707         struct regulatory_request *lr = get_last_request();
1708         const struct ieee80211_regdomain *regd;
1709
1710         request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1711
1712         flags = chan->orig_flags;
1713
1714         reg_rule = freq_reg_info(wiphy, ieee80211_channel_to_khz(chan));
1715         if (IS_ERR(reg_rule)) {
1716                 /*
1717                  * We will disable all channels that do not match our
1718                  * received regulatory rule unless the hint is coming
1719                  * from a Country IE and the Country IE had no information
1720                  * about a band. The IEEE 802.11 spec allows for an AP
1721                  * to send only a subset of the regulatory rules allowed,
1722                  * so an AP in the US that only supports 2.4 GHz may only send
1723                  * a country IE with information for the 2.4 GHz band
1724                  * while 5 GHz is still supported.
1725                  */
1726                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1727                     PTR_ERR(reg_rule) == -ERANGE)
1728                         return;
1729
1730                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1731                     request_wiphy && request_wiphy == wiphy &&
1732                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1733                         pr_debug("Disabling freq %d.%03d MHz for good\n",
1734                                  chan->center_freq, chan->freq_offset);
1735                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1736                         chan->flags = chan->orig_flags;
1737                 } else {
1738                         pr_debug("Disabling freq %d.%03d MHz\n",
1739                                  chan->center_freq, chan->freq_offset);
1740                         chan->flags |= IEEE80211_CHAN_DISABLED;
1741                 }
1742                 return;
1743         }
1744
1745         regd = reg_get_regdomain(wiphy);
1746
1747         power_rule = &reg_rule->power_rule;
1748         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1749
1750         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1751             request_wiphy && request_wiphy == wiphy &&
1752             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1753                 /*
1754                  * This guarantees the driver's requested regulatory domain
1755                  * will always be used as a base for further regulatory
1756                  * settings
1757                  */
1758                 chan->flags = chan->orig_flags =
1759                         map_regdom_flags(reg_rule->flags) | bw_flags;
1760                 chan->max_antenna_gain = chan->orig_mag =
1761                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1762                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1763                         (int) MBM_TO_DBM(power_rule->max_eirp);
1764
1765                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1766                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1767                         if (reg_rule->dfs_cac_ms)
1768                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1769                 }
1770
1771                 return;
1772         }
1773
1774         chan->dfs_state = NL80211_DFS_USABLE;
1775         chan->dfs_state_entered = jiffies;
1776
1777         chan->beacon_found = false;
1778         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1779         chan->max_antenna_gain =
1780                 min_t(int, chan->orig_mag,
1781                       MBI_TO_DBI(power_rule->max_antenna_gain));
1782         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1783
1784         if (chan->flags & IEEE80211_CHAN_RADAR) {
1785                 if (reg_rule->dfs_cac_ms)
1786                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1787                 else
1788                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1789         }
1790
1791         if (chan->orig_mpwr) {
1792                 /*
1793                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1794                  * will always follow the passed country IE power settings.
1795                  */
1796                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1797                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1798                         chan->max_power = chan->max_reg_power;
1799                 else
1800                         chan->max_power = min(chan->orig_mpwr,
1801                                               chan->max_reg_power);
1802         } else
1803                 chan->max_power = chan->max_reg_power;
1804 }
1805
1806 static void handle_band(struct wiphy *wiphy,
1807                         enum nl80211_reg_initiator initiator,
1808                         struct ieee80211_supported_band *sband)
1809 {
1810         unsigned int i;
1811
1812         if (!sband)
1813                 return;
1814
1815         for (i = 0; i < sband->n_channels; i++)
1816                 handle_channel(wiphy, initiator, &sband->channels[i]);
1817 }
1818
1819 static bool reg_request_cell_base(struct regulatory_request *request)
1820 {
1821         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1822                 return false;
1823         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1824 }
1825
1826 bool reg_last_request_cell_base(void)
1827 {
1828         return reg_request_cell_base(get_last_request());
1829 }
1830
1831 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1832 /* Core specific check */
1833 static enum reg_request_treatment
1834 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1835 {
1836         struct regulatory_request *lr = get_last_request();
1837
1838         if (!reg_num_devs_support_basehint)
1839                 return REG_REQ_IGNORE;
1840
1841         if (reg_request_cell_base(lr) &&
1842             !regdom_changes(pending_request->alpha2))
1843                 return REG_REQ_ALREADY_SET;
1844
1845         return REG_REQ_OK;
1846 }
1847
1848 /* Device specific check */
1849 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1850 {
1851         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1852 }
1853 #else
1854 static enum reg_request_treatment
1855 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1856 {
1857         return REG_REQ_IGNORE;
1858 }
1859
1860 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1861 {
1862         return true;
1863 }
1864 #endif
1865
1866 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1867 {
1868         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1869             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1870                 return true;
1871         return false;
1872 }
1873
1874 static bool ignore_reg_update(struct wiphy *wiphy,
1875                               enum nl80211_reg_initiator initiator)
1876 {
1877         struct regulatory_request *lr = get_last_request();
1878
1879         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1880                 return true;
1881
1882         if (!lr) {
1883                 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1884                          reg_initiator_name(initiator));
1885                 return true;
1886         }
1887
1888         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1889             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1890                 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1891                          reg_initiator_name(initiator));
1892                 return true;
1893         }
1894
1895         /*
1896          * wiphy->regd will be set once the device has its own
1897          * desired regulatory domain set
1898          */
1899         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1900             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1901             !is_world_regdom(lr->alpha2)) {
1902                 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1903                          reg_initiator_name(initiator));
1904                 return true;
1905         }
1906
1907         if (reg_request_cell_base(lr))
1908                 return reg_dev_ignore_cell_hint(wiphy);
1909
1910         return false;
1911 }
1912
1913 static bool reg_is_world_roaming(struct wiphy *wiphy)
1914 {
1915         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1916         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1917         struct regulatory_request *lr = get_last_request();
1918
1919         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1920                 return true;
1921
1922         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1923             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1924                 return true;
1925
1926         return false;
1927 }
1928
1929 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1930                               struct reg_beacon *reg_beacon)
1931 {
1932         struct ieee80211_supported_band *sband;
1933         struct ieee80211_channel *chan;
1934         bool channel_changed = false;
1935         struct ieee80211_channel chan_before;
1936
1937         sband = wiphy->bands[reg_beacon->chan.band];
1938         chan = &sband->channels[chan_idx];
1939
1940         if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
1941                 return;
1942
1943         if (chan->beacon_found)
1944                 return;
1945
1946         chan->beacon_found = true;
1947
1948         if (!reg_is_world_roaming(wiphy))
1949                 return;
1950
1951         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1952                 return;
1953
1954         chan_before = *chan;
1955
1956         if (chan->flags & IEEE80211_CHAN_NO_IR) {
1957                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1958                 channel_changed = true;
1959         }
1960
1961         if (channel_changed)
1962                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1963 }
1964
1965 /*
1966  * Called when a scan on a wiphy finds a beacon on
1967  * new channel
1968  */
1969 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1970                                     struct reg_beacon *reg_beacon)
1971 {
1972         unsigned int i;
1973         struct ieee80211_supported_band *sband;
1974
1975         if (!wiphy->bands[reg_beacon->chan.band])
1976                 return;
1977
1978         sband = wiphy->bands[reg_beacon->chan.band];
1979
1980         for (i = 0; i < sband->n_channels; i++)
1981                 handle_reg_beacon(wiphy, i, reg_beacon);
1982 }
1983
1984 /*
1985  * Called upon reg changes or a new wiphy is added
1986  */
1987 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1988 {
1989         unsigned int i;
1990         struct ieee80211_supported_band *sband;
1991         struct reg_beacon *reg_beacon;
1992
1993         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1994                 if (!wiphy->bands[reg_beacon->chan.band])
1995                         continue;
1996                 sband = wiphy->bands[reg_beacon->chan.band];
1997                 for (i = 0; i < sband->n_channels; i++)
1998                         handle_reg_beacon(wiphy, i, reg_beacon);
1999         }
2000 }
2001
2002 /* Reap the advantages of previously found beacons */
2003 static void reg_process_beacons(struct wiphy *wiphy)
2004 {
2005         /*
2006          * Means we are just firing up cfg80211, so no beacons would
2007          * have been processed yet.
2008          */
2009         if (!last_request)
2010                 return;
2011         wiphy_update_beacon_reg(wiphy);
2012 }
2013
2014 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2015 {
2016         if (!chan)
2017                 return false;
2018         if (chan->flags & IEEE80211_CHAN_DISABLED)
2019                 return false;
2020         /* This would happen when regulatory rules disallow HT40 completely */
2021         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2022                 return false;
2023         return true;
2024 }
2025
2026 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2027                                          struct ieee80211_channel *channel)
2028 {
2029         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2030         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2031         const struct ieee80211_regdomain *regd;
2032         unsigned int i;
2033         u32 flags;
2034
2035         if (!is_ht40_allowed(channel)) {
2036                 channel->flags |= IEEE80211_CHAN_NO_HT40;
2037                 return;
2038         }
2039
2040         /*
2041          * We need to ensure the extension channels exist to
2042          * be able to use HT40- or HT40+, this finds them (or not)
2043          */
2044         for (i = 0; i < sband->n_channels; i++) {
2045                 struct ieee80211_channel *c = &sband->channels[i];
2046
2047                 if (c->center_freq == (channel->center_freq - 20))
2048                         channel_before = c;
2049                 if (c->center_freq == (channel->center_freq + 20))
2050                         channel_after = c;
2051         }
2052
2053         flags = 0;
2054         regd = get_wiphy_regdom(wiphy);
2055         if (regd) {
2056                 const struct ieee80211_reg_rule *reg_rule =
2057                         freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2058                                            regd, MHZ_TO_KHZ(20));
2059
2060                 if (!IS_ERR(reg_rule))
2061                         flags = reg_rule->flags;
2062         }
2063
2064         /*
2065          * Please note that this assumes target bandwidth is 20 MHz,
2066          * if that ever changes we also need to change the below logic
2067          * to include that as well.
2068          */
2069         if (!is_ht40_allowed(channel_before) ||
2070             flags & NL80211_RRF_NO_HT40MINUS)
2071                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2072         else
2073                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2074
2075         if (!is_ht40_allowed(channel_after) ||
2076             flags & NL80211_RRF_NO_HT40PLUS)
2077                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2078         else
2079                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2080 }
2081
2082 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2083                                       struct ieee80211_supported_band *sband)
2084 {
2085         unsigned int i;
2086
2087         if (!sband)
2088                 return;
2089
2090         for (i = 0; i < sband->n_channels; i++)
2091                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2092 }
2093
2094 static void reg_process_ht_flags(struct wiphy *wiphy)
2095 {
2096         enum nl80211_band band;
2097
2098         if (!wiphy)
2099                 return;
2100
2101         for (band = 0; band < NUM_NL80211_BANDS; band++)
2102                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2103 }
2104
2105 static void reg_call_notifier(struct wiphy *wiphy,
2106                               struct regulatory_request *request)
2107 {
2108         if (wiphy->reg_notifier)
2109                 wiphy->reg_notifier(wiphy, request);
2110 }
2111
2112 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2113 {
2114         struct cfg80211_chan_def chandef = {};
2115         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2116         enum nl80211_iftype iftype;
2117
2118         wdev_lock(wdev);
2119         iftype = wdev->iftype;
2120
2121         /* make sure the interface is active */
2122         if (!wdev->netdev || !netif_running(wdev->netdev))
2123                 goto wdev_inactive_unlock;
2124
2125         switch (iftype) {
2126         case NL80211_IFTYPE_AP:
2127         case NL80211_IFTYPE_P2P_GO:
2128                 if (!wdev->beacon_interval)
2129                         goto wdev_inactive_unlock;
2130                 chandef = wdev->chandef;
2131                 break;
2132         case NL80211_IFTYPE_ADHOC:
2133                 if (!wdev->ssid_len)
2134                         goto wdev_inactive_unlock;
2135                 chandef = wdev->chandef;
2136                 break;
2137         case NL80211_IFTYPE_STATION:
2138         case NL80211_IFTYPE_P2P_CLIENT:
2139                 if (!wdev->current_bss ||
2140                     !wdev->current_bss->pub.channel)
2141                         goto wdev_inactive_unlock;
2142
2143                 if (!rdev->ops->get_channel ||
2144                     rdev_get_channel(rdev, wdev, &chandef))
2145                         cfg80211_chandef_create(&chandef,
2146                                                 wdev->current_bss->pub.channel,
2147                                                 NL80211_CHAN_NO_HT);
2148                 break;
2149         case NL80211_IFTYPE_MONITOR:
2150         case NL80211_IFTYPE_AP_VLAN:
2151         case NL80211_IFTYPE_P2P_DEVICE:
2152                 /* no enforcement required */
2153                 break;
2154         default:
2155                 /* others not implemented for now */
2156                 WARN_ON(1);
2157                 break;
2158         }
2159
2160         wdev_unlock(wdev);
2161
2162         switch (iftype) {
2163         case NL80211_IFTYPE_AP:
2164         case NL80211_IFTYPE_P2P_GO:
2165         case NL80211_IFTYPE_ADHOC:
2166                 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2167         case NL80211_IFTYPE_STATION:
2168         case NL80211_IFTYPE_P2P_CLIENT:
2169                 return cfg80211_chandef_usable(wiphy, &chandef,
2170                                                IEEE80211_CHAN_DISABLED);
2171         default:
2172                 break;
2173         }
2174
2175         return true;
2176
2177 wdev_inactive_unlock:
2178         wdev_unlock(wdev);
2179         return true;
2180 }
2181
2182 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2183 {
2184         struct wireless_dev *wdev;
2185         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2186
2187         ASSERT_RTNL();
2188
2189         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2190                 if (!reg_wdev_chan_valid(wiphy, wdev))
2191                         cfg80211_leave(rdev, wdev);
2192 }
2193
2194 static void reg_check_chans_work(struct work_struct *work)
2195 {
2196         struct cfg80211_registered_device *rdev;
2197
2198         pr_debug("Verifying active interfaces after reg change\n");
2199         rtnl_lock();
2200
2201         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2202                 if (!(rdev->wiphy.regulatory_flags &
2203                       REGULATORY_IGNORE_STALE_KICKOFF))
2204                         reg_leave_invalid_chans(&rdev->wiphy);
2205
2206         rtnl_unlock();
2207 }
2208
2209 static void reg_check_channels(void)
2210 {
2211         /*
2212          * Give usermode a chance to do something nicer (move to another
2213          * channel, orderly disconnection), before forcing a disconnection.
2214          */
2215         mod_delayed_work(system_power_efficient_wq,
2216                          &reg_check_chans,
2217                          msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2218 }
2219
2220 static void wiphy_update_regulatory(struct wiphy *wiphy,
2221                                     enum nl80211_reg_initiator initiator)
2222 {
2223         enum nl80211_band band;
2224         struct regulatory_request *lr = get_last_request();
2225
2226         if (ignore_reg_update(wiphy, initiator)) {
2227                 /*
2228                  * Regulatory updates set by CORE are ignored for custom
2229                  * regulatory cards. Let us notify the changes to the driver,
2230                  * as some drivers used this to restore its orig_* reg domain.
2231                  */
2232                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2233                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2234                     !(wiphy->regulatory_flags &
2235                       REGULATORY_WIPHY_SELF_MANAGED))
2236                         reg_call_notifier(wiphy, lr);
2237                 return;
2238         }
2239
2240         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2241
2242         for (band = 0; band < NUM_NL80211_BANDS; band++)
2243                 handle_band(wiphy, initiator, wiphy->bands[band]);
2244
2245         reg_process_beacons(wiphy);
2246         reg_process_ht_flags(wiphy);
2247         reg_call_notifier(wiphy, lr);
2248 }
2249
2250 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2251 {
2252         struct cfg80211_registered_device *rdev;
2253         struct wiphy *wiphy;
2254
2255         ASSERT_RTNL();
2256
2257         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2258                 wiphy = &rdev->wiphy;
2259                 wiphy_update_regulatory(wiphy, initiator);
2260         }
2261
2262         reg_check_channels();
2263 }
2264
2265 static void handle_channel_custom(struct wiphy *wiphy,
2266                                   struct ieee80211_channel *chan,
2267                                   const struct ieee80211_regdomain *regd,
2268                                   u32 min_bw)
2269 {
2270         u32 bw_flags = 0;
2271         const struct ieee80211_reg_rule *reg_rule = NULL;
2272         const struct ieee80211_power_rule *power_rule = NULL;
2273         u32 bw, center_freq_khz;
2274
2275         center_freq_khz = ieee80211_channel_to_khz(chan);
2276         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2277                 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2278                 if (!IS_ERR(reg_rule))
2279                         break;
2280         }
2281
2282         if (IS_ERR_OR_NULL(reg_rule)) {
2283                 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2284                          chan->center_freq, chan->freq_offset);
2285                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2286                         chan->flags |= IEEE80211_CHAN_DISABLED;
2287                 } else {
2288                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2289                         chan->flags = chan->orig_flags;
2290                 }
2291                 return;
2292         }
2293
2294         power_rule = &reg_rule->power_rule;
2295         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2296
2297         chan->dfs_state_entered = jiffies;
2298         chan->dfs_state = NL80211_DFS_USABLE;
2299
2300         chan->beacon_found = false;
2301
2302         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2303                 chan->flags = chan->orig_flags | bw_flags |
2304                               map_regdom_flags(reg_rule->flags);
2305         else
2306                 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2307
2308         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2309         chan->max_reg_power = chan->max_power =
2310                 (int) MBM_TO_DBM(power_rule->max_eirp);
2311
2312         if (chan->flags & IEEE80211_CHAN_RADAR) {
2313                 if (reg_rule->dfs_cac_ms)
2314                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2315                 else
2316                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2317         }
2318
2319         chan->max_power = chan->max_reg_power;
2320 }
2321
2322 static void handle_band_custom(struct wiphy *wiphy,
2323                                struct ieee80211_supported_band *sband,
2324                                const struct ieee80211_regdomain *regd)
2325 {
2326         unsigned int i;
2327
2328         if (!sband)
2329                 return;
2330
2331         /*
2332          * We currently assume that you always want at least 20 MHz,
2333          * otherwise channel 12 might get enabled if this rule is
2334          * compatible to US, which permits 2402 - 2472 MHz.
2335          */
2336         for (i = 0; i < sband->n_channels; i++)
2337                 handle_channel_custom(wiphy, &sband->channels[i], regd,
2338                                       MHZ_TO_KHZ(20));
2339 }
2340
2341 /* Used by drivers prior to wiphy registration */
2342 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2343                                    const struct ieee80211_regdomain *regd)
2344 {
2345         enum nl80211_band band;
2346         unsigned int bands_set = 0;
2347
2348         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2349              "wiphy should have REGULATORY_CUSTOM_REG\n");
2350         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2351
2352         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2353                 if (!wiphy->bands[band])
2354                         continue;
2355                 handle_band_custom(wiphy, wiphy->bands[band], regd);
2356                 bands_set++;
2357         }
2358
2359         /*
2360          * no point in calling this if it won't have any effect
2361          * on your device's supported bands.
2362          */
2363         WARN_ON(!bands_set);
2364 }
2365 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2366
2367 static void reg_set_request_processed(void)
2368 {
2369         bool need_more_processing = false;
2370         struct regulatory_request *lr = get_last_request();
2371
2372         lr->processed = true;
2373
2374         spin_lock(&reg_requests_lock);
2375         if (!list_empty(&reg_requests_list))
2376                 need_more_processing = true;
2377         spin_unlock(&reg_requests_lock);
2378
2379         cancel_crda_timeout();
2380
2381         if (need_more_processing)
2382                 schedule_work(&reg_work);
2383 }
2384
2385 /**
2386  * reg_process_hint_core - process core regulatory requests
2387  * @core_request: a pending core regulatory request
2388  *
2389  * The wireless subsystem can use this function to process
2390  * a regulatory request issued by the regulatory core.
2391  */
2392 static enum reg_request_treatment
2393 reg_process_hint_core(struct regulatory_request *core_request)
2394 {
2395         if (reg_query_database(core_request)) {
2396                 core_request->intersect = false;
2397                 core_request->processed = false;
2398                 reg_update_last_request(core_request);
2399                 return REG_REQ_OK;
2400         }
2401
2402         return REG_REQ_IGNORE;
2403 }
2404
2405 static enum reg_request_treatment
2406 __reg_process_hint_user(struct regulatory_request *user_request)
2407 {
2408         struct regulatory_request *lr = get_last_request();
2409
2410         if (reg_request_cell_base(user_request))
2411                 return reg_ignore_cell_hint(user_request);
2412
2413         if (reg_request_cell_base(lr))
2414                 return REG_REQ_IGNORE;
2415
2416         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2417                 return REG_REQ_INTERSECT;
2418         /*
2419          * If the user knows better the user should set the regdom
2420          * to their country before the IE is picked up
2421          */
2422         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2423             lr->intersect)
2424                 return REG_REQ_IGNORE;
2425         /*
2426          * Process user requests only after previous user/driver/core
2427          * requests have been processed
2428          */
2429         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2430              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2431              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2432             regdom_changes(lr->alpha2))
2433                 return REG_REQ_IGNORE;
2434
2435         if (!regdom_changes(user_request->alpha2))
2436                 return REG_REQ_ALREADY_SET;
2437
2438         return REG_REQ_OK;
2439 }
2440
2441 /**
2442  * reg_process_hint_user - process user regulatory requests
2443  * @user_request: a pending user regulatory request
2444  *
2445  * The wireless subsystem can use this function to process
2446  * a regulatory request initiated by userspace.
2447  */
2448 static enum reg_request_treatment
2449 reg_process_hint_user(struct regulatory_request *user_request)
2450 {
2451         enum reg_request_treatment treatment;
2452
2453         treatment = __reg_process_hint_user(user_request);
2454         if (treatment == REG_REQ_IGNORE ||
2455             treatment == REG_REQ_ALREADY_SET)
2456                 return REG_REQ_IGNORE;
2457
2458         user_request->intersect = treatment == REG_REQ_INTERSECT;
2459         user_request->processed = false;
2460
2461         if (reg_query_database(user_request)) {
2462                 reg_update_last_request(user_request);
2463                 user_alpha2[0] = user_request->alpha2[0];
2464                 user_alpha2[1] = user_request->alpha2[1];
2465                 return REG_REQ_OK;
2466         }
2467
2468         return REG_REQ_IGNORE;
2469 }
2470
2471 static enum reg_request_treatment
2472 __reg_process_hint_driver(struct regulatory_request *driver_request)
2473 {
2474         struct regulatory_request *lr = get_last_request();
2475
2476         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2477                 if (regdom_changes(driver_request->alpha2))
2478                         return REG_REQ_OK;
2479                 return REG_REQ_ALREADY_SET;
2480         }
2481
2482         /*
2483          * This would happen if you unplug and plug your card
2484          * back in or if you add a new device for which the previously
2485          * loaded card also agrees on the regulatory domain.
2486          */
2487         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2488             !regdom_changes(driver_request->alpha2))
2489                 return REG_REQ_ALREADY_SET;
2490
2491         return REG_REQ_INTERSECT;
2492 }
2493
2494 /**
2495  * reg_process_hint_driver - process driver regulatory requests
2496  * @wiphy: the wireless device for the regulatory request
2497  * @driver_request: a pending driver regulatory request
2498  *
2499  * The wireless subsystem can use this function to process
2500  * a regulatory request issued by an 802.11 driver.
2501  *
2502  * Returns one of the different reg request treatment values.
2503  */
2504 static enum reg_request_treatment
2505 reg_process_hint_driver(struct wiphy *wiphy,
2506                         struct regulatory_request *driver_request)
2507 {
2508         const struct ieee80211_regdomain *regd, *tmp;
2509         enum reg_request_treatment treatment;
2510
2511         treatment = __reg_process_hint_driver(driver_request);
2512
2513         switch (treatment) {
2514         case REG_REQ_OK:
2515                 break;
2516         case REG_REQ_IGNORE:
2517                 return REG_REQ_IGNORE;
2518         case REG_REQ_INTERSECT:
2519         case REG_REQ_ALREADY_SET:
2520                 regd = reg_copy_regd(get_cfg80211_regdom());
2521                 if (IS_ERR(regd))
2522                         return REG_REQ_IGNORE;
2523
2524                 tmp = get_wiphy_regdom(wiphy);
2525                 rcu_assign_pointer(wiphy->regd, regd);
2526                 rcu_free_regdom(tmp);
2527         }
2528
2529
2530         driver_request->intersect = treatment == REG_REQ_INTERSECT;
2531         driver_request->processed = false;
2532
2533         /*
2534          * Since CRDA will not be called in this case as we already
2535          * have applied the requested regulatory domain before we just
2536          * inform userspace we have processed the request
2537          */
2538         if (treatment == REG_REQ_ALREADY_SET) {
2539                 nl80211_send_reg_change_event(driver_request);
2540                 reg_update_last_request(driver_request);
2541                 reg_set_request_processed();
2542                 return REG_REQ_ALREADY_SET;
2543         }
2544
2545         if (reg_query_database(driver_request)) {
2546                 reg_update_last_request(driver_request);
2547                 return REG_REQ_OK;
2548         }
2549
2550         return REG_REQ_IGNORE;
2551 }
2552
2553 static enum reg_request_treatment
2554 __reg_process_hint_country_ie(struct wiphy *wiphy,
2555                               struct regulatory_request *country_ie_request)
2556 {
2557         struct wiphy *last_wiphy = NULL;
2558         struct regulatory_request *lr = get_last_request();
2559
2560         if (reg_request_cell_base(lr)) {
2561                 /* Trust a Cell base station over the AP's country IE */
2562                 if (regdom_changes(country_ie_request->alpha2))
2563                         return REG_REQ_IGNORE;
2564                 return REG_REQ_ALREADY_SET;
2565         } else {
2566                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2567                         return REG_REQ_IGNORE;
2568         }
2569
2570         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2571                 return -EINVAL;
2572
2573         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2574                 return REG_REQ_OK;
2575
2576         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2577
2578         if (last_wiphy != wiphy) {
2579                 /*
2580                  * Two cards with two APs claiming different
2581                  * Country IE alpha2s. We could
2582                  * intersect them, but that seems unlikely
2583                  * to be correct. Reject second one for now.
2584                  */
2585                 if (regdom_changes(country_ie_request->alpha2))
2586                         return REG_REQ_IGNORE;
2587                 return REG_REQ_ALREADY_SET;
2588         }
2589
2590         if (regdom_changes(country_ie_request->alpha2))
2591                 return REG_REQ_OK;
2592         return REG_REQ_ALREADY_SET;
2593 }
2594
2595 /**
2596  * reg_process_hint_country_ie - process regulatory requests from country IEs
2597  * @wiphy: the wireless device for the regulatory request
2598  * @country_ie_request: a regulatory request from a country IE
2599  *
2600  * The wireless subsystem can use this function to process
2601  * a regulatory request issued by a country Information Element.
2602  *
2603  * Returns one of the different reg request treatment values.
2604  */
2605 static enum reg_request_treatment
2606 reg_process_hint_country_ie(struct wiphy *wiphy,
2607                             struct regulatory_request *country_ie_request)
2608 {
2609         enum reg_request_treatment treatment;
2610
2611         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2612
2613         switch (treatment) {
2614         case REG_REQ_OK:
2615                 break;
2616         case REG_REQ_IGNORE:
2617                 return REG_REQ_IGNORE;
2618         case REG_REQ_ALREADY_SET:
2619                 reg_free_request(country_ie_request);
2620                 return REG_REQ_ALREADY_SET;
2621         case REG_REQ_INTERSECT:
2622                 /*
2623                  * This doesn't happen yet, not sure we
2624                  * ever want to support it for this case.
2625                  */
2626                 WARN_ONCE(1, "Unexpected intersection for country elements");
2627                 return REG_REQ_IGNORE;
2628         }
2629
2630         country_ie_request->intersect = false;
2631         country_ie_request->processed = false;
2632
2633         if (reg_query_database(country_ie_request)) {
2634                 reg_update_last_request(country_ie_request);
2635                 return REG_REQ_OK;
2636         }
2637
2638         return REG_REQ_IGNORE;
2639 }
2640
2641 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2642 {
2643         const struct ieee80211_regdomain *wiphy1_regd = NULL;
2644         const struct ieee80211_regdomain *wiphy2_regd = NULL;
2645         const struct ieee80211_regdomain *cfg80211_regd = NULL;
2646         bool dfs_domain_same;
2647
2648         rcu_read_lock();
2649
2650         cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2651         wiphy1_regd = rcu_dereference(wiphy1->regd);
2652         if (!wiphy1_regd)
2653                 wiphy1_regd = cfg80211_regd;
2654
2655         wiphy2_regd = rcu_dereference(wiphy2->regd);
2656         if (!wiphy2_regd)
2657                 wiphy2_regd = cfg80211_regd;
2658
2659         dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2660
2661         rcu_read_unlock();
2662
2663         return dfs_domain_same;
2664 }
2665
2666 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2667                                     struct ieee80211_channel *src_chan)
2668 {
2669         if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2670             !(src_chan->flags & IEEE80211_CHAN_RADAR))
2671                 return;
2672
2673         if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2674             src_chan->flags & IEEE80211_CHAN_DISABLED)
2675                 return;
2676
2677         if (src_chan->center_freq == dst_chan->center_freq &&
2678             dst_chan->dfs_state == NL80211_DFS_USABLE) {
2679                 dst_chan->dfs_state = src_chan->dfs_state;
2680                 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2681         }
2682 }
2683
2684 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2685                                        struct wiphy *src_wiphy)
2686 {
2687         struct ieee80211_supported_band *src_sband, *dst_sband;
2688         struct ieee80211_channel *src_chan, *dst_chan;
2689         int i, j, band;
2690
2691         if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2692                 return;
2693
2694         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2695                 dst_sband = dst_wiphy->bands[band];
2696                 src_sband = src_wiphy->bands[band];
2697                 if (!dst_sband || !src_sband)
2698                         continue;
2699
2700                 for (i = 0; i < dst_sband->n_channels; i++) {
2701                         dst_chan = &dst_sband->channels[i];
2702                         for (j = 0; j < src_sband->n_channels; j++) {
2703                                 src_chan = &src_sband->channels[j];
2704                                 reg_copy_dfs_chan_state(dst_chan, src_chan);
2705                         }
2706                 }
2707         }
2708 }
2709
2710 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2711 {
2712         struct cfg80211_registered_device *rdev;
2713
2714         ASSERT_RTNL();
2715
2716         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2717                 if (wiphy == &rdev->wiphy)
2718                         continue;
2719                 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2720         }
2721 }
2722
2723 /* This processes *all* regulatory hints */
2724 static void reg_process_hint(struct regulatory_request *reg_request)
2725 {
2726         struct wiphy *wiphy = NULL;
2727         enum reg_request_treatment treatment;
2728         enum nl80211_reg_initiator initiator = reg_request->initiator;
2729
2730         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2731                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2732
2733         switch (initiator) {
2734         case NL80211_REGDOM_SET_BY_CORE:
2735                 treatment = reg_process_hint_core(reg_request);
2736                 break;
2737         case NL80211_REGDOM_SET_BY_USER:
2738                 treatment = reg_process_hint_user(reg_request);
2739                 break;
2740         case NL80211_REGDOM_SET_BY_DRIVER:
2741                 if (!wiphy)
2742                         goto out_free;
2743                 treatment = reg_process_hint_driver(wiphy, reg_request);
2744                 break;
2745         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2746                 if (!wiphy)
2747                         goto out_free;
2748                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2749                 break;
2750         default:
2751                 WARN(1, "invalid initiator %d\n", initiator);
2752                 goto out_free;
2753         }
2754
2755         if (treatment == REG_REQ_IGNORE)
2756                 goto out_free;
2757
2758         WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2759              "unexpected treatment value %d\n", treatment);
2760
2761         /* This is required so that the orig_* parameters are saved.
2762          * NOTE: treatment must be set for any case that reaches here!
2763          */
2764         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2765             wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2766                 wiphy_update_regulatory(wiphy, initiator);
2767                 wiphy_all_share_dfs_chan_state(wiphy);
2768                 reg_check_channels();
2769         }
2770
2771         return;
2772
2773 out_free:
2774         reg_free_request(reg_request);
2775 }
2776
2777 static void notify_self_managed_wiphys(struct regulatory_request *request)
2778 {
2779         struct cfg80211_registered_device *rdev;
2780         struct wiphy *wiphy;
2781
2782         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2783                 wiphy = &rdev->wiphy;
2784                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
2785                     request->initiator == NL80211_REGDOM_SET_BY_USER)
2786                         reg_call_notifier(wiphy, request);
2787         }
2788 }
2789
2790 /*
2791  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2792  * Regulatory hints come on a first come first serve basis and we
2793  * must process each one atomically.
2794  */
2795 static void reg_process_pending_hints(void)
2796 {
2797         struct regulatory_request *reg_request, *lr;
2798
2799         lr = get_last_request();
2800
2801         /* When last_request->processed becomes true this will be rescheduled */
2802         if (lr && !lr->processed) {
2803                 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
2804                 return;
2805         }
2806
2807         spin_lock(&reg_requests_lock);
2808
2809         if (list_empty(&reg_requests_list)) {
2810                 spin_unlock(&reg_requests_lock);
2811                 return;
2812         }
2813
2814         reg_request = list_first_entry(&reg_requests_list,
2815                                        struct regulatory_request,
2816                                        list);
2817         list_del_init(&reg_request->list);
2818
2819         spin_unlock(&reg_requests_lock);
2820
2821         notify_self_managed_wiphys(reg_request);
2822
2823         reg_process_hint(reg_request);
2824
2825         lr = get_last_request();
2826
2827         spin_lock(&reg_requests_lock);
2828         if (!list_empty(&reg_requests_list) && lr && lr->processed)
2829                 schedule_work(&reg_work);
2830         spin_unlock(&reg_requests_lock);
2831 }
2832
2833 /* Processes beacon hints -- this has nothing to do with country IEs */
2834 static void reg_process_pending_beacon_hints(void)
2835 {
2836         struct cfg80211_registered_device *rdev;
2837         struct reg_beacon *pending_beacon, *tmp;
2838
2839         /* This goes through the _pending_ beacon list */
2840         spin_lock_bh(&reg_pending_beacons_lock);
2841
2842         list_for_each_entry_safe(pending_beacon, tmp,
2843                                  &reg_pending_beacons, list) {
2844                 list_del_init(&pending_beacon->list);
2845
2846                 /* Applies the beacon hint to current wiphys */
2847                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2848                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2849
2850                 /* Remembers the beacon hint for new wiphys or reg changes */
2851                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2852         }
2853
2854         spin_unlock_bh(&reg_pending_beacons_lock);
2855 }
2856
2857 static void reg_process_self_managed_hints(void)
2858 {
2859         struct cfg80211_registered_device *rdev;
2860         struct wiphy *wiphy;
2861         const struct ieee80211_regdomain *tmp;
2862         const struct ieee80211_regdomain *regd;
2863         enum nl80211_band band;
2864         struct regulatory_request request = {};
2865
2866         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2867                 wiphy = &rdev->wiphy;
2868
2869                 spin_lock(&reg_requests_lock);
2870                 regd = rdev->requested_regd;
2871                 rdev->requested_regd = NULL;
2872                 spin_unlock(&reg_requests_lock);
2873
2874                 if (regd == NULL)
2875                         continue;
2876
2877                 tmp = get_wiphy_regdom(wiphy);
2878                 rcu_assign_pointer(wiphy->regd, regd);
2879                 rcu_free_regdom(tmp);
2880
2881                 for (band = 0; band < NUM_NL80211_BANDS; band++)
2882                         handle_band_custom(wiphy, wiphy->bands[band], regd);
2883
2884                 reg_process_ht_flags(wiphy);
2885
2886                 request.wiphy_idx = get_wiphy_idx(wiphy);
2887                 request.alpha2[0] = regd->alpha2[0];
2888                 request.alpha2[1] = regd->alpha2[1];
2889                 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2890
2891                 nl80211_send_wiphy_reg_change_event(&request);
2892         }
2893
2894         reg_check_channels();
2895 }
2896
2897 static void reg_todo(struct work_struct *work)
2898 {
2899         rtnl_lock();
2900         reg_process_pending_hints();
2901         reg_process_pending_beacon_hints();
2902         reg_process_self_managed_hints();
2903         rtnl_unlock();
2904 }
2905
2906 static void queue_regulatory_request(struct regulatory_request *request)
2907 {
2908         request->alpha2[0] = toupper(request->alpha2[0]);
2909         request->alpha2[1] = toupper(request->alpha2[1]);
2910
2911         spin_lock(&reg_requests_lock);
2912         list_add_tail(&request->list, &reg_requests_list);
2913         spin_unlock(&reg_requests_lock);
2914
2915         schedule_work(&reg_work);
2916 }
2917
2918 /*
2919  * Core regulatory hint -- happens during cfg80211_init()
2920  * and when we restore regulatory settings.
2921  */
2922 static int regulatory_hint_core(const char *alpha2)
2923 {
2924         struct regulatory_request *request;
2925
2926         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2927         if (!request)
2928                 return -ENOMEM;
2929
2930         request->alpha2[0] = alpha2[0];
2931         request->alpha2[1] = alpha2[1];
2932         request->initiator = NL80211_REGDOM_SET_BY_CORE;
2933         request->wiphy_idx = WIPHY_IDX_INVALID;
2934
2935         queue_regulatory_request(request);
2936
2937         return 0;
2938 }
2939
2940 /* User hints */
2941 int regulatory_hint_user(const char *alpha2,
2942                          enum nl80211_user_reg_hint_type user_reg_hint_type)
2943 {
2944         struct regulatory_request *request;
2945
2946         if (WARN_ON(!alpha2))
2947                 return -EINVAL;
2948
2949         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2950         if (!request)
2951                 return -ENOMEM;
2952
2953         request->wiphy_idx = WIPHY_IDX_INVALID;
2954         request->alpha2[0] = alpha2[0];
2955         request->alpha2[1] = alpha2[1];
2956         request->initiator = NL80211_REGDOM_SET_BY_USER;
2957         request->user_reg_hint_type = user_reg_hint_type;
2958
2959         /* Allow calling CRDA again */
2960         reset_crda_timeouts();
2961
2962         queue_regulatory_request(request);
2963
2964         return 0;
2965 }
2966
2967 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2968 {
2969         spin_lock(&reg_indoor_lock);
2970
2971         /* It is possible that more than one user space process is trying to
2972          * configure the indoor setting. To handle such cases, clear the indoor
2973          * setting in case that some process does not think that the device
2974          * is operating in an indoor environment. In addition, if a user space
2975          * process indicates that it is controlling the indoor setting, save its
2976          * portid, i.e., make it the owner.
2977          */
2978         reg_is_indoor = is_indoor;
2979         if (reg_is_indoor) {
2980                 if (!reg_is_indoor_portid)
2981                         reg_is_indoor_portid = portid;
2982         } else {
2983                 reg_is_indoor_portid = 0;
2984         }
2985
2986         spin_unlock(&reg_indoor_lock);
2987
2988         if (!is_indoor)
2989                 reg_check_channels();
2990
2991         return 0;
2992 }
2993
2994 void regulatory_netlink_notify(u32 portid)
2995 {
2996         spin_lock(&reg_indoor_lock);
2997
2998         if (reg_is_indoor_portid != portid) {
2999                 spin_unlock(&reg_indoor_lock);
3000                 return;
3001         }
3002
3003         reg_is_indoor = false;
3004         reg_is_indoor_portid = 0;
3005
3006         spin_unlock(&reg_indoor_lock);
3007
3008         reg_check_channels();
3009 }
3010
3011 /* Driver hints */
3012 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3013 {
3014         struct regulatory_request *request;
3015
3016         if (WARN_ON(!alpha2 || !wiphy))
3017                 return -EINVAL;
3018
3019         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3020
3021         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3022         if (!request)
3023                 return -ENOMEM;
3024
3025         request->wiphy_idx = get_wiphy_idx(wiphy);
3026
3027         request->alpha2[0] = alpha2[0];
3028         request->alpha2[1] = alpha2[1];
3029         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3030
3031         /* Allow calling CRDA again */
3032         reset_crda_timeouts();
3033
3034         queue_regulatory_request(request);
3035
3036         return 0;
3037 }
3038 EXPORT_SYMBOL(regulatory_hint);
3039
3040 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3041                                 const u8 *country_ie, u8 country_ie_len)
3042 {
3043         char alpha2[2];
3044         enum environment_cap env = ENVIRON_ANY;
3045         struct regulatory_request *request = NULL, *lr;
3046
3047         /* IE len must be evenly divisible by 2 */
3048         if (country_ie_len & 0x01)
3049                 return;
3050
3051         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3052                 return;
3053
3054         request = kzalloc(sizeof(*request), GFP_KERNEL);
3055         if (!request)
3056                 return;
3057
3058         alpha2[0] = country_ie[0];
3059         alpha2[1] = country_ie[1];
3060
3061         if (country_ie[2] == 'I')
3062                 env = ENVIRON_INDOOR;
3063         else if (country_ie[2] == 'O')
3064                 env = ENVIRON_OUTDOOR;
3065
3066         rcu_read_lock();
3067         lr = get_last_request();
3068
3069         if (unlikely(!lr))
3070                 goto out;
3071
3072         /*
3073          * We will run this only upon a successful connection on cfg80211.
3074          * We leave conflict resolution to the workqueue, where can hold
3075          * the RTNL.
3076          */
3077         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3078             lr->wiphy_idx != WIPHY_IDX_INVALID)
3079                 goto out;
3080
3081         request->wiphy_idx = get_wiphy_idx(wiphy);
3082         request->alpha2[0] = alpha2[0];
3083         request->alpha2[1] = alpha2[1];
3084         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3085         request->country_ie_env = env;
3086
3087         /* Allow calling CRDA again */
3088         reset_crda_timeouts();
3089
3090         queue_regulatory_request(request);
3091         request = NULL;
3092 out:
3093         kfree(request);
3094         rcu_read_unlock();
3095 }
3096
3097 static void restore_alpha2(char *alpha2, bool reset_user)
3098 {
3099         /* indicates there is no alpha2 to consider for restoration */
3100         alpha2[0] = '9';
3101         alpha2[1] = '7';
3102
3103         /* The user setting has precedence over the module parameter */
3104         if (is_user_regdom_saved()) {
3105                 /* Unless we're asked to ignore it and reset it */
3106                 if (reset_user) {
3107                         pr_debug("Restoring regulatory settings including user preference\n");
3108                         user_alpha2[0] = '9';
3109                         user_alpha2[1] = '7';
3110
3111                         /*
3112                          * If we're ignoring user settings, we still need to
3113                          * check the module parameter to ensure we put things
3114                          * back as they were for a full restore.
3115                          */
3116                         if (!is_world_regdom(ieee80211_regdom)) {
3117                                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3118                                          ieee80211_regdom[0], ieee80211_regdom[1]);
3119                                 alpha2[0] = ieee80211_regdom[0];
3120                                 alpha2[1] = ieee80211_regdom[1];
3121                         }
3122                 } else {
3123                         pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3124                                  user_alpha2[0], user_alpha2[1]);
3125                         alpha2[0] = user_alpha2[0];
3126                         alpha2[1] = user_alpha2[1];
3127                 }
3128         } else if (!is_world_regdom(ieee80211_regdom)) {
3129                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3130                          ieee80211_regdom[0], ieee80211_regdom[1]);
3131                 alpha2[0] = ieee80211_regdom[0];
3132                 alpha2[1] = ieee80211_regdom[1];
3133         } else
3134                 pr_debug("Restoring regulatory settings\n");
3135 }
3136
3137 static void restore_custom_reg_settings(struct wiphy *wiphy)
3138 {
3139         struct ieee80211_supported_band *sband;
3140         enum nl80211_band band;
3141         struct ieee80211_channel *chan;
3142         int i;
3143
3144         for (band = 0; band < NUM_NL80211_BANDS; band++) {
3145                 sband = wiphy->bands[band];
3146                 if (!sband)
3147                         continue;
3148                 for (i = 0; i < sband->n_channels; i++) {
3149                         chan = &sband->channels[i];
3150                         chan->flags = chan->orig_flags;
3151                         chan->max_antenna_gain = chan->orig_mag;
3152                         chan->max_power = chan->orig_mpwr;
3153                         chan->beacon_found = false;
3154                 }
3155         }
3156 }
3157
3158 /*
3159  * Restoring regulatory settings involves ingoring any
3160  * possibly stale country IE information and user regulatory
3161  * settings if so desired, this includes any beacon hints
3162  * learned as we could have traveled outside to another country
3163  * after disconnection. To restore regulatory settings we do
3164  * exactly what we did at bootup:
3165  *
3166  *   - send a core regulatory hint
3167  *   - send a user regulatory hint if applicable
3168  *
3169  * Device drivers that send a regulatory hint for a specific country
3170  * keep their own regulatory domain on wiphy->regd so that does does
3171  * not need to be remembered.
3172  */
3173 static void restore_regulatory_settings(bool reset_user, bool cached)
3174 {
3175         char alpha2[2];
3176         char world_alpha2[2];
3177         struct reg_beacon *reg_beacon, *btmp;
3178         LIST_HEAD(tmp_reg_req_list);
3179         struct cfg80211_registered_device *rdev;
3180
3181         ASSERT_RTNL();
3182
3183         /*
3184          * Clear the indoor setting in case that it is not controlled by user
3185          * space, as otherwise there is no guarantee that the device is still
3186          * operating in an indoor environment.
3187          */
3188         spin_lock(&reg_indoor_lock);
3189         if (reg_is_indoor && !reg_is_indoor_portid) {
3190                 reg_is_indoor = false;
3191                 reg_check_channels();
3192         }
3193         spin_unlock(&reg_indoor_lock);
3194
3195         reset_regdomains(true, &world_regdom);
3196         restore_alpha2(alpha2, reset_user);
3197
3198         /*
3199          * If there's any pending requests we simply
3200          * stash them to a temporary pending queue and
3201          * add then after we've restored regulatory
3202          * settings.
3203          */
3204         spin_lock(&reg_requests_lock);
3205         list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3206         spin_unlock(&reg_requests_lock);
3207
3208         /* Clear beacon hints */
3209         spin_lock_bh(&reg_pending_beacons_lock);
3210         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3211                 list_del(&reg_beacon->list);
3212                 kfree(reg_beacon);
3213         }
3214         spin_unlock_bh(&reg_pending_beacons_lock);
3215
3216         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3217                 list_del(&reg_beacon->list);
3218                 kfree(reg_beacon);
3219         }
3220
3221         /* First restore to the basic regulatory settings */
3222         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3223         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3224
3225         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3226                 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3227                         continue;
3228                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3229                         restore_custom_reg_settings(&rdev->wiphy);
3230         }
3231
3232         if (cached && (!is_an_alpha2(alpha2) ||
3233                        !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3234                 reset_regdomains(false, cfg80211_world_regdom);
3235                 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3236                 print_regdomain(get_cfg80211_regdom());
3237                 nl80211_send_reg_change_event(&core_request_world);
3238                 reg_set_request_processed();
3239
3240                 if (is_an_alpha2(alpha2) &&
3241                     !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3242                         struct regulatory_request *ureq;
3243
3244                         spin_lock(&reg_requests_lock);
3245                         ureq = list_last_entry(&reg_requests_list,
3246                                                struct regulatory_request,
3247                                                list);
3248                         list_del(&ureq->list);
3249                         spin_unlock(&reg_requests_lock);
3250
3251                         notify_self_managed_wiphys(ureq);
3252                         reg_update_last_request(ureq);
3253                         set_regdom(reg_copy_regd(cfg80211_user_regdom),
3254                                    REGD_SOURCE_CACHED);
3255                 }
3256         } else {
3257                 regulatory_hint_core(world_alpha2);
3258
3259                 /*
3260                  * This restores the ieee80211_regdom module parameter
3261                  * preference or the last user requested regulatory
3262                  * settings, user regulatory settings takes precedence.
3263                  */
3264                 if (is_an_alpha2(alpha2))
3265                         regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3266         }
3267
3268         spin_lock(&reg_requests_lock);
3269         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3270         spin_unlock(&reg_requests_lock);
3271
3272         pr_debug("Kicking the queue\n");
3273
3274         schedule_work(&reg_work);
3275 }
3276
3277 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3278 {
3279         struct cfg80211_registered_device *rdev;
3280         struct wireless_dev *wdev;
3281
3282         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3283                 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3284                         wdev_lock(wdev);
3285                         if (!(wdev->wiphy->regulatory_flags & flag)) {
3286                                 wdev_unlock(wdev);
3287                                 return false;
3288                         }
3289                         wdev_unlock(wdev);
3290                 }
3291         }
3292
3293         return true;
3294 }
3295
3296 void regulatory_hint_disconnect(void)
3297 {
3298         /* Restore of regulatory settings is not required when wiphy(s)
3299          * ignore IE from connected access point but clearance of beacon hints
3300          * is required when wiphy(s) supports beacon hints.
3301          */
3302         if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3303                 struct reg_beacon *reg_beacon, *btmp;
3304
3305                 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3306                         return;
3307
3308                 spin_lock_bh(&reg_pending_beacons_lock);
3309                 list_for_each_entry_safe(reg_beacon, btmp,
3310                                          &reg_pending_beacons, list) {
3311                         list_del(&reg_beacon->list);
3312                         kfree(reg_beacon);
3313                 }
3314                 spin_unlock_bh(&reg_pending_beacons_lock);
3315
3316                 list_for_each_entry_safe(reg_beacon, btmp,
3317                                          &reg_beacon_list, list) {
3318                         list_del(&reg_beacon->list);
3319                         kfree(reg_beacon);
3320                 }
3321
3322                 return;
3323         }
3324
3325         pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3326         restore_regulatory_settings(false, true);
3327 }
3328
3329 static bool freq_is_chan_12_13_14(u32 freq)
3330 {
3331         if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3332             freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3333             freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3334                 return true;
3335         return false;
3336 }
3337
3338 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3339 {
3340         struct reg_beacon *pending_beacon;
3341
3342         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3343                 if (ieee80211_channel_equal(beacon_chan,
3344                                             &pending_beacon->chan))
3345                         return true;
3346         return false;
3347 }
3348
3349 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3350                                  struct ieee80211_channel *beacon_chan,
3351                                  gfp_t gfp)
3352 {
3353         struct reg_beacon *reg_beacon;
3354         bool processing;
3355
3356         if (beacon_chan->beacon_found ||
3357             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3358             (beacon_chan->band == NL80211_BAND_2GHZ &&
3359              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3360                 return 0;
3361
3362         spin_lock_bh(&reg_pending_beacons_lock);
3363         processing = pending_reg_beacon(beacon_chan);
3364         spin_unlock_bh(&reg_pending_beacons_lock);
3365
3366         if (processing)
3367                 return 0;
3368
3369         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3370         if (!reg_beacon)
3371                 return -ENOMEM;
3372
3373         pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3374                  beacon_chan->center_freq, beacon_chan->freq_offset,
3375                  ieee80211_freq_khz_to_channel(
3376                          ieee80211_channel_to_khz(beacon_chan)),
3377                  wiphy_name(wiphy));
3378
3379         memcpy(&reg_beacon->chan, beacon_chan,
3380                sizeof(struct ieee80211_channel));
3381
3382         /*
3383          * Since we can be called from BH or and non-BH context
3384          * we must use spin_lock_bh()
3385          */
3386         spin_lock_bh(&reg_pending_beacons_lock);
3387         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3388         spin_unlock_bh(&reg_pending_beacons_lock);
3389
3390         schedule_work(&reg_work);
3391
3392         return 0;
3393 }
3394
3395 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3396 {
3397         unsigned int i;
3398         const struct ieee80211_reg_rule *reg_rule = NULL;
3399         const struct ieee80211_freq_range *freq_range = NULL;
3400         const struct ieee80211_power_rule *power_rule = NULL;
3401         char bw[32], cac_time[32];
3402
3403         pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3404
3405         for (i = 0; i < rd->n_reg_rules; i++) {
3406                 reg_rule = &rd->reg_rules[i];
3407                 freq_range = &reg_rule->freq_range;
3408                 power_rule = &reg_rule->power_rule;
3409
3410                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3411                         snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
3412                                  freq_range->max_bandwidth_khz,
3413                                  reg_get_max_bandwidth(rd, reg_rule));
3414                 else
3415                         snprintf(bw, sizeof(bw), "%d KHz",
3416                                  freq_range->max_bandwidth_khz);
3417
3418                 if (reg_rule->flags & NL80211_RRF_DFS)
3419                         scnprintf(cac_time, sizeof(cac_time), "%u s",
3420                                   reg_rule->dfs_cac_ms/1000);
3421                 else
3422                         scnprintf(cac_time, sizeof(cac_time), "N/A");
3423
3424
3425                 /*
3426                  * There may not be documentation for max antenna gain
3427                  * in certain regions
3428                  */
3429                 if (power_rule->max_antenna_gain)
3430                         pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3431                                 freq_range->start_freq_khz,
3432                                 freq_range->end_freq_khz,
3433                                 bw,
3434                                 power_rule->max_antenna_gain,
3435                                 power_rule->max_eirp,
3436                                 cac_time);
3437                 else
3438                         pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3439                                 freq_range->start_freq_khz,
3440                                 freq_range->end_freq_khz,
3441                                 bw,
3442                                 power_rule->max_eirp,
3443                                 cac_time);
3444         }
3445 }
3446
3447 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3448 {
3449         switch (dfs_region) {
3450         case NL80211_DFS_UNSET:
3451         case NL80211_DFS_FCC:
3452         case NL80211_DFS_ETSI:
3453         case NL80211_DFS_JP:
3454                 return true;
3455         default:
3456                 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3457                 return false;
3458         }
3459 }
3460
3461 static void print_regdomain(const struct ieee80211_regdomain *rd)
3462 {
3463         struct regulatory_request *lr = get_last_request();
3464
3465         if (is_intersected_alpha2(rd->alpha2)) {
3466                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3467                         struct cfg80211_registered_device *rdev;
3468                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3469                         if (rdev) {
3470                                 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3471                                         rdev->country_ie_alpha2[0],
3472                                         rdev->country_ie_alpha2[1]);
3473                         } else
3474                                 pr_debug("Current regulatory domain intersected:\n");
3475                 } else
3476                         pr_debug("Current regulatory domain intersected:\n");
3477         } else if (is_world_regdom(rd->alpha2)) {
3478                 pr_debug("World regulatory domain updated:\n");
3479         } else {
3480                 if (is_unknown_alpha2(rd->alpha2))
3481                         pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3482                 else {
3483                         if (reg_request_cell_base(lr))
3484                                 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3485                                         rd->alpha2[0], rd->alpha2[1]);
3486                         else
3487                                 pr_debug("Regulatory domain changed to country: %c%c\n",
3488                                         rd->alpha2[0], rd->alpha2[1]);
3489                 }
3490         }
3491
3492         pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3493         print_rd_rules(rd);
3494 }
3495
3496 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3497 {
3498         pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3499         print_rd_rules(rd);
3500 }
3501
3502 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3503 {
3504         if (!is_world_regdom(rd->alpha2))
3505                 return -EINVAL;
3506         update_world_regdomain(rd);
3507         return 0;
3508 }
3509
3510 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3511                            struct regulatory_request *user_request)
3512 {
3513         const struct ieee80211_regdomain *intersected_rd = NULL;
3514
3515         if (!regdom_changes(rd->alpha2))
3516                 return -EALREADY;
3517
3518         if (!is_valid_rd(rd)) {
3519                 pr_err("Invalid regulatory domain detected: %c%c\n",
3520                        rd->alpha2[0], rd->alpha2[1]);
3521                 print_regdomain_info(rd);
3522                 return -EINVAL;
3523         }
3524
3525         if (!user_request->intersect) {
3526                 reset_regdomains(false, rd);
3527                 return 0;
3528         }
3529
3530         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3531         if (!intersected_rd)
3532                 return -EINVAL;
3533
3534         kfree(rd);
3535         rd = NULL;
3536         reset_regdomains(false, intersected_rd);
3537
3538         return 0;
3539 }
3540
3541 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3542                              struct regulatory_request *driver_request)
3543 {
3544         const struct ieee80211_regdomain *regd;
3545         const struct ieee80211_regdomain *intersected_rd = NULL;
3546         const struct ieee80211_regdomain *tmp;
3547         struct wiphy *request_wiphy;
3548
3549         if (is_world_regdom(rd->alpha2))
3550                 return -EINVAL;
3551
3552         if (!regdom_changes(rd->alpha2))
3553                 return -EALREADY;
3554
3555         if (!is_valid_rd(rd)) {
3556                 pr_err("Invalid regulatory domain detected: %c%c\n",
3557                        rd->alpha2[0], rd->alpha2[1]);
3558                 print_regdomain_info(rd);
3559                 return -EINVAL;
3560         }
3561
3562         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3563         if (!request_wiphy)
3564                 return -ENODEV;
3565
3566         if (!driver_request->intersect) {
3567                 if (request_wiphy->regd)
3568                         return -EALREADY;
3569
3570                 regd = reg_copy_regd(rd);
3571                 if (IS_ERR(regd))
3572                         return PTR_ERR(regd);
3573
3574                 rcu_assign_pointer(request_wiphy->regd, regd);
3575                 reset_regdomains(false, rd);
3576                 return 0;
3577         }
3578
3579         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3580         if (!intersected_rd)
3581                 return -EINVAL;
3582
3583         /*
3584          * We can trash what CRDA provided now.
3585          * However if a driver requested this specific regulatory
3586          * domain we keep it for its private use
3587          */
3588         tmp = get_wiphy_regdom(request_wiphy);
3589         rcu_assign_pointer(request_wiphy->regd, rd);
3590         rcu_free_regdom(tmp);
3591
3592         rd = NULL;
3593
3594         reset_regdomains(false, intersected_rd);
3595
3596         return 0;
3597 }
3598
3599 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3600                                  struct regulatory_request *country_ie_request)
3601 {
3602         struct wiphy *request_wiphy;
3603
3604         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3605             !is_unknown_alpha2(rd->alpha2))
3606                 return -EINVAL;
3607
3608         /*
3609          * Lets only bother proceeding on the same alpha2 if the current
3610          * rd is non static (it means CRDA was present and was used last)
3611          * and the pending request came in from a country IE
3612          */
3613
3614         if (!is_valid_rd(rd)) {
3615                 pr_err("Invalid regulatory domain detected: %c%c\n",
3616                        rd->alpha2[0], rd->alpha2[1]);
3617                 print_regdomain_info(rd);
3618                 return -EINVAL;
3619         }
3620
3621         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3622         if (!request_wiphy)
3623                 return -ENODEV;
3624
3625         if (country_ie_request->intersect)
3626                 return -EINVAL;
3627
3628         reset_regdomains(false, rd);
3629         return 0;
3630 }
3631
3632 /*
3633  * Use this call to set the current regulatory domain. Conflicts with
3634  * multiple drivers can be ironed out later. Caller must've already
3635  * kmalloc'd the rd structure.
3636  */
3637 int set_regdom(const struct ieee80211_regdomain *rd,
3638                enum ieee80211_regd_source regd_src)
3639 {
3640         struct regulatory_request *lr;
3641         bool user_reset = false;
3642         int r;
3643
3644         if (IS_ERR_OR_NULL(rd))
3645                 return -ENODATA;
3646
3647         if (!reg_is_valid_request(rd->alpha2)) {
3648                 kfree(rd);
3649                 return -EINVAL;
3650         }
3651
3652         if (regd_src == REGD_SOURCE_CRDA)
3653                 reset_crda_timeouts();
3654
3655         lr = get_last_request();
3656
3657         /* Note that this doesn't update the wiphys, this is done below */
3658         switch (lr->initiator) {
3659         case NL80211_REGDOM_SET_BY_CORE:
3660                 r = reg_set_rd_core(rd);
3661                 break;
3662         case NL80211_REGDOM_SET_BY_USER:
3663                 cfg80211_save_user_regdom(rd);
3664                 r = reg_set_rd_user(rd, lr);
3665                 user_reset = true;
3666                 break;
3667         case NL80211_REGDOM_SET_BY_DRIVER:
3668                 r = reg_set_rd_driver(rd, lr);
3669                 break;
3670         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3671                 r = reg_set_rd_country_ie(rd, lr);
3672                 break;
3673         default:
3674                 WARN(1, "invalid initiator %d\n", lr->initiator);
3675                 kfree(rd);
3676                 return -EINVAL;
3677         }
3678
3679         if (r) {
3680                 switch (r) {
3681                 case -EALREADY:
3682                         reg_set_request_processed();
3683                         break;
3684                 default:
3685                         /* Back to world regulatory in case of errors */
3686                         restore_regulatory_settings(user_reset, false);
3687                 }
3688
3689                 kfree(rd);
3690                 return r;
3691         }
3692
3693         /* This would make this whole thing pointless */
3694         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3695                 return -EINVAL;
3696
3697         /* update all wiphys now with the new established regulatory domain */
3698         update_all_wiphy_regulatory(lr->initiator);
3699
3700         print_regdomain(get_cfg80211_regdom());
3701
3702         nl80211_send_reg_change_event(lr);
3703
3704         reg_set_request_processed();
3705
3706         return 0;
3707 }
3708
3709 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3710                                        struct ieee80211_regdomain *rd)
3711 {
3712         const struct ieee80211_regdomain *regd;
3713         const struct ieee80211_regdomain *prev_regd;
3714         struct cfg80211_registered_device *rdev;
3715
3716         if (WARN_ON(!wiphy || !rd))
3717                 return -EINVAL;
3718
3719         if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3720                  "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3721                 return -EPERM;
3722
3723         if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3724                 print_regdomain_info(rd);
3725                 return -EINVAL;
3726         }
3727
3728         regd = reg_copy_regd(rd);
3729         if (IS_ERR(regd))
3730                 return PTR_ERR(regd);
3731
3732         rdev = wiphy_to_rdev(wiphy);
3733
3734         spin_lock(&reg_requests_lock);
3735         prev_regd = rdev->requested_regd;
3736         rdev->requested_regd = regd;
3737         spin_unlock(&reg_requests_lock);
3738
3739         kfree(prev_regd);
3740         return 0;
3741 }
3742
3743 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3744                               struct ieee80211_regdomain *rd)
3745 {
3746         int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3747
3748         if (ret)
3749                 return ret;
3750
3751         schedule_work(&reg_work);
3752         return 0;
3753 }
3754 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3755
3756 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3757                                         struct ieee80211_regdomain *rd)
3758 {
3759         int ret;
3760
3761         ASSERT_RTNL();
3762
3763         ret = __regulatory_set_wiphy_regd(wiphy, rd);
3764         if (ret)
3765                 return ret;
3766
3767         /* process the request immediately */
3768         reg_process_self_managed_hints();
3769         return 0;
3770 }
3771 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3772
3773 void wiphy_regulatory_register(struct wiphy *wiphy)
3774 {
3775         struct regulatory_request *lr = get_last_request();
3776
3777         /* self-managed devices ignore beacon hints and country IE */
3778         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
3779                 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3780                                            REGULATORY_COUNTRY_IE_IGNORE;
3781
3782                 /*
3783                  * The last request may have been received before this
3784                  * registration call. Call the driver notifier if
3785                  * initiator is USER.
3786                  */
3787                 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
3788                         reg_call_notifier(wiphy, lr);
3789         }
3790
3791         if (!reg_dev_ignore_cell_hint(wiphy))
3792                 reg_num_devs_support_basehint++;
3793
3794         wiphy_update_regulatory(wiphy, lr->initiator);
3795         wiphy_all_share_dfs_chan_state(wiphy);
3796 }
3797
3798 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3799 {
3800         struct wiphy *request_wiphy = NULL;
3801         struct regulatory_request *lr;
3802
3803         lr = get_last_request();
3804
3805         if (!reg_dev_ignore_cell_hint(wiphy))
3806                 reg_num_devs_support_basehint--;
3807
3808         rcu_free_regdom(get_wiphy_regdom(wiphy));
3809         RCU_INIT_POINTER(wiphy->regd, NULL);
3810
3811         if (lr)
3812                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3813
3814         if (!request_wiphy || request_wiphy != wiphy)
3815                 return;
3816
3817         lr->wiphy_idx = WIPHY_IDX_INVALID;
3818         lr->country_ie_env = ENVIRON_ANY;
3819 }
3820
3821 /*
3822  * See FCC notices for UNII band definitions
3823  *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
3824  *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
3825  */
3826 int cfg80211_get_unii(int freq)
3827 {
3828         /* UNII-1 */
3829         if (freq >= 5150 && freq <= 5250)
3830                 return 0;
3831
3832         /* UNII-2A */
3833         if (freq > 5250 && freq <= 5350)
3834                 return 1;
3835
3836         /* UNII-2B */
3837         if (freq > 5350 && freq <= 5470)
3838                 return 2;
3839
3840         /* UNII-2C */
3841         if (freq > 5470 && freq <= 5725)
3842                 return 3;
3843
3844         /* UNII-3 */
3845         if (freq > 5725 && freq <= 5825)
3846                 return 4;
3847
3848         /* UNII-5 */
3849         if (freq > 5925 && freq <= 6425)
3850                 return 5;
3851
3852         /* UNII-6 */
3853         if (freq > 6425 && freq <= 6525)
3854                 return 6;
3855
3856         /* UNII-7 */
3857         if (freq > 6525 && freq <= 6875)
3858                 return 7;
3859
3860         /* UNII-8 */
3861         if (freq > 6875 && freq <= 7125)
3862                 return 8;
3863
3864         return -EINVAL;
3865 }
3866
3867 bool regulatory_indoor_allowed(void)
3868 {
3869         return reg_is_indoor;
3870 }
3871
3872 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
3873 {
3874         const struct ieee80211_regdomain *regd = NULL;
3875         const struct ieee80211_regdomain *wiphy_regd = NULL;
3876         bool pre_cac_allowed = false;
3877
3878         rcu_read_lock();
3879
3880         regd = rcu_dereference(cfg80211_regdomain);
3881         wiphy_regd = rcu_dereference(wiphy->regd);
3882         if (!wiphy_regd) {
3883                 if (regd->dfs_region == NL80211_DFS_ETSI)
3884                         pre_cac_allowed = true;
3885
3886                 rcu_read_unlock();
3887
3888                 return pre_cac_allowed;
3889         }
3890
3891         if (regd->dfs_region == wiphy_regd->dfs_region &&
3892             wiphy_regd->dfs_region == NL80211_DFS_ETSI)
3893                 pre_cac_allowed = true;
3894
3895         rcu_read_unlock();
3896
3897         return pre_cac_allowed;
3898 }
3899 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
3900
3901 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
3902 {
3903         struct wireless_dev *wdev;
3904         /* If we finished CAC or received radar, we should end any
3905          * CAC running on the same channels.
3906          * the check !cfg80211_chandef_dfs_usable contain 2 options:
3907          * either all channels are available - those the CAC_FINISHED
3908          * event has effected another wdev state, or there is a channel
3909          * in unavailable state in wdev chandef - those the RADAR_DETECTED
3910          * event has effected another wdev state.
3911          * In both cases we should end the CAC on the wdev.
3912          */
3913         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3914                 if (wdev->cac_started &&
3915                     !cfg80211_chandef_dfs_usable(&rdev->wiphy, &wdev->chandef))
3916                         rdev_end_cac(rdev, wdev->netdev);
3917         }
3918 }
3919
3920 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
3921                                     struct cfg80211_chan_def *chandef,
3922                                     enum nl80211_dfs_state dfs_state,
3923                                     enum nl80211_radar_event event)
3924 {
3925         struct cfg80211_registered_device *rdev;
3926
3927         ASSERT_RTNL();
3928
3929         if (WARN_ON(!cfg80211_chandef_valid(chandef)))
3930                 return;
3931
3932         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3933                 if (wiphy == &rdev->wiphy)
3934                         continue;
3935
3936                 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
3937                         continue;
3938
3939                 if (!ieee80211_get_channel(&rdev->wiphy,
3940                                            chandef->chan->center_freq))
3941                         continue;
3942
3943                 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
3944
3945                 if (event == NL80211_RADAR_DETECTED ||
3946                     event == NL80211_RADAR_CAC_FINISHED) {
3947                         cfg80211_sched_dfs_chan_update(rdev);
3948                         cfg80211_check_and_end_cac(rdev);
3949                 }
3950
3951                 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
3952         }
3953 }
3954
3955 static int __init regulatory_init_db(void)
3956 {
3957         int err;
3958
3959         /*
3960          * It's possible that - due to other bugs/issues - cfg80211
3961          * never called regulatory_init() below, or that it failed;
3962          * in that case, don't try to do any further work here as
3963          * it's doomed to lead to crashes.
3964          */
3965         if (IS_ERR_OR_NULL(reg_pdev))
3966                 return -EINVAL;
3967
3968         err = load_builtin_regdb_keys();
3969         if (err)
3970                 return err;
3971
3972         /* We always try to get an update for the static regdomain */
3973         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3974         if (err) {
3975                 if (err == -ENOMEM) {
3976                         platform_device_unregister(reg_pdev);
3977                         return err;
3978                 }
3979                 /*
3980                  * N.B. kobject_uevent_env() can fail mainly for when we're out
3981                  * memory which is handled and propagated appropriately above
3982                  * but it can also fail during a netlink_broadcast() or during
3983                  * early boot for call_usermodehelper(). For now treat these
3984                  * errors as non-fatal.
3985                  */
3986                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3987         }
3988
3989         /*
3990          * Finally, if the user set the module parameter treat it
3991          * as a user hint.
3992          */
3993         if (!is_world_regdom(ieee80211_regdom))
3994                 regulatory_hint_user(ieee80211_regdom,
3995                                      NL80211_USER_REG_HINT_USER);
3996
3997         return 0;
3998 }
3999 #ifndef MODULE
4000 late_initcall(regulatory_init_db);
4001 #endif
4002
4003 int __init regulatory_init(void)
4004 {
4005         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4006         if (IS_ERR(reg_pdev))
4007                 return PTR_ERR(reg_pdev);
4008
4009         spin_lock_init(&reg_requests_lock);
4010         spin_lock_init(&reg_pending_beacons_lock);
4011         spin_lock_init(&reg_indoor_lock);
4012
4013         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4014
4015         user_alpha2[0] = '9';
4016         user_alpha2[1] = '7';
4017
4018 #ifdef MODULE
4019         return regulatory_init_db();
4020 #else
4021         return 0;
4022 #endif
4023 }
4024
4025 void regulatory_exit(void)
4026 {
4027         struct regulatory_request *reg_request, *tmp;
4028         struct reg_beacon *reg_beacon, *btmp;
4029
4030         cancel_work_sync(&reg_work);
4031         cancel_crda_timeout_sync();
4032         cancel_delayed_work_sync(&reg_check_chans);
4033
4034         /* Lock to suppress warnings */
4035         rtnl_lock();
4036         reset_regdomains(true, NULL);
4037         rtnl_unlock();
4038
4039         dev_set_uevent_suppress(&reg_pdev->dev, true);
4040
4041         platform_device_unregister(reg_pdev);
4042
4043         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4044                 list_del(&reg_beacon->list);
4045                 kfree(reg_beacon);
4046         }
4047
4048         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4049                 list_del(&reg_beacon->list);
4050                 kfree(reg_beacon);
4051         }
4052
4053         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4054                 list_del(&reg_request->list);
4055                 kfree(reg_request);
4056         }
4057
4058         if (!IS_ERR_OR_NULL(regdb))
4059                 kfree(regdb);
4060         if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4061                 kfree(cfg80211_user_regdom);
4062
4063         free_regdb_keyring();
4064 }