UBIFS: fix free log space calculation
[linux-2.6-microblaze.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19
20
21 /**
22  * DOC: Wireless regulatory infrastructure
23  *
24  * The usual implementation is for a driver to read a device EEPROM to
25  * determine which regulatory domain it should be operating under, then
26  * looking up the allowable channels in a driver-local table and finally
27  * registering those channels in the wiphy structure.
28  *
29  * Another set of compliance enforcement is for drivers to use their
30  * own compliance limits which can be stored on the EEPROM. The host
31  * driver or firmware may ensure these are used.
32  *
33  * In addition to all this we provide an extra layer of regulatory
34  * conformance. For drivers which do not have any regulatory
35  * information CRDA provides the complete regulatory solution.
36  * For others it provides a community effort on further restrictions
37  * to enhance compliance.
38  *
39  * Note: When number of rules --> infinity we will not be able to
40  * index on alpha2 any more, instead we'll probably have to
41  * rely on some SHA1 checksum of the regdomain for example.
42  *
43  */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/ctype.h>
52 #include <linux/nl80211.h>
53 #include <linux/platform_device.h>
54 #include <linux/moduleparam.h>
55 #include <net/cfg80211.h>
56 #include "core.h"
57 #include "reg.h"
58 #include "regdb.h"
59 #include "nl80211.h"
60
61 #ifdef CONFIG_CFG80211_REG_DEBUG
62 #define REG_DBG_PRINT(format, args...)                  \
63         printk(KERN_DEBUG pr_fmt(format), ##args)
64 #else
65 #define REG_DBG_PRINT(args...)
66 #endif
67
68 /**
69  * enum reg_request_treatment - regulatory request treatment
70  *
71  * @REG_REQ_OK: continue processing the regulatory request
72  * @REG_REQ_IGNORE: ignore the regulatory request
73  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
74  *      be intersected with the current one.
75  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
76  *      regulatory settings, and no further processing is required.
77  * @REG_REQ_USER_HINT_HANDLED: a non alpha2  user hint was handled and no
78  *      further processing is required, i.e., not need to update last_request
79  *      etc. This should be used for user hints that do not provide an alpha2
80  *      but some other type of regulatory hint, i.e., indoor operation.
81  */
82 enum reg_request_treatment {
83         REG_REQ_OK,
84         REG_REQ_IGNORE,
85         REG_REQ_INTERSECT,
86         REG_REQ_ALREADY_SET,
87         REG_REQ_USER_HINT_HANDLED,
88 };
89
90 static struct regulatory_request core_request_world = {
91         .initiator = NL80211_REGDOM_SET_BY_CORE,
92         .alpha2[0] = '0',
93         .alpha2[1] = '0',
94         .intersect = false,
95         .processed = true,
96         .country_ie_env = ENVIRON_ANY,
97 };
98
99 /*
100  * Receipt of information from last regulatory request,
101  * protected by RTNL (and can be accessed with RCU protection)
102  */
103 static struct regulatory_request __rcu *last_request =
104         (void __rcu *)&core_request_world;
105
106 /* To trigger userspace events */
107 static struct platform_device *reg_pdev;
108
109 /*
110  * Central wireless core regulatory domains, we only need two,
111  * the current one and a world regulatory domain in case we have no
112  * information to give us an alpha2.
113  * (protected by RTNL, can be read under RCU)
114  */
115 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
116
117 /*
118  * Number of devices that registered to the core
119  * that support cellular base station regulatory hints
120  * (protected by RTNL)
121  */
122 static int reg_num_devs_support_basehint;
123
124 /*
125  * State variable indicating if the platform on which the devices
126  * are attached is operating in an indoor environment. The state variable
127  * is relevant for all registered devices.
128  * (protected by RTNL)
129  */
130 static bool reg_is_indoor;
131
132 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
133 {
134         return rtnl_dereference(cfg80211_regdomain);
135 }
136
137 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
138 {
139         return rtnl_dereference(wiphy->regd);
140 }
141
142 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
143 {
144         switch (dfs_region) {
145         case NL80211_DFS_UNSET:
146                 return "unset";
147         case NL80211_DFS_FCC:
148                 return "FCC";
149         case NL80211_DFS_ETSI:
150                 return "ETSI";
151         case NL80211_DFS_JP:
152                 return "JP";
153         }
154         return "Unknown";
155 }
156
157 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
158 {
159         const struct ieee80211_regdomain *regd = NULL;
160         const struct ieee80211_regdomain *wiphy_regd = NULL;
161
162         regd = get_cfg80211_regdom();
163         if (!wiphy)
164                 goto out;
165
166         wiphy_regd = get_wiphy_regdom(wiphy);
167         if (!wiphy_regd)
168                 goto out;
169
170         if (wiphy_regd->dfs_region == regd->dfs_region)
171                 goto out;
172
173         REG_DBG_PRINT("%s: device specific dfs_region "
174                       "(%s) disagrees with cfg80211's "
175                       "central dfs_region (%s)\n",
176                       dev_name(&wiphy->dev),
177                       reg_dfs_region_str(wiphy_regd->dfs_region),
178                       reg_dfs_region_str(regd->dfs_region));
179
180 out:
181         return regd->dfs_region;
182 }
183
184 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
185 {
186         if (!r)
187                 return;
188         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
189 }
190
191 static struct regulatory_request *get_last_request(void)
192 {
193         return rcu_dereference_rtnl(last_request);
194 }
195
196 /* Used to queue up regulatory hints */
197 static LIST_HEAD(reg_requests_list);
198 static spinlock_t reg_requests_lock;
199
200 /* Used to queue up beacon hints for review */
201 static LIST_HEAD(reg_pending_beacons);
202 static spinlock_t reg_pending_beacons_lock;
203
204 /* Used to keep track of processed beacon hints */
205 static LIST_HEAD(reg_beacon_list);
206
207 struct reg_beacon {
208         struct list_head list;
209         struct ieee80211_channel chan;
210 };
211
212 static void reg_todo(struct work_struct *work);
213 static DECLARE_WORK(reg_work, reg_todo);
214
215 static void reg_timeout_work(struct work_struct *work);
216 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
217
218 /* We keep a static world regulatory domain in case of the absence of CRDA */
219 static const struct ieee80211_regdomain world_regdom = {
220         .n_reg_rules = 6,
221         .alpha2 =  "00",
222         .reg_rules = {
223                 /* IEEE 802.11b/g, channels 1..11 */
224                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
225                 /* IEEE 802.11b/g, channels 12..13. */
226                 REG_RULE(2467-10, 2472+10, 40, 6, 20,
227                         NL80211_RRF_NO_IR),
228                 /* IEEE 802.11 channel 14 - Only JP enables
229                  * this and for 802.11b only */
230                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
231                         NL80211_RRF_NO_IR |
232                         NL80211_RRF_NO_OFDM),
233                 /* IEEE 802.11a, channel 36..48 */
234                 REG_RULE(5180-10, 5240+10, 160, 6, 20,
235                         NL80211_RRF_NO_IR),
236
237                 /* IEEE 802.11a, channel 52..64 - DFS required */
238                 REG_RULE(5260-10, 5320+10, 160, 6, 20,
239                         NL80211_RRF_NO_IR |
240                         NL80211_RRF_DFS),
241
242                 /* IEEE 802.11a, channel 100..144 - DFS required */
243                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
244                         NL80211_RRF_NO_IR |
245                         NL80211_RRF_DFS),
246
247                 /* IEEE 802.11a, channel 149..165 */
248                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
249                         NL80211_RRF_NO_IR),
250
251                 /* IEEE 802.11ad (60gHz), channels 1..3 */
252                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
253         }
254 };
255
256 /* protected by RTNL */
257 static const struct ieee80211_regdomain *cfg80211_world_regdom =
258         &world_regdom;
259
260 static char *ieee80211_regdom = "00";
261 static char user_alpha2[2];
262
263 module_param(ieee80211_regdom, charp, 0444);
264 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
265
266 static void reg_free_request(struct regulatory_request *request)
267 {
268         if (request != get_last_request())
269                 kfree(request);
270 }
271
272 static void reg_free_last_request(void)
273 {
274         struct regulatory_request *lr = get_last_request();
275
276         if (lr != &core_request_world && lr)
277                 kfree_rcu(lr, rcu_head);
278 }
279
280 static void reg_update_last_request(struct regulatory_request *request)
281 {
282         struct regulatory_request *lr;
283
284         lr = get_last_request();
285         if (lr == request)
286                 return;
287
288         reg_free_last_request();
289         rcu_assign_pointer(last_request, request);
290 }
291
292 static void reset_regdomains(bool full_reset,
293                              const struct ieee80211_regdomain *new_regdom)
294 {
295         const struct ieee80211_regdomain *r;
296
297         ASSERT_RTNL();
298
299         r = get_cfg80211_regdom();
300
301         /* avoid freeing static information or freeing something twice */
302         if (r == cfg80211_world_regdom)
303                 r = NULL;
304         if (cfg80211_world_regdom == &world_regdom)
305                 cfg80211_world_regdom = NULL;
306         if (r == &world_regdom)
307                 r = NULL;
308
309         rcu_free_regdom(r);
310         rcu_free_regdom(cfg80211_world_regdom);
311
312         cfg80211_world_regdom = &world_regdom;
313         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
314
315         if (!full_reset)
316                 return;
317
318         reg_update_last_request(&core_request_world);
319 }
320
321 /*
322  * Dynamic world regulatory domain requested by the wireless
323  * core upon initialization
324  */
325 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
326 {
327         struct regulatory_request *lr;
328
329         lr = get_last_request();
330
331         WARN_ON(!lr);
332
333         reset_regdomains(false, rd);
334
335         cfg80211_world_regdom = rd;
336 }
337
338 bool is_world_regdom(const char *alpha2)
339 {
340         if (!alpha2)
341                 return false;
342         return alpha2[0] == '0' && alpha2[1] == '0';
343 }
344
345 static bool is_alpha2_set(const char *alpha2)
346 {
347         if (!alpha2)
348                 return false;
349         return alpha2[0] && alpha2[1];
350 }
351
352 static bool is_unknown_alpha2(const char *alpha2)
353 {
354         if (!alpha2)
355                 return false;
356         /*
357          * Special case where regulatory domain was built by driver
358          * but a specific alpha2 cannot be determined
359          */
360         return alpha2[0] == '9' && alpha2[1] == '9';
361 }
362
363 static bool is_intersected_alpha2(const char *alpha2)
364 {
365         if (!alpha2)
366                 return false;
367         /*
368          * Special case where regulatory domain is the
369          * result of an intersection between two regulatory domain
370          * structures
371          */
372         return alpha2[0] == '9' && alpha2[1] == '8';
373 }
374
375 static bool is_an_alpha2(const char *alpha2)
376 {
377         if (!alpha2)
378                 return false;
379         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
380 }
381
382 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
383 {
384         if (!alpha2_x || !alpha2_y)
385                 return false;
386         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
387 }
388
389 static bool regdom_changes(const char *alpha2)
390 {
391         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
392
393         if (!r)
394                 return true;
395         return !alpha2_equal(r->alpha2, alpha2);
396 }
397
398 /*
399  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
400  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
401  * has ever been issued.
402  */
403 static bool is_user_regdom_saved(void)
404 {
405         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
406                 return false;
407
408         /* This would indicate a mistake on the design */
409         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
410                  "Unexpected user alpha2: %c%c\n",
411                  user_alpha2[0], user_alpha2[1]))
412                 return false;
413
414         return true;
415 }
416
417 static const struct ieee80211_regdomain *
418 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
419 {
420         struct ieee80211_regdomain *regd;
421         int size_of_regd;
422         unsigned int i;
423
424         size_of_regd =
425                 sizeof(struct ieee80211_regdomain) +
426                 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
427
428         regd = kzalloc(size_of_regd, GFP_KERNEL);
429         if (!regd)
430                 return ERR_PTR(-ENOMEM);
431
432         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
433
434         for (i = 0; i < src_regd->n_reg_rules; i++)
435                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
436                        sizeof(struct ieee80211_reg_rule));
437
438         return regd;
439 }
440
441 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
442 struct reg_regdb_search_request {
443         char alpha2[2];
444         struct list_head list;
445 };
446
447 static LIST_HEAD(reg_regdb_search_list);
448 static DEFINE_MUTEX(reg_regdb_search_mutex);
449
450 static void reg_regdb_search(struct work_struct *work)
451 {
452         struct reg_regdb_search_request *request;
453         const struct ieee80211_regdomain *curdom, *regdom = NULL;
454         int i;
455
456         rtnl_lock();
457
458         mutex_lock(&reg_regdb_search_mutex);
459         while (!list_empty(&reg_regdb_search_list)) {
460                 request = list_first_entry(&reg_regdb_search_list,
461                                            struct reg_regdb_search_request,
462                                            list);
463                 list_del(&request->list);
464
465                 for (i = 0; i < reg_regdb_size; i++) {
466                         curdom = reg_regdb[i];
467
468                         if (alpha2_equal(request->alpha2, curdom->alpha2)) {
469                                 regdom = reg_copy_regd(curdom);
470                                 break;
471                         }
472                 }
473
474                 kfree(request);
475         }
476         mutex_unlock(&reg_regdb_search_mutex);
477
478         if (!IS_ERR_OR_NULL(regdom))
479                 set_regdom(regdom);
480
481         rtnl_unlock();
482 }
483
484 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
485
486 static void reg_regdb_query(const char *alpha2)
487 {
488         struct reg_regdb_search_request *request;
489
490         if (!alpha2)
491                 return;
492
493         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
494         if (!request)
495                 return;
496
497         memcpy(request->alpha2, alpha2, 2);
498
499         mutex_lock(&reg_regdb_search_mutex);
500         list_add_tail(&request->list, &reg_regdb_search_list);
501         mutex_unlock(&reg_regdb_search_mutex);
502
503         schedule_work(&reg_regdb_work);
504 }
505
506 /* Feel free to add any other sanity checks here */
507 static void reg_regdb_size_check(void)
508 {
509         /* We should ideally BUILD_BUG_ON() but then random builds would fail */
510         WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
511 }
512 #else
513 static inline void reg_regdb_size_check(void) {}
514 static inline void reg_regdb_query(const char *alpha2) {}
515 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
516
517 /*
518  * This lets us keep regulatory code which is updated on a regulatory
519  * basis in userspace.
520  */
521 static int call_crda(const char *alpha2)
522 {
523         char country[12];
524         char *env[] = { country, NULL };
525
526         snprintf(country, sizeof(country), "COUNTRY=%c%c",
527                  alpha2[0], alpha2[1]);
528
529         if (!is_world_regdom((char *) alpha2))
530                 pr_info("Calling CRDA for country: %c%c\n",
531                         alpha2[0], alpha2[1]);
532         else
533                 pr_info("Calling CRDA to update world regulatory domain\n");
534
535         /* query internal regulatory database (if it exists) */
536         reg_regdb_query(alpha2);
537
538         return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
539 }
540
541 static enum reg_request_treatment
542 reg_call_crda(struct regulatory_request *request)
543 {
544         if (call_crda(request->alpha2))
545                 return REG_REQ_IGNORE;
546         return REG_REQ_OK;
547 }
548
549 bool reg_is_valid_request(const char *alpha2)
550 {
551         struct regulatory_request *lr = get_last_request();
552
553         if (!lr || lr->processed)
554                 return false;
555
556         return alpha2_equal(lr->alpha2, alpha2);
557 }
558
559 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
560 {
561         struct regulatory_request *lr = get_last_request();
562
563         /*
564          * Follow the driver's regulatory domain, if present, unless a country
565          * IE has been processed or a user wants to help complaince further
566          */
567         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
568             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
569             wiphy->regd)
570                 return get_wiphy_regdom(wiphy);
571
572         return get_cfg80211_regdom();
573 }
574
575 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
576                                    const struct ieee80211_reg_rule *rule)
577 {
578         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
579         const struct ieee80211_freq_range *freq_range_tmp;
580         const struct ieee80211_reg_rule *tmp;
581         u32 start_freq, end_freq, idx, no;
582
583         for (idx = 0; idx < rd->n_reg_rules; idx++)
584                 if (rule == &rd->reg_rules[idx])
585                         break;
586
587         if (idx == rd->n_reg_rules)
588                 return 0;
589
590         /* get start_freq */
591         no = idx;
592
593         while (no) {
594                 tmp = &rd->reg_rules[--no];
595                 freq_range_tmp = &tmp->freq_range;
596
597                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
598                         break;
599
600                 freq_range = freq_range_tmp;
601         }
602
603         start_freq = freq_range->start_freq_khz;
604
605         /* get end_freq */
606         freq_range = &rule->freq_range;
607         no = idx;
608
609         while (no < rd->n_reg_rules - 1) {
610                 tmp = &rd->reg_rules[++no];
611                 freq_range_tmp = &tmp->freq_range;
612
613                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
614                         break;
615
616                 freq_range = freq_range_tmp;
617         }
618
619         end_freq = freq_range->end_freq_khz;
620
621         return end_freq - start_freq;
622 }
623
624 /* Sanity check on a regulatory rule */
625 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
626 {
627         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
628         u32 freq_diff;
629
630         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
631                 return false;
632
633         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
634                 return false;
635
636         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
637
638         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
639             freq_range->max_bandwidth_khz > freq_diff)
640                 return false;
641
642         return true;
643 }
644
645 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
646 {
647         const struct ieee80211_reg_rule *reg_rule = NULL;
648         unsigned int i;
649
650         if (!rd->n_reg_rules)
651                 return false;
652
653         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
654                 return false;
655
656         for (i = 0; i < rd->n_reg_rules; i++) {
657                 reg_rule = &rd->reg_rules[i];
658                 if (!is_valid_reg_rule(reg_rule))
659                         return false;
660         }
661
662         return true;
663 }
664
665 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
666                             u32 center_freq_khz, u32 bw_khz)
667 {
668         u32 start_freq_khz, end_freq_khz;
669
670         start_freq_khz = center_freq_khz - (bw_khz/2);
671         end_freq_khz = center_freq_khz + (bw_khz/2);
672
673         if (start_freq_khz >= freq_range->start_freq_khz &&
674             end_freq_khz <= freq_range->end_freq_khz)
675                 return true;
676
677         return false;
678 }
679
680 /**
681  * freq_in_rule_band - tells us if a frequency is in a frequency band
682  * @freq_range: frequency rule we want to query
683  * @freq_khz: frequency we are inquiring about
684  *
685  * This lets us know if a specific frequency rule is or is not relevant to
686  * a specific frequency's band. Bands are device specific and artificial
687  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
688  * however it is safe for now to assume that a frequency rule should not be
689  * part of a frequency's band if the start freq or end freq are off by more
690  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
691  * 60 GHz band.
692  * This resolution can be lowered and should be considered as we add
693  * regulatory rule support for other "bands".
694  **/
695 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
696                               u32 freq_khz)
697 {
698 #define ONE_GHZ_IN_KHZ  1000000
699         /*
700          * From 802.11ad: directional multi-gigabit (DMG):
701          * Pertaining to operation in a frequency band containing a channel
702          * with the Channel starting frequency above 45 GHz.
703          */
704         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
705                         10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
706         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
707                 return true;
708         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
709                 return true;
710         return false;
711 #undef ONE_GHZ_IN_KHZ
712 }
713
714 /*
715  * Later on we can perhaps use the more restrictive DFS
716  * region but we don't have information for that yet so
717  * for now simply disallow conflicts.
718  */
719 static enum nl80211_dfs_regions
720 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
721                          const enum nl80211_dfs_regions dfs_region2)
722 {
723         if (dfs_region1 != dfs_region2)
724                 return NL80211_DFS_UNSET;
725         return dfs_region1;
726 }
727
728 /*
729  * Helper for regdom_intersect(), this does the real
730  * mathematical intersection fun
731  */
732 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
733                                const struct ieee80211_regdomain *rd2,
734                                const struct ieee80211_reg_rule *rule1,
735                                const struct ieee80211_reg_rule *rule2,
736                                struct ieee80211_reg_rule *intersected_rule)
737 {
738         const struct ieee80211_freq_range *freq_range1, *freq_range2;
739         struct ieee80211_freq_range *freq_range;
740         const struct ieee80211_power_rule *power_rule1, *power_rule2;
741         struct ieee80211_power_rule *power_rule;
742         u32 freq_diff, max_bandwidth1, max_bandwidth2;
743
744         freq_range1 = &rule1->freq_range;
745         freq_range2 = &rule2->freq_range;
746         freq_range = &intersected_rule->freq_range;
747
748         power_rule1 = &rule1->power_rule;
749         power_rule2 = &rule2->power_rule;
750         power_rule = &intersected_rule->power_rule;
751
752         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
753                                          freq_range2->start_freq_khz);
754         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
755                                        freq_range2->end_freq_khz);
756
757         max_bandwidth1 = freq_range1->max_bandwidth_khz;
758         max_bandwidth2 = freq_range2->max_bandwidth_khz;
759
760         if (rule1->flags & NL80211_RRF_AUTO_BW)
761                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
762         if (rule2->flags & NL80211_RRF_AUTO_BW)
763                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
764
765         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
766
767         intersected_rule->flags = rule1->flags | rule2->flags;
768
769         /*
770          * In case NL80211_RRF_AUTO_BW requested for both rules
771          * set AUTO_BW in intersected rule also. Next we will
772          * calculate BW correctly in handle_channel function.
773          * In other case remove AUTO_BW flag while we calculate
774          * maximum bandwidth correctly and auto calculation is
775          * not required.
776          */
777         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
778             (rule2->flags & NL80211_RRF_AUTO_BW))
779                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
780         else
781                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
782
783         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
784         if (freq_range->max_bandwidth_khz > freq_diff)
785                 freq_range->max_bandwidth_khz = freq_diff;
786
787         power_rule->max_eirp = min(power_rule1->max_eirp,
788                 power_rule2->max_eirp);
789         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
790                 power_rule2->max_antenna_gain);
791
792         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
793                                            rule2->dfs_cac_ms);
794
795         if (!is_valid_reg_rule(intersected_rule))
796                 return -EINVAL;
797
798         return 0;
799 }
800
801 /**
802  * regdom_intersect - do the intersection between two regulatory domains
803  * @rd1: first regulatory domain
804  * @rd2: second regulatory domain
805  *
806  * Use this function to get the intersection between two regulatory domains.
807  * Once completed we will mark the alpha2 for the rd as intersected, "98",
808  * as no one single alpha2 can represent this regulatory domain.
809  *
810  * Returns a pointer to the regulatory domain structure which will hold the
811  * resulting intersection of rules between rd1 and rd2. We will
812  * kzalloc() this structure for you.
813  */
814 static struct ieee80211_regdomain *
815 regdom_intersect(const struct ieee80211_regdomain *rd1,
816                  const struct ieee80211_regdomain *rd2)
817 {
818         int r, size_of_regd;
819         unsigned int x, y;
820         unsigned int num_rules = 0, rule_idx = 0;
821         const struct ieee80211_reg_rule *rule1, *rule2;
822         struct ieee80211_reg_rule *intersected_rule;
823         struct ieee80211_regdomain *rd;
824         /* This is just a dummy holder to help us count */
825         struct ieee80211_reg_rule dummy_rule;
826
827         if (!rd1 || !rd2)
828                 return NULL;
829
830         /*
831          * First we get a count of the rules we'll need, then we actually
832          * build them. This is to so we can malloc() and free() a
833          * regdomain once. The reason we use reg_rules_intersect() here
834          * is it will return -EINVAL if the rule computed makes no sense.
835          * All rules that do check out OK are valid.
836          */
837
838         for (x = 0; x < rd1->n_reg_rules; x++) {
839                 rule1 = &rd1->reg_rules[x];
840                 for (y = 0; y < rd2->n_reg_rules; y++) {
841                         rule2 = &rd2->reg_rules[y];
842                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
843                                                  &dummy_rule))
844                                 num_rules++;
845                 }
846         }
847
848         if (!num_rules)
849                 return NULL;
850
851         size_of_regd = sizeof(struct ieee80211_regdomain) +
852                        num_rules * sizeof(struct ieee80211_reg_rule);
853
854         rd = kzalloc(size_of_regd, GFP_KERNEL);
855         if (!rd)
856                 return NULL;
857
858         for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) {
859                 rule1 = &rd1->reg_rules[x];
860                 for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) {
861                         rule2 = &rd2->reg_rules[y];
862                         /*
863                          * This time around instead of using the stack lets
864                          * write to the target rule directly saving ourselves
865                          * a memcpy()
866                          */
867                         intersected_rule = &rd->reg_rules[rule_idx];
868                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
869                                                 intersected_rule);
870                         /*
871                          * No need to memset here the intersected rule here as
872                          * we're not using the stack anymore
873                          */
874                         if (r)
875                                 continue;
876                         rule_idx++;
877                 }
878         }
879
880         if (rule_idx != num_rules) {
881                 kfree(rd);
882                 return NULL;
883         }
884
885         rd->n_reg_rules = num_rules;
886         rd->alpha2[0] = '9';
887         rd->alpha2[1] = '8';
888         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
889                                                   rd2->dfs_region);
890
891         return rd;
892 }
893
894 /*
895  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
896  * want to just have the channel structure use these
897  */
898 static u32 map_regdom_flags(u32 rd_flags)
899 {
900         u32 channel_flags = 0;
901         if (rd_flags & NL80211_RRF_NO_IR_ALL)
902                 channel_flags |= IEEE80211_CHAN_NO_IR;
903         if (rd_flags & NL80211_RRF_DFS)
904                 channel_flags |= IEEE80211_CHAN_RADAR;
905         if (rd_flags & NL80211_RRF_NO_OFDM)
906                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
907         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
908                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
909         return channel_flags;
910 }
911
912 static const struct ieee80211_reg_rule *
913 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
914                    const struct ieee80211_regdomain *regd)
915 {
916         int i;
917         bool band_rule_found = false;
918         bool bw_fits = false;
919
920         if (!regd)
921                 return ERR_PTR(-EINVAL);
922
923         for (i = 0; i < regd->n_reg_rules; i++) {
924                 const struct ieee80211_reg_rule *rr;
925                 const struct ieee80211_freq_range *fr = NULL;
926
927                 rr = &regd->reg_rules[i];
928                 fr = &rr->freq_range;
929
930                 /*
931                  * We only need to know if one frequency rule was
932                  * was in center_freq's band, that's enough, so lets
933                  * not overwrite it once found
934                  */
935                 if (!band_rule_found)
936                         band_rule_found = freq_in_rule_band(fr, center_freq);
937
938                 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
939
940                 if (band_rule_found && bw_fits)
941                         return rr;
942         }
943
944         if (!band_rule_found)
945                 return ERR_PTR(-ERANGE);
946
947         return ERR_PTR(-EINVAL);
948 }
949
950 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
951                                                u32 center_freq)
952 {
953         const struct ieee80211_regdomain *regd;
954
955         regd = reg_get_regdomain(wiphy);
956
957         return freq_reg_info_regd(wiphy, center_freq, regd);
958 }
959 EXPORT_SYMBOL(freq_reg_info);
960
961 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
962 {
963         switch (initiator) {
964         case NL80211_REGDOM_SET_BY_CORE:
965                 return "core";
966         case NL80211_REGDOM_SET_BY_USER:
967                 return "user";
968         case NL80211_REGDOM_SET_BY_DRIVER:
969                 return "driver";
970         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
971                 return "country IE";
972         default:
973                 WARN_ON(1);
974                 return "bug";
975         }
976 }
977 EXPORT_SYMBOL(reg_initiator_name);
978
979 #ifdef CONFIG_CFG80211_REG_DEBUG
980 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
981                                     struct ieee80211_channel *chan,
982                                     const struct ieee80211_reg_rule *reg_rule)
983 {
984         const struct ieee80211_power_rule *power_rule;
985         const struct ieee80211_freq_range *freq_range;
986         char max_antenna_gain[32], bw[32];
987
988         power_rule = &reg_rule->power_rule;
989         freq_range = &reg_rule->freq_range;
990
991         if (!power_rule->max_antenna_gain)
992                 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
993         else
994                 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d",
995                          power_rule->max_antenna_gain);
996
997         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
998                 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
999                          freq_range->max_bandwidth_khz,
1000                          reg_get_max_bandwidth(regd, reg_rule));
1001         else
1002                 snprintf(bw, sizeof(bw), "%d KHz",
1003                          freq_range->max_bandwidth_khz);
1004
1005         REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
1006                       chan->center_freq);
1007
1008         REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n",
1009                       freq_range->start_freq_khz, freq_range->end_freq_khz,
1010                       bw, max_antenna_gain,
1011                       power_rule->max_eirp);
1012 }
1013 #else
1014 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1015                                     struct ieee80211_channel *chan,
1016                                     const struct ieee80211_reg_rule *reg_rule)
1017 {
1018         return;
1019 }
1020 #endif
1021
1022 /*
1023  * Note that right now we assume the desired channel bandwidth
1024  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1025  * per channel, the primary and the extension channel).
1026  */
1027 static void handle_channel(struct wiphy *wiphy,
1028                            enum nl80211_reg_initiator initiator,
1029                            struct ieee80211_channel *chan)
1030 {
1031         u32 flags, bw_flags = 0;
1032         const struct ieee80211_reg_rule *reg_rule = NULL;
1033         const struct ieee80211_power_rule *power_rule = NULL;
1034         const struct ieee80211_freq_range *freq_range = NULL;
1035         struct wiphy *request_wiphy = NULL;
1036         struct regulatory_request *lr = get_last_request();
1037         const struct ieee80211_regdomain *regd;
1038         u32 max_bandwidth_khz;
1039
1040         request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1041
1042         flags = chan->orig_flags;
1043
1044         reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1045         if (IS_ERR(reg_rule)) {
1046                 /*
1047                  * We will disable all channels that do not match our
1048                  * received regulatory rule unless the hint is coming
1049                  * from a Country IE and the Country IE had no information
1050                  * about a band. The IEEE 802.11 spec allows for an AP
1051                  * to send only a subset of the regulatory rules allowed,
1052                  * so an AP in the US that only supports 2.4 GHz may only send
1053                  * a country IE with information for the 2.4 GHz band
1054                  * while 5 GHz is still supported.
1055                  */
1056                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1057                     PTR_ERR(reg_rule) == -ERANGE)
1058                         return;
1059
1060                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1061                     request_wiphy && request_wiphy == wiphy &&
1062                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1063                         REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1064                                       chan->center_freq);
1065                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1066                         chan->flags = chan->orig_flags;
1067                 } else {
1068                         REG_DBG_PRINT("Disabling freq %d MHz\n",
1069                                       chan->center_freq);
1070                         chan->flags |= IEEE80211_CHAN_DISABLED;
1071                 }
1072                 return;
1073         }
1074
1075         regd = reg_get_regdomain(wiphy);
1076         chan_reg_rule_print_dbg(regd, chan, reg_rule);
1077
1078         power_rule = &reg_rule->power_rule;
1079         freq_range = &reg_rule->freq_range;
1080
1081         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1082         /* Check if auto calculation requested */
1083         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1084                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1085
1086         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1087                 bw_flags = IEEE80211_CHAN_NO_HT40;
1088         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1089                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1090         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1091                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1092
1093         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1094             request_wiphy && request_wiphy == wiphy &&
1095             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1096                 /*
1097                  * This guarantees the driver's requested regulatory domain
1098                  * will always be used as a base for further regulatory
1099                  * settings
1100                  */
1101                 chan->flags = chan->orig_flags =
1102                         map_regdom_flags(reg_rule->flags) | bw_flags;
1103                 chan->max_antenna_gain = chan->orig_mag =
1104                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1105                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1106                         (int) MBM_TO_DBM(power_rule->max_eirp);
1107
1108                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1109                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1110                         if (reg_rule->dfs_cac_ms)
1111                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1112                 }
1113
1114                 return;
1115         }
1116
1117         chan->dfs_state = NL80211_DFS_USABLE;
1118         chan->dfs_state_entered = jiffies;
1119
1120         chan->beacon_found = false;
1121         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1122         chan->max_antenna_gain =
1123                 min_t(int, chan->orig_mag,
1124                       MBI_TO_DBI(power_rule->max_antenna_gain));
1125         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1126
1127         if (chan->flags & IEEE80211_CHAN_RADAR) {
1128                 if (reg_rule->dfs_cac_ms)
1129                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1130                 else
1131                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1132         }
1133
1134         if (chan->orig_mpwr) {
1135                 /*
1136                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1137                  * will always follow the passed country IE power settings.
1138                  */
1139                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1140                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1141                         chan->max_power = chan->max_reg_power;
1142                 else
1143                         chan->max_power = min(chan->orig_mpwr,
1144                                               chan->max_reg_power);
1145         } else
1146                 chan->max_power = chan->max_reg_power;
1147 }
1148
1149 static void handle_band(struct wiphy *wiphy,
1150                         enum nl80211_reg_initiator initiator,
1151                         struct ieee80211_supported_band *sband)
1152 {
1153         unsigned int i;
1154
1155         if (!sband)
1156                 return;
1157
1158         for (i = 0; i < sband->n_channels; i++)
1159                 handle_channel(wiphy, initiator, &sband->channels[i]);
1160 }
1161
1162 static bool reg_request_cell_base(struct regulatory_request *request)
1163 {
1164         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1165                 return false;
1166         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1167 }
1168
1169 static bool reg_request_indoor(struct regulatory_request *request)
1170 {
1171         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1172                 return false;
1173         return request->user_reg_hint_type == NL80211_USER_REG_HINT_INDOOR;
1174 }
1175
1176 bool reg_last_request_cell_base(void)
1177 {
1178         return reg_request_cell_base(get_last_request());
1179 }
1180
1181 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1182 /* Core specific check */
1183 static enum reg_request_treatment
1184 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1185 {
1186         struct regulatory_request *lr = get_last_request();
1187
1188         if (!reg_num_devs_support_basehint)
1189                 return REG_REQ_IGNORE;
1190
1191         if (reg_request_cell_base(lr) &&
1192             !regdom_changes(pending_request->alpha2))
1193                 return REG_REQ_ALREADY_SET;
1194
1195         return REG_REQ_OK;
1196 }
1197
1198 /* Device specific check */
1199 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1200 {
1201         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1202 }
1203 #else
1204 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
1205 {
1206         return REG_REQ_IGNORE;
1207 }
1208
1209 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1210 {
1211         return true;
1212 }
1213 #endif
1214
1215 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1216 {
1217         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1218             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1219                 return true;
1220         return false;
1221 }
1222
1223 static bool ignore_reg_update(struct wiphy *wiphy,
1224                               enum nl80211_reg_initiator initiator)
1225 {
1226         struct regulatory_request *lr = get_last_request();
1227
1228         if (!lr) {
1229                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1230                               "since last_request is not set\n",
1231                               reg_initiator_name(initiator));
1232                 return true;
1233         }
1234
1235         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1236             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1237                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1238                               "since the driver uses its own custom "
1239                               "regulatory domain\n",
1240                               reg_initiator_name(initiator));
1241                 return true;
1242         }
1243
1244         /*
1245          * wiphy->regd will be set once the device has its own
1246          * desired regulatory domain set
1247          */
1248         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1249             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1250             !is_world_regdom(lr->alpha2)) {
1251                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1252                               "since the driver requires its own regulatory "
1253                               "domain to be set first\n",
1254                               reg_initiator_name(initiator));
1255                 return true;
1256         }
1257
1258         if (reg_request_cell_base(lr))
1259                 return reg_dev_ignore_cell_hint(wiphy);
1260
1261         return false;
1262 }
1263
1264 static bool reg_is_world_roaming(struct wiphy *wiphy)
1265 {
1266         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1267         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1268         struct regulatory_request *lr = get_last_request();
1269
1270         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1271                 return true;
1272
1273         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1274             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1275                 return true;
1276
1277         return false;
1278 }
1279
1280 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1281                               struct reg_beacon *reg_beacon)
1282 {
1283         struct ieee80211_supported_band *sband;
1284         struct ieee80211_channel *chan;
1285         bool channel_changed = false;
1286         struct ieee80211_channel chan_before;
1287
1288         sband = wiphy->bands[reg_beacon->chan.band];
1289         chan = &sband->channels[chan_idx];
1290
1291         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1292                 return;
1293
1294         if (chan->beacon_found)
1295                 return;
1296
1297         chan->beacon_found = true;
1298
1299         if (!reg_is_world_roaming(wiphy))
1300                 return;
1301
1302         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1303                 return;
1304
1305         chan_before.center_freq = chan->center_freq;
1306         chan_before.flags = chan->flags;
1307
1308         if (chan->flags & IEEE80211_CHAN_NO_IR) {
1309                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1310                 channel_changed = true;
1311         }
1312
1313         if (channel_changed)
1314                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1315 }
1316
1317 /*
1318  * Called when a scan on a wiphy finds a beacon on
1319  * new channel
1320  */
1321 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1322                                     struct reg_beacon *reg_beacon)
1323 {
1324         unsigned int i;
1325         struct ieee80211_supported_band *sband;
1326
1327         if (!wiphy->bands[reg_beacon->chan.band])
1328                 return;
1329
1330         sband = wiphy->bands[reg_beacon->chan.band];
1331
1332         for (i = 0; i < sband->n_channels; i++)
1333                 handle_reg_beacon(wiphy, i, reg_beacon);
1334 }
1335
1336 /*
1337  * Called upon reg changes or a new wiphy is added
1338  */
1339 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1340 {
1341         unsigned int i;
1342         struct ieee80211_supported_band *sband;
1343         struct reg_beacon *reg_beacon;
1344
1345         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1346                 if (!wiphy->bands[reg_beacon->chan.band])
1347                         continue;
1348                 sband = wiphy->bands[reg_beacon->chan.band];
1349                 for (i = 0; i < sband->n_channels; i++)
1350                         handle_reg_beacon(wiphy, i, reg_beacon);
1351         }
1352 }
1353
1354 /* Reap the advantages of previously found beacons */
1355 static void reg_process_beacons(struct wiphy *wiphy)
1356 {
1357         /*
1358          * Means we are just firing up cfg80211, so no beacons would
1359          * have been processed yet.
1360          */
1361         if (!last_request)
1362                 return;
1363         wiphy_update_beacon_reg(wiphy);
1364 }
1365
1366 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1367 {
1368         if (!chan)
1369                 return false;
1370         if (chan->flags & IEEE80211_CHAN_DISABLED)
1371                 return false;
1372         /* This would happen when regulatory rules disallow HT40 completely */
1373         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1374                 return false;
1375         return true;
1376 }
1377
1378 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1379                                          struct ieee80211_channel *channel)
1380 {
1381         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1382         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1383         unsigned int i;
1384
1385         if (!is_ht40_allowed(channel)) {
1386                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1387                 return;
1388         }
1389
1390         /*
1391          * We need to ensure the extension channels exist to
1392          * be able to use HT40- or HT40+, this finds them (or not)
1393          */
1394         for (i = 0; i < sband->n_channels; i++) {
1395                 struct ieee80211_channel *c = &sband->channels[i];
1396
1397                 if (c->center_freq == (channel->center_freq - 20))
1398                         channel_before = c;
1399                 if (c->center_freq == (channel->center_freq + 20))
1400                         channel_after = c;
1401         }
1402
1403         /*
1404          * Please note that this assumes target bandwidth is 20 MHz,
1405          * if that ever changes we also need to change the below logic
1406          * to include that as well.
1407          */
1408         if (!is_ht40_allowed(channel_before))
1409                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1410         else
1411                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1412
1413         if (!is_ht40_allowed(channel_after))
1414                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1415         else
1416                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1417 }
1418
1419 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1420                                       struct ieee80211_supported_band *sband)
1421 {
1422         unsigned int i;
1423
1424         if (!sband)
1425                 return;
1426
1427         for (i = 0; i < sband->n_channels; i++)
1428                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1429 }
1430
1431 static void reg_process_ht_flags(struct wiphy *wiphy)
1432 {
1433         enum ieee80211_band band;
1434
1435         if (!wiphy)
1436                 return;
1437
1438         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1439                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1440 }
1441
1442 static void reg_call_notifier(struct wiphy *wiphy,
1443                               struct regulatory_request *request)
1444 {
1445         if (wiphy->reg_notifier)
1446                 wiphy->reg_notifier(wiphy, request);
1447 }
1448
1449 static void wiphy_update_regulatory(struct wiphy *wiphy,
1450                                     enum nl80211_reg_initiator initiator)
1451 {
1452         enum ieee80211_band band;
1453         struct regulatory_request *lr = get_last_request();
1454
1455         if (ignore_reg_update(wiphy, initiator)) {
1456                 /*
1457                  * Regulatory updates set by CORE are ignored for custom
1458                  * regulatory cards. Let us notify the changes to the driver,
1459                  * as some drivers used this to restore its orig_* reg domain.
1460                  */
1461                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1462                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1463                         reg_call_notifier(wiphy, lr);
1464                 return;
1465         }
1466
1467         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1468
1469         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1470                 handle_band(wiphy, initiator, wiphy->bands[band]);
1471
1472         reg_process_beacons(wiphy);
1473         reg_process_ht_flags(wiphy);
1474         reg_call_notifier(wiphy, lr);
1475 }
1476
1477 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1478 {
1479         struct cfg80211_registered_device *rdev;
1480         struct wiphy *wiphy;
1481
1482         ASSERT_RTNL();
1483
1484         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1485                 wiphy = &rdev->wiphy;
1486                 wiphy_update_regulatory(wiphy, initiator);
1487         }
1488 }
1489
1490 static void handle_channel_custom(struct wiphy *wiphy,
1491                                   struct ieee80211_channel *chan,
1492                                   const struct ieee80211_regdomain *regd)
1493 {
1494         u32 bw_flags = 0;
1495         const struct ieee80211_reg_rule *reg_rule = NULL;
1496         const struct ieee80211_power_rule *power_rule = NULL;
1497         const struct ieee80211_freq_range *freq_range = NULL;
1498         u32 max_bandwidth_khz;
1499
1500         reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1501                                       regd);
1502
1503         if (IS_ERR(reg_rule)) {
1504                 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1505                               chan->center_freq);
1506                 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1507                 chan->flags = chan->orig_flags;
1508                 return;
1509         }
1510
1511         chan_reg_rule_print_dbg(regd, chan, reg_rule);
1512
1513         power_rule = &reg_rule->power_rule;
1514         freq_range = &reg_rule->freq_range;
1515
1516         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1517         /* Check if auto calculation requested */
1518         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1519                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1520
1521         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1522                 bw_flags = IEEE80211_CHAN_NO_HT40;
1523         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1524                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1525         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1526                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1527
1528         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1529         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1530         chan->max_reg_power = chan->max_power =
1531                 (int) MBM_TO_DBM(power_rule->max_eirp);
1532 }
1533
1534 static void handle_band_custom(struct wiphy *wiphy,
1535                                struct ieee80211_supported_band *sband,
1536                                const struct ieee80211_regdomain *regd)
1537 {
1538         unsigned int i;
1539
1540         if (!sband)
1541                 return;
1542
1543         for (i = 0; i < sband->n_channels; i++)
1544                 handle_channel_custom(wiphy, &sband->channels[i], regd);
1545 }
1546
1547 /* Used by drivers prior to wiphy registration */
1548 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1549                                    const struct ieee80211_regdomain *regd)
1550 {
1551         enum ieee80211_band band;
1552         unsigned int bands_set = 0;
1553
1554         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1555              "wiphy should have REGULATORY_CUSTOM_REG\n");
1556         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1557
1558         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1559                 if (!wiphy->bands[band])
1560                         continue;
1561                 handle_band_custom(wiphy, wiphy->bands[band], regd);
1562                 bands_set++;
1563         }
1564
1565         /*
1566          * no point in calling this if it won't have any effect
1567          * on your device's supported bands.
1568          */
1569         WARN_ON(!bands_set);
1570 }
1571 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1572
1573 static void reg_set_request_processed(void)
1574 {
1575         bool need_more_processing = false;
1576         struct regulatory_request *lr = get_last_request();
1577
1578         lr->processed = true;
1579
1580         spin_lock(&reg_requests_lock);
1581         if (!list_empty(&reg_requests_list))
1582                 need_more_processing = true;
1583         spin_unlock(&reg_requests_lock);
1584
1585         if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1586                 cancel_delayed_work(&reg_timeout);
1587
1588         if (need_more_processing)
1589                 schedule_work(&reg_work);
1590 }
1591
1592 /**
1593  * reg_process_hint_core - process core regulatory requests
1594  * @pending_request: a pending core regulatory request
1595  *
1596  * The wireless subsystem can use this function to process
1597  * a regulatory request issued by the regulatory core.
1598  *
1599  * Returns one of the different reg request treatment values.
1600  */
1601 static enum reg_request_treatment
1602 reg_process_hint_core(struct regulatory_request *core_request)
1603 {
1604
1605         core_request->intersect = false;
1606         core_request->processed = false;
1607
1608         reg_update_last_request(core_request);
1609
1610         return reg_call_crda(core_request);
1611 }
1612
1613 static enum reg_request_treatment
1614 __reg_process_hint_user(struct regulatory_request *user_request)
1615 {
1616         struct regulatory_request *lr = get_last_request();
1617
1618         if (reg_request_indoor(user_request)) {
1619                 reg_is_indoor = true;
1620                 return REG_REQ_USER_HINT_HANDLED;
1621         }
1622
1623         if (reg_request_cell_base(user_request))
1624                 return reg_ignore_cell_hint(user_request);
1625
1626         if (reg_request_cell_base(lr))
1627                 return REG_REQ_IGNORE;
1628
1629         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1630                 return REG_REQ_INTERSECT;
1631         /*
1632          * If the user knows better the user should set the regdom
1633          * to their country before the IE is picked up
1634          */
1635         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1636             lr->intersect)
1637                 return REG_REQ_IGNORE;
1638         /*
1639          * Process user requests only after previous user/driver/core
1640          * requests have been processed
1641          */
1642         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1643              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1644              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1645             regdom_changes(lr->alpha2))
1646                 return REG_REQ_IGNORE;
1647
1648         if (!regdom_changes(user_request->alpha2))
1649                 return REG_REQ_ALREADY_SET;
1650
1651         return REG_REQ_OK;
1652 }
1653
1654 /**
1655  * reg_process_hint_user - process user regulatory requests
1656  * @user_request: a pending user regulatory request
1657  *
1658  * The wireless subsystem can use this function to process
1659  * a regulatory request initiated by userspace.
1660  *
1661  * Returns one of the different reg request treatment values.
1662  */
1663 static enum reg_request_treatment
1664 reg_process_hint_user(struct regulatory_request *user_request)
1665 {
1666         enum reg_request_treatment treatment;
1667
1668         treatment = __reg_process_hint_user(user_request);
1669         if (treatment == REG_REQ_IGNORE ||
1670             treatment == REG_REQ_ALREADY_SET ||
1671             treatment == REG_REQ_USER_HINT_HANDLED) {
1672                 reg_free_request(user_request);
1673                 return treatment;
1674         }
1675
1676         user_request->intersect = treatment == REG_REQ_INTERSECT;
1677         user_request->processed = false;
1678
1679         reg_update_last_request(user_request);
1680
1681         user_alpha2[0] = user_request->alpha2[0];
1682         user_alpha2[1] = user_request->alpha2[1];
1683
1684         return reg_call_crda(user_request);
1685 }
1686
1687 static enum reg_request_treatment
1688 __reg_process_hint_driver(struct regulatory_request *driver_request)
1689 {
1690         struct regulatory_request *lr = get_last_request();
1691
1692         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1693                 if (regdom_changes(driver_request->alpha2))
1694                         return REG_REQ_OK;
1695                 return REG_REQ_ALREADY_SET;
1696         }
1697
1698         /*
1699          * This would happen if you unplug and plug your card
1700          * back in or if you add a new device for which the previously
1701          * loaded card also agrees on the regulatory domain.
1702          */
1703         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1704             !regdom_changes(driver_request->alpha2))
1705                 return REG_REQ_ALREADY_SET;
1706
1707         return REG_REQ_INTERSECT;
1708 }
1709
1710 /**
1711  * reg_process_hint_driver - process driver regulatory requests
1712  * @driver_request: a pending driver regulatory request
1713  *
1714  * The wireless subsystem can use this function to process
1715  * a regulatory request issued by an 802.11 driver.
1716  *
1717  * Returns one of the different reg request treatment values.
1718  */
1719 static enum reg_request_treatment
1720 reg_process_hint_driver(struct wiphy *wiphy,
1721                         struct regulatory_request *driver_request)
1722 {
1723         const struct ieee80211_regdomain *regd;
1724         enum reg_request_treatment treatment;
1725
1726         treatment = __reg_process_hint_driver(driver_request);
1727
1728         switch (treatment) {
1729         case REG_REQ_OK:
1730                 break;
1731         case REG_REQ_IGNORE:
1732         case REG_REQ_USER_HINT_HANDLED:
1733                 reg_free_request(driver_request);
1734                 return treatment;
1735         case REG_REQ_INTERSECT:
1736                 /* fall through */
1737         case REG_REQ_ALREADY_SET:
1738                 regd = reg_copy_regd(get_cfg80211_regdom());
1739                 if (IS_ERR(regd)) {
1740                         reg_free_request(driver_request);
1741                         return REG_REQ_IGNORE;
1742                 }
1743                 rcu_assign_pointer(wiphy->regd, regd);
1744         }
1745
1746
1747         driver_request->intersect = treatment == REG_REQ_INTERSECT;
1748         driver_request->processed = false;
1749
1750         reg_update_last_request(driver_request);
1751
1752         /*
1753          * Since CRDA will not be called in this case as we already
1754          * have applied the requested regulatory domain before we just
1755          * inform userspace we have processed the request
1756          */
1757         if (treatment == REG_REQ_ALREADY_SET) {
1758                 nl80211_send_reg_change_event(driver_request);
1759                 reg_set_request_processed();
1760                 return treatment;
1761         }
1762
1763         return reg_call_crda(driver_request);
1764 }
1765
1766 static enum reg_request_treatment
1767 __reg_process_hint_country_ie(struct wiphy *wiphy,
1768                               struct regulatory_request *country_ie_request)
1769 {
1770         struct wiphy *last_wiphy = NULL;
1771         struct regulatory_request *lr = get_last_request();
1772
1773         if (reg_request_cell_base(lr)) {
1774                 /* Trust a Cell base station over the AP's country IE */
1775                 if (regdom_changes(country_ie_request->alpha2))
1776                         return REG_REQ_IGNORE;
1777                 return REG_REQ_ALREADY_SET;
1778         } else {
1779                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
1780                         return REG_REQ_IGNORE;
1781         }
1782
1783         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
1784                 return -EINVAL;
1785
1786         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
1787                 return REG_REQ_OK;
1788
1789         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1790
1791         if (last_wiphy != wiphy) {
1792                 /*
1793                  * Two cards with two APs claiming different
1794                  * Country IE alpha2s. We could
1795                  * intersect them, but that seems unlikely
1796                  * to be correct. Reject second one for now.
1797                  */
1798                 if (regdom_changes(country_ie_request->alpha2))
1799                         return REG_REQ_IGNORE;
1800                 return REG_REQ_ALREADY_SET;
1801         }
1802         /*
1803          * Two consecutive Country IE hints on the same wiphy.
1804          * This should be picked up early by the driver/stack
1805          */
1806         if (WARN_ON(regdom_changes(country_ie_request->alpha2)))
1807                 return REG_REQ_OK;
1808         return REG_REQ_ALREADY_SET;
1809 }
1810
1811 /**
1812  * reg_process_hint_country_ie - process regulatory requests from country IEs
1813  * @country_ie_request: a regulatory request from a country IE
1814  *
1815  * The wireless subsystem can use this function to process
1816  * a regulatory request issued by a country Information Element.
1817  *
1818  * Returns one of the different reg request treatment values.
1819  */
1820 static enum reg_request_treatment
1821 reg_process_hint_country_ie(struct wiphy *wiphy,
1822                             struct regulatory_request *country_ie_request)
1823 {
1824         enum reg_request_treatment treatment;
1825
1826         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
1827
1828         switch (treatment) {
1829         case REG_REQ_OK:
1830                 break;
1831         case REG_REQ_IGNORE:
1832         case REG_REQ_USER_HINT_HANDLED:
1833                 /* fall through */
1834         case REG_REQ_ALREADY_SET:
1835                 reg_free_request(country_ie_request);
1836                 return treatment;
1837         case REG_REQ_INTERSECT:
1838                 reg_free_request(country_ie_request);
1839                 /*
1840                  * This doesn't happen yet, not sure we
1841                  * ever want to support it for this case.
1842                  */
1843                 WARN_ONCE(1, "Unexpected intersection for country IEs");
1844                 return REG_REQ_IGNORE;
1845         }
1846
1847         country_ie_request->intersect = false;
1848         country_ie_request->processed = false;
1849
1850         reg_update_last_request(country_ie_request);
1851
1852         return reg_call_crda(country_ie_request);
1853 }
1854
1855 /* This processes *all* regulatory hints */
1856 static void reg_process_hint(struct regulatory_request *reg_request)
1857 {
1858         struct wiphy *wiphy = NULL;
1859         enum reg_request_treatment treatment;
1860
1861         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
1862                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1863
1864         switch (reg_request->initiator) {
1865         case NL80211_REGDOM_SET_BY_CORE:
1866                 reg_process_hint_core(reg_request);
1867                 return;
1868         case NL80211_REGDOM_SET_BY_USER:
1869                 treatment = reg_process_hint_user(reg_request);
1870                 if (treatment == REG_REQ_IGNORE ||
1871                     treatment == REG_REQ_ALREADY_SET ||
1872                     treatment == REG_REQ_USER_HINT_HANDLED)
1873                         return;
1874                 queue_delayed_work(system_power_efficient_wq,
1875                                    &reg_timeout, msecs_to_jiffies(3142));
1876                 return;
1877         case NL80211_REGDOM_SET_BY_DRIVER:
1878                 if (!wiphy)
1879                         goto out_free;
1880                 treatment = reg_process_hint_driver(wiphy, reg_request);
1881                 break;
1882         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1883                 if (!wiphy)
1884                         goto out_free;
1885                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
1886                 break;
1887         default:
1888                 WARN(1, "invalid initiator %d\n", reg_request->initiator);
1889                 goto out_free;
1890         }
1891
1892         /* This is required so that the orig_* parameters are saved */
1893         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
1894             wiphy->regulatory_flags & REGULATORY_STRICT_REG)
1895                 wiphy_update_regulatory(wiphy, reg_request->initiator);
1896
1897         return;
1898
1899 out_free:
1900         reg_free_request(reg_request);
1901 }
1902
1903 /*
1904  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1905  * Regulatory hints come on a first come first serve basis and we
1906  * must process each one atomically.
1907  */
1908 static void reg_process_pending_hints(void)
1909 {
1910         struct regulatory_request *reg_request, *lr;
1911
1912         lr = get_last_request();
1913
1914         /* When last_request->processed becomes true this will be rescheduled */
1915         if (lr && !lr->processed) {
1916                 reg_process_hint(lr);
1917                 return;
1918         }
1919
1920         spin_lock(&reg_requests_lock);
1921
1922         if (list_empty(&reg_requests_list)) {
1923                 spin_unlock(&reg_requests_lock);
1924                 return;
1925         }
1926
1927         reg_request = list_first_entry(&reg_requests_list,
1928                                        struct regulatory_request,
1929                                        list);
1930         list_del_init(&reg_request->list);
1931
1932         spin_unlock(&reg_requests_lock);
1933
1934         reg_process_hint(reg_request);
1935 }
1936
1937 /* Processes beacon hints -- this has nothing to do with country IEs */
1938 static void reg_process_pending_beacon_hints(void)
1939 {
1940         struct cfg80211_registered_device *rdev;
1941         struct reg_beacon *pending_beacon, *tmp;
1942
1943         /* This goes through the _pending_ beacon list */
1944         spin_lock_bh(&reg_pending_beacons_lock);
1945
1946         list_for_each_entry_safe(pending_beacon, tmp,
1947                                  &reg_pending_beacons, list) {
1948                 list_del_init(&pending_beacon->list);
1949
1950                 /* Applies the beacon hint to current wiphys */
1951                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1952                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1953
1954                 /* Remembers the beacon hint for new wiphys or reg changes */
1955                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1956         }
1957
1958         spin_unlock_bh(&reg_pending_beacons_lock);
1959 }
1960
1961 static void reg_todo(struct work_struct *work)
1962 {
1963         rtnl_lock();
1964         reg_process_pending_hints();
1965         reg_process_pending_beacon_hints();
1966         rtnl_unlock();
1967 }
1968
1969 static void queue_regulatory_request(struct regulatory_request *request)
1970 {
1971         request->alpha2[0] = toupper(request->alpha2[0]);
1972         request->alpha2[1] = toupper(request->alpha2[1]);
1973
1974         spin_lock(&reg_requests_lock);
1975         list_add_tail(&request->list, &reg_requests_list);
1976         spin_unlock(&reg_requests_lock);
1977
1978         schedule_work(&reg_work);
1979 }
1980
1981 /*
1982  * Core regulatory hint -- happens during cfg80211_init()
1983  * and when we restore regulatory settings.
1984  */
1985 static int regulatory_hint_core(const char *alpha2)
1986 {
1987         struct regulatory_request *request;
1988
1989         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1990         if (!request)
1991                 return -ENOMEM;
1992
1993         request->alpha2[0] = alpha2[0];
1994         request->alpha2[1] = alpha2[1];
1995         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1996
1997         queue_regulatory_request(request);
1998
1999         return 0;
2000 }
2001
2002 /* User hints */
2003 int regulatory_hint_user(const char *alpha2,
2004                          enum nl80211_user_reg_hint_type user_reg_hint_type)
2005 {
2006         struct regulatory_request *request;
2007
2008         if (WARN_ON(!alpha2))
2009                 return -EINVAL;
2010
2011         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2012         if (!request)
2013                 return -ENOMEM;
2014
2015         request->wiphy_idx = WIPHY_IDX_INVALID;
2016         request->alpha2[0] = alpha2[0];
2017         request->alpha2[1] = alpha2[1];
2018         request->initiator = NL80211_REGDOM_SET_BY_USER;
2019         request->user_reg_hint_type = user_reg_hint_type;
2020
2021         queue_regulatory_request(request);
2022
2023         return 0;
2024 }
2025
2026 int regulatory_hint_indoor_user(void)
2027 {
2028         struct regulatory_request *request;
2029
2030         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2031         if (!request)
2032                 return -ENOMEM;
2033
2034         request->wiphy_idx = WIPHY_IDX_INVALID;
2035         request->initiator = NL80211_REGDOM_SET_BY_USER;
2036         request->user_reg_hint_type = NL80211_USER_REG_HINT_INDOOR;
2037         queue_regulatory_request(request);
2038
2039         return 0;
2040 }
2041
2042 /* Driver hints */
2043 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2044 {
2045         struct regulatory_request *request;
2046
2047         if (WARN_ON(!alpha2 || !wiphy))
2048                 return -EINVAL;
2049
2050         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2051
2052         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2053         if (!request)
2054                 return -ENOMEM;
2055
2056         request->wiphy_idx = get_wiphy_idx(wiphy);
2057
2058         request->alpha2[0] = alpha2[0];
2059         request->alpha2[1] = alpha2[1];
2060         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2061
2062         queue_regulatory_request(request);
2063
2064         return 0;
2065 }
2066 EXPORT_SYMBOL(regulatory_hint);
2067
2068 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
2069                                 const u8 *country_ie, u8 country_ie_len)
2070 {
2071         char alpha2[2];
2072         enum environment_cap env = ENVIRON_ANY;
2073         struct regulatory_request *request = NULL, *lr;
2074
2075         /* IE len must be evenly divisible by 2 */
2076         if (country_ie_len & 0x01)
2077                 return;
2078
2079         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2080                 return;
2081
2082         request = kzalloc(sizeof(*request), GFP_KERNEL);
2083         if (!request)
2084                 return;
2085
2086         alpha2[0] = country_ie[0];
2087         alpha2[1] = country_ie[1];
2088
2089         if (country_ie[2] == 'I')
2090                 env = ENVIRON_INDOOR;
2091         else if (country_ie[2] == 'O')
2092                 env = ENVIRON_OUTDOOR;
2093
2094         rcu_read_lock();
2095         lr = get_last_request();
2096
2097         if (unlikely(!lr))
2098                 goto out;
2099
2100         /*
2101          * We will run this only upon a successful connection on cfg80211.
2102          * We leave conflict resolution to the workqueue, where can hold
2103          * the RTNL.
2104          */
2105         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2106             lr->wiphy_idx != WIPHY_IDX_INVALID)
2107                 goto out;
2108
2109         request->wiphy_idx = get_wiphy_idx(wiphy);
2110         request->alpha2[0] = alpha2[0];
2111         request->alpha2[1] = alpha2[1];
2112         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2113         request->country_ie_env = env;
2114
2115         queue_regulatory_request(request);
2116         request = NULL;
2117 out:
2118         kfree(request);
2119         rcu_read_unlock();
2120 }
2121
2122 static void restore_alpha2(char *alpha2, bool reset_user)
2123 {
2124         /* indicates there is no alpha2 to consider for restoration */
2125         alpha2[0] = '9';
2126         alpha2[1] = '7';
2127
2128         /* The user setting has precedence over the module parameter */
2129         if (is_user_regdom_saved()) {
2130                 /* Unless we're asked to ignore it and reset it */
2131                 if (reset_user) {
2132                         REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2133                         user_alpha2[0] = '9';
2134                         user_alpha2[1] = '7';
2135
2136                         /*
2137                          * If we're ignoring user settings, we still need to
2138                          * check the module parameter to ensure we put things
2139                          * back as they were for a full restore.
2140                          */
2141                         if (!is_world_regdom(ieee80211_regdom)) {
2142                                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2143                                               ieee80211_regdom[0], ieee80211_regdom[1]);
2144                                 alpha2[0] = ieee80211_regdom[0];
2145                                 alpha2[1] = ieee80211_regdom[1];
2146                         }
2147                 } else {
2148                         REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2149                                       user_alpha2[0], user_alpha2[1]);
2150                         alpha2[0] = user_alpha2[0];
2151                         alpha2[1] = user_alpha2[1];
2152                 }
2153         } else if (!is_world_regdom(ieee80211_regdom)) {
2154                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2155                               ieee80211_regdom[0], ieee80211_regdom[1]);
2156                 alpha2[0] = ieee80211_regdom[0];
2157                 alpha2[1] = ieee80211_regdom[1];
2158         } else
2159                 REG_DBG_PRINT("Restoring regulatory settings\n");
2160 }
2161
2162 static void restore_custom_reg_settings(struct wiphy *wiphy)
2163 {
2164         struct ieee80211_supported_band *sband;
2165         enum ieee80211_band band;
2166         struct ieee80211_channel *chan;
2167         int i;
2168
2169         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2170                 sband = wiphy->bands[band];
2171                 if (!sband)
2172                         continue;
2173                 for (i = 0; i < sband->n_channels; i++) {
2174                         chan = &sband->channels[i];
2175                         chan->flags = chan->orig_flags;
2176                         chan->max_antenna_gain = chan->orig_mag;
2177                         chan->max_power = chan->orig_mpwr;
2178                         chan->beacon_found = false;
2179                 }
2180         }
2181 }
2182
2183 /*
2184  * Restoring regulatory settings involves ingoring any
2185  * possibly stale country IE information and user regulatory
2186  * settings if so desired, this includes any beacon hints
2187  * learned as we could have traveled outside to another country
2188  * after disconnection. To restore regulatory settings we do
2189  * exactly what we did at bootup:
2190  *
2191  *   - send a core regulatory hint
2192  *   - send a user regulatory hint if applicable
2193  *
2194  * Device drivers that send a regulatory hint for a specific country
2195  * keep their own regulatory domain on wiphy->regd so that does does
2196  * not need to be remembered.
2197  */
2198 static void restore_regulatory_settings(bool reset_user)
2199 {
2200         char alpha2[2];
2201         char world_alpha2[2];
2202         struct reg_beacon *reg_beacon, *btmp;
2203         struct regulatory_request *reg_request, *tmp;
2204         LIST_HEAD(tmp_reg_req_list);
2205         struct cfg80211_registered_device *rdev;
2206
2207         ASSERT_RTNL();
2208
2209         reg_is_indoor = false;
2210
2211         reset_regdomains(true, &world_regdom);
2212         restore_alpha2(alpha2, reset_user);
2213
2214         /*
2215          * If there's any pending requests we simply
2216          * stash them to a temporary pending queue and
2217          * add then after we've restored regulatory
2218          * settings.
2219          */
2220         spin_lock(&reg_requests_lock);
2221         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2222                 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
2223                         continue;
2224                 list_move_tail(&reg_request->list, &tmp_reg_req_list);
2225         }
2226         spin_unlock(&reg_requests_lock);
2227
2228         /* Clear beacon hints */
2229         spin_lock_bh(&reg_pending_beacons_lock);
2230         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2231                 list_del(&reg_beacon->list);
2232                 kfree(reg_beacon);
2233         }
2234         spin_unlock_bh(&reg_pending_beacons_lock);
2235
2236         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2237                 list_del(&reg_beacon->list);
2238                 kfree(reg_beacon);
2239         }
2240
2241         /* First restore to the basic regulatory settings */
2242         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2243         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2244
2245         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2246                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2247                         restore_custom_reg_settings(&rdev->wiphy);
2248         }
2249
2250         regulatory_hint_core(world_alpha2);
2251
2252         /*
2253          * This restores the ieee80211_regdom module parameter
2254          * preference or the last user requested regulatory
2255          * settings, user regulatory settings takes precedence.
2256          */
2257         if (is_an_alpha2(alpha2))
2258                 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
2259
2260         spin_lock(&reg_requests_lock);
2261         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2262         spin_unlock(&reg_requests_lock);
2263
2264         REG_DBG_PRINT("Kicking the queue\n");
2265
2266         schedule_work(&reg_work);
2267 }
2268
2269 void regulatory_hint_disconnect(void)
2270 {
2271         REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2272         restore_regulatory_settings(false);
2273 }
2274
2275 static bool freq_is_chan_12_13_14(u16 freq)
2276 {
2277         if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2278             freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2279             freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2280                 return true;
2281         return false;
2282 }
2283
2284 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2285 {
2286         struct reg_beacon *pending_beacon;
2287
2288         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2289                 if (beacon_chan->center_freq ==
2290                     pending_beacon->chan.center_freq)
2291                         return true;
2292         return false;
2293 }
2294
2295 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2296                                  struct ieee80211_channel *beacon_chan,
2297                                  gfp_t gfp)
2298 {
2299         struct reg_beacon *reg_beacon;
2300         bool processing;
2301
2302         if (beacon_chan->beacon_found ||
2303             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2304             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2305              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2306                 return 0;
2307
2308         spin_lock_bh(&reg_pending_beacons_lock);
2309         processing = pending_reg_beacon(beacon_chan);
2310         spin_unlock_bh(&reg_pending_beacons_lock);
2311
2312         if (processing)
2313                 return 0;
2314
2315         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2316         if (!reg_beacon)
2317                 return -ENOMEM;
2318
2319         REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2320                       beacon_chan->center_freq,
2321                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
2322                       wiphy_name(wiphy));
2323
2324         memcpy(&reg_beacon->chan, beacon_chan,
2325                sizeof(struct ieee80211_channel));
2326
2327         /*
2328          * Since we can be called from BH or and non-BH context
2329          * we must use spin_lock_bh()
2330          */
2331         spin_lock_bh(&reg_pending_beacons_lock);
2332         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2333         spin_unlock_bh(&reg_pending_beacons_lock);
2334
2335         schedule_work(&reg_work);
2336
2337         return 0;
2338 }
2339
2340 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2341 {
2342         unsigned int i;
2343         const struct ieee80211_reg_rule *reg_rule = NULL;
2344         const struct ieee80211_freq_range *freq_range = NULL;
2345         const struct ieee80211_power_rule *power_rule = NULL;
2346         char bw[32], cac_time[32];
2347
2348         pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2349
2350         for (i = 0; i < rd->n_reg_rules; i++) {
2351                 reg_rule = &rd->reg_rules[i];
2352                 freq_range = &reg_rule->freq_range;
2353                 power_rule = &reg_rule->power_rule;
2354
2355                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2356                         snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2357                                  freq_range->max_bandwidth_khz,
2358                                  reg_get_max_bandwidth(rd, reg_rule));
2359                 else
2360                         snprintf(bw, sizeof(bw), "%d KHz",
2361                                  freq_range->max_bandwidth_khz);
2362
2363                 if (reg_rule->flags & NL80211_RRF_DFS)
2364                         scnprintf(cac_time, sizeof(cac_time), "%u s",
2365                                   reg_rule->dfs_cac_ms/1000);
2366                 else
2367                         scnprintf(cac_time, sizeof(cac_time), "N/A");
2368
2369
2370                 /*
2371                  * There may not be documentation for max antenna gain
2372                  * in certain regions
2373                  */
2374                 if (power_rule->max_antenna_gain)
2375                         pr_info("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2376                                 freq_range->start_freq_khz,
2377                                 freq_range->end_freq_khz,
2378                                 bw,
2379                                 power_rule->max_antenna_gain,
2380                                 power_rule->max_eirp,
2381                                 cac_time);
2382                 else
2383                         pr_info("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2384                                 freq_range->start_freq_khz,
2385                                 freq_range->end_freq_khz,
2386                                 bw,
2387                                 power_rule->max_eirp,
2388                                 cac_time);
2389         }
2390 }
2391
2392 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2393 {
2394         switch (dfs_region) {
2395         case NL80211_DFS_UNSET:
2396         case NL80211_DFS_FCC:
2397         case NL80211_DFS_ETSI:
2398         case NL80211_DFS_JP:
2399                 return true;
2400         default:
2401                 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2402                               dfs_region);
2403                 return false;
2404         }
2405 }
2406
2407 static void print_regdomain(const struct ieee80211_regdomain *rd)
2408 {
2409         struct regulatory_request *lr = get_last_request();
2410
2411         if (is_intersected_alpha2(rd->alpha2)) {
2412                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2413                         struct cfg80211_registered_device *rdev;
2414                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2415                         if (rdev) {
2416                                 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2417                                         rdev->country_ie_alpha2[0],
2418                                         rdev->country_ie_alpha2[1]);
2419                         } else
2420                                 pr_info("Current regulatory domain intersected:\n");
2421                 } else
2422                         pr_info("Current regulatory domain intersected:\n");
2423         } else if (is_world_regdom(rd->alpha2)) {
2424                 pr_info("World regulatory domain updated:\n");
2425         } else {
2426                 if (is_unknown_alpha2(rd->alpha2))
2427                         pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2428                 else {
2429                         if (reg_request_cell_base(lr))
2430                                 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2431                                         rd->alpha2[0], rd->alpha2[1]);
2432                         else
2433                                 pr_info("Regulatory domain changed to country: %c%c\n",
2434                                         rd->alpha2[0], rd->alpha2[1]);
2435                 }
2436         }
2437
2438         pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2439         print_rd_rules(rd);
2440 }
2441
2442 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2443 {
2444         pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2445         print_rd_rules(rd);
2446 }
2447
2448 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2449 {
2450         if (!is_world_regdom(rd->alpha2))
2451                 return -EINVAL;
2452         update_world_regdomain(rd);
2453         return 0;
2454 }
2455
2456 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2457                            struct regulatory_request *user_request)
2458 {
2459         const struct ieee80211_regdomain *intersected_rd = NULL;
2460
2461         if (!regdom_changes(rd->alpha2))
2462                 return -EALREADY;
2463
2464         if (!is_valid_rd(rd)) {
2465                 pr_err("Invalid regulatory domain detected:\n");
2466                 print_regdomain_info(rd);
2467                 return -EINVAL;
2468         }
2469
2470         if (!user_request->intersect) {
2471                 reset_regdomains(false, rd);
2472                 return 0;
2473         }
2474
2475         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2476         if (!intersected_rd)
2477                 return -EINVAL;
2478
2479         kfree(rd);
2480         rd = NULL;
2481         reset_regdomains(false, intersected_rd);
2482
2483         return 0;
2484 }
2485
2486 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2487                              struct regulatory_request *driver_request)
2488 {
2489         const struct ieee80211_regdomain *regd;
2490         const struct ieee80211_regdomain *intersected_rd = NULL;
2491         const struct ieee80211_regdomain *tmp;
2492         struct wiphy *request_wiphy;
2493
2494         if (is_world_regdom(rd->alpha2))
2495                 return -EINVAL;
2496
2497         if (!regdom_changes(rd->alpha2))
2498                 return -EALREADY;
2499
2500         if (!is_valid_rd(rd)) {
2501                 pr_err("Invalid regulatory domain detected:\n");
2502                 print_regdomain_info(rd);
2503                 return -EINVAL;
2504         }
2505
2506         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2507         if (!request_wiphy) {
2508                 queue_delayed_work(system_power_efficient_wq,
2509                                    &reg_timeout, 0);
2510                 return -ENODEV;
2511         }
2512
2513         if (!driver_request->intersect) {
2514                 if (request_wiphy->regd)
2515                         return -EALREADY;
2516
2517                 regd = reg_copy_regd(rd);
2518                 if (IS_ERR(regd))
2519                         return PTR_ERR(regd);
2520
2521                 rcu_assign_pointer(request_wiphy->regd, regd);
2522                 reset_regdomains(false, rd);
2523                 return 0;
2524         }
2525
2526         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2527         if (!intersected_rd)
2528                 return -EINVAL;
2529
2530         /*
2531          * We can trash what CRDA provided now.
2532          * However if a driver requested this specific regulatory
2533          * domain we keep it for its private use
2534          */
2535         tmp = get_wiphy_regdom(request_wiphy);
2536         rcu_assign_pointer(request_wiphy->regd, rd);
2537         rcu_free_regdom(tmp);
2538
2539         rd = NULL;
2540
2541         reset_regdomains(false, intersected_rd);
2542
2543         return 0;
2544 }
2545
2546 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2547                                  struct regulatory_request *country_ie_request)
2548 {
2549         struct wiphy *request_wiphy;
2550
2551         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2552             !is_unknown_alpha2(rd->alpha2))
2553                 return -EINVAL;
2554
2555         /*
2556          * Lets only bother proceeding on the same alpha2 if the current
2557          * rd is non static (it means CRDA was present and was used last)
2558          * and the pending request came in from a country IE
2559          */
2560
2561         if (!is_valid_rd(rd)) {
2562                 pr_err("Invalid regulatory domain detected:\n");
2563                 print_regdomain_info(rd);
2564                 return -EINVAL;
2565         }
2566
2567         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2568         if (!request_wiphy) {
2569                 queue_delayed_work(system_power_efficient_wq,
2570                                    &reg_timeout, 0);
2571                 return -ENODEV;
2572         }
2573
2574         if (country_ie_request->intersect)
2575                 return -EINVAL;
2576
2577         reset_regdomains(false, rd);
2578         return 0;
2579 }
2580
2581 /*
2582  * Use this call to set the current regulatory domain. Conflicts with
2583  * multiple drivers can be ironed out later. Caller must've already
2584  * kmalloc'd the rd structure.
2585  */
2586 int set_regdom(const struct ieee80211_regdomain *rd)
2587 {
2588         struct regulatory_request *lr;
2589         bool user_reset = false;
2590         int r;
2591
2592         if (!reg_is_valid_request(rd->alpha2)) {
2593                 kfree(rd);
2594                 return -EINVAL;
2595         }
2596
2597         lr = get_last_request();
2598
2599         /* Note that this doesn't update the wiphys, this is done below */
2600         switch (lr->initiator) {
2601         case NL80211_REGDOM_SET_BY_CORE:
2602                 r = reg_set_rd_core(rd);
2603                 break;
2604         case NL80211_REGDOM_SET_BY_USER:
2605                 r = reg_set_rd_user(rd, lr);
2606                 user_reset = true;
2607                 break;
2608         case NL80211_REGDOM_SET_BY_DRIVER:
2609                 r = reg_set_rd_driver(rd, lr);
2610                 break;
2611         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2612                 r = reg_set_rd_country_ie(rd, lr);
2613                 break;
2614         default:
2615                 WARN(1, "invalid initiator %d\n", lr->initiator);
2616                 return -EINVAL;
2617         }
2618
2619         if (r) {
2620                 switch (r) {
2621                 case -EALREADY:
2622                         reg_set_request_processed();
2623                         break;
2624                 default:
2625                         /* Back to world regulatory in case of errors */
2626                         restore_regulatory_settings(user_reset);
2627                 }
2628
2629                 kfree(rd);
2630                 return r;
2631         }
2632
2633         /* This would make this whole thing pointless */
2634         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2635                 return -EINVAL;
2636
2637         /* update all wiphys now with the new established regulatory domain */
2638         update_all_wiphy_regulatory(lr->initiator);
2639
2640         print_regdomain(get_cfg80211_regdom());
2641
2642         nl80211_send_reg_change_event(lr);
2643
2644         reg_set_request_processed();
2645
2646         return 0;
2647 }
2648
2649 void wiphy_regulatory_register(struct wiphy *wiphy)
2650 {
2651         struct regulatory_request *lr;
2652
2653         if (!reg_dev_ignore_cell_hint(wiphy))
2654                 reg_num_devs_support_basehint++;
2655
2656         lr = get_last_request();
2657         wiphy_update_regulatory(wiphy, lr->initiator);
2658 }
2659
2660 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2661 {
2662         struct wiphy *request_wiphy = NULL;
2663         struct regulatory_request *lr;
2664
2665         lr = get_last_request();
2666
2667         if (!reg_dev_ignore_cell_hint(wiphy))
2668                 reg_num_devs_support_basehint--;
2669
2670         rcu_free_regdom(get_wiphy_regdom(wiphy));
2671         RCU_INIT_POINTER(wiphy->regd, NULL);
2672
2673         if (lr)
2674                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2675
2676         if (!request_wiphy || request_wiphy != wiphy)
2677                 return;
2678
2679         lr->wiphy_idx = WIPHY_IDX_INVALID;
2680         lr->country_ie_env = ENVIRON_ANY;
2681 }
2682
2683 static void reg_timeout_work(struct work_struct *work)
2684 {
2685         REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2686         rtnl_lock();
2687         restore_regulatory_settings(true);
2688         rtnl_unlock();
2689 }
2690
2691 /*
2692  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
2693  * UNII band definitions
2694  */
2695 int cfg80211_get_unii(int freq)
2696 {
2697         /* UNII-1 */
2698         if (freq >= 5150 && freq <= 5250)
2699                 return 0;
2700
2701         /* UNII-2A */
2702         if (freq > 5250 && freq <= 5350)
2703                 return 1;
2704
2705         /* UNII-2B */
2706         if (freq > 5350 && freq <= 5470)
2707                 return 2;
2708
2709         /* UNII-2C */
2710         if (freq > 5470 && freq <= 5725)
2711                 return 3;
2712
2713         /* UNII-3 */
2714         if (freq > 5725 && freq <= 5825)
2715                 return 4;
2716
2717         return -EINVAL;
2718 }
2719
2720 bool regulatory_indoor_allowed(void)
2721 {
2722         return reg_is_indoor;
2723 }
2724
2725 int __init regulatory_init(void)
2726 {
2727         int err = 0;
2728
2729         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2730         if (IS_ERR(reg_pdev))
2731                 return PTR_ERR(reg_pdev);
2732
2733         spin_lock_init(&reg_requests_lock);
2734         spin_lock_init(&reg_pending_beacons_lock);
2735
2736         reg_regdb_size_check();
2737
2738         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2739
2740         user_alpha2[0] = '9';
2741         user_alpha2[1] = '7';
2742
2743         /* We always try to get an update for the static regdomain */
2744         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2745         if (err) {
2746                 if (err == -ENOMEM)
2747                         return err;
2748                 /*
2749                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2750                  * memory which is handled and propagated appropriately above
2751                  * but it can also fail during a netlink_broadcast() or during
2752                  * early boot for call_usermodehelper(). For now treat these
2753                  * errors as non-fatal.
2754                  */
2755                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2756         }
2757
2758         /*
2759          * Finally, if the user set the module parameter treat it
2760          * as a user hint.
2761          */
2762         if (!is_world_regdom(ieee80211_regdom))
2763                 regulatory_hint_user(ieee80211_regdom,
2764                                      NL80211_USER_REG_HINT_USER);
2765
2766         return 0;
2767 }
2768
2769 void regulatory_exit(void)
2770 {
2771         struct regulatory_request *reg_request, *tmp;
2772         struct reg_beacon *reg_beacon, *btmp;
2773
2774         cancel_work_sync(&reg_work);
2775         cancel_delayed_work_sync(&reg_timeout);
2776
2777         /* Lock to suppress warnings */
2778         rtnl_lock();
2779         reset_regdomains(true, NULL);
2780         rtnl_unlock();
2781
2782         dev_set_uevent_suppress(&reg_pdev->dev, true);
2783
2784         platform_device_unregister(reg_pdev);
2785
2786         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2787                 list_del(&reg_beacon->list);
2788                 kfree(reg_beacon);
2789         }
2790
2791         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2792                 list_del(&reg_beacon->list);
2793                 kfree(reg_beacon);
2794         }
2795
2796         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2797                 list_del(&reg_request->list);
2798                 kfree(reg_request);
2799         }
2800 }