s390/vdso: drop unnecessary cc-ldoption
[linux-2.6-microblaze.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 - 2019 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22
23
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *      be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *      regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83         REG_REQ_OK,
84         REG_REQ_IGNORE,
85         REG_REQ_INTERSECT,
86         REG_REQ_ALREADY_SET,
87 };
88
89 static struct regulatory_request core_request_world = {
90         .initiator = NL80211_REGDOM_SET_BY_CORE,
91         .alpha2[0] = '0',
92         .alpha2[1] = '0',
93         .intersect = false,
94         .processed = true,
95         .country_ie_env = ENVIRON_ANY,
96 };
97
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103         (void __force __rcu *)&core_request_world;
104
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static spinlock_t reg_indoor_lock;
130
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136
137 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
138 {
139         return rcu_dereference_rtnl(cfg80211_regdomain);
140 }
141
142 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
143 {
144         return rcu_dereference_rtnl(wiphy->regd);
145 }
146
147 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
148 {
149         switch (dfs_region) {
150         case NL80211_DFS_UNSET:
151                 return "unset";
152         case NL80211_DFS_FCC:
153                 return "FCC";
154         case NL80211_DFS_ETSI:
155                 return "ETSI";
156         case NL80211_DFS_JP:
157                 return "JP";
158         }
159         return "Unknown";
160 }
161
162 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
163 {
164         const struct ieee80211_regdomain *regd = NULL;
165         const struct ieee80211_regdomain *wiphy_regd = NULL;
166
167         regd = get_cfg80211_regdom();
168         if (!wiphy)
169                 goto out;
170
171         wiphy_regd = get_wiphy_regdom(wiphy);
172         if (!wiphy_regd)
173                 goto out;
174
175         if (wiphy_regd->dfs_region == regd->dfs_region)
176                 goto out;
177
178         pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
179                  dev_name(&wiphy->dev),
180                  reg_dfs_region_str(wiphy_regd->dfs_region),
181                  reg_dfs_region_str(regd->dfs_region));
182
183 out:
184         return regd->dfs_region;
185 }
186
187 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
188 {
189         if (!r)
190                 return;
191         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
192 }
193
194 static struct regulatory_request *get_last_request(void)
195 {
196         return rcu_dereference_rtnl(last_request);
197 }
198
199 /* Used to queue up regulatory hints */
200 static LIST_HEAD(reg_requests_list);
201 static spinlock_t reg_requests_lock;
202
203 /* Used to queue up beacon hints for review */
204 static LIST_HEAD(reg_pending_beacons);
205 static spinlock_t reg_pending_beacons_lock;
206
207 /* Used to keep track of processed beacon hints */
208 static LIST_HEAD(reg_beacon_list);
209
210 struct reg_beacon {
211         struct list_head list;
212         struct ieee80211_channel chan;
213 };
214
215 static void reg_check_chans_work(struct work_struct *work);
216 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
217
218 static void reg_todo(struct work_struct *work);
219 static DECLARE_WORK(reg_work, reg_todo);
220
221 /* We keep a static world regulatory domain in case of the absence of CRDA */
222 static const struct ieee80211_regdomain world_regdom = {
223         .n_reg_rules = 8,
224         .alpha2 =  "00",
225         .reg_rules = {
226                 /* IEEE 802.11b/g, channels 1..11 */
227                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
228                 /* IEEE 802.11b/g, channels 12..13. */
229                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
230                         NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
231                 /* IEEE 802.11 channel 14 - Only JP enables
232                  * this and for 802.11b only */
233                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
234                         NL80211_RRF_NO_IR |
235                         NL80211_RRF_NO_OFDM),
236                 /* IEEE 802.11a, channel 36..48 */
237                 REG_RULE(5180-10, 5240+10, 80, 6, 20,
238                         NL80211_RRF_NO_IR |
239                         NL80211_RRF_AUTO_BW),
240
241                 /* IEEE 802.11a, channel 52..64 - DFS required */
242                 REG_RULE(5260-10, 5320+10, 80, 6, 20,
243                         NL80211_RRF_NO_IR |
244                         NL80211_RRF_AUTO_BW |
245                         NL80211_RRF_DFS),
246
247                 /* IEEE 802.11a, channel 100..144 - DFS required */
248                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
249                         NL80211_RRF_NO_IR |
250                         NL80211_RRF_DFS),
251
252                 /* IEEE 802.11a, channel 149..165 */
253                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
254                         NL80211_RRF_NO_IR),
255
256                 /* IEEE 802.11ad (60GHz), channels 1..3 */
257                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
258         }
259 };
260
261 /* protected by RTNL */
262 static const struct ieee80211_regdomain *cfg80211_world_regdom =
263         &world_regdom;
264
265 static char *ieee80211_regdom = "00";
266 static char user_alpha2[2];
267 static const struct ieee80211_regdomain *cfg80211_user_regdom;
268
269 module_param(ieee80211_regdom, charp, 0444);
270 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
271
272 static void reg_free_request(struct regulatory_request *request)
273 {
274         if (request == &core_request_world)
275                 return;
276
277         if (request != get_last_request())
278                 kfree(request);
279 }
280
281 static void reg_free_last_request(void)
282 {
283         struct regulatory_request *lr = get_last_request();
284
285         if (lr != &core_request_world && lr)
286                 kfree_rcu(lr, rcu_head);
287 }
288
289 static void reg_update_last_request(struct regulatory_request *request)
290 {
291         struct regulatory_request *lr;
292
293         lr = get_last_request();
294         if (lr == request)
295                 return;
296
297         reg_free_last_request();
298         rcu_assign_pointer(last_request, request);
299 }
300
301 static void reset_regdomains(bool full_reset,
302                              const struct ieee80211_regdomain *new_regdom)
303 {
304         const struct ieee80211_regdomain *r;
305
306         ASSERT_RTNL();
307
308         r = get_cfg80211_regdom();
309
310         /* avoid freeing static information or freeing something twice */
311         if (r == cfg80211_world_regdom)
312                 r = NULL;
313         if (cfg80211_world_regdom == &world_regdom)
314                 cfg80211_world_regdom = NULL;
315         if (r == &world_regdom)
316                 r = NULL;
317
318         rcu_free_regdom(r);
319         rcu_free_regdom(cfg80211_world_regdom);
320
321         cfg80211_world_regdom = &world_regdom;
322         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
323
324         if (!full_reset)
325                 return;
326
327         reg_update_last_request(&core_request_world);
328 }
329
330 /*
331  * Dynamic world regulatory domain requested by the wireless
332  * core upon initialization
333  */
334 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
335 {
336         struct regulatory_request *lr;
337
338         lr = get_last_request();
339
340         WARN_ON(!lr);
341
342         reset_regdomains(false, rd);
343
344         cfg80211_world_regdom = rd;
345 }
346
347 bool is_world_regdom(const char *alpha2)
348 {
349         if (!alpha2)
350                 return false;
351         return alpha2[0] == '0' && alpha2[1] == '0';
352 }
353
354 static bool is_alpha2_set(const char *alpha2)
355 {
356         if (!alpha2)
357                 return false;
358         return alpha2[0] && alpha2[1];
359 }
360
361 static bool is_unknown_alpha2(const char *alpha2)
362 {
363         if (!alpha2)
364                 return false;
365         /*
366          * Special case where regulatory domain was built by driver
367          * but a specific alpha2 cannot be determined
368          */
369         return alpha2[0] == '9' && alpha2[1] == '9';
370 }
371
372 static bool is_intersected_alpha2(const char *alpha2)
373 {
374         if (!alpha2)
375                 return false;
376         /*
377          * Special case where regulatory domain is the
378          * result of an intersection between two regulatory domain
379          * structures
380          */
381         return alpha2[0] == '9' && alpha2[1] == '8';
382 }
383
384 static bool is_an_alpha2(const char *alpha2)
385 {
386         if (!alpha2)
387                 return false;
388         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
389 }
390
391 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
392 {
393         if (!alpha2_x || !alpha2_y)
394                 return false;
395         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
396 }
397
398 static bool regdom_changes(const char *alpha2)
399 {
400         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
401
402         if (!r)
403                 return true;
404         return !alpha2_equal(r->alpha2, alpha2);
405 }
406
407 /*
408  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
409  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
410  * has ever been issued.
411  */
412 static bool is_user_regdom_saved(void)
413 {
414         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
415                 return false;
416
417         /* This would indicate a mistake on the design */
418         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
419                  "Unexpected user alpha2: %c%c\n",
420                  user_alpha2[0], user_alpha2[1]))
421                 return false;
422
423         return true;
424 }
425
426 static const struct ieee80211_regdomain *
427 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
428 {
429         struct ieee80211_regdomain *regd;
430         int size_of_regd;
431         unsigned int i;
432
433         size_of_regd =
434                 sizeof(struct ieee80211_regdomain) +
435                 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
436
437         regd = kzalloc(size_of_regd, GFP_KERNEL);
438         if (!regd)
439                 return ERR_PTR(-ENOMEM);
440
441         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
442
443         for (i = 0; i < src_regd->n_reg_rules; i++)
444                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
445                        sizeof(struct ieee80211_reg_rule));
446
447         return regd;
448 }
449
450 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
451 {
452         ASSERT_RTNL();
453
454         if (!IS_ERR(cfg80211_user_regdom))
455                 kfree(cfg80211_user_regdom);
456         cfg80211_user_regdom = reg_copy_regd(rd);
457 }
458
459 struct reg_regdb_apply_request {
460         struct list_head list;
461         const struct ieee80211_regdomain *regdom;
462 };
463
464 static LIST_HEAD(reg_regdb_apply_list);
465 static DEFINE_MUTEX(reg_regdb_apply_mutex);
466
467 static void reg_regdb_apply(struct work_struct *work)
468 {
469         struct reg_regdb_apply_request *request;
470
471         rtnl_lock();
472
473         mutex_lock(&reg_regdb_apply_mutex);
474         while (!list_empty(&reg_regdb_apply_list)) {
475                 request = list_first_entry(&reg_regdb_apply_list,
476                                            struct reg_regdb_apply_request,
477                                            list);
478                 list_del(&request->list);
479
480                 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
481                 kfree(request);
482         }
483         mutex_unlock(&reg_regdb_apply_mutex);
484
485         rtnl_unlock();
486 }
487
488 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
489
490 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
491 {
492         struct reg_regdb_apply_request *request;
493
494         request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
495         if (!request) {
496                 kfree(regdom);
497                 return -ENOMEM;
498         }
499
500         request->regdom = regdom;
501
502         mutex_lock(&reg_regdb_apply_mutex);
503         list_add_tail(&request->list, &reg_regdb_apply_list);
504         mutex_unlock(&reg_regdb_apply_mutex);
505
506         schedule_work(&reg_regdb_work);
507         return 0;
508 }
509
510 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
511 /* Max number of consecutive attempts to communicate with CRDA  */
512 #define REG_MAX_CRDA_TIMEOUTS 10
513
514 static u32 reg_crda_timeouts;
515
516 static void crda_timeout_work(struct work_struct *work);
517 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
518
519 static void crda_timeout_work(struct work_struct *work)
520 {
521         pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
522         rtnl_lock();
523         reg_crda_timeouts++;
524         restore_regulatory_settings(true, false);
525         rtnl_unlock();
526 }
527
528 static void cancel_crda_timeout(void)
529 {
530         cancel_delayed_work(&crda_timeout);
531 }
532
533 static void cancel_crda_timeout_sync(void)
534 {
535         cancel_delayed_work_sync(&crda_timeout);
536 }
537
538 static void reset_crda_timeouts(void)
539 {
540         reg_crda_timeouts = 0;
541 }
542
543 /*
544  * This lets us keep regulatory code which is updated on a regulatory
545  * basis in userspace.
546  */
547 static int call_crda(const char *alpha2)
548 {
549         char country[12];
550         char *env[] = { country, NULL };
551         int ret;
552
553         snprintf(country, sizeof(country), "COUNTRY=%c%c",
554                  alpha2[0], alpha2[1]);
555
556         if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
557                 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
558                 return -EINVAL;
559         }
560
561         if (!is_world_regdom((char *) alpha2))
562                 pr_debug("Calling CRDA for country: %c%c\n",
563                          alpha2[0], alpha2[1]);
564         else
565                 pr_debug("Calling CRDA to update world regulatory domain\n");
566
567         ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
568         if (ret)
569                 return ret;
570
571         queue_delayed_work(system_power_efficient_wq,
572                            &crda_timeout, msecs_to_jiffies(3142));
573         return 0;
574 }
575 #else
576 static inline void cancel_crda_timeout(void) {}
577 static inline void cancel_crda_timeout_sync(void) {}
578 static inline void reset_crda_timeouts(void) {}
579 static inline int call_crda(const char *alpha2)
580 {
581         return -ENODATA;
582 }
583 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
584
585 /* code to directly load a firmware database through request_firmware */
586 static const struct fwdb_header *regdb;
587
588 struct fwdb_country {
589         u8 alpha2[2];
590         __be16 coll_ptr;
591         /* this struct cannot be extended */
592 } __packed __aligned(4);
593
594 struct fwdb_collection {
595         u8 len;
596         u8 n_rules;
597         u8 dfs_region;
598         /* no optional data yet */
599         /* aligned to 2, then followed by __be16 array of rule pointers */
600 } __packed __aligned(4);
601
602 enum fwdb_flags {
603         FWDB_FLAG_NO_OFDM       = BIT(0),
604         FWDB_FLAG_NO_OUTDOOR    = BIT(1),
605         FWDB_FLAG_DFS           = BIT(2),
606         FWDB_FLAG_NO_IR         = BIT(3),
607         FWDB_FLAG_AUTO_BW       = BIT(4),
608 };
609
610 struct fwdb_wmm_ac {
611         u8 ecw;
612         u8 aifsn;
613         __be16 cot;
614 } __packed;
615
616 struct fwdb_wmm_rule {
617         struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
618         struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
619 } __packed;
620
621 struct fwdb_rule {
622         u8 len;
623         u8 flags;
624         __be16 max_eirp;
625         __be32 start, end, max_bw;
626         /* start of optional data */
627         __be16 cac_timeout;
628         __be16 wmm_ptr;
629 } __packed __aligned(4);
630
631 #define FWDB_MAGIC 0x52474442
632 #define FWDB_VERSION 20
633
634 struct fwdb_header {
635         __be32 magic;
636         __be32 version;
637         struct fwdb_country country[];
638 } __packed __aligned(4);
639
640 static int ecw2cw(int ecw)
641 {
642         return (1 << ecw) - 1;
643 }
644
645 static bool valid_wmm(struct fwdb_wmm_rule *rule)
646 {
647         struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
648         int i;
649
650         for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
651                 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
652                 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
653                 u8 aifsn = ac[i].aifsn;
654
655                 if (cw_min >= cw_max)
656                         return false;
657
658                 if (aifsn < 1)
659                         return false;
660         }
661
662         return true;
663 }
664
665 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
666 {
667         struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
668
669         if ((u8 *)rule + sizeof(rule->len) > data + size)
670                 return false;
671
672         /* mandatory fields */
673         if (rule->len < offsetofend(struct fwdb_rule, max_bw))
674                 return false;
675         if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
676                 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
677                 struct fwdb_wmm_rule *wmm;
678
679                 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
680                         return false;
681
682                 wmm = (void *)(data + wmm_ptr);
683
684                 if (!valid_wmm(wmm))
685                         return false;
686         }
687         return true;
688 }
689
690 static bool valid_country(const u8 *data, unsigned int size,
691                           const struct fwdb_country *country)
692 {
693         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
694         struct fwdb_collection *coll = (void *)(data + ptr);
695         __be16 *rules_ptr;
696         unsigned int i;
697
698         /* make sure we can read len/n_rules */
699         if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
700                 return false;
701
702         /* make sure base struct and all rules fit */
703         if ((u8 *)coll + ALIGN(coll->len, 2) +
704             (coll->n_rules * 2) > data + size)
705                 return false;
706
707         /* mandatory fields must exist */
708         if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
709                 return false;
710
711         rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
712
713         for (i = 0; i < coll->n_rules; i++) {
714                 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
715
716                 if (!valid_rule(data, size, rule_ptr))
717                         return false;
718         }
719
720         return true;
721 }
722
723 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
724 static struct key *builtin_regdb_keys;
725
726 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
727 {
728         const u8 *end = p + buflen;
729         size_t plen;
730         key_ref_t key;
731
732         while (p < end) {
733                 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
734                  * than 256 bytes in size.
735                  */
736                 if (end - p < 4)
737                         goto dodgy_cert;
738                 if (p[0] != 0x30 &&
739                     p[1] != 0x82)
740                         goto dodgy_cert;
741                 plen = (p[2] << 8) | p[3];
742                 plen += 4;
743                 if (plen > end - p)
744                         goto dodgy_cert;
745
746                 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
747                                            "asymmetric", NULL, p, plen,
748                                            ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
749                                             KEY_USR_VIEW | KEY_USR_READ),
750                                            KEY_ALLOC_NOT_IN_QUOTA |
751                                            KEY_ALLOC_BUILT_IN |
752                                            KEY_ALLOC_BYPASS_RESTRICTION);
753                 if (IS_ERR(key)) {
754                         pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
755                                PTR_ERR(key));
756                 } else {
757                         pr_notice("Loaded X.509 cert '%s'\n",
758                                   key_ref_to_ptr(key)->description);
759                         key_ref_put(key);
760                 }
761                 p += plen;
762         }
763
764         return;
765
766 dodgy_cert:
767         pr_err("Problem parsing in-kernel X.509 certificate list\n");
768 }
769
770 static int __init load_builtin_regdb_keys(void)
771 {
772         builtin_regdb_keys =
773                 keyring_alloc(".builtin_regdb_keys",
774                               KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
775                               ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
776                               KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
777                               KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
778         if (IS_ERR(builtin_regdb_keys))
779                 return PTR_ERR(builtin_regdb_keys);
780
781         pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
782
783 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
784         load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
785 #endif
786 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
787         if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
788                 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
789 #endif
790
791         return 0;
792 }
793
794 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
795 {
796         const struct firmware *sig;
797         bool result;
798
799         if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
800                 return false;
801
802         result = verify_pkcs7_signature(data, size, sig->data, sig->size,
803                                         builtin_regdb_keys,
804                                         VERIFYING_UNSPECIFIED_SIGNATURE,
805                                         NULL, NULL) == 0;
806
807         release_firmware(sig);
808
809         return result;
810 }
811
812 static void free_regdb_keyring(void)
813 {
814         key_put(builtin_regdb_keys);
815 }
816 #else
817 static int load_builtin_regdb_keys(void)
818 {
819         return 0;
820 }
821
822 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
823 {
824         return true;
825 }
826
827 static void free_regdb_keyring(void)
828 {
829 }
830 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
831
832 static bool valid_regdb(const u8 *data, unsigned int size)
833 {
834         const struct fwdb_header *hdr = (void *)data;
835         const struct fwdb_country *country;
836
837         if (size < sizeof(*hdr))
838                 return false;
839
840         if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
841                 return false;
842
843         if (hdr->version != cpu_to_be32(FWDB_VERSION))
844                 return false;
845
846         if (!regdb_has_valid_signature(data, size))
847                 return false;
848
849         country = &hdr->country[0];
850         while ((u8 *)(country + 1) <= data + size) {
851                 if (!country->coll_ptr)
852                         break;
853                 if (!valid_country(data, size, country))
854                         return false;
855                 country++;
856         }
857
858         return true;
859 }
860
861 static void set_wmm_rule(const struct fwdb_header *db,
862                          const struct fwdb_country *country,
863                          const struct fwdb_rule *rule,
864                          struct ieee80211_reg_rule *rrule)
865 {
866         struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
867         struct fwdb_wmm_rule *wmm;
868         unsigned int i, wmm_ptr;
869
870         wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
871         wmm = (void *)((u8 *)db + wmm_ptr);
872
873         if (!valid_wmm(wmm)) {
874                 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
875                        be32_to_cpu(rule->start), be32_to_cpu(rule->end),
876                        country->alpha2[0], country->alpha2[1]);
877                 return;
878         }
879
880         for (i = 0; i < IEEE80211_NUM_ACS; i++) {
881                 wmm_rule->client[i].cw_min =
882                         ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
883                 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
884                 wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
885                 wmm_rule->client[i].cot =
886                         1000 * be16_to_cpu(wmm->client[i].cot);
887                 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
888                 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
889                 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
890                 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
891         }
892
893         rrule->has_wmm = true;
894 }
895
896 static int __regdb_query_wmm(const struct fwdb_header *db,
897                              const struct fwdb_country *country, int freq,
898                              struct ieee80211_reg_rule *rrule)
899 {
900         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
901         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
902         int i;
903
904         for (i = 0; i < coll->n_rules; i++) {
905                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
906                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
907                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
908
909                 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
910                         continue;
911
912                 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
913                     freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
914                         set_wmm_rule(db, country, rule, rrule);
915                         return 0;
916                 }
917         }
918
919         return -ENODATA;
920 }
921
922 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
923 {
924         const struct fwdb_header *hdr = regdb;
925         const struct fwdb_country *country;
926
927         if (!regdb)
928                 return -ENODATA;
929
930         if (IS_ERR(regdb))
931                 return PTR_ERR(regdb);
932
933         country = &hdr->country[0];
934         while (country->coll_ptr) {
935                 if (alpha2_equal(alpha2, country->alpha2))
936                         return __regdb_query_wmm(regdb, country, freq, rule);
937
938                 country++;
939         }
940
941         return -ENODATA;
942 }
943 EXPORT_SYMBOL(reg_query_regdb_wmm);
944
945 static int regdb_query_country(const struct fwdb_header *db,
946                                const struct fwdb_country *country)
947 {
948         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
949         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
950         struct ieee80211_regdomain *regdom;
951         unsigned int size_of_regd, i;
952
953         size_of_regd = sizeof(struct ieee80211_regdomain) +
954                 coll->n_rules * sizeof(struct ieee80211_reg_rule);
955
956         regdom = kzalloc(size_of_regd, GFP_KERNEL);
957         if (!regdom)
958                 return -ENOMEM;
959
960         regdom->n_reg_rules = coll->n_rules;
961         regdom->alpha2[0] = country->alpha2[0];
962         regdom->alpha2[1] = country->alpha2[1];
963         regdom->dfs_region = coll->dfs_region;
964
965         for (i = 0; i < regdom->n_reg_rules; i++) {
966                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
967                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
968                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
969                 struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
970
971                 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
972                 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
973                 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
974
975                 rrule->power_rule.max_antenna_gain = 0;
976                 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
977
978                 rrule->flags = 0;
979                 if (rule->flags & FWDB_FLAG_NO_OFDM)
980                         rrule->flags |= NL80211_RRF_NO_OFDM;
981                 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
982                         rrule->flags |= NL80211_RRF_NO_OUTDOOR;
983                 if (rule->flags & FWDB_FLAG_DFS)
984                         rrule->flags |= NL80211_RRF_DFS;
985                 if (rule->flags & FWDB_FLAG_NO_IR)
986                         rrule->flags |= NL80211_RRF_NO_IR;
987                 if (rule->flags & FWDB_FLAG_AUTO_BW)
988                         rrule->flags |= NL80211_RRF_AUTO_BW;
989
990                 rrule->dfs_cac_ms = 0;
991
992                 /* handle optional data */
993                 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
994                         rrule->dfs_cac_ms =
995                                 1000 * be16_to_cpu(rule->cac_timeout);
996                 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
997                         set_wmm_rule(db, country, rule, rrule);
998         }
999
1000         return reg_schedule_apply(regdom);
1001 }
1002
1003 static int query_regdb(const char *alpha2)
1004 {
1005         const struct fwdb_header *hdr = regdb;
1006         const struct fwdb_country *country;
1007
1008         ASSERT_RTNL();
1009
1010         if (IS_ERR(regdb))
1011                 return PTR_ERR(regdb);
1012
1013         country = &hdr->country[0];
1014         while (country->coll_ptr) {
1015                 if (alpha2_equal(alpha2, country->alpha2))
1016                         return regdb_query_country(regdb, country);
1017                 country++;
1018         }
1019
1020         return -ENODATA;
1021 }
1022
1023 static void regdb_fw_cb(const struct firmware *fw, void *context)
1024 {
1025         int set_error = 0;
1026         bool restore = true;
1027         void *db;
1028
1029         if (!fw) {
1030                 pr_info("failed to load regulatory.db\n");
1031                 set_error = -ENODATA;
1032         } else if (!valid_regdb(fw->data, fw->size)) {
1033                 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1034                 set_error = -EINVAL;
1035         }
1036
1037         rtnl_lock();
1038         if (regdb && !IS_ERR(regdb)) {
1039                 /* negative case - a bug
1040                  * positive case - can happen due to race in case of multiple cb's in
1041                  * queue, due to usage of asynchronous callback
1042                  *
1043                  * Either case, just restore and free new db.
1044                  */
1045         } else if (set_error) {
1046                 regdb = ERR_PTR(set_error);
1047         } else if (fw) {
1048                 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1049                 if (db) {
1050                         regdb = db;
1051                         restore = context && query_regdb(context);
1052                 } else {
1053                         restore = true;
1054                 }
1055         }
1056
1057         if (restore)
1058                 restore_regulatory_settings(true, false);
1059
1060         rtnl_unlock();
1061
1062         kfree(context);
1063
1064         release_firmware(fw);
1065 }
1066
1067 static int query_regdb_file(const char *alpha2)
1068 {
1069         ASSERT_RTNL();
1070
1071         if (regdb)
1072                 return query_regdb(alpha2);
1073
1074         alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1075         if (!alpha2)
1076                 return -ENOMEM;
1077
1078         return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1079                                        &reg_pdev->dev, GFP_KERNEL,
1080                                        (void *)alpha2, regdb_fw_cb);
1081 }
1082
1083 int reg_reload_regdb(void)
1084 {
1085         const struct firmware *fw;
1086         void *db;
1087         int err;
1088
1089         err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1090         if (err)
1091                 return err;
1092
1093         if (!valid_regdb(fw->data, fw->size)) {
1094                 err = -ENODATA;
1095                 goto out;
1096         }
1097
1098         db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1099         if (!db) {
1100                 err = -ENOMEM;
1101                 goto out;
1102         }
1103
1104         rtnl_lock();
1105         if (!IS_ERR_OR_NULL(regdb))
1106                 kfree(regdb);
1107         regdb = db;
1108         rtnl_unlock();
1109
1110  out:
1111         release_firmware(fw);
1112         return err;
1113 }
1114
1115 static bool reg_query_database(struct regulatory_request *request)
1116 {
1117         if (query_regdb_file(request->alpha2) == 0)
1118                 return true;
1119
1120         if (call_crda(request->alpha2) == 0)
1121                 return true;
1122
1123         return false;
1124 }
1125
1126 bool reg_is_valid_request(const char *alpha2)
1127 {
1128         struct regulatory_request *lr = get_last_request();
1129
1130         if (!lr || lr->processed)
1131                 return false;
1132
1133         return alpha2_equal(lr->alpha2, alpha2);
1134 }
1135
1136 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1137 {
1138         struct regulatory_request *lr = get_last_request();
1139
1140         /*
1141          * Follow the driver's regulatory domain, if present, unless a country
1142          * IE has been processed or a user wants to help complaince further
1143          */
1144         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1145             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1146             wiphy->regd)
1147                 return get_wiphy_regdom(wiphy);
1148
1149         return get_cfg80211_regdom();
1150 }
1151
1152 static unsigned int
1153 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1154                                  const struct ieee80211_reg_rule *rule)
1155 {
1156         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1157         const struct ieee80211_freq_range *freq_range_tmp;
1158         const struct ieee80211_reg_rule *tmp;
1159         u32 start_freq, end_freq, idx, no;
1160
1161         for (idx = 0; idx < rd->n_reg_rules; idx++)
1162                 if (rule == &rd->reg_rules[idx])
1163                         break;
1164
1165         if (idx == rd->n_reg_rules)
1166                 return 0;
1167
1168         /* get start_freq */
1169         no = idx;
1170
1171         while (no) {
1172                 tmp = &rd->reg_rules[--no];
1173                 freq_range_tmp = &tmp->freq_range;
1174
1175                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1176                         break;
1177
1178                 freq_range = freq_range_tmp;
1179         }
1180
1181         start_freq = freq_range->start_freq_khz;
1182
1183         /* get end_freq */
1184         freq_range = &rule->freq_range;
1185         no = idx;
1186
1187         while (no < rd->n_reg_rules - 1) {
1188                 tmp = &rd->reg_rules[++no];
1189                 freq_range_tmp = &tmp->freq_range;
1190
1191                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1192                         break;
1193
1194                 freq_range = freq_range_tmp;
1195         }
1196
1197         end_freq = freq_range->end_freq_khz;
1198
1199         return end_freq - start_freq;
1200 }
1201
1202 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1203                                    const struct ieee80211_reg_rule *rule)
1204 {
1205         unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1206
1207         if (rule->flags & NL80211_RRF_NO_160MHZ)
1208                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1209         if (rule->flags & NL80211_RRF_NO_80MHZ)
1210                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1211
1212         /*
1213          * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1214          * are not allowed.
1215          */
1216         if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1217             rule->flags & NL80211_RRF_NO_HT40PLUS)
1218                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1219
1220         return bw;
1221 }
1222
1223 /* Sanity check on a regulatory rule */
1224 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1225 {
1226         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1227         u32 freq_diff;
1228
1229         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1230                 return false;
1231
1232         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1233                 return false;
1234
1235         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1236
1237         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1238             freq_range->max_bandwidth_khz > freq_diff)
1239                 return false;
1240
1241         return true;
1242 }
1243
1244 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1245 {
1246         const struct ieee80211_reg_rule *reg_rule = NULL;
1247         unsigned int i;
1248
1249         if (!rd->n_reg_rules)
1250                 return false;
1251
1252         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1253                 return false;
1254
1255         for (i = 0; i < rd->n_reg_rules; i++) {
1256                 reg_rule = &rd->reg_rules[i];
1257                 if (!is_valid_reg_rule(reg_rule))
1258                         return false;
1259         }
1260
1261         return true;
1262 }
1263
1264 /**
1265  * freq_in_rule_band - tells us if a frequency is in a frequency band
1266  * @freq_range: frequency rule we want to query
1267  * @freq_khz: frequency we are inquiring about
1268  *
1269  * This lets us know if a specific frequency rule is or is not relevant to
1270  * a specific frequency's band. Bands are device specific and artificial
1271  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1272  * however it is safe for now to assume that a frequency rule should not be
1273  * part of a frequency's band if the start freq or end freq are off by more
1274  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1275  * 60 GHz band.
1276  * This resolution can be lowered and should be considered as we add
1277  * regulatory rule support for other "bands".
1278  **/
1279 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1280                               u32 freq_khz)
1281 {
1282 #define ONE_GHZ_IN_KHZ  1000000
1283         /*
1284          * From 802.11ad: directional multi-gigabit (DMG):
1285          * Pertaining to operation in a frequency band containing a channel
1286          * with the Channel starting frequency above 45 GHz.
1287          */
1288         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1289                         20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1290         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1291                 return true;
1292         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1293                 return true;
1294         return false;
1295 #undef ONE_GHZ_IN_KHZ
1296 }
1297
1298 /*
1299  * Later on we can perhaps use the more restrictive DFS
1300  * region but we don't have information for that yet so
1301  * for now simply disallow conflicts.
1302  */
1303 static enum nl80211_dfs_regions
1304 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1305                          const enum nl80211_dfs_regions dfs_region2)
1306 {
1307         if (dfs_region1 != dfs_region2)
1308                 return NL80211_DFS_UNSET;
1309         return dfs_region1;
1310 }
1311
1312 /*
1313  * Helper for regdom_intersect(), this does the real
1314  * mathematical intersection fun
1315  */
1316 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1317                                const struct ieee80211_regdomain *rd2,
1318                                const struct ieee80211_reg_rule *rule1,
1319                                const struct ieee80211_reg_rule *rule2,
1320                                struct ieee80211_reg_rule *intersected_rule)
1321 {
1322         const struct ieee80211_freq_range *freq_range1, *freq_range2;
1323         struct ieee80211_freq_range *freq_range;
1324         const struct ieee80211_power_rule *power_rule1, *power_rule2;
1325         struct ieee80211_power_rule *power_rule;
1326         u32 freq_diff, max_bandwidth1, max_bandwidth2;
1327
1328         freq_range1 = &rule1->freq_range;
1329         freq_range2 = &rule2->freq_range;
1330         freq_range = &intersected_rule->freq_range;
1331
1332         power_rule1 = &rule1->power_rule;
1333         power_rule2 = &rule2->power_rule;
1334         power_rule = &intersected_rule->power_rule;
1335
1336         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1337                                          freq_range2->start_freq_khz);
1338         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1339                                        freq_range2->end_freq_khz);
1340
1341         max_bandwidth1 = freq_range1->max_bandwidth_khz;
1342         max_bandwidth2 = freq_range2->max_bandwidth_khz;
1343
1344         if (rule1->flags & NL80211_RRF_AUTO_BW)
1345                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1346         if (rule2->flags & NL80211_RRF_AUTO_BW)
1347                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1348
1349         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1350
1351         intersected_rule->flags = rule1->flags | rule2->flags;
1352
1353         /*
1354          * In case NL80211_RRF_AUTO_BW requested for both rules
1355          * set AUTO_BW in intersected rule also. Next we will
1356          * calculate BW correctly in handle_channel function.
1357          * In other case remove AUTO_BW flag while we calculate
1358          * maximum bandwidth correctly and auto calculation is
1359          * not required.
1360          */
1361         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1362             (rule2->flags & NL80211_RRF_AUTO_BW))
1363                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1364         else
1365                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1366
1367         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1368         if (freq_range->max_bandwidth_khz > freq_diff)
1369                 freq_range->max_bandwidth_khz = freq_diff;
1370
1371         power_rule->max_eirp = min(power_rule1->max_eirp,
1372                 power_rule2->max_eirp);
1373         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1374                 power_rule2->max_antenna_gain);
1375
1376         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1377                                            rule2->dfs_cac_ms);
1378
1379         if (!is_valid_reg_rule(intersected_rule))
1380                 return -EINVAL;
1381
1382         return 0;
1383 }
1384
1385 /* check whether old rule contains new rule */
1386 static bool rule_contains(struct ieee80211_reg_rule *r1,
1387                           struct ieee80211_reg_rule *r2)
1388 {
1389         /* for simplicity, currently consider only same flags */
1390         if (r1->flags != r2->flags)
1391                 return false;
1392
1393         /* verify r1 is more restrictive */
1394         if ((r1->power_rule.max_antenna_gain >
1395              r2->power_rule.max_antenna_gain) ||
1396             r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1397                 return false;
1398
1399         /* make sure r2's range is contained within r1 */
1400         if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1401             r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1402                 return false;
1403
1404         /* and finally verify that r1.max_bw >= r2.max_bw */
1405         if (r1->freq_range.max_bandwidth_khz <
1406             r2->freq_range.max_bandwidth_khz)
1407                 return false;
1408
1409         return true;
1410 }
1411
1412 /* add or extend current rules. do nothing if rule is already contained */
1413 static void add_rule(struct ieee80211_reg_rule *rule,
1414                      struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1415 {
1416         struct ieee80211_reg_rule *tmp_rule;
1417         int i;
1418
1419         for (i = 0; i < *n_rules; i++) {
1420                 tmp_rule = &reg_rules[i];
1421                 /* rule is already contained - do nothing */
1422                 if (rule_contains(tmp_rule, rule))
1423                         return;
1424
1425                 /* extend rule if possible */
1426                 if (rule_contains(rule, tmp_rule)) {
1427                         memcpy(tmp_rule, rule, sizeof(*rule));
1428                         return;
1429                 }
1430         }
1431
1432         memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1433         (*n_rules)++;
1434 }
1435
1436 /**
1437  * regdom_intersect - do the intersection between two regulatory domains
1438  * @rd1: first regulatory domain
1439  * @rd2: second regulatory domain
1440  *
1441  * Use this function to get the intersection between two regulatory domains.
1442  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1443  * as no one single alpha2 can represent this regulatory domain.
1444  *
1445  * Returns a pointer to the regulatory domain structure which will hold the
1446  * resulting intersection of rules between rd1 and rd2. We will
1447  * kzalloc() this structure for you.
1448  */
1449 static struct ieee80211_regdomain *
1450 regdom_intersect(const struct ieee80211_regdomain *rd1,
1451                  const struct ieee80211_regdomain *rd2)
1452 {
1453         int r, size_of_regd;
1454         unsigned int x, y;
1455         unsigned int num_rules = 0;
1456         const struct ieee80211_reg_rule *rule1, *rule2;
1457         struct ieee80211_reg_rule intersected_rule;
1458         struct ieee80211_regdomain *rd;
1459
1460         if (!rd1 || !rd2)
1461                 return NULL;
1462
1463         /*
1464          * First we get a count of the rules we'll need, then we actually
1465          * build them. This is to so we can malloc() and free() a
1466          * regdomain once. The reason we use reg_rules_intersect() here
1467          * is it will return -EINVAL if the rule computed makes no sense.
1468          * All rules that do check out OK are valid.
1469          */
1470
1471         for (x = 0; x < rd1->n_reg_rules; x++) {
1472                 rule1 = &rd1->reg_rules[x];
1473                 for (y = 0; y < rd2->n_reg_rules; y++) {
1474                         rule2 = &rd2->reg_rules[y];
1475                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1476                                                  &intersected_rule))
1477                                 num_rules++;
1478                 }
1479         }
1480
1481         if (!num_rules)
1482                 return NULL;
1483
1484         size_of_regd = sizeof(struct ieee80211_regdomain) +
1485                        num_rules * sizeof(struct ieee80211_reg_rule);
1486
1487         rd = kzalloc(size_of_regd, GFP_KERNEL);
1488         if (!rd)
1489                 return NULL;
1490
1491         for (x = 0; x < rd1->n_reg_rules; x++) {
1492                 rule1 = &rd1->reg_rules[x];
1493                 for (y = 0; y < rd2->n_reg_rules; y++) {
1494                         rule2 = &rd2->reg_rules[y];
1495                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1496                                                 &intersected_rule);
1497                         /*
1498                          * No need to memset here the intersected rule here as
1499                          * we're not using the stack anymore
1500                          */
1501                         if (r)
1502                                 continue;
1503
1504                         add_rule(&intersected_rule, rd->reg_rules,
1505                                  &rd->n_reg_rules);
1506                 }
1507         }
1508
1509         rd->alpha2[0] = '9';
1510         rd->alpha2[1] = '8';
1511         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1512                                                   rd2->dfs_region);
1513
1514         return rd;
1515 }
1516
1517 /*
1518  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1519  * want to just have the channel structure use these
1520  */
1521 static u32 map_regdom_flags(u32 rd_flags)
1522 {
1523         u32 channel_flags = 0;
1524         if (rd_flags & NL80211_RRF_NO_IR_ALL)
1525                 channel_flags |= IEEE80211_CHAN_NO_IR;
1526         if (rd_flags & NL80211_RRF_DFS)
1527                 channel_flags |= IEEE80211_CHAN_RADAR;
1528         if (rd_flags & NL80211_RRF_NO_OFDM)
1529                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1530         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1531                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1532         if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1533                 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1534         if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1535                 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1536         if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1537                 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1538         if (rd_flags & NL80211_RRF_NO_80MHZ)
1539                 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1540         if (rd_flags & NL80211_RRF_NO_160MHZ)
1541                 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1542         return channel_flags;
1543 }
1544
1545 static const struct ieee80211_reg_rule *
1546 freq_reg_info_regd(u32 center_freq,
1547                    const struct ieee80211_regdomain *regd, u32 bw)
1548 {
1549         int i;
1550         bool band_rule_found = false;
1551         bool bw_fits = false;
1552
1553         if (!regd)
1554                 return ERR_PTR(-EINVAL);
1555
1556         for (i = 0; i < regd->n_reg_rules; i++) {
1557                 const struct ieee80211_reg_rule *rr;
1558                 const struct ieee80211_freq_range *fr = NULL;
1559
1560                 rr = &regd->reg_rules[i];
1561                 fr = &rr->freq_range;
1562
1563                 /*
1564                  * We only need to know if one frequency rule was
1565                  * was in center_freq's band, that's enough, so lets
1566                  * not overwrite it once found
1567                  */
1568                 if (!band_rule_found)
1569                         band_rule_found = freq_in_rule_band(fr, center_freq);
1570
1571                 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1572
1573                 if (band_rule_found && bw_fits)
1574                         return rr;
1575         }
1576
1577         if (!band_rule_found)
1578                 return ERR_PTR(-ERANGE);
1579
1580         return ERR_PTR(-EINVAL);
1581 }
1582
1583 static const struct ieee80211_reg_rule *
1584 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1585 {
1586         const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1587         const struct ieee80211_reg_rule *reg_rule = NULL;
1588         u32 bw;
1589
1590         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1591                 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1592                 if (!IS_ERR(reg_rule))
1593                         return reg_rule;
1594         }
1595
1596         return reg_rule;
1597 }
1598
1599 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1600                                                u32 center_freq)
1601 {
1602         return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1603 }
1604 EXPORT_SYMBOL(freq_reg_info);
1605
1606 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1607 {
1608         switch (initiator) {
1609         case NL80211_REGDOM_SET_BY_CORE:
1610                 return "core";
1611         case NL80211_REGDOM_SET_BY_USER:
1612                 return "user";
1613         case NL80211_REGDOM_SET_BY_DRIVER:
1614                 return "driver";
1615         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1616                 return "country element";
1617         default:
1618                 WARN_ON(1);
1619                 return "bug";
1620         }
1621 }
1622 EXPORT_SYMBOL(reg_initiator_name);
1623
1624 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1625                                           const struct ieee80211_reg_rule *reg_rule,
1626                                           const struct ieee80211_channel *chan)
1627 {
1628         const struct ieee80211_freq_range *freq_range = NULL;
1629         u32 max_bandwidth_khz, bw_flags = 0;
1630
1631         freq_range = &reg_rule->freq_range;
1632
1633         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1634         /* Check if auto calculation requested */
1635         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1636                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1637
1638         /* If we get a reg_rule we can assume that at least 5Mhz fit */
1639         if (!cfg80211_does_bw_fit_range(freq_range,
1640                                         MHZ_TO_KHZ(chan->center_freq),
1641                                         MHZ_TO_KHZ(10)))
1642                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1643         if (!cfg80211_does_bw_fit_range(freq_range,
1644                                         MHZ_TO_KHZ(chan->center_freq),
1645                                         MHZ_TO_KHZ(20)))
1646                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1647
1648         if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1649                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1650         if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1651                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1652         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1653                 bw_flags |= IEEE80211_CHAN_NO_HT40;
1654         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1655                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1656         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1657                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1658         return bw_flags;
1659 }
1660
1661 /*
1662  * Note that right now we assume the desired channel bandwidth
1663  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1664  * per channel, the primary and the extension channel).
1665  */
1666 static void handle_channel(struct wiphy *wiphy,
1667                            enum nl80211_reg_initiator initiator,
1668                            struct ieee80211_channel *chan)
1669 {
1670         u32 flags, bw_flags = 0;
1671         const struct ieee80211_reg_rule *reg_rule = NULL;
1672         const struct ieee80211_power_rule *power_rule = NULL;
1673         struct wiphy *request_wiphy = NULL;
1674         struct regulatory_request *lr = get_last_request();
1675         const struct ieee80211_regdomain *regd;
1676
1677         request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1678
1679         flags = chan->orig_flags;
1680
1681         reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1682         if (IS_ERR(reg_rule)) {
1683                 /*
1684                  * We will disable all channels that do not match our
1685                  * received regulatory rule unless the hint is coming
1686                  * from a Country IE and the Country IE had no information
1687                  * about a band. The IEEE 802.11 spec allows for an AP
1688                  * to send only a subset of the regulatory rules allowed,
1689                  * so an AP in the US that only supports 2.4 GHz may only send
1690                  * a country IE with information for the 2.4 GHz band
1691                  * while 5 GHz is still supported.
1692                  */
1693                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1694                     PTR_ERR(reg_rule) == -ERANGE)
1695                         return;
1696
1697                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1698                     request_wiphy && request_wiphy == wiphy &&
1699                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1700                         pr_debug("Disabling freq %d MHz for good\n",
1701                                  chan->center_freq);
1702                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1703                         chan->flags = chan->orig_flags;
1704                 } else {
1705                         pr_debug("Disabling freq %d MHz\n",
1706                                  chan->center_freq);
1707                         chan->flags |= IEEE80211_CHAN_DISABLED;
1708                 }
1709                 return;
1710         }
1711
1712         regd = reg_get_regdomain(wiphy);
1713
1714         power_rule = &reg_rule->power_rule;
1715         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1716
1717         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1718             request_wiphy && request_wiphy == wiphy &&
1719             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1720                 /*
1721                  * This guarantees the driver's requested regulatory domain
1722                  * will always be used as a base for further regulatory
1723                  * settings
1724                  */
1725                 chan->flags = chan->orig_flags =
1726                         map_regdom_flags(reg_rule->flags) | bw_flags;
1727                 chan->max_antenna_gain = chan->orig_mag =
1728                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1729                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1730                         (int) MBM_TO_DBM(power_rule->max_eirp);
1731
1732                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1733                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1734                         if (reg_rule->dfs_cac_ms)
1735                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1736                 }
1737
1738                 return;
1739         }
1740
1741         chan->dfs_state = NL80211_DFS_USABLE;
1742         chan->dfs_state_entered = jiffies;
1743
1744         chan->beacon_found = false;
1745         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1746         chan->max_antenna_gain =
1747                 min_t(int, chan->orig_mag,
1748                       MBI_TO_DBI(power_rule->max_antenna_gain));
1749         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1750
1751         if (chan->flags & IEEE80211_CHAN_RADAR) {
1752                 if (reg_rule->dfs_cac_ms)
1753                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1754                 else
1755                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1756         }
1757
1758         if (chan->orig_mpwr) {
1759                 /*
1760                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1761                  * will always follow the passed country IE power settings.
1762                  */
1763                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1764                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1765                         chan->max_power = chan->max_reg_power;
1766                 else
1767                         chan->max_power = min(chan->orig_mpwr,
1768                                               chan->max_reg_power);
1769         } else
1770                 chan->max_power = chan->max_reg_power;
1771 }
1772
1773 static void handle_band(struct wiphy *wiphy,
1774                         enum nl80211_reg_initiator initiator,
1775                         struct ieee80211_supported_band *sband)
1776 {
1777         unsigned int i;
1778
1779         if (!sband)
1780                 return;
1781
1782         for (i = 0; i < sband->n_channels; i++)
1783                 handle_channel(wiphy, initiator, &sband->channels[i]);
1784 }
1785
1786 static bool reg_request_cell_base(struct regulatory_request *request)
1787 {
1788         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1789                 return false;
1790         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1791 }
1792
1793 bool reg_last_request_cell_base(void)
1794 {
1795         return reg_request_cell_base(get_last_request());
1796 }
1797
1798 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1799 /* Core specific check */
1800 static enum reg_request_treatment
1801 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1802 {
1803         struct regulatory_request *lr = get_last_request();
1804
1805         if (!reg_num_devs_support_basehint)
1806                 return REG_REQ_IGNORE;
1807
1808         if (reg_request_cell_base(lr) &&
1809             !regdom_changes(pending_request->alpha2))
1810                 return REG_REQ_ALREADY_SET;
1811
1812         return REG_REQ_OK;
1813 }
1814
1815 /* Device specific check */
1816 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1817 {
1818         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1819 }
1820 #else
1821 static enum reg_request_treatment
1822 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1823 {
1824         return REG_REQ_IGNORE;
1825 }
1826
1827 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1828 {
1829         return true;
1830 }
1831 #endif
1832
1833 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1834 {
1835         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1836             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1837                 return true;
1838         return false;
1839 }
1840
1841 static bool ignore_reg_update(struct wiphy *wiphy,
1842                               enum nl80211_reg_initiator initiator)
1843 {
1844         struct regulatory_request *lr = get_last_request();
1845
1846         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1847                 return true;
1848
1849         if (!lr) {
1850                 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1851                          reg_initiator_name(initiator));
1852                 return true;
1853         }
1854
1855         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1856             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1857                 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1858                          reg_initiator_name(initiator));
1859                 return true;
1860         }
1861
1862         /*
1863          * wiphy->regd will be set once the device has its own
1864          * desired regulatory domain set
1865          */
1866         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1867             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1868             !is_world_regdom(lr->alpha2)) {
1869                 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1870                          reg_initiator_name(initiator));
1871                 return true;
1872         }
1873
1874         if (reg_request_cell_base(lr))
1875                 return reg_dev_ignore_cell_hint(wiphy);
1876
1877         return false;
1878 }
1879
1880 static bool reg_is_world_roaming(struct wiphy *wiphy)
1881 {
1882         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1883         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1884         struct regulatory_request *lr = get_last_request();
1885
1886         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1887                 return true;
1888
1889         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1890             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1891                 return true;
1892
1893         return false;
1894 }
1895
1896 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1897                               struct reg_beacon *reg_beacon)
1898 {
1899         struct ieee80211_supported_band *sband;
1900         struct ieee80211_channel *chan;
1901         bool channel_changed = false;
1902         struct ieee80211_channel chan_before;
1903
1904         sband = wiphy->bands[reg_beacon->chan.band];
1905         chan = &sband->channels[chan_idx];
1906
1907         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1908                 return;
1909
1910         if (chan->beacon_found)
1911                 return;
1912
1913         chan->beacon_found = true;
1914
1915         if (!reg_is_world_roaming(wiphy))
1916                 return;
1917
1918         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1919                 return;
1920
1921         chan_before = *chan;
1922
1923         if (chan->flags & IEEE80211_CHAN_NO_IR) {
1924                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1925                 channel_changed = true;
1926         }
1927
1928         if (channel_changed)
1929                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1930 }
1931
1932 /*
1933  * Called when a scan on a wiphy finds a beacon on
1934  * new channel
1935  */
1936 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1937                                     struct reg_beacon *reg_beacon)
1938 {
1939         unsigned int i;
1940         struct ieee80211_supported_band *sband;
1941
1942         if (!wiphy->bands[reg_beacon->chan.band])
1943                 return;
1944
1945         sband = wiphy->bands[reg_beacon->chan.band];
1946
1947         for (i = 0; i < sband->n_channels; i++)
1948                 handle_reg_beacon(wiphy, i, reg_beacon);
1949 }
1950
1951 /*
1952  * Called upon reg changes or a new wiphy is added
1953  */
1954 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1955 {
1956         unsigned int i;
1957         struct ieee80211_supported_band *sband;
1958         struct reg_beacon *reg_beacon;
1959
1960         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1961                 if (!wiphy->bands[reg_beacon->chan.band])
1962                         continue;
1963                 sband = wiphy->bands[reg_beacon->chan.band];
1964                 for (i = 0; i < sband->n_channels; i++)
1965                         handle_reg_beacon(wiphy, i, reg_beacon);
1966         }
1967 }
1968
1969 /* Reap the advantages of previously found beacons */
1970 static void reg_process_beacons(struct wiphy *wiphy)
1971 {
1972         /*
1973          * Means we are just firing up cfg80211, so no beacons would
1974          * have been processed yet.
1975          */
1976         if (!last_request)
1977                 return;
1978         wiphy_update_beacon_reg(wiphy);
1979 }
1980
1981 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1982 {
1983         if (!chan)
1984                 return false;
1985         if (chan->flags & IEEE80211_CHAN_DISABLED)
1986                 return false;
1987         /* This would happen when regulatory rules disallow HT40 completely */
1988         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1989                 return false;
1990         return true;
1991 }
1992
1993 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1994                                          struct ieee80211_channel *channel)
1995 {
1996         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1997         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1998         const struct ieee80211_regdomain *regd;
1999         unsigned int i;
2000         u32 flags;
2001
2002         if (!is_ht40_allowed(channel)) {
2003                 channel->flags |= IEEE80211_CHAN_NO_HT40;
2004                 return;
2005         }
2006
2007         /*
2008          * We need to ensure the extension channels exist to
2009          * be able to use HT40- or HT40+, this finds them (or not)
2010          */
2011         for (i = 0; i < sband->n_channels; i++) {
2012                 struct ieee80211_channel *c = &sband->channels[i];
2013
2014                 if (c->center_freq == (channel->center_freq - 20))
2015                         channel_before = c;
2016                 if (c->center_freq == (channel->center_freq + 20))
2017                         channel_after = c;
2018         }
2019
2020         flags = 0;
2021         regd = get_wiphy_regdom(wiphy);
2022         if (regd) {
2023                 const struct ieee80211_reg_rule *reg_rule =
2024                         freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2025                                            regd, MHZ_TO_KHZ(20));
2026
2027                 if (!IS_ERR(reg_rule))
2028                         flags = reg_rule->flags;
2029         }
2030
2031         /*
2032          * Please note that this assumes target bandwidth is 20 MHz,
2033          * if that ever changes we also need to change the below logic
2034          * to include that as well.
2035          */
2036         if (!is_ht40_allowed(channel_before) ||
2037             flags & NL80211_RRF_NO_HT40MINUS)
2038                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2039         else
2040                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2041
2042         if (!is_ht40_allowed(channel_after) ||
2043             flags & NL80211_RRF_NO_HT40PLUS)
2044                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2045         else
2046                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2047 }
2048
2049 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2050                                       struct ieee80211_supported_band *sband)
2051 {
2052         unsigned int i;
2053
2054         if (!sband)
2055                 return;
2056
2057         for (i = 0; i < sband->n_channels; i++)
2058                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2059 }
2060
2061 static void reg_process_ht_flags(struct wiphy *wiphy)
2062 {
2063         enum nl80211_band band;
2064
2065         if (!wiphy)
2066                 return;
2067
2068         for (band = 0; band < NUM_NL80211_BANDS; band++)
2069                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2070 }
2071
2072 static void reg_call_notifier(struct wiphy *wiphy,
2073                               struct regulatory_request *request)
2074 {
2075         if (wiphy->reg_notifier)
2076                 wiphy->reg_notifier(wiphy, request);
2077 }
2078
2079 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2080 {
2081         struct cfg80211_chan_def chandef;
2082         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2083         enum nl80211_iftype iftype;
2084
2085         wdev_lock(wdev);
2086         iftype = wdev->iftype;
2087
2088         /* make sure the interface is active */
2089         if (!wdev->netdev || !netif_running(wdev->netdev))
2090                 goto wdev_inactive_unlock;
2091
2092         switch (iftype) {
2093         case NL80211_IFTYPE_AP:
2094         case NL80211_IFTYPE_P2P_GO:
2095                 if (!wdev->beacon_interval)
2096                         goto wdev_inactive_unlock;
2097                 chandef = wdev->chandef;
2098                 break;
2099         case NL80211_IFTYPE_ADHOC:
2100                 if (!wdev->ssid_len)
2101                         goto wdev_inactive_unlock;
2102                 chandef = wdev->chandef;
2103                 break;
2104         case NL80211_IFTYPE_STATION:
2105         case NL80211_IFTYPE_P2P_CLIENT:
2106                 if (!wdev->current_bss ||
2107                     !wdev->current_bss->pub.channel)
2108                         goto wdev_inactive_unlock;
2109
2110                 if (!rdev->ops->get_channel ||
2111                     rdev_get_channel(rdev, wdev, &chandef))
2112                         cfg80211_chandef_create(&chandef,
2113                                                 wdev->current_bss->pub.channel,
2114                                                 NL80211_CHAN_NO_HT);
2115                 break;
2116         case NL80211_IFTYPE_MONITOR:
2117         case NL80211_IFTYPE_AP_VLAN:
2118         case NL80211_IFTYPE_P2P_DEVICE:
2119                 /* no enforcement required */
2120                 break;
2121         default:
2122                 /* others not implemented for now */
2123                 WARN_ON(1);
2124                 break;
2125         }
2126
2127         wdev_unlock(wdev);
2128
2129         switch (iftype) {
2130         case NL80211_IFTYPE_AP:
2131         case NL80211_IFTYPE_P2P_GO:
2132         case NL80211_IFTYPE_ADHOC:
2133                 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2134         case NL80211_IFTYPE_STATION:
2135         case NL80211_IFTYPE_P2P_CLIENT:
2136                 return cfg80211_chandef_usable(wiphy, &chandef,
2137                                                IEEE80211_CHAN_DISABLED);
2138         default:
2139                 break;
2140         }
2141
2142         return true;
2143
2144 wdev_inactive_unlock:
2145         wdev_unlock(wdev);
2146         return true;
2147 }
2148
2149 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2150 {
2151         struct wireless_dev *wdev;
2152         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2153
2154         ASSERT_RTNL();
2155
2156         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2157                 if (!reg_wdev_chan_valid(wiphy, wdev))
2158                         cfg80211_leave(rdev, wdev);
2159 }
2160
2161 static void reg_check_chans_work(struct work_struct *work)
2162 {
2163         struct cfg80211_registered_device *rdev;
2164
2165         pr_debug("Verifying active interfaces after reg change\n");
2166         rtnl_lock();
2167
2168         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2169                 if (!(rdev->wiphy.regulatory_flags &
2170                       REGULATORY_IGNORE_STALE_KICKOFF))
2171                         reg_leave_invalid_chans(&rdev->wiphy);
2172
2173         rtnl_unlock();
2174 }
2175
2176 static void reg_check_channels(void)
2177 {
2178         /*
2179          * Give usermode a chance to do something nicer (move to another
2180          * channel, orderly disconnection), before forcing a disconnection.
2181          */
2182         mod_delayed_work(system_power_efficient_wq,
2183                          &reg_check_chans,
2184                          msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2185 }
2186
2187 static void wiphy_update_regulatory(struct wiphy *wiphy,
2188                                     enum nl80211_reg_initiator initiator)
2189 {
2190         enum nl80211_band band;
2191         struct regulatory_request *lr = get_last_request();
2192
2193         if (ignore_reg_update(wiphy, initiator)) {
2194                 /*
2195                  * Regulatory updates set by CORE are ignored for custom
2196                  * regulatory cards. Let us notify the changes to the driver,
2197                  * as some drivers used this to restore its orig_* reg domain.
2198                  */
2199                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2200                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2201                     !(wiphy->regulatory_flags &
2202                       REGULATORY_WIPHY_SELF_MANAGED))
2203                         reg_call_notifier(wiphy, lr);
2204                 return;
2205         }
2206
2207         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2208
2209         for (band = 0; band < NUM_NL80211_BANDS; band++)
2210                 handle_band(wiphy, initiator, wiphy->bands[band]);
2211
2212         reg_process_beacons(wiphy);
2213         reg_process_ht_flags(wiphy);
2214         reg_call_notifier(wiphy, lr);
2215 }
2216
2217 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2218 {
2219         struct cfg80211_registered_device *rdev;
2220         struct wiphy *wiphy;
2221
2222         ASSERT_RTNL();
2223
2224         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2225                 wiphy = &rdev->wiphy;
2226                 wiphy_update_regulatory(wiphy, initiator);
2227         }
2228
2229         reg_check_channels();
2230 }
2231
2232 static void handle_channel_custom(struct wiphy *wiphy,
2233                                   struct ieee80211_channel *chan,
2234                                   const struct ieee80211_regdomain *regd)
2235 {
2236         u32 bw_flags = 0;
2237         const struct ieee80211_reg_rule *reg_rule = NULL;
2238         const struct ieee80211_power_rule *power_rule = NULL;
2239         u32 bw;
2240
2241         for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
2242                 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
2243                                               regd, bw);
2244                 if (!IS_ERR(reg_rule))
2245                         break;
2246         }
2247
2248         if (IS_ERR(reg_rule)) {
2249                 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
2250                          chan->center_freq);
2251                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2252                         chan->flags |= IEEE80211_CHAN_DISABLED;
2253                 } else {
2254                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2255                         chan->flags = chan->orig_flags;
2256                 }
2257                 return;
2258         }
2259
2260         power_rule = &reg_rule->power_rule;
2261         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2262
2263         chan->dfs_state_entered = jiffies;
2264         chan->dfs_state = NL80211_DFS_USABLE;
2265
2266         chan->beacon_found = false;
2267
2268         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2269                 chan->flags = chan->orig_flags | bw_flags |
2270                               map_regdom_flags(reg_rule->flags);
2271         else
2272                 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2273
2274         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2275         chan->max_reg_power = chan->max_power =
2276                 (int) MBM_TO_DBM(power_rule->max_eirp);
2277
2278         if (chan->flags & IEEE80211_CHAN_RADAR) {
2279                 if (reg_rule->dfs_cac_ms)
2280                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2281                 else
2282                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2283         }
2284
2285         chan->max_power = chan->max_reg_power;
2286 }
2287
2288 static void handle_band_custom(struct wiphy *wiphy,
2289                                struct ieee80211_supported_band *sband,
2290                                const struct ieee80211_regdomain *regd)
2291 {
2292         unsigned int i;
2293
2294         if (!sband)
2295                 return;
2296
2297         for (i = 0; i < sband->n_channels; i++)
2298                 handle_channel_custom(wiphy, &sband->channels[i], regd);
2299 }
2300
2301 /* Used by drivers prior to wiphy registration */
2302 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2303                                    const struct ieee80211_regdomain *regd)
2304 {
2305         enum nl80211_band band;
2306         unsigned int bands_set = 0;
2307
2308         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2309              "wiphy should have REGULATORY_CUSTOM_REG\n");
2310         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2311
2312         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2313                 if (!wiphy->bands[band])
2314                         continue;
2315                 handle_band_custom(wiphy, wiphy->bands[band], regd);
2316                 bands_set++;
2317         }
2318
2319         /*
2320          * no point in calling this if it won't have any effect
2321          * on your device's supported bands.
2322          */
2323         WARN_ON(!bands_set);
2324 }
2325 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2326
2327 static void reg_set_request_processed(void)
2328 {
2329         bool need_more_processing = false;
2330         struct regulatory_request *lr = get_last_request();
2331
2332         lr->processed = true;
2333
2334         spin_lock(&reg_requests_lock);
2335         if (!list_empty(&reg_requests_list))
2336                 need_more_processing = true;
2337         spin_unlock(&reg_requests_lock);
2338
2339         cancel_crda_timeout();
2340
2341         if (need_more_processing)
2342                 schedule_work(&reg_work);
2343 }
2344
2345 /**
2346  * reg_process_hint_core - process core regulatory requests
2347  * @pending_request: a pending core regulatory request
2348  *
2349  * The wireless subsystem can use this function to process
2350  * a regulatory request issued by the regulatory core.
2351  */
2352 static enum reg_request_treatment
2353 reg_process_hint_core(struct regulatory_request *core_request)
2354 {
2355         if (reg_query_database(core_request)) {
2356                 core_request->intersect = false;
2357                 core_request->processed = false;
2358                 reg_update_last_request(core_request);
2359                 return REG_REQ_OK;
2360         }
2361
2362         return REG_REQ_IGNORE;
2363 }
2364
2365 static enum reg_request_treatment
2366 __reg_process_hint_user(struct regulatory_request *user_request)
2367 {
2368         struct regulatory_request *lr = get_last_request();
2369
2370         if (reg_request_cell_base(user_request))
2371                 return reg_ignore_cell_hint(user_request);
2372
2373         if (reg_request_cell_base(lr))
2374                 return REG_REQ_IGNORE;
2375
2376         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2377                 return REG_REQ_INTERSECT;
2378         /*
2379          * If the user knows better the user should set the regdom
2380          * to their country before the IE is picked up
2381          */
2382         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2383             lr->intersect)
2384                 return REG_REQ_IGNORE;
2385         /*
2386          * Process user requests only after previous user/driver/core
2387          * requests have been processed
2388          */
2389         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2390              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2391              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2392             regdom_changes(lr->alpha2))
2393                 return REG_REQ_IGNORE;
2394
2395         if (!regdom_changes(user_request->alpha2))
2396                 return REG_REQ_ALREADY_SET;
2397
2398         return REG_REQ_OK;
2399 }
2400
2401 /**
2402  * reg_process_hint_user - process user regulatory requests
2403  * @user_request: a pending user regulatory request
2404  *
2405  * The wireless subsystem can use this function to process
2406  * a regulatory request initiated by userspace.
2407  */
2408 static enum reg_request_treatment
2409 reg_process_hint_user(struct regulatory_request *user_request)
2410 {
2411         enum reg_request_treatment treatment;
2412
2413         treatment = __reg_process_hint_user(user_request);
2414         if (treatment == REG_REQ_IGNORE ||
2415             treatment == REG_REQ_ALREADY_SET)
2416                 return REG_REQ_IGNORE;
2417
2418         user_request->intersect = treatment == REG_REQ_INTERSECT;
2419         user_request->processed = false;
2420
2421         if (reg_query_database(user_request)) {
2422                 reg_update_last_request(user_request);
2423                 user_alpha2[0] = user_request->alpha2[0];
2424                 user_alpha2[1] = user_request->alpha2[1];
2425                 return REG_REQ_OK;
2426         }
2427
2428         return REG_REQ_IGNORE;
2429 }
2430
2431 static enum reg_request_treatment
2432 __reg_process_hint_driver(struct regulatory_request *driver_request)
2433 {
2434         struct regulatory_request *lr = get_last_request();
2435
2436         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2437                 if (regdom_changes(driver_request->alpha2))
2438                         return REG_REQ_OK;
2439                 return REG_REQ_ALREADY_SET;
2440         }
2441
2442         /*
2443          * This would happen if you unplug and plug your card
2444          * back in or if you add a new device for which the previously
2445          * loaded card also agrees on the regulatory domain.
2446          */
2447         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2448             !regdom_changes(driver_request->alpha2))
2449                 return REG_REQ_ALREADY_SET;
2450
2451         return REG_REQ_INTERSECT;
2452 }
2453
2454 /**
2455  * reg_process_hint_driver - process driver regulatory requests
2456  * @driver_request: a pending driver regulatory request
2457  *
2458  * The wireless subsystem can use this function to process
2459  * a regulatory request issued by an 802.11 driver.
2460  *
2461  * Returns one of the different reg request treatment values.
2462  */
2463 static enum reg_request_treatment
2464 reg_process_hint_driver(struct wiphy *wiphy,
2465                         struct regulatory_request *driver_request)
2466 {
2467         const struct ieee80211_regdomain *regd, *tmp;
2468         enum reg_request_treatment treatment;
2469
2470         treatment = __reg_process_hint_driver(driver_request);
2471
2472         switch (treatment) {
2473         case REG_REQ_OK:
2474                 break;
2475         case REG_REQ_IGNORE:
2476                 return REG_REQ_IGNORE;
2477         case REG_REQ_INTERSECT:
2478         case REG_REQ_ALREADY_SET:
2479                 regd = reg_copy_regd(get_cfg80211_regdom());
2480                 if (IS_ERR(regd))
2481                         return REG_REQ_IGNORE;
2482
2483                 tmp = get_wiphy_regdom(wiphy);
2484                 rcu_assign_pointer(wiphy->regd, regd);
2485                 rcu_free_regdom(tmp);
2486         }
2487
2488
2489         driver_request->intersect = treatment == REG_REQ_INTERSECT;
2490         driver_request->processed = false;
2491
2492         /*
2493          * Since CRDA will not be called in this case as we already
2494          * have applied the requested regulatory domain before we just
2495          * inform userspace we have processed the request
2496          */
2497         if (treatment == REG_REQ_ALREADY_SET) {
2498                 nl80211_send_reg_change_event(driver_request);
2499                 reg_update_last_request(driver_request);
2500                 reg_set_request_processed();
2501                 return REG_REQ_ALREADY_SET;
2502         }
2503
2504         if (reg_query_database(driver_request)) {
2505                 reg_update_last_request(driver_request);
2506                 return REG_REQ_OK;
2507         }
2508
2509         return REG_REQ_IGNORE;
2510 }
2511
2512 static enum reg_request_treatment
2513 __reg_process_hint_country_ie(struct wiphy *wiphy,
2514                               struct regulatory_request *country_ie_request)
2515 {
2516         struct wiphy *last_wiphy = NULL;
2517         struct regulatory_request *lr = get_last_request();
2518
2519         if (reg_request_cell_base(lr)) {
2520                 /* Trust a Cell base station over the AP's country IE */
2521                 if (regdom_changes(country_ie_request->alpha2))
2522                         return REG_REQ_IGNORE;
2523                 return REG_REQ_ALREADY_SET;
2524         } else {
2525                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2526                         return REG_REQ_IGNORE;
2527         }
2528
2529         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2530                 return -EINVAL;
2531
2532         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2533                 return REG_REQ_OK;
2534
2535         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2536
2537         if (last_wiphy != wiphy) {
2538                 /*
2539                  * Two cards with two APs claiming different
2540                  * Country IE alpha2s. We could
2541                  * intersect them, but that seems unlikely
2542                  * to be correct. Reject second one for now.
2543                  */
2544                 if (regdom_changes(country_ie_request->alpha2))
2545                         return REG_REQ_IGNORE;
2546                 return REG_REQ_ALREADY_SET;
2547         }
2548
2549         if (regdom_changes(country_ie_request->alpha2))
2550                 return REG_REQ_OK;
2551         return REG_REQ_ALREADY_SET;
2552 }
2553
2554 /**
2555  * reg_process_hint_country_ie - process regulatory requests from country IEs
2556  * @country_ie_request: a regulatory request from a country IE
2557  *
2558  * The wireless subsystem can use this function to process
2559  * a regulatory request issued by a country Information Element.
2560  *
2561  * Returns one of the different reg request treatment values.
2562  */
2563 static enum reg_request_treatment
2564 reg_process_hint_country_ie(struct wiphy *wiphy,
2565                             struct regulatory_request *country_ie_request)
2566 {
2567         enum reg_request_treatment treatment;
2568
2569         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2570
2571         switch (treatment) {
2572         case REG_REQ_OK:
2573                 break;
2574         case REG_REQ_IGNORE:
2575                 return REG_REQ_IGNORE;
2576         case REG_REQ_ALREADY_SET:
2577                 reg_free_request(country_ie_request);
2578                 return REG_REQ_ALREADY_SET;
2579         case REG_REQ_INTERSECT:
2580                 /*
2581                  * This doesn't happen yet, not sure we
2582                  * ever want to support it for this case.
2583                  */
2584                 WARN_ONCE(1, "Unexpected intersection for country elements");
2585                 return REG_REQ_IGNORE;
2586         }
2587
2588         country_ie_request->intersect = false;
2589         country_ie_request->processed = false;
2590
2591         if (reg_query_database(country_ie_request)) {
2592                 reg_update_last_request(country_ie_request);
2593                 return REG_REQ_OK;
2594         }
2595
2596         return REG_REQ_IGNORE;
2597 }
2598
2599 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2600 {
2601         const struct ieee80211_regdomain *wiphy1_regd = NULL;
2602         const struct ieee80211_regdomain *wiphy2_regd = NULL;
2603         const struct ieee80211_regdomain *cfg80211_regd = NULL;
2604         bool dfs_domain_same;
2605
2606         rcu_read_lock();
2607
2608         cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2609         wiphy1_regd = rcu_dereference(wiphy1->regd);
2610         if (!wiphy1_regd)
2611                 wiphy1_regd = cfg80211_regd;
2612
2613         wiphy2_regd = rcu_dereference(wiphy2->regd);
2614         if (!wiphy2_regd)
2615                 wiphy2_regd = cfg80211_regd;
2616
2617         dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2618
2619         rcu_read_unlock();
2620
2621         return dfs_domain_same;
2622 }
2623
2624 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2625                                     struct ieee80211_channel *src_chan)
2626 {
2627         if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2628             !(src_chan->flags & IEEE80211_CHAN_RADAR))
2629                 return;
2630
2631         if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2632             src_chan->flags & IEEE80211_CHAN_DISABLED)
2633                 return;
2634
2635         if (src_chan->center_freq == dst_chan->center_freq &&
2636             dst_chan->dfs_state == NL80211_DFS_USABLE) {
2637                 dst_chan->dfs_state = src_chan->dfs_state;
2638                 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2639         }
2640 }
2641
2642 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2643                                        struct wiphy *src_wiphy)
2644 {
2645         struct ieee80211_supported_band *src_sband, *dst_sband;
2646         struct ieee80211_channel *src_chan, *dst_chan;
2647         int i, j, band;
2648
2649         if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2650                 return;
2651
2652         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2653                 dst_sband = dst_wiphy->bands[band];
2654                 src_sband = src_wiphy->bands[band];
2655                 if (!dst_sband || !src_sband)
2656                         continue;
2657
2658                 for (i = 0; i < dst_sband->n_channels; i++) {
2659                         dst_chan = &dst_sband->channels[i];
2660                         for (j = 0; j < src_sband->n_channels; j++) {
2661                                 src_chan = &src_sband->channels[j];
2662                                 reg_copy_dfs_chan_state(dst_chan, src_chan);
2663                         }
2664                 }
2665         }
2666 }
2667
2668 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2669 {
2670         struct cfg80211_registered_device *rdev;
2671
2672         ASSERT_RTNL();
2673
2674         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2675                 if (wiphy == &rdev->wiphy)
2676                         continue;
2677                 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2678         }
2679 }
2680
2681 /* This processes *all* regulatory hints */
2682 static void reg_process_hint(struct regulatory_request *reg_request)
2683 {
2684         struct wiphy *wiphy = NULL;
2685         enum reg_request_treatment treatment;
2686         enum nl80211_reg_initiator initiator = reg_request->initiator;
2687
2688         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2689                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2690
2691         switch (initiator) {
2692         case NL80211_REGDOM_SET_BY_CORE:
2693                 treatment = reg_process_hint_core(reg_request);
2694                 break;
2695         case NL80211_REGDOM_SET_BY_USER:
2696                 treatment = reg_process_hint_user(reg_request);
2697                 break;
2698         case NL80211_REGDOM_SET_BY_DRIVER:
2699                 if (!wiphy)
2700                         goto out_free;
2701                 treatment = reg_process_hint_driver(wiphy, reg_request);
2702                 break;
2703         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2704                 if (!wiphy)
2705                         goto out_free;
2706                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2707                 break;
2708         default:
2709                 WARN(1, "invalid initiator %d\n", initiator);
2710                 goto out_free;
2711         }
2712
2713         if (treatment == REG_REQ_IGNORE)
2714                 goto out_free;
2715
2716         WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2717              "unexpected treatment value %d\n", treatment);
2718
2719         /* This is required so that the orig_* parameters are saved.
2720          * NOTE: treatment must be set for any case that reaches here!
2721          */
2722         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2723             wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2724                 wiphy_update_regulatory(wiphy, initiator);
2725                 wiphy_all_share_dfs_chan_state(wiphy);
2726                 reg_check_channels();
2727         }
2728
2729         return;
2730
2731 out_free:
2732         reg_free_request(reg_request);
2733 }
2734
2735 static void notify_self_managed_wiphys(struct regulatory_request *request)
2736 {
2737         struct cfg80211_registered_device *rdev;
2738         struct wiphy *wiphy;
2739
2740         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2741                 wiphy = &rdev->wiphy;
2742                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
2743                     request->initiator == NL80211_REGDOM_SET_BY_USER)
2744                         reg_call_notifier(wiphy, request);
2745         }
2746 }
2747
2748 /*
2749  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2750  * Regulatory hints come on a first come first serve basis and we
2751  * must process each one atomically.
2752  */
2753 static void reg_process_pending_hints(void)
2754 {
2755         struct regulatory_request *reg_request, *lr;
2756
2757         lr = get_last_request();
2758
2759         /* When last_request->processed becomes true this will be rescheduled */
2760         if (lr && !lr->processed) {
2761                 reg_process_hint(lr);
2762                 return;
2763         }
2764
2765         spin_lock(&reg_requests_lock);
2766
2767         if (list_empty(&reg_requests_list)) {
2768                 spin_unlock(&reg_requests_lock);
2769                 return;
2770         }
2771
2772         reg_request = list_first_entry(&reg_requests_list,
2773                                        struct regulatory_request,
2774                                        list);
2775         list_del_init(&reg_request->list);
2776
2777         spin_unlock(&reg_requests_lock);
2778
2779         notify_self_managed_wiphys(reg_request);
2780
2781         reg_process_hint(reg_request);
2782
2783         lr = get_last_request();
2784
2785         spin_lock(&reg_requests_lock);
2786         if (!list_empty(&reg_requests_list) && lr && lr->processed)
2787                 schedule_work(&reg_work);
2788         spin_unlock(&reg_requests_lock);
2789 }
2790
2791 /* Processes beacon hints -- this has nothing to do with country IEs */
2792 static void reg_process_pending_beacon_hints(void)
2793 {
2794         struct cfg80211_registered_device *rdev;
2795         struct reg_beacon *pending_beacon, *tmp;
2796
2797         /* This goes through the _pending_ beacon list */
2798         spin_lock_bh(&reg_pending_beacons_lock);
2799
2800         list_for_each_entry_safe(pending_beacon, tmp,
2801                                  &reg_pending_beacons, list) {
2802                 list_del_init(&pending_beacon->list);
2803
2804                 /* Applies the beacon hint to current wiphys */
2805                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2806                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2807
2808                 /* Remembers the beacon hint for new wiphys or reg changes */
2809                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2810         }
2811
2812         spin_unlock_bh(&reg_pending_beacons_lock);
2813 }
2814
2815 static void reg_process_self_managed_hints(void)
2816 {
2817         struct cfg80211_registered_device *rdev;
2818         struct wiphy *wiphy;
2819         const struct ieee80211_regdomain *tmp;
2820         const struct ieee80211_regdomain *regd;
2821         enum nl80211_band band;
2822         struct regulatory_request request = {};
2823
2824         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2825                 wiphy = &rdev->wiphy;
2826
2827                 spin_lock(&reg_requests_lock);
2828                 regd = rdev->requested_regd;
2829                 rdev->requested_regd = NULL;
2830                 spin_unlock(&reg_requests_lock);
2831
2832                 if (regd == NULL)
2833                         continue;
2834
2835                 tmp = get_wiphy_regdom(wiphy);
2836                 rcu_assign_pointer(wiphy->regd, regd);
2837                 rcu_free_regdom(tmp);
2838
2839                 for (band = 0; band < NUM_NL80211_BANDS; band++)
2840                         handle_band_custom(wiphy, wiphy->bands[band], regd);
2841
2842                 reg_process_ht_flags(wiphy);
2843
2844                 request.wiphy_idx = get_wiphy_idx(wiphy);
2845                 request.alpha2[0] = regd->alpha2[0];
2846                 request.alpha2[1] = regd->alpha2[1];
2847                 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2848
2849                 nl80211_send_wiphy_reg_change_event(&request);
2850         }
2851
2852         reg_check_channels();
2853 }
2854
2855 static void reg_todo(struct work_struct *work)
2856 {
2857         rtnl_lock();
2858         reg_process_pending_hints();
2859         reg_process_pending_beacon_hints();
2860         reg_process_self_managed_hints();
2861         rtnl_unlock();
2862 }
2863
2864 static void queue_regulatory_request(struct regulatory_request *request)
2865 {
2866         request->alpha2[0] = toupper(request->alpha2[0]);
2867         request->alpha2[1] = toupper(request->alpha2[1]);
2868
2869         spin_lock(&reg_requests_lock);
2870         list_add_tail(&request->list, &reg_requests_list);
2871         spin_unlock(&reg_requests_lock);
2872
2873         schedule_work(&reg_work);
2874 }
2875
2876 /*
2877  * Core regulatory hint -- happens during cfg80211_init()
2878  * and when we restore regulatory settings.
2879  */
2880 static int regulatory_hint_core(const char *alpha2)
2881 {
2882         struct regulatory_request *request;
2883
2884         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2885         if (!request)
2886                 return -ENOMEM;
2887
2888         request->alpha2[0] = alpha2[0];
2889         request->alpha2[1] = alpha2[1];
2890         request->initiator = NL80211_REGDOM_SET_BY_CORE;
2891         request->wiphy_idx = WIPHY_IDX_INVALID;
2892
2893         queue_regulatory_request(request);
2894
2895         return 0;
2896 }
2897
2898 /* User hints */
2899 int regulatory_hint_user(const char *alpha2,
2900                          enum nl80211_user_reg_hint_type user_reg_hint_type)
2901 {
2902         struct regulatory_request *request;
2903
2904         if (WARN_ON(!alpha2))
2905                 return -EINVAL;
2906
2907         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2908         if (!request)
2909                 return -ENOMEM;
2910
2911         request->wiphy_idx = WIPHY_IDX_INVALID;
2912         request->alpha2[0] = alpha2[0];
2913         request->alpha2[1] = alpha2[1];
2914         request->initiator = NL80211_REGDOM_SET_BY_USER;
2915         request->user_reg_hint_type = user_reg_hint_type;
2916
2917         /* Allow calling CRDA again */
2918         reset_crda_timeouts();
2919
2920         queue_regulatory_request(request);
2921
2922         return 0;
2923 }
2924
2925 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2926 {
2927         spin_lock(&reg_indoor_lock);
2928
2929         /* It is possible that more than one user space process is trying to
2930          * configure the indoor setting. To handle such cases, clear the indoor
2931          * setting in case that some process does not think that the device
2932          * is operating in an indoor environment. In addition, if a user space
2933          * process indicates that it is controlling the indoor setting, save its
2934          * portid, i.e., make it the owner.
2935          */
2936         reg_is_indoor = is_indoor;
2937         if (reg_is_indoor) {
2938                 if (!reg_is_indoor_portid)
2939                         reg_is_indoor_portid = portid;
2940         } else {
2941                 reg_is_indoor_portid = 0;
2942         }
2943
2944         spin_unlock(&reg_indoor_lock);
2945
2946         if (!is_indoor)
2947                 reg_check_channels();
2948
2949         return 0;
2950 }
2951
2952 void regulatory_netlink_notify(u32 portid)
2953 {
2954         spin_lock(&reg_indoor_lock);
2955
2956         if (reg_is_indoor_portid != portid) {
2957                 spin_unlock(&reg_indoor_lock);
2958                 return;
2959         }
2960
2961         reg_is_indoor = false;
2962         reg_is_indoor_portid = 0;
2963
2964         spin_unlock(&reg_indoor_lock);
2965
2966         reg_check_channels();
2967 }
2968
2969 /* Driver hints */
2970 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2971 {
2972         struct regulatory_request *request;
2973
2974         if (WARN_ON(!alpha2 || !wiphy))
2975                 return -EINVAL;
2976
2977         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2978
2979         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2980         if (!request)
2981                 return -ENOMEM;
2982
2983         request->wiphy_idx = get_wiphy_idx(wiphy);
2984
2985         request->alpha2[0] = alpha2[0];
2986         request->alpha2[1] = alpha2[1];
2987         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2988
2989         /* Allow calling CRDA again */
2990         reset_crda_timeouts();
2991
2992         queue_regulatory_request(request);
2993
2994         return 0;
2995 }
2996 EXPORT_SYMBOL(regulatory_hint);
2997
2998 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
2999                                 const u8 *country_ie, u8 country_ie_len)
3000 {
3001         char alpha2[2];
3002         enum environment_cap env = ENVIRON_ANY;
3003         struct regulatory_request *request = NULL, *lr;
3004
3005         /* IE len must be evenly divisible by 2 */
3006         if (country_ie_len & 0x01)
3007                 return;
3008
3009         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3010                 return;
3011
3012         request = kzalloc(sizeof(*request), GFP_KERNEL);
3013         if (!request)
3014                 return;
3015
3016         alpha2[0] = country_ie[0];
3017         alpha2[1] = country_ie[1];
3018
3019         if (country_ie[2] == 'I')
3020                 env = ENVIRON_INDOOR;
3021         else if (country_ie[2] == 'O')
3022                 env = ENVIRON_OUTDOOR;
3023
3024         rcu_read_lock();
3025         lr = get_last_request();
3026
3027         if (unlikely(!lr))
3028                 goto out;
3029
3030         /*
3031          * We will run this only upon a successful connection on cfg80211.
3032          * We leave conflict resolution to the workqueue, where can hold
3033          * the RTNL.
3034          */
3035         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3036             lr->wiphy_idx != WIPHY_IDX_INVALID)
3037                 goto out;
3038
3039         request->wiphy_idx = get_wiphy_idx(wiphy);
3040         request->alpha2[0] = alpha2[0];
3041         request->alpha2[1] = alpha2[1];
3042         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3043         request->country_ie_env = env;
3044
3045         /* Allow calling CRDA again */
3046         reset_crda_timeouts();
3047
3048         queue_regulatory_request(request);
3049         request = NULL;
3050 out:
3051         kfree(request);
3052         rcu_read_unlock();
3053 }
3054
3055 static void restore_alpha2(char *alpha2, bool reset_user)
3056 {
3057         /* indicates there is no alpha2 to consider for restoration */
3058         alpha2[0] = '9';
3059         alpha2[1] = '7';
3060
3061         /* The user setting has precedence over the module parameter */
3062         if (is_user_regdom_saved()) {
3063                 /* Unless we're asked to ignore it and reset it */
3064                 if (reset_user) {
3065                         pr_debug("Restoring regulatory settings including user preference\n");
3066                         user_alpha2[0] = '9';
3067                         user_alpha2[1] = '7';
3068
3069                         /*
3070                          * If we're ignoring user settings, we still need to
3071                          * check the module parameter to ensure we put things
3072                          * back as they were for a full restore.
3073                          */
3074                         if (!is_world_regdom(ieee80211_regdom)) {
3075                                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3076                                          ieee80211_regdom[0], ieee80211_regdom[1]);
3077                                 alpha2[0] = ieee80211_regdom[0];
3078                                 alpha2[1] = ieee80211_regdom[1];
3079                         }
3080                 } else {
3081                         pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3082                                  user_alpha2[0], user_alpha2[1]);
3083                         alpha2[0] = user_alpha2[0];
3084                         alpha2[1] = user_alpha2[1];
3085                 }
3086         } else if (!is_world_regdom(ieee80211_regdom)) {
3087                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3088                          ieee80211_regdom[0], ieee80211_regdom[1]);
3089                 alpha2[0] = ieee80211_regdom[0];
3090                 alpha2[1] = ieee80211_regdom[1];
3091         } else
3092                 pr_debug("Restoring regulatory settings\n");
3093 }
3094
3095 static void restore_custom_reg_settings(struct wiphy *wiphy)
3096 {
3097         struct ieee80211_supported_band *sband;
3098         enum nl80211_band band;
3099         struct ieee80211_channel *chan;
3100         int i;
3101
3102         for (band = 0; band < NUM_NL80211_BANDS; band++) {
3103                 sband = wiphy->bands[band];
3104                 if (!sband)
3105                         continue;
3106                 for (i = 0; i < sband->n_channels; i++) {
3107                         chan = &sband->channels[i];
3108                         chan->flags = chan->orig_flags;
3109                         chan->max_antenna_gain = chan->orig_mag;
3110                         chan->max_power = chan->orig_mpwr;
3111                         chan->beacon_found = false;
3112                 }
3113         }
3114 }
3115
3116 /*
3117  * Restoring regulatory settings involves ingoring any
3118  * possibly stale country IE information and user regulatory
3119  * settings if so desired, this includes any beacon hints
3120  * learned as we could have traveled outside to another country
3121  * after disconnection. To restore regulatory settings we do
3122  * exactly what we did at bootup:
3123  *
3124  *   - send a core regulatory hint
3125  *   - send a user regulatory hint if applicable
3126  *
3127  * Device drivers that send a regulatory hint for a specific country
3128  * keep their own regulatory domain on wiphy->regd so that does does
3129  * not need to be remembered.
3130  */
3131 static void restore_regulatory_settings(bool reset_user, bool cached)
3132 {
3133         char alpha2[2];
3134         char world_alpha2[2];
3135         struct reg_beacon *reg_beacon, *btmp;
3136         LIST_HEAD(tmp_reg_req_list);
3137         struct cfg80211_registered_device *rdev;
3138
3139         ASSERT_RTNL();
3140
3141         /*
3142          * Clear the indoor setting in case that it is not controlled by user
3143          * space, as otherwise there is no guarantee that the device is still
3144          * operating in an indoor environment.
3145          */
3146         spin_lock(&reg_indoor_lock);
3147         if (reg_is_indoor && !reg_is_indoor_portid) {
3148                 reg_is_indoor = false;
3149                 reg_check_channels();
3150         }
3151         spin_unlock(&reg_indoor_lock);
3152
3153         reset_regdomains(true, &world_regdom);
3154         restore_alpha2(alpha2, reset_user);
3155
3156         /*
3157          * If there's any pending requests we simply
3158          * stash them to a temporary pending queue and
3159          * add then after we've restored regulatory
3160          * settings.
3161          */
3162         spin_lock(&reg_requests_lock);
3163         list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3164         spin_unlock(&reg_requests_lock);
3165
3166         /* Clear beacon hints */
3167         spin_lock_bh(&reg_pending_beacons_lock);
3168         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3169                 list_del(&reg_beacon->list);
3170                 kfree(reg_beacon);
3171         }
3172         spin_unlock_bh(&reg_pending_beacons_lock);
3173
3174         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3175                 list_del(&reg_beacon->list);
3176                 kfree(reg_beacon);
3177         }
3178
3179         /* First restore to the basic regulatory settings */
3180         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3181         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3182
3183         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3184                 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3185                         continue;
3186                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3187                         restore_custom_reg_settings(&rdev->wiphy);
3188         }
3189
3190         if (cached && (!is_an_alpha2(alpha2) ||
3191                        !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3192                 reset_regdomains(false, cfg80211_world_regdom);
3193                 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3194                 print_regdomain(get_cfg80211_regdom());
3195                 nl80211_send_reg_change_event(&core_request_world);
3196                 reg_set_request_processed();
3197
3198                 if (is_an_alpha2(alpha2) &&
3199                     !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3200                         struct regulatory_request *ureq;
3201
3202                         spin_lock(&reg_requests_lock);
3203                         ureq = list_last_entry(&reg_requests_list,
3204                                                struct regulatory_request,
3205                                                list);
3206                         list_del(&ureq->list);
3207                         spin_unlock(&reg_requests_lock);
3208
3209                         notify_self_managed_wiphys(ureq);
3210                         reg_update_last_request(ureq);
3211                         set_regdom(reg_copy_regd(cfg80211_user_regdom),
3212                                    REGD_SOURCE_CACHED);
3213                 }
3214         } else {
3215                 regulatory_hint_core(world_alpha2);
3216
3217                 /*
3218                  * This restores the ieee80211_regdom module parameter
3219                  * preference or the last user requested regulatory
3220                  * settings, user regulatory settings takes precedence.
3221                  */
3222                 if (is_an_alpha2(alpha2))
3223                         regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3224         }
3225
3226         spin_lock(&reg_requests_lock);
3227         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3228         spin_unlock(&reg_requests_lock);
3229
3230         pr_debug("Kicking the queue\n");
3231
3232         schedule_work(&reg_work);
3233 }
3234
3235 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3236 {
3237         struct cfg80211_registered_device *rdev;
3238         struct wireless_dev *wdev;
3239
3240         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3241                 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3242                         wdev_lock(wdev);
3243                         if (!(wdev->wiphy->regulatory_flags & flag)) {
3244                                 wdev_unlock(wdev);
3245                                 return false;
3246                         }
3247                         wdev_unlock(wdev);
3248                 }
3249         }
3250
3251         return true;
3252 }
3253
3254 void regulatory_hint_disconnect(void)
3255 {
3256         /* Restore of regulatory settings is not required when wiphy(s)
3257          * ignore IE from connected access point but clearance of beacon hints
3258          * is required when wiphy(s) supports beacon hints.
3259          */
3260         if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3261                 struct reg_beacon *reg_beacon, *btmp;
3262
3263                 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3264                         return;
3265
3266                 spin_lock_bh(&reg_pending_beacons_lock);
3267                 list_for_each_entry_safe(reg_beacon, btmp,
3268                                          &reg_pending_beacons, list) {
3269                         list_del(&reg_beacon->list);
3270                         kfree(reg_beacon);
3271                 }
3272                 spin_unlock_bh(&reg_pending_beacons_lock);
3273
3274                 list_for_each_entry_safe(reg_beacon, btmp,
3275                                          &reg_beacon_list, list) {
3276                         list_del(&reg_beacon->list);
3277                         kfree(reg_beacon);
3278                 }
3279
3280                 return;
3281         }
3282
3283         pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3284         restore_regulatory_settings(false, true);
3285 }
3286
3287 static bool freq_is_chan_12_13_14(u32 freq)
3288 {
3289         if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3290             freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3291             freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3292                 return true;
3293         return false;
3294 }
3295
3296 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3297 {
3298         struct reg_beacon *pending_beacon;
3299
3300         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3301                 if (beacon_chan->center_freq ==
3302                     pending_beacon->chan.center_freq)
3303                         return true;
3304         return false;
3305 }
3306
3307 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3308                                  struct ieee80211_channel *beacon_chan,
3309                                  gfp_t gfp)
3310 {
3311         struct reg_beacon *reg_beacon;
3312         bool processing;
3313
3314         if (beacon_chan->beacon_found ||
3315             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3316             (beacon_chan->band == NL80211_BAND_2GHZ &&
3317              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3318                 return 0;
3319
3320         spin_lock_bh(&reg_pending_beacons_lock);
3321         processing = pending_reg_beacon(beacon_chan);
3322         spin_unlock_bh(&reg_pending_beacons_lock);
3323
3324         if (processing)
3325                 return 0;
3326
3327         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3328         if (!reg_beacon)
3329                 return -ENOMEM;
3330
3331         pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
3332                  beacon_chan->center_freq,
3333                  ieee80211_frequency_to_channel(beacon_chan->center_freq),
3334                  wiphy_name(wiphy));
3335
3336         memcpy(&reg_beacon->chan, beacon_chan,
3337                sizeof(struct ieee80211_channel));
3338
3339         /*
3340          * Since we can be called from BH or and non-BH context
3341          * we must use spin_lock_bh()
3342          */
3343         spin_lock_bh(&reg_pending_beacons_lock);
3344         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3345         spin_unlock_bh(&reg_pending_beacons_lock);
3346
3347         schedule_work(&reg_work);
3348
3349         return 0;
3350 }
3351
3352 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3353 {
3354         unsigned int i;
3355         const struct ieee80211_reg_rule *reg_rule = NULL;
3356         const struct ieee80211_freq_range *freq_range = NULL;
3357         const struct ieee80211_power_rule *power_rule = NULL;
3358         char bw[32], cac_time[32];
3359
3360         pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3361
3362         for (i = 0; i < rd->n_reg_rules; i++) {
3363                 reg_rule = &rd->reg_rules[i];
3364                 freq_range = &reg_rule->freq_range;
3365                 power_rule = &reg_rule->power_rule;
3366
3367                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3368                         snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
3369                                  freq_range->max_bandwidth_khz,
3370                                  reg_get_max_bandwidth(rd, reg_rule));
3371                 else
3372                         snprintf(bw, sizeof(bw), "%d KHz",
3373                                  freq_range->max_bandwidth_khz);
3374
3375                 if (reg_rule->flags & NL80211_RRF_DFS)
3376                         scnprintf(cac_time, sizeof(cac_time), "%u s",
3377                                   reg_rule->dfs_cac_ms/1000);
3378                 else
3379                         scnprintf(cac_time, sizeof(cac_time), "N/A");
3380
3381
3382                 /*
3383                  * There may not be documentation for max antenna gain
3384                  * in certain regions
3385                  */
3386                 if (power_rule->max_antenna_gain)
3387                         pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3388                                 freq_range->start_freq_khz,
3389                                 freq_range->end_freq_khz,
3390                                 bw,
3391                                 power_rule->max_antenna_gain,
3392                                 power_rule->max_eirp,
3393                                 cac_time);
3394                 else
3395                         pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3396                                 freq_range->start_freq_khz,
3397                                 freq_range->end_freq_khz,
3398                                 bw,
3399                                 power_rule->max_eirp,
3400                                 cac_time);
3401         }
3402 }
3403
3404 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3405 {
3406         switch (dfs_region) {
3407         case NL80211_DFS_UNSET:
3408         case NL80211_DFS_FCC:
3409         case NL80211_DFS_ETSI:
3410         case NL80211_DFS_JP:
3411                 return true;
3412         default:
3413                 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3414                 return false;
3415         }
3416 }
3417
3418 static void print_regdomain(const struct ieee80211_regdomain *rd)
3419 {
3420         struct regulatory_request *lr = get_last_request();
3421
3422         if (is_intersected_alpha2(rd->alpha2)) {
3423                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3424                         struct cfg80211_registered_device *rdev;
3425                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3426                         if (rdev) {
3427                                 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3428                                         rdev->country_ie_alpha2[0],
3429                                         rdev->country_ie_alpha2[1]);
3430                         } else
3431                                 pr_debug("Current regulatory domain intersected:\n");
3432                 } else
3433                         pr_debug("Current regulatory domain intersected:\n");
3434         } else if (is_world_regdom(rd->alpha2)) {
3435                 pr_debug("World regulatory domain updated:\n");
3436         } else {
3437                 if (is_unknown_alpha2(rd->alpha2))
3438                         pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3439                 else {
3440                         if (reg_request_cell_base(lr))
3441                                 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3442                                         rd->alpha2[0], rd->alpha2[1]);
3443                         else
3444                                 pr_debug("Regulatory domain changed to country: %c%c\n",
3445                                         rd->alpha2[0], rd->alpha2[1]);
3446                 }
3447         }
3448
3449         pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3450         print_rd_rules(rd);
3451 }
3452
3453 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3454 {
3455         pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3456         print_rd_rules(rd);
3457 }
3458
3459 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3460 {
3461         if (!is_world_regdom(rd->alpha2))
3462                 return -EINVAL;
3463         update_world_regdomain(rd);
3464         return 0;
3465 }
3466
3467 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3468                            struct regulatory_request *user_request)
3469 {
3470         const struct ieee80211_regdomain *intersected_rd = NULL;
3471
3472         if (!regdom_changes(rd->alpha2))
3473                 return -EALREADY;
3474
3475         if (!is_valid_rd(rd)) {
3476                 pr_err("Invalid regulatory domain detected: %c%c\n",
3477                        rd->alpha2[0], rd->alpha2[1]);
3478                 print_regdomain_info(rd);
3479                 return -EINVAL;
3480         }
3481
3482         if (!user_request->intersect) {
3483                 reset_regdomains(false, rd);
3484                 return 0;
3485         }
3486
3487         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3488         if (!intersected_rd)
3489                 return -EINVAL;
3490
3491         kfree(rd);
3492         rd = NULL;
3493         reset_regdomains(false, intersected_rd);
3494
3495         return 0;
3496 }
3497
3498 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3499                              struct regulatory_request *driver_request)
3500 {
3501         const struct ieee80211_regdomain *regd;
3502         const struct ieee80211_regdomain *intersected_rd = NULL;
3503         const struct ieee80211_regdomain *tmp;
3504         struct wiphy *request_wiphy;
3505
3506         if (is_world_regdom(rd->alpha2))
3507                 return -EINVAL;
3508
3509         if (!regdom_changes(rd->alpha2))
3510                 return -EALREADY;
3511
3512         if (!is_valid_rd(rd)) {
3513                 pr_err("Invalid regulatory domain detected: %c%c\n",
3514                        rd->alpha2[0], rd->alpha2[1]);
3515                 print_regdomain_info(rd);
3516                 return -EINVAL;
3517         }
3518
3519         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3520         if (!request_wiphy)
3521                 return -ENODEV;
3522
3523         if (!driver_request->intersect) {
3524                 if (request_wiphy->regd)
3525                         return -EALREADY;
3526
3527                 regd = reg_copy_regd(rd);
3528                 if (IS_ERR(regd))
3529                         return PTR_ERR(regd);
3530
3531                 rcu_assign_pointer(request_wiphy->regd, regd);
3532                 reset_regdomains(false, rd);
3533                 return 0;
3534         }
3535
3536         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3537         if (!intersected_rd)
3538                 return -EINVAL;
3539
3540         /*
3541          * We can trash what CRDA provided now.
3542          * However if a driver requested this specific regulatory
3543          * domain we keep it for its private use
3544          */
3545         tmp = get_wiphy_regdom(request_wiphy);
3546         rcu_assign_pointer(request_wiphy->regd, rd);
3547         rcu_free_regdom(tmp);
3548
3549         rd = NULL;
3550
3551         reset_regdomains(false, intersected_rd);
3552
3553         return 0;
3554 }
3555
3556 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3557                                  struct regulatory_request *country_ie_request)
3558 {
3559         struct wiphy *request_wiphy;
3560
3561         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3562             !is_unknown_alpha2(rd->alpha2))
3563                 return -EINVAL;
3564
3565         /*
3566          * Lets only bother proceeding on the same alpha2 if the current
3567          * rd is non static (it means CRDA was present and was used last)
3568          * and the pending request came in from a country IE
3569          */
3570
3571         if (!is_valid_rd(rd)) {
3572                 pr_err("Invalid regulatory domain detected: %c%c\n",
3573                        rd->alpha2[0], rd->alpha2[1]);
3574                 print_regdomain_info(rd);
3575                 return -EINVAL;
3576         }
3577
3578         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3579         if (!request_wiphy)
3580                 return -ENODEV;
3581
3582         if (country_ie_request->intersect)
3583                 return -EINVAL;
3584
3585         reset_regdomains(false, rd);
3586         return 0;
3587 }
3588
3589 /*
3590  * Use this call to set the current regulatory domain. Conflicts with
3591  * multiple drivers can be ironed out later. Caller must've already
3592  * kmalloc'd the rd structure.
3593  */
3594 int set_regdom(const struct ieee80211_regdomain *rd,
3595                enum ieee80211_regd_source regd_src)
3596 {
3597         struct regulatory_request *lr;
3598         bool user_reset = false;
3599         int r;
3600
3601         if (IS_ERR_OR_NULL(rd))
3602                 return -ENODATA;
3603
3604         if (!reg_is_valid_request(rd->alpha2)) {
3605                 kfree(rd);
3606                 return -EINVAL;
3607         }
3608
3609         if (regd_src == REGD_SOURCE_CRDA)
3610                 reset_crda_timeouts();
3611
3612         lr = get_last_request();
3613
3614         /* Note that this doesn't update the wiphys, this is done below */
3615         switch (lr->initiator) {
3616         case NL80211_REGDOM_SET_BY_CORE:
3617                 r = reg_set_rd_core(rd);
3618                 break;
3619         case NL80211_REGDOM_SET_BY_USER:
3620                 cfg80211_save_user_regdom(rd);
3621                 r = reg_set_rd_user(rd, lr);
3622                 user_reset = true;
3623                 break;
3624         case NL80211_REGDOM_SET_BY_DRIVER:
3625                 r = reg_set_rd_driver(rd, lr);
3626                 break;
3627         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3628                 r = reg_set_rd_country_ie(rd, lr);
3629                 break;
3630         default:
3631                 WARN(1, "invalid initiator %d\n", lr->initiator);
3632                 kfree(rd);
3633                 return -EINVAL;
3634         }
3635
3636         if (r) {
3637                 switch (r) {
3638                 case -EALREADY:
3639                         reg_set_request_processed();
3640                         break;
3641                 default:
3642                         /* Back to world regulatory in case of errors */
3643                         restore_regulatory_settings(user_reset, false);
3644                 }
3645
3646                 kfree(rd);
3647                 return r;
3648         }
3649
3650         /* This would make this whole thing pointless */
3651         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3652                 return -EINVAL;
3653
3654         /* update all wiphys now with the new established regulatory domain */
3655         update_all_wiphy_regulatory(lr->initiator);
3656
3657         print_regdomain(get_cfg80211_regdom());
3658
3659         nl80211_send_reg_change_event(lr);
3660
3661         reg_set_request_processed();
3662
3663         return 0;
3664 }
3665
3666 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3667                                        struct ieee80211_regdomain *rd)
3668 {
3669         const struct ieee80211_regdomain *regd;
3670         const struct ieee80211_regdomain *prev_regd;
3671         struct cfg80211_registered_device *rdev;
3672
3673         if (WARN_ON(!wiphy || !rd))
3674                 return -EINVAL;
3675
3676         if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3677                  "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3678                 return -EPERM;
3679
3680         if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3681                 print_regdomain_info(rd);
3682                 return -EINVAL;
3683         }
3684
3685         regd = reg_copy_regd(rd);
3686         if (IS_ERR(regd))
3687                 return PTR_ERR(regd);
3688
3689         rdev = wiphy_to_rdev(wiphy);
3690
3691         spin_lock(&reg_requests_lock);
3692         prev_regd = rdev->requested_regd;
3693         rdev->requested_regd = regd;
3694         spin_unlock(&reg_requests_lock);
3695
3696         kfree(prev_regd);
3697         return 0;
3698 }
3699
3700 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3701                               struct ieee80211_regdomain *rd)
3702 {
3703         int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3704
3705         if (ret)
3706                 return ret;
3707
3708         schedule_work(&reg_work);
3709         return 0;
3710 }
3711 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3712
3713 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3714                                         struct ieee80211_regdomain *rd)
3715 {
3716         int ret;
3717
3718         ASSERT_RTNL();
3719
3720         ret = __regulatory_set_wiphy_regd(wiphy, rd);
3721         if (ret)
3722                 return ret;
3723
3724         /* process the request immediately */
3725         reg_process_self_managed_hints();
3726         return 0;
3727 }
3728 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3729
3730 void wiphy_regulatory_register(struct wiphy *wiphy)
3731 {
3732         struct regulatory_request *lr = get_last_request();
3733
3734         /* self-managed devices ignore beacon hints and country IE */
3735         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
3736                 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3737                                            REGULATORY_COUNTRY_IE_IGNORE;
3738
3739                 /*
3740                  * The last request may have been received before this
3741                  * registration call. Call the driver notifier if
3742                  * initiator is USER and user type is CELL_BASE.
3743                  */
3744                 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
3745                     lr->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE)
3746                         reg_call_notifier(wiphy, lr);
3747         }
3748
3749         if (!reg_dev_ignore_cell_hint(wiphy))
3750                 reg_num_devs_support_basehint++;
3751
3752         wiphy_update_regulatory(wiphy, lr->initiator);
3753         wiphy_all_share_dfs_chan_state(wiphy);
3754 }
3755
3756 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3757 {
3758         struct wiphy *request_wiphy = NULL;
3759         struct regulatory_request *lr;
3760
3761         lr = get_last_request();
3762
3763         if (!reg_dev_ignore_cell_hint(wiphy))
3764                 reg_num_devs_support_basehint--;
3765
3766         rcu_free_regdom(get_wiphy_regdom(wiphy));
3767         RCU_INIT_POINTER(wiphy->regd, NULL);
3768
3769         if (lr)
3770                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3771
3772         if (!request_wiphy || request_wiphy != wiphy)
3773                 return;
3774
3775         lr->wiphy_idx = WIPHY_IDX_INVALID;
3776         lr->country_ie_env = ENVIRON_ANY;
3777 }
3778
3779 /*
3780  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3781  * UNII band definitions
3782  */
3783 int cfg80211_get_unii(int freq)
3784 {
3785         /* UNII-1 */
3786         if (freq >= 5150 && freq <= 5250)
3787                 return 0;
3788
3789         /* UNII-2A */
3790         if (freq > 5250 && freq <= 5350)
3791                 return 1;
3792
3793         /* UNII-2B */
3794         if (freq > 5350 && freq <= 5470)
3795                 return 2;
3796
3797         /* UNII-2C */
3798         if (freq > 5470 && freq <= 5725)
3799                 return 3;
3800
3801         /* UNII-3 */
3802         if (freq > 5725 && freq <= 5825)
3803                 return 4;
3804
3805         return -EINVAL;
3806 }
3807
3808 bool regulatory_indoor_allowed(void)
3809 {
3810         return reg_is_indoor;
3811 }
3812
3813 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
3814 {
3815         const struct ieee80211_regdomain *regd = NULL;
3816         const struct ieee80211_regdomain *wiphy_regd = NULL;
3817         bool pre_cac_allowed = false;
3818
3819         rcu_read_lock();
3820
3821         regd = rcu_dereference(cfg80211_regdomain);
3822         wiphy_regd = rcu_dereference(wiphy->regd);
3823         if (!wiphy_regd) {
3824                 if (regd->dfs_region == NL80211_DFS_ETSI)
3825                         pre_cac_allowed = true;
3826
3827                 rcu_read_unlock();
3828
3829                 return pre_cac_allowed;
3830         }
3831
3832         if (regd->dfs_region == wiphy_regd->dfs_region &&
3833             wiphy_regd->dfs_region == NL80211_DFS_ETSI)
3834                 pre_cac_allowed = true;
3835
3836         rcu_read_unlock();
3837
3838         return pre_cac_allowed;
3839 }
3840
3841 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
3842                                     struct cfg80211_chan_def *chandef,
3843                                     enum nl80211_dfs_state dfs_state,
3844                                     enum nl80211_radar_event event)
3845 {
3846         struct cfg80211_registered_device *rdev;
3847
3848         ASSERT_RTNL();
3849
3850         if (WARN_ON(!cfg80211_chandef_valid(chandef)))
3851                 return;
3852
3853         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3854                 if (wiphy == &rdev->wiphy)
3855                         continue;
3856
3857                 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
3858                         continue;
3859
3860                 if (!ieee80211_get_channel(&rdev->wiphy,
3861                                            chandef->chan->center_freq))
3862                         continue;
3863
3864                 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
3865
3866                 if (event == NL80211_RADAR_DETECTED ||
3867                     event == NL80211_RADAR_CAC_FINISHED)
3868                         cfg80211_sched_dfs_chan_update(rdev);
3869
3870                 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
3871         }
3872 }
3873
3874 static int __init regulatory_init_db(void)
3875 {
3876         int err;
3877
3878         /*
3879          * It's possible that - due to other bugs/issues - cfg80211
3880          * never called regulatory_init() below, or that it failed;
3881          * in that case, don't try to do any further work here as
3882          * it's doomed to lead to crashes.
3883          */
3884         if (IS_ERR_OR_NULL(reg_pdev))
3885                 return -EINVAL;
3886
3887         err = load_builtin_regdb_keys();
3888         if (err)
3889                 return err;
3890
3891         /* We always try to get an update for the static regdomain */
3892         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3893         if (err) {
3894                 if (err == -ENOMEM) {
3895                         platform_device_unregister(reg_pdev);
3896                         return err;
3897                 }
3898                 /*
3899                  * N.B. kobject_uevent_env() can fail mainly for when we're out
3900                  * memory which is handled and propagated appropriately above
3901                  * but it can also fail during a netlink_broadcast() or during
3902                  * early boot for call_usermodehelper(). For now treat these
3903                  * errors as non-fatal.
3904                  */
3905                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3906         }
3907
3908         /*
3909          * Finally, if the user set the module parameter treat it
3910          * as a user hint.
3911          */
3912         if (!is_world_regdom(ieee80211_regdom))
3913                 regulatory_hint_user(ieee80211_regdom,
3914                                      NL80211_USER_REG_HINT_USER);
3915
3916         return 0;
3917 }
3918 #ifndef MODULE
3919 late_initcall(regulatory_init_db);
3920 #endif
3921
3922 int __init regulatory_init(void)
3923 {
3924         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3925         if (IS_ERR(reg_pdev))
3926                 return PTR_ERR(reg_pdev);
3927
3928         spin_lock_init(&reg_requests_lock);
3929         spin_lock_init(&reg_pending_beacons_lock);
3930         spin_lock_init(&reg_indoor_lock);
3931
3932         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3933
3934         user_alpha2[0] = '9';
3935         user_alpha2[1] = '7';
3936
3937 #ifdef MODULE
3938         return regulatory_init_db();
3939 #else
3940         return 0;
3941 #endif
3942 }
3943
3944 void regulatory_exit(void)
3945 {
3946         struct regulatory_request *reg_request, *tmp;
3947         struct reg_beacon *reg_beacon, *btmp;
3948
3949         cancel_work_sync(&reg_work);
3950         cancel_crda_timeout_sync();
3951         cancel_delayed_work_sync(&reg_check_chans);
3952
3953         /* Lock to suppress warnings */
3954         rtnl_lock();
3955         reset_regdomains(true, NULL);
3956         rtnl_unlock();
3957
3958         dev_set_uevent_suppress(&reg_pdev->dev, true);
3959
3960         platform_device_unregister(reg_pdev);
3961
3962         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3963                 list_del(&reg_beacon->list);
3964                 kfree(reg_beacon);
3965         }
3966
3967         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3968                 list_del(&reg_beacon->list);
3969                 kfree(reg_beacon);
3970         }
3971
3972         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3973                 list_del(&reg_request->list);
3974                 kfree(reg_request);
3975         }
3976
3977         if (!IS_ERR_OR_NULL(regdb))
3978                 kfree(regdb);
3979         if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
3980                 kfree(cfg80211_user_regdom);
3981
3982         free_regdb_keyring();
3983 }