dt-bindings: Add vendor prefix for Avnet, Inc.
[linux-2.6-microblaze.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22
23
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *      be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *      regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83         REG_REQ_OK,
84         REG_REQ_IGNORE,
85         REG_REQ_INTERSECT,
86         REG_REQ_ALREADY_SET,
87 };
88
89 static struct regulatory_request core_request_world = {
90         .initiator = NL80211_REGDOM_SET_BY_CORE,
91         .alpha2[0] = '0',
92         .alpha2[1] = '0',
93         .intersect = false,
94         .processed = true,
95         .country_ie_env = ENVIRON_ANY,
96 };
97
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103         (void __force __rcu *)&core_request_world;
104
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static spinlock_t reg_indoor_lock;
130
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133
134 static void restore_regulatory_settings(bool reset_user);
135
136 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
137 {
138         return rcu_dereference_rtnl(cfg80211_regdomain);
139 }
140
141 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
142 {
143         return rcu_dereference_rtnl(wiphy->regd);
144 }
145
146 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
147 {
148         switch (dfs_region) {
149         case NL80211_DFS_UNSET:
150                 return "unset";
151         case NL80211_DFS_FCC:
152                 return "FCC";
153         case NL80211_DFS_ETSI:
154                 return "ETSI";
155         case NL80211_DFS_JP:
156                 return "JP";
157         }
158         return "Unknown";
159 }
160
161 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
162 {
163         const struct ieee80211_regdomain *regd = NULL;
164         const struct ieee80211_regdomain *wiphy_regd = NULL;
165
166         regd = get_cfg80211_regdom();
167         if (!wiphy)
168                 goto out;
169
170         wiphy_regd = get_wiphy_regdom(wiphy);
171         if (!wiphy_regd)
172                 goto out;
173
174         if (wiphy_regd->dfs_region == regd->dfs_region)
175                 goto out;
176
177         pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
178                  dev_name(&wiphy->dev),
179                  reg_dfs_region_str(wiphy_regd->dfs_region),
180                  reg_dfs_region_str(regd->dfs_region));
181
182 out:
183         return regd->dfs_region;
184 }
185
186 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
187 {
188         if (!r)
189                 return;
190         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
191 }
192
193 static struct regulatory_request *get_last_request(void)
194 {
195         return rcu_dereference_rtnl(last_request);
196 }
197
198 /* Used to queue up regulatory hints */
199 static LIST_HEAD(reg_requests_list);
200 static spinlock_t reg_requests_lock;
201
202 /* Used to queue up beacon hints for review */
203 static LIST_HEAD(reg_pending_beacons);
204 static spinlock_t reg_pending_beacons_lock;
205
206 /* Used to keep track of processed beacon hints */
207 static LIST_HEAD(reg_beacon_list);
208
209 struct reg_beacon {
210         struct list_head list;
211         struct ieee80211_channel chan;
212 };
213
214 static void reg_check_chans_work(struct work_struct *work);
215 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
216
217 static void reg_todo(struct work_struct *work);
218 static DECLARE_WORK(reg_work, reg_todo);
219
220 /* We keep a static world regulatory domain in case of the absence of CRDA */
221 static const struct ieee80211_regdomain world_regdom = {
222         .n_reg_rules = 8,
223         .alpha2 =  "00",
224         .reg_rules = {
225                 /* IEEE 802.11b/g, channels 1..11 */
226                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
227                 /* IEEE 802.11b/g, channels 12..13. */
228                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
229                         NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
230                 /* IEEE 802.11 channel 14 - Only JP enables
231                  * this and for 802.11b only */
232                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
233                         NL80211_RRF_NO_IR |
234                         NL80211_RRF_NO_OFDM),
235                 /* IEEE 802.11a, channel 36..48 */
236                 REG_RULE(5180-10, 5240+10, 80, 6, 20,
237                         NL80211_RRF_NO_IR |
238                         NL80211_RRF_AUTO_BW),
239
240                 /* IEEE 802.11a, channel 52..64 - DFS required */
241                 REG_RULE(5260-10, 5320+10, 80, 6, 20,
242                         NL80211_RRF_NO_IR |
243                         NL80211_RRF_AUTO_BW |
244                         NL80211_RRF_DFS),
245
246                 /* IEEE 802.11a, channel 100..144 - DFS required */
247                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
248                         NL80211_RRF_NO_IR |
249                         NL80211_RRF_DFS),
250
251                 /* IEEE 802.11a, channel 149..165 */
252                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
253                         NL80211_RRF_NO_IR),
254
255                 /* IEEE 802.11ad (60GHz), channels 1..3 */
256                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
257         }
258 };
259
260 /* protected by RTNL */
261 static const struct ieee80211_regdomain *cfg80211_world_regdom =
262         &world_regdom;
263
264 static char *ieee80211_regdom = "00";
265 static char user_alpha2[2];
266
267 module_param(ieee80211_regdom, charp, 0444);
268 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
269
270 static void reg_free_request(struct regulatory_request *request)
271 {
272         if (request == &core_request_world)
273                 return;
274
275         if (request != get_last_request())
276                 kfree(request);
277 }
278
279 static void reg_free_last_request(void)
280 {
281         struct regulatory_request *lr = get_last_request();
282
283         if (lr != &core_request_world && lr)
284                 kfree_rcu(lr, rcu_head);
285 }
286
287 static void reg_update_last_request(struct regulatory_request *request)
288 {
289         struct regulatory_request *lr;
290
291         lr = get_last_request();
292         if (lr == request)
293                 return;
294
295         reg_free_last_request();
296         rcu_assign_pointer(last_request, request);
297 }
298
299 static void reset_regdomains(bool full_reset,
300                              const struct ieee80211_regdomain *new_regdom)
301 {
302         const struct ieee80211_regdomain *r;
303
304         ASSERT_RTNL();
305
306         r = get_cfg80211_regdom();
307
308         /* avoid freeing static information or freeing something twice */
309         if (r == cfg80211_world_regdom)
310                 r = NULL;
311         if (cfg80211_world_regdom == &world_regdom)
312                 cfg80211_world_regdom = NULL;
313         if (r == &world_regdom)
314                 r = NULL;
315
316         rcu_free_regdom(r);
317         rcu_free_regdom(cfg80211_world_regdom);
318
319         cfg80211_world_regdom = &world_regdom;
320         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
321
322         if (!full_reset)
323                 return;
324
325         reg_update_last_request(&core_request_world);
326 }
327
328 /*
329  * Dynamic world regulatory domain requested by the wireless
330  * core upon initialization
331  */
332 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
333 {
334         struct regulatory_request *lr;
335
336         lr = get_last_request();
337
338         WARN_ON(!lr);
339
340         reset_regdomains(false, rd);
341
342         cfg80211_world_regdom = rd;
343 }
344
345 bool is_world_regdom(const char *alpha2)
346 {
347         if (!alpha2)
348                 return false;
349         return alpha2[0] == '0' && alpha2[1] == '0';
350 }
351
352 static bool is_alpha2_set(const char *alpha2)
353 {
354         if (!alpha2)
355                 return false;
356         return alpha2[0] && alpha2[1];
357 }
358
359 static bool is_unknown_alpha2(const char *alpha2)
360 {
361         if (!alpha2)
362                 return false;
363         /*
364          * Special case where regulatory domain was built by driver
365          * but a specific alpha2 cannot be determined
366          */
367         return alpha2[0] == '9' && alpha2[1] == '9';
368 }
369
370 static bool is_intersected_alpha2(const char *alpha2)
371 {
372         if (!alpha2)
373                 return false;
374         /*
375          * Special case where regulatory domain is the
376          * result of an intersection between two regulatory domain
377          * structures
378          */
379         return alpha2[0] == '9' && alpha2[1] == '8';
380 }
381
382 static bool is_an_alpha2(const char *alpha2)
383 {
384         if (!alpha2)
385                 return false;
386         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
387 }
388
389 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
390 {
391         if (!alpha2_x || !alpha2_y)
392                 return false;
393         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
394 }
395
396 static bool regdom_changes(const char *alpha2)
397 {
398         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
399
400         if (!r)
401                 return true;
402         return !alpha2_equal(r->alpha2, alpha2);
403 }
404
405 /*
406  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
407  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
408  * has ever been issued.
409  */
410 static bool is_user_regdom_saved(void)
411 {
412         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
413                 return false;
414
415         /* This would indicate a mistake on the design */
416         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
417                  "Unexpected user alpha2: %c%c\n",
418                  user_alpha2[0], user_alpha2[1]))
419                 return false;
420
421         return true;
422 }
423
424 static const struct ieee80211_regdomain *
425 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
426 {
427         struct ieee80211_regdomain *regd;
428         int size_of_regd, size_of_wmms;
429         unsigned int i;
430         struct ieee80211_wmm_rule *d_wmm, *s_wmm;
431
432         size_of_regd =
433                 sizeof(struct ieee80211_regdomain) +
434                 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
435         size_of_wmms = src_regd->n_wmm_rules *
436                 sizeof(struct ieee80211_wmm_rule);
437
438         regd = kzalloc(size_of_regd + size_of_wmms, GFP_KERNEL);
439         if (!regd)
440                 return ERR_PTR(-ENOMEM);
441
442         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
443
444         d_wmm = (struct ieee80211_wmm_rule *)((u8 *)regd + size_of_regd);
445         s_wmm = (struct ieee80211_wmm_rule *)((u8 *)src_regd + size_of_regd);
446         memcpy(d_wmm, s_wmm, size_of_wmms);
447
448         for (i = 0; i < src_regd->n_reg_rules; i++) {
449                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
450                        sizeof(struct ieee80211_reg_rule));
451                 if (!src_regd->reg_rules[i].wmm_rule)
452                         continue;
453
454                 regd->reg_rules[i].wmm_rule = d_wmm +
455                         (src_regd->reg_rules[i].wmm_rule - s_wmm) /
456                         sizeof(struct ieee80211_wmm_rule);
457         }
458         return regd;
459 }
460
461 struct reg_regdb_apply_request {
462         struct list_head list;
463         const struct ieee80211_regdomain *regdom;
464 };
465
466 static LIST_HEAD(reg_regdb_apply_list);
467 static DEFINE_MUTEX(reg_regdb_apply_mutex);
468
469 static void reg_regdb_apply(struct work_struct *work)
470 {
471         struct reg_regdb_apply_request *request;
472
473         rtnl_lock();
474
475         mutex_lock(&reg_regdb_apply_mutex);
476         while (!list_empty(&reg_regdb_apply_list)) {
477                 request = list_first_entry(&reg_regdb_apply_list,
478                                            struct reg_regdb_apply_request,
479                                            list);
480                 list_del(&request->list);
481
482                 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
483                 kfree(request);
484         }
485         mutex_unlock(&reg_regdb_apply_mutex);
486
487         rtnl_unlock();
488 }
489
490 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
491
492 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
493 {
494         struct reg_regdb_apply_request *request;
495
496         request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
497         if (!request) {
498                 kfree(regdom);
499                 return -ENOMEM;
500         }
501
502         request->regdom = regdom;
503
504         mutex_lock(&reg_regdb_apply_mutex);
505         list_add_tail(&request->list, &reg_regdb_apply_list);
506         mutex_unlock(&reg_regdb_apply_mutex);
507
508         schedule_work(&reg_regdb_work);
509         return 0;
510 }
511
512 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
513 /* Max number of consecutive attempts to communicate with CRDA  */
514 #define REG_MAX_CRDA_TIMEOUTS 10
515
516 static u32 reg_crda_timeouts;
517
518 static void crda_timeout_work(struct work_struct *work);
519 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
520
521 static void crda_timeout_work(struct work_struct *work)
522 {
523         pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
524         rtnl_lock();
525         reg_crda_timeouts++;
526         restore_regulatory_settings(true);
527         rtnl_unlock();
528 }
529
530 static void cancel_crda_timeout(void)
531 {
532         cancel_delayed_work(&crda_timeout);
533 }
534
535 static void cancel_crda_timeout_sync(void)
536 {
537         cancel_delayed_work_sync(&crda_timeout);
538 }
539
540 static void reset_crda_timeouts(void)
541 {
542         reg_crda_timeouts = 0;
543 }
544
545 /*
546  * This lets us keep regulatory code which is updated on a regulatory
547  * basis in userspace.
548  */
549 static int call_crda(const char *alpha2)
550 {
551         char country[12];
552         char *env[] = { country, NULL };
553         int ret;
554
555         snprintf(country, sizeof(country), "COUNTRY=%c%c",
556                  alpha2[0], alpha2[1]);
557
558         if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
559                 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
560                 return -EINVAL;
561         }
562
563         if (!is_world_regdom((char *) alpha2))
564                 pr_debug("Calling CRDA for country: %c%c\n",
565                          alpha2[0], alpha2[1]);
566         else
567                 pr_debug("Calling CRDA to update world regulatory domain\n");
568
569         ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
570         if (ret)
571                 return ret;
572
573         queue_delayed_work(system_power_efficient_wq,
574                            &crda_timeout, msecs_to_jiffies(3142));
575         return 0;
576 }
577 #else
578 static inline void cancel_crda_timeout(void) {}
579 static inline void cancel_crda_timeout_sync(void) {}
580 static inline void reset_crda_timeouts(void) {}
581 static inline int call_crda(const char *alpha2)
582 {
583         return -ENODATA;
584 }
585 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
586
587 /* code to directly load a firmware database through request_firmware */
588 static const struct fwdb_header *regdb;
589
590 struct fwdb_country {
591         u8 alpha2[2];
592         __be16 coll_ptr;
593         /* this struct cannot be extended */
594 } __packed __aligned(4);
595
596 struct fwdb_collection {
597         u8 len;
598         u8 n_rules;
599         u8 dfs_region;
600         /* no optional data yet */
601         /* aligned to 2, then followed by __be16 array of rule pointers */
602 } __packed __aligned(4);
603
604 enum fwdb_flags {
605         FWDB_FLAG_NO_OFDM       = BIT(0),
606         FWDB_FLAG_NO_OUTDOOR    = BIT(1),
607         FWDB_FLAG_DFS           = BIT(2),
608         FWDB_FLAG_NO_IR         = BIT(3),
609         FWDB_FLAG_AUTO_BW       = BIT(4),
610 };
611
612 struct fwdb_wmm_ac {
613         u8 ecw;
614         u8 aifsn;
615         __be16 cot;
616 } __packed;
617
618 struct fwdb_wmm_rule {
619         struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
620         struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
621 } __packed;
622
623 struct fwdb_rule {
624         u8 len;
625         u8 flags;
626         __be16 max_eirp;
627         __be32 start, end, max_bw;
628         /* start of optional data */
629         __be16 cac_timeout;
630         __be16 wmm_ptr;
631 } __packed __aligned(4);
632
633 #define FWDB_MAGIC 0x52474442
634 #define FWDB_VERSION 20
635
636 struct fwdb_header {
637         __be32 magic;
638         __be32 version;
639         struct fwdb_country country[];
640 } __packed __aligned(4);
641
642 static int ecw2cw(int ecw)
643 {
644         return (1 << ecw) - 1;
645 }
646
647 static bool valid_wmm(struct fwdb_wmm_rule *rule)
648 {
649         struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
650         int i;
651
652         for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
653                 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
654                 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
655                 u8 aifsn = ac[i].aifsn;
656
657                 if (cw_min >= cw_max)
658                         return false;
659
660                 if (aifsn < 1)
661                         return false;
662         }
663
664         return true;
665 }
666
667 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
668 {
669         struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
670
671         if ((u8 *)rule + sizeof(rule->len) > data + size)
672                 return false;
673
674         /* mandatory fields */
675         if (rule->len < offsetofend(struct fwdb_rule, max_bw))
676                 return false;
677         if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
678                 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
679                 struct fwdb_wmm_rule *wmm;
680
681                 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
682                         return false;
683
684                 wmm = (void *)(data + wmm_ptr);
685
686                 if (!valid_wmm(wmm))
687                         return false;
688         }
689         return true;
690 }
691
692 static bool valid_country(const u8 *data, unsigned int size,
693                           const struct fwdb_country *country)
694 {
695         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
696         struct fwdb_collection *coll = (void *)(data + ptr);
697         __be16 *rules_ptr;
698         unsigned int i;
699
700         /* make sure we can read len/n_rules */
701         if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
702                 return false;
703
704         /* make sure base struct and all rules fit */
705         if ((u8 *)coll + ALIGN(coll->len, 2) +
706             (coll->n_rules * 2) > data + size)
707                 return false;
708
709         /* mandatory fields must exist */
710         if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
711                 return false;
712
713         rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
714
715         for (i = 0; i < coll->n_rules; i++) {
716                 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
717
718                 if (!valid_rule(data, size, rule_ptr))
719                         return false;
720         }
721
722         return true;
723 }
724
725 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
726 static struct key *builtin_regdb_keys;
727
728 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
729 {
730         const u8 *end = p + buflen;
731         size_t plen;
732         key_ref_t key;
733
734         while (p < end) {
735                 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
736                  * than 256 bytes in size.
737                  */
738                 if (end - p < 4)
739                         goto dodgy_cert;
740                 if (p[0] != 0x30 &&
741                     p[1] != 0x82)
742                         goto dodgy_cert;
743                 plen = (p[2] << 8) | p[3];
744                 plen += 4;
745                 if (plen > end - p)
746                         goto dodgy_cert;
747
748                 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
749                                            "asymmetric", NULL, p, plen,
750                                            ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
751                                             KEY_USR_VIEW | KEY_USR_READ),
752                                            KEY_ALLOC_NOT_IN_QUOTA |
753                                            KEY_ALLOC_BUILT_IN |
754                                            KEY_ALLOC_BYPASS_RESTRICTION);
755                 if (IS_ERR(key)) {
756                         pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
757                                PTR_ERR(key));
758                 } else {
759                         pr_notice("Loaded X.509 cert '%s'\n",
760                                   key_ref_to_ptr(key)->description);
761                         key_ref_put(key);
762                 }
763                 p += plen;
764         }
765
766         return;
767
768 dodgy_cert:
769         pr_err("Problem parsing in-kernel X.509 certificate list\n");
770 }
771
772 static int __init load_builtin_regdb_keys(void)
773 {
774         builtin_regdb_keys =
775                 keyring_alloc(".builtin_regdb_keys",
776                               KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
777                               ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
778                               KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
779                               KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
780         if (IS_ERR(builtin_regdb_keys))
781                 return PTR_ERR(builtin_regdb_keys);
782
783         pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
784
785 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
786         load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
787 #endif
788 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
789         if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
790                 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
791 #endif
792
793         return 0;
794 }
795
796 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
797 {
798         const struct firmware *sig;
799         bool result;
800
801         if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
802                 return false;
803
804         result = verify_pkcs7_signature(data, size, sig->data, sig->size,
805                                         builtin_regdb_keys,
806                                         VERIFYING_UNSPECIFIED_SIGNATURE,
807                                         NULL, NULL) == 0;
808
809         release_firmware(sig);
810
811         return result;
812 }
813
814 static void free_regdb_keyring(void)
815 {
816         key_put(builtin_regdb_keys);
817 }
818 #else
819 static int load_builtin_regdb_keys(void)
820 {
821         return 0;
822 }
823
824 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
825 {
826         return true;
827 }
828
829 static void free_regdb_keyring(void)
830 {
831 }
832 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
833
834 static bool valid_regdb(const u8 *data, unsigned int size)
835 {
836         const struct fwdb_header *hdr = (void *)data;
837         const struct fwdb_country *country;
838
839         if (size < sizeof(*hdr))
840                 return false;
841
842         if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
843                 return false;
844
845         if (hdr->version != cpu_to_be32(FWDB_VERSION))
846                 return false;
847
848         if (!regdb_has_valid_signature(data, size))
849                 return false;
850
851         country = &hdr->country[0];
852         while ((u8 *)(country + 1) <= data + size) {
853                 if (!country->coll_ptr)
854                         break;
855                 if (!valid_country(data, size, country))
856                         return false;
857                 country++;
858         }
859
860         return true;
861 }
862
863 static void set_wmm_rule(struct ieee80211_wmm_rule *rule,
864                          struct fwdb_wmm_rule *wmm)
865 {
866         unsigned int i;
867
868         for (i = 0; i < IEEE80211_NUM_ACS; i++) {
869                 rule->client[i].cw_min =
870                         ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
871                 rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
872                 rule->client[i].aifsn =  wmm->client[i].aifsn;
873                 rule->client[i].cot = 1000 * be16_to_cpu(wmm->client[i].cot);
874                 rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
875                 rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
876                 rule->ap[i].aifsn = wmm->ap[i].aifsn;
877                 rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
878         }
879 }
880
881 static int __regdb_query_wmm(const struct fwdb_header *db,
882                              const struct fwdb_country *country, int freq,
883                              u32 *dbptr, struct ieee80211_wmm_rule *rule)
884 {
885         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
886         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
887         int i;
888
889         for (i = 0; i < coll->n_rules; i++) {
890                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
891                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
892                 struct fwdb_rule *rrule = (void *)((u8 *)db + rule_ptr);
893                 struct fwdb_wmm_rule *wmm;
894                 unsigned int wmm_ptr;
895
896                 if (rrule->len < offsetofend(struct fwdb_rule, wmm_ptr))
897                         continue;
898
899                 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rrule->start)) &&
900                     freq <= KHZ_TO_MHZ(be32_to_cpu(rrule->end))) {
901                         wmm_ptr = be16_to_cpu(rrule->wmm_ptr) << 2;
902                         wmm = (void *)((u8 *)db + wmm_ptr);
903                         set_wmm_rule(rule, wmm);
904                         if (dbptr)
905                                 *dbptr = wmm_ptr;
906                         return 0;
907                 }
908         }
909
910         return -ENODATA;
911 }
912
913 int reg_query_regdb_wmm(char *alpha2, int freq, u32 *dbptr,
914                         struct ieee80211_wmm_rule *rule)
915 {
916         const struct fwdb_header *hdr = regdb;
917         const struct fwdb_country *country;
918
919         if (IS_ERR(regdb))
920                 return PTR_ERR(regdb);
921
922         country = &hdr->country[0];
923         while (country->coll_ptr) {
924                 if (alpha2_equal(alpha2, country->alpha2))
925                         return __regdb_query_wmm(regdb, country, freq, dbptr,
926                                                  rule);
927
928                 country++;
929         }
930
931         return -ENODATA;
932 }
933 EXPORT_SYMBOL(reg_query_regdb_wmm);
934
935 struct wmm_ptrs {
936         struct ieee80211_wmm_rule *rule;
937         u32 ptr;
938 };
939
940 static struct ieee80211_wmm_rule *find_wmm_ptr(struct wmm_ptrs *wmm_ptrs,
941                                                u32 wmm_ptr, int n_wmms)
942 {
943         int i;
944
945         for (i = 0; i < n_wmms; i++) {
946                 if (wmm_ptrs[i].ptr == wmm_ptr)
947                         return wmm_ptrs[i].rule;
948         }
949         return NULL;
950 }
951
952 static int regdb_query_country(const struct fwdb_header *db,
953                                const struct fwdb_country *country)
954 {
955         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
956         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
957         struct ieee80211_regdomain *regdom;
958         struct ieee80211_regdomain *tmp_rd;
959         unsigned int size_of_regd, i, n_wmms = 0;
960         struct wmm_ptrs *wmm_ptrs;
961
962         size_of_regd = sizeof(struct ieee80211_regdomain) +
963                 coll->n_rules * sizeof(struct ieee80211_reg_rule);
964
965         regdom = kzalloc(size_of_regd, GFP_KERNEL);
966         if (!regdom)
967                 return -ENOMEM;
968
969         wmm_ptrs = kcalloc(coll->n_rules, sizeof(*wmm_ptrs), GFP_KERNEL);
970         if (!wmm_ptrs) {
971                 kfree(regdom);
972                 return -ENOMEM;
973         }
974
975         regdom->n_reg_rules = coll->n_rules;
976         regdom->alpha2[0] = country->alpha2[0];
977         regdom->alpha2[1] = country->alpha2[1];
978         regdom->dfs_region = coll->dfs_region;
979
980         for (i = 0; i < regdom->n_reg_rules; i++) {
981                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
982                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
983                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
984                 struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
985
986                 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
987                 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
988                 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
989
990                 rrule->power_rule.max_antenna_gain = 0;
991                 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
992
993                 rrule->flags = 0;
994                 if (rule->flags & FWDB_FLAG_NO_OFDM)
995                         rrule->flags |= NL80211_RRF_NO_OFDM;
996                 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
997                         rrule->flags |= NL80211_RRF_NO_OUTDOOR;
998                 if (rule->flags & FWDB_FLAG_DFS)
999                         rrule->flags |= NL80211_RRF_DFS;
1000                 if (rule->flags & FWDB_FLAG_NO_IR)
1001                         rrule->flags |= NL80211_RRF_NO_IR;
1002                 if (rule->flags & FWDB_FLAG_AUTO_BW)
1003                         rrule->flags |= NL80211_RRF_AUTO_BW;
1004
1005                 rrule->dfs_cac_ms = 0;
1006
1007                 /* handle optional data */
1008                 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
1009                         rrule->dfs_cac_ms =
1010                                 1000 * be16_to_cpu(rule->cac_timeout);
1011                 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
1012                         u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
1013                         struct ieee80211_wmm_rule *wmm_pos =
1014                                 find_wmm_ptr(wmm_ptrs, wmm_ptr, n_wmms);
1015                         struct fwdb_wmm_rule *wmm;
1016                         struct ieee80211_wmm_rule *wmm_rule;
1017
1018                         if (wmm_pos) {
1019                                 rrule->wmm_rule = wmm_pos;
1020                                 continue;
1021                         }
1022                         wmm = (void *)((u8 *)db + wmm_ptr);
1023                         tmp_rd = krealloc(regdom, size_of_regd + (n_wmms + 1) *
1024                                           sizeof(struct ieee80211_wmm_rule),
1025                                           GFP_KERNEL);
1026
1027                         if (!tmp_rd) {
1028                                 kfree(regdom);
1029                                 return -ENOMEM;
1030                         }
1031                         regdom = tmp_rd;
1032
1033                         wmm_rule = (struct ieee80211_wmm_rule *)
1034                                 ((u8 *)regdom + size_of_regd + n_wmms *
1035                                 sizeof(struct ieee80211_wmm_rule));
1036
1037                         set_wmm_rule(wmm_rule, wmm);
1038                         wmm_ptrs[n_wmms].ptr = wmm_ptr;
1039                         wmm_ptrs[n_wmms++].rule = wmm_rule;
1040                 }
1041         }
1042         kfree(wmm_ptrs);
1043
1044         return reg_schedule_apply(regdom);
1045 }
1046
1047 static int query_regdb(const char *alpha2)
1048 {
1049         const struct fwdb_header *hdr = regdb;
1050         const struct fwdb_country *country;
1051
1052         ASSERT_RTNL();
1053
1054         if (IS_ERR(regdb))
1055                 return PTR_ERR(regdb);
1056
1057         country = &hdr->country[0];
1058         while (country->coll_ptr) {
1059                 if (alpha2_equal(alpha2, country->alpha2))
1060                         return regdb_query_country(regdb, country);
1061                 country++;
1062         }
1063
1064         return -ENODATA;
1065 }
1066
1067 static void regdb_fw_cb(const struct firmware *fw, void *context)
1068 {
1069         int set_error = 0;
1070         bool restore = true;
1071         void *db;
1072
1073         if (!fw) {
1074                 pr_info("failed to load regulatory.db\n");
1075                 set_error = -ENODATA;
1076         } else if (!valid_regdb(fw->data, fw->size)) {
1077                 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1078                 set_error = -EINVAL;
1079         }
1080
1081         rtnl_lock();
1082         if (WARN_ON(regdb && !IS_ERR(regdb))) {
1083                 /* just restore and free new db */
1084         } else if (set_error) {
1085                 regdb = ERR_PTR(set_error);
1086         } else if (fw) {
1087                 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1088                 if (db) {
1089                         regdb = db;
1090                         restore = context && query_regdb(context);
1091                 } else {
1092                         restore = true;
1093                 }
1094         }
1095
1096         if (restore)
1097                 restore_regulatory_settings(true);
1098
1099         rtnl_unlock();
1100
1101         kfree(context);
1102
1103         release_firmware(fw);
1104 }
1105
1106 static int query_regdb_file(const char *alpha2)
1107 {
1108         ASSERT_RTNL();
1109
1110         if (regdb)
1111                 return query_regdb(alpha2);
1112
1113         alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1114         if (!alpha2)
1115                 return -ENOMEM;
1116
1117         return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1118                                        &reg_pdev->dev, GFP_KERNEL,
1119                                        (void *)alpha2, regdb_fw_cb);
1120 }
1121
1122 int reg_reload_regdb(void)
1123 {
1124         const struct firmware *fw;
1125         void *db;
1126         int err;
1127
1128         err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1129         if (err)
1130                 return err;
1131
1132         if (!valid_regdb(fw->data, fw->size)) {
1133                 err = -ENODATA;
1134                 goto out;
1135         }
1136
1137         db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1138         if (!db) {
1139                 err = -ENOMEM;
1140                 goto out;
1141         }
1142
1143         rtnl_lock();
1144         if (!IS_ERR_OR_NULL(regdb))
1145                 kfree(regdb);
1146         regdb = db;
1147         rtnl_unlock();
1148
1149  out:
1150         release_firmware(fw);
1151         return err;
1152 }
1153
1154 static bool reg_query_database(struct regulatory_request *request)
1155 {
1156         if (query_regdb_file(request->alpha2) == 0)
1157                 return true;
1158
1159         if (call_crda(request->alpha2) == 0)
1160                 return true;
1161
1162         return false;
1163 }
1164
1165 bool reg_is_valid_request(const char *alpha2)
1166 {
1167         struct regulatory_request *lr = get_last_request();
1168
1169         if (!lr || lr->processed)
1170                 return false;
1171
1172         return alpha2_equal(lr->alpha2, alpha2);
1173 }
1174
1175 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1176 {
1177         struct regulatory_request *lr = get_last_request();
1178
1179         /*
1180          * Follow the driver's regulatory domain, if present, unless a country
1181          * IE has been processed or a user wants to help complaince further
1182          */
1183         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1184             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1185             wiphy->regd)
1186                 return get_wiphy_regdom(wiphy);
1187
1188         return get_cfg80211_regdom();
1189 }
1190
1191 static unsigned int
1192 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1193                                  const struct ieee80211_reg_rule *rule)
1194 {
1195         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1196         const struct ieee80211_freq_range *freq_range_tmp;
1197         const struct ieee80211_reg_rule *tmp;
1198         u32 start_freq, end_freq, idx, no;
1199
1200         for (idx = 0; idx < rd->n_reg_rules; idx++)
1201                 if (rule == &rd->reg_rules[idx])
1202                         break;
1203
1204         if (idx == rd->n_reg_rules)
1205                 return 0;
1206
1207         /* get start_freq */
1208         no = idx;
1209
1210         while (no) {
1211                 tmp = &rd->reg_rules[--no];
1212                 freq_range_tmp = &tmp->freq_range;
1213
1214                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1215                         break;
1216
1217                 freq_range = freq_range_tmp;
1218         }
1219
1220         start_freq = freq_range->start_freq_khz;
1221
1222         /* get end_freq */
1223         freq_range = &rule->freq_range;
1224         no = idx;
1225
1226         while (no < rd->n_reg_rules - 1) {
1227                 tmp = &rd->reg_rules[++no];
1228                 freq_range_tmp = &tmp->freq_range;
1229
1230                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1231                         break;
1232
1233                 freq_range = freq_range_tmp;
1234         }
1235
1236         end_freq = freq_range->end_freq_khz;
1237
1238         return end_freq - start_freq;
1239 }
1240
1241 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1242                                    const struct ieee80211_reg_rule *rule)
1243 {
1244         unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1245
1246         if (rule->flags & NL80211_RRF_NO_160MHZ)
1247                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1248         if (rule->flags & NL80211_RRF_NO_80MHZ)
1249                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1250
1251         /*
1252          * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1253          * are not allowed.
1254          */
1255         if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1256             rule->flags & NL80211_RRF_NO_HT40PLUS)
1257                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1258
1259         return bw;
1260 }
1261
1262 /* Sanity check on a regulatory rule */
1263 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1264 {
1265         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1266         u32 freq_diff;
1267
1268         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1269                 return false;
1270
1271         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1272                 return false;
1273
1274         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1275
1276         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1277             freq_range->max_bandwidth_khz > freq_diff)
1278                 return false;
1279
1280         return true;
1281 }
1282
1283 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1284 {
1285         const struct ieee80211_reg_rule *reg_rule = NULL;
1286         unsigned int i;
1287
1288         if (!rd->n_reg_rules)
1289                 return false;
1290
1291         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1292                 return false;
1293
1294         for (i = 0; i < rd->n_reg_rules; i++) {
1295                 reg_rule = &rd->reg_rules[i];
1296                 if (!is_valid_reg_rule(reg_rule))
1297                         return false;
1298         }
1299
1300         return true;
1301 }
1302
1303 /**
1304  * freq_in_rule_band - tells us if a frequency is in a frequency band
1305  * @freq_range: frequency rule we want to query
1306  * @freq_khz: frequency we are inquiring about
1307  *
1308  * This lets us know if a specific frequency rule is or is not relevant to
1309  * a specific frequency's band. Bands are device specific and artificial
1310  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1311  * however it is safe for now to assume that a frequency rule should not be
1312  * part of a frequency's band if the start freq or end freq are off by more
1313  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
1314  * 60 GHz band.
1315  * This resolution can be lowered and should be considered as we add
1316  * regulatory rule support for other "bands".
1317  **/
1318 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1319                               u32 freq_khz)
1320 {
1321 #define ONE_GHZ_IN_KHZ  1000000
1322         /*
1323          * From 802.11ad: directional multi-gigabit (DMG):
1324          * Pertaining to operation in a frequency band containing a channel
1325          * with the Channel starting frequency above 45 GHz.
1326          */
1327         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1328                         10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1329         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1330                 return true;
1331         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1332                 return true;
1333         return false;
1334 #undef ONE_GHZ_IN_KHZ
1335 }
1336
1337 /*
1338  * Later on we can perhaps use the more restrictive DFS
1339  * region but we don't have information for that yet so
1340  * for now simply disallow conflicts.
1341  */
1342 static enum nl80211_dfs_regions
1343 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1344                          const enum nl80211_dfs_regions dfs_region2)
1345 {
1346         if (dfs_region1 != dfs_region2)
1347                 return NL80211_DFS_UNSET;
1348         return dfs_region1;
1349 }
1350
1351 /*
1352  * Helper for regdom_intersect(), this does the real
1353  * mathematical intersection fun
1354  */
1355 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1356                                const struct ieee80211_regdomain *rd2,
1357                                const struct ieee80211_reg_rule *rule1,
1358                                const struct ieee80211_reg_rule *rule2,
1359                                struct ieee80211_reg_rule *intersected_rule)
1360 {
1361         const struct ieee80211_freq_range *freq_range1, *freq_range2;
1362         struct ieee80211_freq_range *freq_range;
1363         const struct ieee80211_power_rule *power_rule1, *power_rule2;
1364         struct ieee80211_power_rule *power_rule;
1365         u32 freq_diff, max_bandwidth1, max_bandwidth2;
1366
1367         freq_range1 = &rule1->freq_range;
1368         freq_range2 = &rule2->freq_range;
1369         freq_range = &intersected_rule->freq_range;
1370
1371         power_rule1 = &rule1->power_rule;
1372         power_rule2 = &rule2->power_rule;
1373         power_rule = &intersected_rule->power_rule;
1374
1375         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1376                                          freq_range2->start_freq_khz);
1377         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1378                                        freq_range2->end_freq_khz);
1379
1380         max_bandwidth1 = freq_range1->max_bandwidth_khz;
1381         max_bandwidth2 = freq_range2->max_bandwidth_khz;
1382
1383         if (rule1->flags & NL80211_RRF_AUTO_BW)
1384                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1385         if (rule2->flags & NL80211_RRF_AUTO_BW)
1386                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1387
1388         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1389
1390         intersected_rule->flags = rule1->flags | rule2->flags;
1391
1392         /*
1393          * In case NL80211_RRF_AUTO_BW requested for both rules
1394          * set AUTO_BW in intersected rule also. Next we will
1395          * calculate BW correctly in handle_channel function.
1396          * In other case remove AUTO_BW flag while we calculate
1397          * maximum bandwidth correctly and auto calculation is
1398          * not required.
1399          */
1400         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1401             (rule2->flags & NL80211_RRF_AUTO_BW))
1402                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1403         else
1404                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1405
1406         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1407         if (freq_range->max_bandwidth_khz > freq_diff)
1408                 freq_range->max_bandwidth_khz = freq_diff;
1409
1410         power_rule->max_eirp = min(power_rule1->max_eirp,
1411                 power_rule2->max_eirp);
1412         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1413                 power_rule2->max_antenna_gain);
1414
1415         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1416                                            rule2->dfs_cac_ms);
1417
1418         if (!is_valid_reg_rule(intersected_rule))
1419                 return -EINVAL;
1420
1421         return 0;
1422 }
1423
1424 /* check whether old rule contains new rule */
1425 static bool rule_contains(struct ieee80211_reg_rule *r1,
1426                           struct ieee80211_reg_rule *r2)
1427 {
1428         /* for simplicity, currently consider only same flags */
1429         if (r1->flags != r2->flags)
1430                 return false;
1431
1432         /* verify r1 is more restrictive */
1433         if ((r1->power_rule.max_antenna_gain >
1434              r2->power_rule.max_antenna_gain) ||
1435             r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1436                 return false;
1437
1438         /* make sure r2's range is contained within r1 */
1439         if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1440             r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1441                 return false;
1442
1443         /* and finally verify that r1.max_bw >= r2.max_bw */
1444         if (r1->freq_range.max_bandwidth_khz <
1445             r2->freq_range.max_bandwidth_khz)
1446                 return false;
1447
1448         return true;
1449 }
1450
1451 /* add or extend current rules. do nothing if rule is already contained */
1452 static void add_rule(struct ieee80211_reg_rule *rule,
1453                      struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1454 {
1455         struct ieee80211_reg_rule *tmp_rule;
1456         int i;
1457
1458         for (i = 0; i < *n_rules; i++) {
1459                 tmp_rule = &reg_rules[i];
1460                 /* rule is already contained - do nothing */
1461                 if (rule_contains(tmp_rule, rule))
1462                         return;
1463
1464                 /* extend rule if possible */
1465                 if (rule_contains(rule, tmp_rule)) {
1466                         memcpy(tmp_rule, rule, sizeof(*rule));
1467                         return;
1468                 }
1469         }
1470
1471         memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1472         (*n_rules)++;
1473 }
1474
1475 /**
1476  * regdom_intersect - do the intersection between two regulatory domains
1477  * @rd1: first regulatory domain
1478  * @rd2: second regulatory domain
1479  *
1480  * Use this function to get the intersection between two regulatory domains.
1481  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1482  * as no one single alpha2 can represent this regulatory domain.
1483  *
1484  * Returns a pointer to the regulatory domain structure which will hold the
1485  * resulting intersection of rules between rd1 and rd2. We will
1486  * kzalloc() this structure for you.
1487  */
1488 static struct ieee80211_regdomain *
1489 regdom_intersect(const struct ieee80211_regdomain *rd1,
1490                  const struct ieee80211_regdomain *rd2)
1491 {
1492         int r, size_of_regd;
1493         unsigned int x, y;
1494         unsigned int num_rules = 0;
1495         const struct ieee80211_reg_rule *rule1, *rule2;
1496         struct ieee80211_reg_rule intersected_rule;
1497         struct ieee80211_regdomain *rd;
1498
1499         if (!rd1 || !rd2)
1500                 return NULL;
1501
1502         /*
1503          * First we get a count of the rules we'll need, then we actually
1504          * build them. This is to so we can malloc() and free() a
1505          * regdomain once. The reason we use reg_rules_intersect() here
1506          * is it will return -EINVAL if the rule computed makes no sense.
1507          * All rules that do check out OK are valid.
1508          */
1509
1510         for (x = 0; x < rd1->n_reg_rules; x++) {
1511                 rule1 = &rd1->reg_rules[x];
1512                 for (y = 0; y < rd2->n_reg_rules; y++) {
1513                         rule2 = &rd2->reg_rules[y];
1514                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1515                                                  &intersected_rule))
1516                                 num_rules++;
1517                 }
1518         }
1519
1520         if (!num_rules)
1521                 return NULL;
1522
1523         size_of_regd = sizeof(struct ieee80211_regdomain) +
1524                        num_rules * sizeof(struct ieee80211_reg_rule);
1525
1526         rd = kzalloc(size_of_regd, GFP_KERNEL);
1527         if (!rd)
1528                 return NULL;
1529
1530         for (x = 0; x < rd1->n_reg_rules; x++) {
1531                 rule1 = &rd1->reg_rules[x];
1532                 for (y = 0; y < rd2->n_reg_rules; y++) {
1533                         rule2 = &rd2->reg_rules[y];
1534                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1535                                                 &intersected_rule);
1536                         /*
1537                          * No need to memset here the intersected rule here as
1538                          * we're not using the stack anymore
1539                          */
1540                         if (r)
1541                                 continue;
1542
1543                         add_rule(&intersected_rule, rd->reg_rules,
1544                                  &rd->n_reg_rules);
1545                 }
1546         }
1547
1548         rd->alpha2[0] = '9';
1549         rd->alpha2[1] = '8';
1550         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1551                                                   rd2->dfs_region);
1552
1553         return rd;
1554 }
1555
1556 /*
1557  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1558  * want to just have the channel structure use these
1559  */
1560 static u32 map_regdom_flags(u32 rd_flags)
1561 {
1562         u32 channel_flags = 0;
1563         if (rd_flags & NL80211_RRF_NO_IR_ALL)
1564                 channel_flags |= IEEE80211_CHAN_NO_IR;
1565         if (rd_flags & NL80211_RRF_DFS)
1566                 channel_flags |= IEEE80211_CHAN_RADAR;
1567         if (rd_flags & NL80211_RRF_NO_OFDM)
1568                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1569         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1570                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1571         if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1572                 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1573         if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1574                 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1575         if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1576                 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1577         if (rd_flags & NL80211_RRF_NO_80MHZ)
1578                 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1579         if (rd_flags & NL80211_RRF_NO_160MHZ)
1580                 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1581         return channel_flags;
1582 }
1583
1584 static const struct ieee80211_reg_rule *
1585 freq_reg_info_regd(u32 center_freq,
1586                    const struct ieee80211_regdomain *regd, u32 bw)
1587 {
1588         int i;
1589         bool band_rule_found = false;
1590         bool bw_fits = false;
1591
1592         if (!regd)
1593                 return ERR_PTR(-EINVAL);
1594
1595         for (i = 0; i < regd->n_reg_rules; i++) {
1596                 const struct ieee80211_reg_rule *rr;
1597                 const struct ieee80211_freq_range *fr = NULL;
1598
1599                 rr = &regd->reg_rules[i];
1600                 fr = &rr->freq_range;
1601
1602                 /*
1603                  * We only need to know if one frequency rule was
1604                  * was in center_freq's band, that's enough, so lets
1605                  * not overwrite it once found
1606                  */
1607                 if (!band_rule_found)
1608                         band_rule_found = freq_in_rule_band(fr, center_freq);
1609
1610                 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1611
1612                 if (band_rule_found && bw_fits)
1613                         return rr;
1614         }
1615
1616         if (!band_rule_found)
1617                 return ERR_PTR(-ERANGE);
1618
1619         return ERR_PTR(-EINVAL);
1620 }
1621
1622 static const struct ieee80211_reg_rule *
1623 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1624 {
1625         const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1626         const struct ieee80211_reg_rule *reg_rule = NULL;
1627         u32 bw;
1628
1629         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1630                 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1631                 if (!IS_ERR(reg_rule))
1632                         return reg_rule;
1633         }
1634
1635         return reg_rule;
1636 }
1637
1638 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1639                                                u32 center_freq)
1640 {
1641         return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1642 }
1643 EXPORT_SYMBOL(freq_reg_info);
1644
1645 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1646 {
1647         switch (initiator) {
1648         case NL80211_REGDOM_SET_BY_CORE:
1649                 return "core";
1650         case NL80211_REGDOM_SET_BY_USER:
1651                 return "user";
1652         case NL80211_REGDOM_SET_BY_DRIVER:
1653                 return "driver";
1654         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1655                 return "country IE";
1656         default:
1657                 WARN_ON(1);
1658                 return "bug";
1659         }
1660 }
1661 EXPORT_SYMBOL(reg_initiator_name);
1662
1663 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1664                                           const struct ieee80211_reg_rule *reg_rule,
1665                                           const struct ieee80211_channel *chan)
1666 {
1667         const struct ieee80211_freq_range *freq_range = NULL;
1668         u32 max_bandwidth_khz, bw_flags = 0;
1669
1670         freq_range = &reg_rule->freq_range;
1671
1672         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1673         /* Check if auto calculation requested */
1674         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1675                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1676
1677         /* If we get a reg_rule we can assume that at least 5Mhz fit */
1678         if (!cfg80211_does_bw_fit_range(freq_range,
1679                                         MHZ_TO_KHZ(chan->center_freq),
1680                                         MHZ_TO_KHZ(10)))
1681                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1682         if (!cfg80211_does_bw_fit_range(freq_range,
1683                                         MHZ_TO_KHZ(chan->center_freq),
1684                                         MHZ_TO_KHZ(20)))
1685                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1686
1687         if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1688                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1689         if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1690                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1691         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1692                 bw_flags |= IEEE80211_CHAN_NO_HT40;
1693         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1694                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1695         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1696                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1697         return bw_flags;
1698 }
1699
1700 /*
1701  * Note that right now we assume the desired channel bandwidth
1702  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1703  * per channel, the primary and the extension channel).
1704  */
1705 static void handle_channel(struct wiphy *wiphy,
1706                            enum nl80211_reg_initiator initiator,
1707                            struct ieee80211_channel *chan)
1708 {
1709         u32 flags, bw_flags = 0;
1710         const struct ieee80211_reg_rule *reg_rule = NULL;
1711         const struct ieee80211_power_rule *power_rule = NULL;
1712         struct wiphy *request_wiphy = NULL;
1713         struct regulatory_request *lr = get_last_request();
1714         const struct ieee80211_regdomain *regd;
1715
1716         request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1717
1718         flags = chan->orig_flags;
1719
1720         reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1721         if (IS_ERR(reg_rule)) {
1722                 /*
1723                  * We will disable all channels that do not match our
1724                  * received regulatory rule unless the hint is coming
1725                  * from a Country IE and the Country IE had no information
1726                  * about a band. The IEEE 802.11 spec allows for an AP
1727                  * to send only a subset of the regulatory rules allowed,
1728                  * so an AP in the US that only supports 2.4 GHz may only send
1729                  * a country IE with information for the 2.4 GHz band
1730                  * while 5 GHz is still supported.
1731                  */
1732                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1733                     PTR_ERR(reg_rule) == -ERANGE)
1734                         return;
1735
1736                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1737                     request_wiphy && request_wiphy == wiphy &&
1738                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1739                         pr_debug("Disabling freq %d MHz for good\n",
1740                                  chan->center_freq);
1741                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1742                         chan->flags = chan->orig_flags;
1743                 } else {
1744                         pr_debug("Disabling freq %d MHz\n",
1745                                  chan->center_freq);
1746                         chan->flags |= IEEE80211_CHAN_DISABLED;
1747                 }
1748                 return;
1749         }
1750
1751         regd = reg_get_regdomain(wiphy);
1752
1753         power_rule = &reg_rule->power_rule;
1754         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1755
1756         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1757             request_wiphy && request_wiphy == wiphy &&
1758             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1759                 /*
1760                  * This guarantees the driver's requested regulatory domain
1761                  * will always be used as a base for further regulatory
1762                  * settings
1763                  */
1764                 chan->flags = chan->orig_flags =
1765                         map_regdom_flags(reg_rule->flags) | bw_flags;
1766                 chan->max_antenna_gain = chan->orig_mag =
1767                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1768                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1769                         (int) MBM_TO_DBM(power_rule->max_eirp);
1770
1771                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1772                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1773                         if (reg_rule->dfs_cac_ms)
1774                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1775                 }
1776
1777                 return;
1778         }
1779
1780         chan->dfs_state = NL80211_DFS_USABLE;
1781         chan->dfs_state_entered = jiffies;
1782
1783         chan->beacon_found = false;
1784         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1785         chan->max_antenna_gain =
1786                 min_t(int, chan->orig_mag,
1787                       MBI_TO_DBI(power_rule->max_antenna_gain));
1788         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1789
1790         if (chan->flags & IEEE80211_CHAN_RADAR) {
1791                 if (reg_rule->dfs_cac_ms)
1792                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1793                 else
1794                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1795         }
1796
1797         if (chan->orig_mpwr) {
1798                 /*
1799                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1800                  * will always follow the passed country IE power settings.
1801                  */
1802                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1803                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1804                         chan->max_power = chan->max_reg_power;
1805                 else
1806                         chan->max_power = min(chan->orig_mpwr,
1807                                               chan->max_reg_power);
1808         } else
1809                 chan->max_power = chan->max_reg_power;
1810 }
1811
1812 static void handle_band(struct wiphy *wiphy,
1813                         enum nl80211_reg_initiator initiator,
1814                         struct ieee80211_supported_band *sband)
1815 {
1816         unsigned int i;
1817
1818         if (!sband)
1819                 return;
1820
1821         for (i = 0; i < sband->n_channels; i++)
1822                 handle_channel(wiphy, initiator, &sband->channels[i]);
1823 }
1824
1825 static bool reg_request_cell_base(struct regulatory_request *request)
1826 {
1827         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1828                 return false;
1829         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1830 }
1831
1832 bool reg_last_request_cell_base(void)
1833 {
1834         return reg_request_cell_base(get_last_request());
1835 }
1836
1837 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1838 /* Core specific check */
1839 static enum reg_request_treatment
1840 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1841 {
1842         struct regulatory_request *lr = get_last_request();
1843
1844         if (!reg_num_devs_support_basehint)
1845                 return REG_REQ_IGNORE;
1846
1847         if (reg_request_cell_base(lr) &&
1848             !regdom_changes(pending_request->alpha2))
1849                 return REG_REQ_ALREADY_SET;
1850
1851         return REG_REQ_OK;
1852 }
1853
1854 /* Device specific check */
1855 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1856 {
1857         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1858 }
1859 #else
1860 static enum reg_request_treatment
1861 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1862 {
1863         return REG_REQ_IGNORE;
1864 }
1865
1866 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1867 {
1868         return true;
1869 }
1870 #endif
1871
1872 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1873 {
1874         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1875             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1876                 return true;
1877         return false;
1878 }
1879
1880 static bool ignore_reg_update(struct wiphy *wiphy,
1881                               enum nl80211_reg_initiator initiator)
1882 {
1883         struct regulatory_request *lr = get_last_request();
1884
1885         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1886                 return true;
1887
1888         if (!lr) {
1889                 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1890                          reg_initiator_name(initiator));
1891                 return true;
1892         }
1893
1894         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1895             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1896                 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1897                          reg_initiator_name(initiator));
1898                 return true;
1899         }
1900
1901         /*
1902          * wiphy->regd will be set once the device has its own
1903          * desired regulatory domain set
1904          */
1905         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1906             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1907             !is_world_regdom(lr->alpha2)) {
1908                 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1909                          reg_initiator_name(initiator));
1910                 return true;
1911         }
1912
1913         if (reg_request_cell_base(lr))
1914                 return reg_dev_ignore_cell_hint(wiphy);
1915
1916         return false;
1917 }
1918
1919 static bool reg_is_world_roaming(struct wiphy *wiphy)
1920 {
1921         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1922         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1923         struct regulatory_request *lr = get_last_request();
1924
1925         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1926                 return true;
1927
1928         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1929             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1930                 return true;
1931
1932         return false;
1933 }
1934
1935 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1936                               struct reg_beacon *reg_beacon)
1937 {
1938         struct ieee80211_supported_band *sband;
1939         struct ieee80211_channel *chan;
1940         bool channel_changed = false;
1941         struct ieee80211_channel chan_before;
1942
1943         sband = wiphy->bands[reg_beacon->chan.band];
1944         chan = &sband->channels[chan_idx];
1945
1946         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1947                 return;
1948
1949         if (chan->beacon_found)
1950                 return;
1951
1952         chan->beacon_found = true;
1953
1954         if (!reg_is_world_roaming(wiphy))
1955                 return;
1956
1957         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1958                 return;
1959
1960         chan_before = *chan;
1961
1962         if (chan->flags & IEEE80211_CHAN_NO_IR) {
1963                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1964                 channel_changed = true;
1965         }
1966
1967         if (channel_changed)
1968                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1969 }
1970
1971 /*
1972  * Called when a scan on a wiphy finds a beacon on
1973  * new channel
1974  */
1975 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1976                                     struct reg_beacon *reg_beacon)
1977 {
1978         unsigned int i;
1979         struct ieee80211_supported_band *sband;
1980
1981         if (!wiphy->bands[reg_beacon->chan.band])
1982                 return;
1983
1984         sband = wiphy->bands[reg_beacon->chan.band];
1985
1986         for (i = 0; i < sband->n_channels; i++)
1987                 handle_reg_beacon(wiphy, i, reg_beacon);
1988 }
1989
1990 /*
1991  * Called upon reg changes or a new wiphy is added
1992  */
1993 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1994 {
1995         unsigned int i;
1996         struct ieee80211_supported_band *sband;
1997         struct reg_beacon *reg_beacon;
1998
1999         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2000                 if (!wiphy->bands[reg_beacon->chan.band])
2001                         continue;
2002                 sband = wiphy->bands[reg_beacon->chan.band];
2003                 for (i = 0; i < sband->n_channels; i++)
2004                         handle_reg_beacon(wiphy, i, reg_beacon);
2005         }
2006 }
2007
2008 /* Reap the advantages of previously found beacons */
2009 static void reg_process_beacons(struct wiphy *wiphy)
2010 {
2011         /*
2012          * Means we are just firing up cfg80211, so no beacons would
2013          * have been processed yet.
2014          */
2015         if (!last_request)
2016                 return;
2017         wiphy_update_beacon_reg(wiphy);
2018 }
2019
2020 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2021 {
2022         if (!chan)
2023                 return false;
2024         if (chan->flags & IEEE80211_CHAN_DISABLED)
2025                 return false;
2026         /* This would happen when regulatory rules disallow HT40 completely */
2027         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2028                 return false;
2029         return true;
2030 }
2031
2032 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2033                                          struct ieee80211_channel *channel)
2034 {
2035         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2036         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2037         const struct ieee80211_regdomain *regd;
2038         unsigned int i;
2039         u32 flags;
2040
2041         if (!is_ht40_allowed(channel)) {
2042                 channel->flags |= IEEE80211_CHAN_NO_HT40;
2043                 return;
2044         }
2045
2046         /*
2047          * We need to ensure the extension channels exist to
2048          * be able to use HT40- or HT40+, this finds them (or not)
2049          */
2050         for (i = 0; i < sband->n_channels; i++) {
2051                 struct ieee80211_channel *c = &sband->channels[i];
2052
2053                 if (c->center_freq == (channel->center_freq - 20))
2054                         channel_before = c;
2055                 if (c->center_freq == (channel->center_freq + 20))
2056                         channel_after = c;
2057         }
2058
2059         flags = 0;
2060         regd = get_wiphy_regdom(wiphy);
2061         if (regd) {
2062                 const struct ieee80211_reg_rule *reg_rule =
2063                         freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2064                                            regd, MHZ_TO_KHZ(20));
2065
2066                 if (!IS_ERR(reg_rule))
2067                         flags = reg_rule->flags;
2068         }
2069
2070         /*
2071          * Please note that this assumes target bandwidth is 20 MHz,
2072          * if that ever changes we also need to change the below logic
2073          * to include that as well.
2074          */
2075         if (!is_ht40_allowed(channel_before) ||
2076             flags & NL80211_RRF_NO_HT40MINUS)
2077                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2078         else
2079                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2080
2081         if (!is_ht40_allowed(channel_after) ||
2082             flags & NL80211_RRF_NO_HT40PLUS)
2083                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2084         else
2085                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2086 }
2087
2088 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2089                                       struct ieee80211_supported_band *sband)
2090 {
2091         unsigned int i;
2092
2093         if (!sband)
2094                 return;
2095
2096         for (i = 0; i < sband->n_channels; i++)
2097                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2098 }
2099
2100 static void reg_process_ht_flags(struct wiphy *wiphy)
2101 {
2102         enum nl80211_band band;
2103
2104         if (!wiphy)
2105                 return;
2106
2107         for (band = 0; band < NUM_NL80211_BANDS; band++)
2108                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2109 }
2110
2111 static void reg_call_notifier(struct wiphy *wiphy,
2112                               struct regulatory_request *request)
2113 {
2114         if (wiphy->reg_notifier)
2115                 wiphy->reg_notifier(wiphy, request);
2116 }
2117
2118 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2119 {
2120         struct cfg80211_chan_def chandef;
2121         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2122         enum nl80211_iftype iftype;
2123
2124         wdev_lock(wdev);
2125         iftype = wdev->iftype;
2126
2127         /* make sure the interface is active */
2128         if (!wdev->netdev || !netif_running(wdev->netdev))
2129                 goto wdev_inactive_unlock;
2130
2131         switch (iftype) {
2132         case NL80211_IFTYPE_AP:
2133         case NL80211_IFTYPE_P2P_GO:
2134                 if (!wdev->beacon_interval)
2135                         goto wdev_inactive_unlock;
2136                 chandef = wdev->chandef;
2137                 break;
2138         case NL80211_IFTYPE_ADHOC:
2139                 if (!wdev->ssid_len)
2140                         goto wdev_inactive_unlock;
2141                 chandef = wdev->chandef;
2142                 break;
2143         case NL80211_IFTYPE_STATION:
2144         case NL80211_IFTYPE_P2P_CLIENT:
2145                 if (!wdev->current_bss ||
2146                     !wdev->current_bss->pub.channel)
2147                         goto wdev_inactive_unlock;
2148
2149                 if (!rdev->ops->get_channel ||
2150                     rdev_get_channel(rdev, wdev, &chandef))
2151                         cfg80211_chandef_create(&chandef,
2152                                                 wdev->current_bss->pub.channel,
2153                                                 NL80211_CHAN_NO_HT);
2154                 break;
2155         case NL80211_IFTYPE_MONITOR:
2156         case NL80211_IFTYPE_AP_VLAN:
2157         case NL80211_IFTYPE_P2P_DEVICE:
2158                 /* no enforcement required */
2159                 break;
2160         default:
2161                 /* others not implemented for now */
2162                 WARN_ON(1);
2163                 break;
2164         }
2165
2166         wdev_unlock(wdev);
2167
2168         switch (iftype) {
2169         case NL80211_IFTYPE_AP:
2170         case NL80211_IFTYPE_P2P_GO:
2171         case NL80211_IFTYPE_ADHOC:
2172                 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2173         case NL80211_IFTYPE_STATION:
2174         case NL80211_IFTYPE_P2P_CLIENT:
2175                 return cfg80211_chandef_usable(wiphy, &chandef,
2176                                                IEEE80211_CHAN_DISABLED);
2177         default:
2178                 break;
2179         }
2180
2181         return true;
2182
2183 wdev_inactive_unlock:
2184         wdev_unlock(wdev);
2185         return true;
2186 }
2187
2188 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2189 {
2190         struct wireless_dev *wdev;
2191         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2192
2193         ASSERT_RTNL();
2194
2195         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2196                 if (!reg_wdev_chan_valid(wiphy, wdev))
2197                         cfg80211_leave(rdev, wdev);
2198 }
2199
2200 static void reg_check_chans_work(struct work_struct *work)
2201 {
2202         struct cfg80211_registered_device *rdev;
2203
2204         pr_debug("Verifying active interfaces after reg change\n");
2205         rtnl_lock();
2206
2207         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2208                 if (!(rdev->wiphy.regulatory_flags &
2209                       REGULATORY_IGNORE_STALE_KICKOFF))
2210                         reg_leave_invalid_chans(&rdev->wiphy);
2211
2212         rtnl_unlock();
2213 }
2214
2215 static void reg_check_channels(void)
2216 {
2217         /*
2218          * Give usermode a chance to do something nicer (move to another
2219          * channel, orderly disconnection), before forcing a disconnection.
2220          */
2221         mod_delayed_work(system_power_efficient_wq,
2222                          &reg_check_chans,
2223                          msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2224 }
2225
2226 static void wiphy_update_regulatory(struct wiphy *wiphy,
2227                                     enum nl80211_reg_initiator initiator)
2228 {
2229         enum nl80211_band band;
2230         struct regulatory_request *lr = get_last_request();
2231
2232         if (ignore_reg_update(wiphy, initiator)) {
2233                 /*
2234                  * Regulatory updates set by CORE are ignored for custom
2235                  * regulatory cards. Let us notify the changes to the driver,
2236                  * as some drivers used this to restore its orig_* reg domain.
2237                  */
2238                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2239                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2240                         reg_call_notifier(wiphy, lr);
2241                 return;
2242         }
2243
2244         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2245
2246         for (band = 0; band < NUM_NL80211_BANDS; band++)
2247                 handle_band(wiphy, initiator, wiphy->bands[band]);
2248
2249         reg_process_beacons(wiphy);
2250         reg_process_ht_flags(wiphy);
2251         reg_call_notifier(wiphy, lr);
2252 }
2253
2254 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2255 {
2256         struct cfg80211_registered_device *rdev;
2257         struct wiphy *wiphy;
2258
2259         ASSERT_RTNL();
2260
2261         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2262                 wiphy = &rdev->wiphy;
2263                 wiphy_update_regulatory(wiphy, initiator);
2264         }
2265
2266         reg_check_channels();
2267 }
2268
2269 static void handle_channel_custom(struct wiphy *wiphy,
2270                                   struct ieee80211_channel *chan,
2271                                   const struct ieee80211_regdomain *regd)
2272 {
2273         u32 bw_flags = 0;
2274         const struct ieee80211_reg_rule *reg_rule = NULL;
2275         const struct ieee80211_power_rule *power_rule = NULL;
2276         u32 bw;
2277
2278         for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
2279                 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
2280                                               regd, bw);
2281                 if (!IS_ERR(reg_rule))
2282                         break;
2283         }
2284
2285         if (IS_ERR(reg_rule)) {
2286                 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
2287                          chan->center_freq);
2288                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2289                         chan->flags |= IEEE80211_CHAN_DISABLED;
2290                 } else {
2291                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2292                         chan->flags = chan->orig_flags;
2293                 }
2294                 return;
2295         }
2296
2297         power_rule = &reg_rule->power_rule;
2298         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2299
2300         chan->dfs_state_entered = jiffies;
2301         chan->dfs_state = NL80211_DFS_USABLE;
2302
2303         chan->beacon_found = false;
2304
2305         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2306                 chan->flags = chan->orig_flags | bw_flags |
2307                               map_regdom_flags(reg_rule->flags);
2308         else
2309                 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2310
2311         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2312         chan->max_reg_power = chan->max_power =
2313                 (int) MBM_TO_DBM(power_rule->max_eirp);
2314
2315         if (chan->flags & IEEE80211_CHAN_RADAR) {
2316                 if (reg_rule->dfs_cac_ms)
2317                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2318                 else
2319                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2320         }
2321
2322         chan->max_power = chan->max_reg_power;
2323 }
2324
2325 static void handle_band_custom(struct wiphy *wiphy,
2326                                struct ieee80211_supported_band *sband,
2327                                const struct ieee80211_regdomain *regd)
2328 {
2329         unsigned int i;
2330
2331         if (!sband)
2332                 return;
2333
2334         for (i = 0; i < sband->n_channels; i++)
2335                 handle_channel_custom(wiphy, &sband->channels[i], regd);
2336 }
2337
2338 /* Used by drivers prior to wiphy registration */
2339 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2340                                    const struct ieee80211_regdomain *regd)
2341 {
2342         enum nl80211_band band;
2343         unsigned int bands_set = 0;
2344
2345         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2346              "wiphy should have REGULATORY_CUSTOM_REG\n");
2347         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2348
2349         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2350                 if (!wiphy->bands[band])
2351                         continue;
2352                 handle_band_custom(wiphy, wiphy->bands[band], regd);
2353                 bands_set++;
2354         }
2355
2356         /*
2357          * no point in calling this if it won't have any effect
2358          * on your device's supported bands.
2359          */
2360         WARN_ON(!bands_set);
2361 }
2362 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2363
2364 static void reg_set_request_processed(void)
2365 {
2366         bool need_more_processing = false;
2367         struct regulatory_request *lr = get_last_request();
2368
2369         lr->processed = true;
2370
2371         spin_lock(&reg_requests_lock);
2372         if (!list_empty(&reg_requests_list))
2373                 need_more_processing = true;
2374         spin_unlock(&reg_requests_lock);
2375
2376         cancel_crda_timeout();
2377
2378         if (need_more_processing)
2379                 schedule_work(&reg_work);
2380 }
2381
2382 /**
2383  * reg_process_hint_core - process core regulatory requests
2384  * @pending_request: a pending core regulatory request
2385  *
2386  * The wireless subsystem can use this function to process
2387  * a regulatory request issued by the regulatory core.
2388  */
2389 static enum reg_request_treatment
2390 reg_process_hint_core(struct regulatory_request *core_request)
2391 {
2392         if (reg_query_database(core_request)) {
2393                 core_request->intersect = false;
2394                 core_request->processed = false;
2395                 reg_update_last_request(core_request);
2396                 return REG_REQ_OK;
2397         }
2398
2399         return REG_REQ_IGNORE;
2400 }
2401
2402 static enum reg_request_treatment
2403 __reg_process_hint_user(struct regulatory_request *user_request)
2404 {
2405         struct regulatory_request *lr = get_last_request();
2406
2407         if (reg_request_cell_base(user_request))
2408                 return reg_ignore_cell_hint(user_request);
2409
2410         if (reg_request_cell_base(lr))
2411                 return REG_REQ_IGNORE;
2412
2413         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2414                 return REG_REQ_INTERSECT;
2415         /*
2416          * If the user knows better the user should set the regdom
2417          * to their country before the IE is picked up
2418          */
2419         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2420             lr->intersect)
2421                 return REG_REQ_IGNORE;
2422         /*
2423          * Process user requests only after previous user/driver/core
2424          * requests have been processed
2425          */
2426         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2427              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2428              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2429             regdom_changes(lr->alpha2))
2430                 return REG_REQ_IGNORE;
2431
2432         if (!regdom_changes(user_request->alpha2))
2433                 return REG_REQ_ALREADY_SET;
2434
2435         return REG_REQ_OK;
2436 }
2437
2438 /**
2439  * reg_process_hint_user - process user regulatory requests
2440  * @user_request: a pending user regulatory request
2441  *
2442  * The wireless subsystem can use this function to process
2443  * a regulatory request initiated by userspace.
2444  */
2445 static enum reg_request_treatment
2446 reg_process_hint_user(struct regulatory_request *user_request)
2447 {
2448         enum reg_request_treatment treatment;
2449
2450         treatment = __reg_process_hint_user(user_request);
2451         if (treatment == REG_REQ_IGNORE ||
2452             treatment == REG_REQ_ALREADY_SET)
2453                 return REG_REQ_IGNORE;
2454
2455         user_request->intersect = treatment == REG_REQ_INTERSECT;
2456         user_request->processed = false;
2457
2458         if (reg_query_database(user_request)) {
2459                 reg_update_last_request(user_request);
2460                 user_alpha2[0] = user_request->alpha2[0];
2461                 user_alpha2[1] = user_request->alpha2[1];
2462                 return REG_REQ_OK;
2463         }
2464
2465         return REG_REQ_IGNORE;
2466 }
2467
2468 static enum reg_request_treatment
2469 __reg_process_hint_driver(struct regulatory_request *driver_request)
2470 {
2471         struct regulatory_request *lr = get_last_request();
2472
2473         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2474                 if (regdom_changes(driver_request->alpha2))
2475                         return REG_REQ_OK;
2476                 return REG_REQ_ALREADY_SET;
2477         }
2478
2479         /*
2480          * This would happen if you unplug and plug your card
2481          * back in or if you add a new device for which the previously
2482          * loaded card also agrees on the regulatory domain.
2483          */
2484         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2485             !regdom_changes(driver_request->alpha2))
2486                 return REG_REQ_ALREADY_SET;
2487
2488         return REG_REQ_INTERSECT;
2489 }
2490
2491 /**
2492  * reg_process_hint_driver - process driver regulatory requests
2493  * @driver_request: a pending driver regulatory request
2494  *
2495  * The wireless subsystem can use this function to process
2496  * a regulatory request issued by an 802.11 driver.
2497  *
2498  * Returns one of the different reg request treatment values.
2499  */
2500 static enum reg_request_treatment
2501 reg_process_hint_driver(struct wiphy *wiphy,
2502                         struct regulatory_request *driver_request)
2503 {
2504         const struct ieee80211_regdomain *regd, *tmp;
2505         enum reg_request_treatment treatment;
2506
2507         treatment = __reg_process_hint_driver(driver_request);
2508
2509         switch (treatment) {
2510         case REG_REQ_OK:
2511                 break;
2512         case REG_REQ_IGNORE:
2513                 return REG_REQ_IGNORE;
2514         case REG_REQ_INTERSECT:
2515         case REG_REQ_ALREADY_SET:
2516                 regd = reg_copy_regd(get_cfg80211_regdom());
2517                 if (IS_ERR(regd))
2518                         return REG_REQ_IGNORE;
2519
2520                 tmp = get_wiphy_regdom(wiphy);
2521                 rcu_assign_pointer(wiphy->regd, regd);
2522                 rcu_free_regdom(tmp);
2523         }
2524
2525
2526         driver_request->intersect = treatment == REG_REQ_INTERSECT;
2527         driver_request->processed = false;
2528
2529         /*
2530          * Since CRDA will not be called in this case as we already
2531          * have applied the requested regulatory domain before we just
2532          * inform userspace we have processed the request
2533          */
2534         if (treatment == REG_REQ_ALREADY_SET) {
2535                 nl80211_send_reg_change_event(driver_request);
2536                 reg_update_last_request(driver_request);
2537                 reg_set_request_processed();
2538                 return REG_REQ_ALREADY_SET;
2539         }
2540
2541         if (reg_query_database(driver_request)) {
2542                 reg_update_last_request(driver_request);
2543                 return REG_REQ_OK;
2544         }
2545
2546         return REG_REQ_IGNORE;
2547 }
2548
2549 static enum reg_request_treatment
2550 __reg_process_hint_country_ie(struct wiphy *wiphy,
2551                               struct regulatory_request *country_ie_request)
2552 {
2553         struct wiphy *last_wiphy = NULL;
2554         struct regulatory_request *lr = get_last_request();
2555
2556         if (reg_request_cell_base(lr)) {
2557                 /* Trust a Cell base station over the AP's country IE */
2558                 if (regdom_changes(country_ie_request->alpha2))
2559                         return REG_REQ_IGNORE;
2560                 return REG_REQ_ALREADY_SET;
2561         } else {
2562                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2563                         return REG_REQ_IGNORE;
2564         }
2565
2566         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2567                 return -EINVAL;
2568
2569         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2570                 return REG_REQ_OK;
2571
2572         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2573
2574         if (last_wiphy != wiphy) {
2575                 /*
2576                  * Two cards with two APs claiming different
2577                  * Country IE alpha2s. We could
2578                  * intersect them, but that seems unlikely
2579                  * to be correct. Reject second one for now.
2580                  */
2581                 if (regdom_changes(country_ie_request->alpha2))
2582                         return REG_REQ_IGNORE;
2583                 return REG_REQ_ALREADY_SET;
2584         }
2585
2586         if (regdom_changes(country_ie_request->alpha2))
2587                 return REG_REQ_OK;
2588         return REG_REQ_ALREADY_SET;
2589 }
2590
2591 /**
2592  * reg_process_hint_country_ie - process regulatory requests from country IEs
2593  * @country_ie_request: a regulatory request from a country IE
2594  *
2595  * The wireless subsystem can use this function to process
2596  * a regulatory request issued by a country Information Element.
2597  *
2598  * Returns one of the different reg request treatment values.
2599  */
2600 static enum reg_request_treatment
2601 reg_process_hint_country_ie(struct wiphy *wiphy,
2602                             struct regulatory_request *country_ie_request)
2603 {
2604         enum reg_request_treatment treatment;
2605
2606         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2607
2608         switch (treatment) {
2609         case REG_REQ_OK:
2610                 break;
2611         case REG_REQ_IGNORE:
2612                 return REG_REQ_IGNORE;
2613         case REG_REQ_ALREADY_SET:
2614                 reg_free_request(country_ie_request);
2615                 return REG_REQ_ALREADY_SET;
2616         case REG_REQ_INTERSECT:
2617                 /*
2618                  * This doesn't happen yet, not sure we
2619                  * ever want to support it for this case.
2620                  */
2621                 WARN_ONCE(1, "Unexpected intersection for country IEs");
2622                 return REG_REQ_IGNORE;
2623         }
2624
2625         country_ie_request->intersect = false;
2626         country_ie_request->processed = false;
2627
2628         if (reg_query_database(country_ie_request)) {
2629                 reg_update_last_request(country_ie_request);
2630                 return REG_REQ_OK;
2631         }
2632
2633         return REG_REQ_IGNORE;
2634 }
2635
2636 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2637 {
2638         const struct ieee80211_regdomain *wiphy1_regd = NULL;
2639         const struct ieee80211_regdomain *wiphy2_regd = NULL;
2640         const struct ieee80211_regdomain *cfg80211_regd = NULL;
2641         bool dfs_domain_same;
2642
2643         rcu_read_lock();
2644
2645         cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2646         wiphy1_regd = rcu_dereference(wiphy1->regd);
2647         if (!wiphy1_regd)
2648                 wiphy1_regd = cfg80211_regd;
2649
2650         wiphy2_regd = rcu_dereference(wiphy2->regd);
2651         if (!wiphy2_regd)
2652                 wiphy2_regd = cfg80211_regd;
2653
2654         dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2655
2656         rcu_read_unlock();
2657
2658         return dfs_domain_same;
2659 }
2660
2661 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2662                                     struct ieee80211_channel *src_chan)
2663 {
2664         if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2665             !(src_chan->flags & IEEE80211_CHAN_RADAR))
2666                 return;
2667
2668         if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2669             src_chan->flags & IEEE80211_CHAN_DISABLED)
2670                 return;
2671
2672         if (src_chan->center_freq == dst_chan->center_freq &&
2673             dst_chan->dfs_state == NL80211_DFS_USABLE) {
2674                 dst_chan->dfs_state = src_chan->dfs_state;
2675                 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2676         }
2677 }
2678
2679 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2680                                        struct wiphy *src_wiphy)
2681 {
2682         struct ieee80211_supported_band *src_sband, *dst_sband;
2683         struct ieee80211_channel *src_chan, *dst_chan;
2684         int i, j, band;
2685
2686         if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2687                 return;
2688
2689         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2690                 dst_sband = dst_wiphy->bands[band];
2691                 src_sband = src_wiphy->bands[band];
2692                 if (!dst_sband || !src_sband)
2693                         continue;
2694
2695                 for (i = 0; i < dst_sband->n_channels; i++) {
2696                         dst_chan = &dst_sband->channels[i];
2697                         for (j = 0; j < src_sband->n_channels; j++) {
2698                                 src_chan = &src_sband->channels[j];
2699                                 reg_copy_dfs_chan_state(dst_chan, src_chan);
2700                         }
2701                 }
2702         }
2703 }
2704
2705 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2706 {
2707         struct cfg80211_registered_device *rdev;
2708
2709         ASSERT_RTNL();
2710
2711         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2712                 if (wiphy == &rdev->wiphy)
2713                         continue;
2714                 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2715         }
2716 }
2717
2718 /* This processes *all* regulatory hints */
2719 static void reg_process_hint(struct regulatory_request *reg_request)
2720 {
2721         struct wiphy *wiphy = NULL;
2722         enum reg_request_treatment treatment;
2723
2724         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2725                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2726
2727         switch (reg_request->initiator) {
2728         case NL80211_REGDOM_SET_BY_CORE:
2729                 treatment = reg_process_hint_core(reg_request);
2730                 break;
2731         case NL80211_REGDOM_SET_BY_USER:
2732                 treatment = reg_process_hint_user(reg_request);
2733                 break;
2734         case NL80211_REGDOM_SET_BY_DRIVER:
2735                 if (!wiphy)
2736                         goto out_free;
2737                 treatment = reg_process_hint_driver(wiphy, reg_request);
2738                 break;
2739         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2740                 if (!wiphy)
2741                         goto out_free;
2742                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2743                 break;
2744         default:
2745                 WARN(1, "invalid initiator %d\n", reg_request->initiator);
2746                 goto out_free;
2747         }
2748
2749         if (treatment == REG_REQ_IGNORE)
2750                 goto out_free;
2751
2752         WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2753              "unexpected treatment value %d\n", treatment);
2754
2755         /* This is required so that the orig_* parameters are saved.
2756          * NOTE: treatment must be set for any case that reaches here!
2757          */
2758         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2759             wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2760                 wiphy_update_regulatory(wiphy, reg_request->initiator);
2761                 wiphy_all_share_dfs_chan_state(wiphy);
2762                 reg_check_channels();
2763         }
2764
2765         return;
2766
2767 out_free:
2768         reg_free_request(reg_request);
2769 }
2770
2771 static bool reg_only_self_managed_wiphys(void)
2772 {
2773         struct cfg80211_registered_device *rdev;
2774         struct wiphy *wiphy;
2775         bool self_managed_found = false;
2776
2777         ASSERT_RTNL();
2778
2779         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2780                 wiphy = &rdev->wiphy;
2781                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2782                         self_managed_found = true;
2783                 else
2784                         return false;
2785         }
2786
2787         /* make sure at least one self-managed wiphy exists */
2788         return self_managed_found;
2789 }
2790
2791 /*
2792  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2793  * Regulatory hints come on a first come first serve basis and we
2794  * must process each one atomically.
2795  */
2796 static void reg_process_pending_hints(void)
2797 {
2798         struct regulatory_request *reg_request, *lr;
2799
2800         lr = get_last_request();
2801
2802         /* When last_request->processed becomes true this will be rescheduled */
2803         if (lr && !lr->processed) {
2804                 reg_process_hint(lr);
2805                 return;
2806         }
2807
2808         spin_lock(&reg_requests_lock);
2809
2810         if (list_empty(&reg_requests_list)) {
2811                 spin_unlock(&reg_requests_lock);
2812                 return;
2813         }
2814
2815         reg_request = list_first_entry(&reg_requests_list,
2816                                        struct regulatory_request,
2817                                        list);
2818         list_del_init(&reg_request->list);
2819
2820         spin_unlock(&reg_requests_lock);
2821
2822         if (reg_only_self_managed_wiphys()) {
2823                 reg_free_request(reg_request);
2824                 return;
2825         }
2826
2827         reg_process_hint(reg_request);
2828
2829         lr = get_last_request();
2830
2831         spin_lock(&reg_requests_lock);
2832         if (!list_empty(&reg_requests_list) && lr && lr->processed)
2833                 schedule_work(&reg_work);
2834         spin_unlock(&reg_requests_lock);
2835 }
2836
2837 /* Processes beacon hints -- this has nothing to do with country IEs */
2838 static void reg_process_pending_beacon_hints(void)
2839 {
2840         struct cfg80211_registered_device *rdev;
2841         struct reg_beacon *pending_beacon, *tmp;
2842
2843         /* This goes through the _pending_ beacon list */
2844         spin_lock_bh(&reg_pending_beacons_lock);
2845
2846         list_for_each_entry_safe(pending_beacon, tmp,
2847                                  &reg_pending_beacons, list) {
2848                 list_del_init(&pending_beacon->list);
2849
2850                 /* Applies the beacon hint to current wiphys */
2851                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2852                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2853
2854                 /* Remembers the beacon hint for new wiphys or reg changes */
2855                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2856         }
2857
2858         spin_unlock_bh(&reg_pending_beacons_lock);
2859 }
2860
2861 static void reg_process_self_managed_hints(void)
2862 {
2863         struct cfg80211_registered_device *rdev;
2864         struct wiphy *wiphy;
2865         const struct ieee80211_regdomain *tmp;
2866         const struct ieee80211_regdomain *regd;
2867         enum nl80211_band band;
2868         struct regulatory_request request = {};
2869
2870         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2871                 wiphy = &rdev->wiphy;
2872
2873                 spin_lock(&reg_requests_lock);
2874                 regd = rdev->requested_regd;
2875                 rdev->requested_regd = NULL;
2876                 spin_unlock(&reg_requests_lock);
2877
2878                 if (regd == NULL)
2879                         continue;
2880
2881                 tmp = get_wiphy_regdom(wiphy);
2882                 rcu_assign_pointer(wiphy->regd, regd);
2883                 rcu_free_regdom(tmp);
2884
2885                 for (band = 0; band < NUM_NL80211_BANDS; band++)
2886                         handle_band_custom(wiphy, wiphy->bands[band], regd);
2887
2888                 reg_process_ht_flags(wiphy);
2889
2890                 request.wiphy_idx = get_wiphy_idx(wiphy);
2891                 request.alpha2[0] = regd->alpha2[0];
2892                 request.alpha2[1] = regd->alpha2[1];
2893                 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2894
2895                 nl80211_send_wiphy_reg_change_event(&request);
2896         }
2897
2898         reg_check_channels();
2899 }
2900
2901 static void reg_todo(struct work_struct *work)
2902 {
2903         rtnl_lock();
2904         reg_process_pending_hints();
2905         reg_process_pending_beacon_hints();
2906         reg_process_self_managed_hints();
2907         rtnl_unlock();
2908 }
2909
2910 static void queue_regulatory_request(struct regulatory_request *request)
2911 {
2912         request->alpha2[0] = toupper(request->alpha2[0]);
2913         request->alpha2[1] = toupper(request->alpha2[1]);
2914
2915         spin_lock(&reg_requests_lock);
2916         list_add_tail(&request->list, &reg_requests_list);
2917         spin_unlock(&reg_requests_lock);
2918
2919         schedule_work(&reg_work);
2920 }
2921
2922 /*
2923  * Core regulatory hint -- happens during cfg80211_init()
2924  * and when we restore regulatory settings.
2925  */
2926 static int regulatory_hint_core(const char *alpha2)
2927 {
2928         struct regulatory_request *request;
2929
2930         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2931         if (!request)
2932                 return -ENOMEM;
2933
2934         request->alpha2[0] = alpha2[0];
2935         request->alpha2[1] = alpha2[1];
2936         request->initiator = NL80211_REGDOM_SET_BY_CORE;
2937
2938         queue_regulatory_request(request);
2939
2940         return 0;
2941 }
2942
2943 /* User hints */
2944 int regulatory_hint_user(const char *alpha2,
2945                          enum nl80211_user_reg_hint_type user_reg_hint_type)
2946 {
2947         struct regulatory_request *request;
2948
2949         if (WARN_ON(!alpha2))
2950                 return -EINVAL;
2951
2952         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2953         if (!request)
2954                 return -ENOMEM;
2955
2956         request->wiphy_idx = WIPHY_IDX_INVALID;
2957         request->alpha2[0] = alpha2[0];
2958         request->alpha2[1] = alpha2[1];
2959         request->initiator = NL80211_REGDOM_SET_BY_USER;
2960         request->user_reg_hint_type = user_reg_hint_type;
2961
2962         /* Allow calling CRDA again */
2963         reset_crda_timeouts();
2964
2965         queue_regulatory_request(request);
2966
2967         return 0;
2968 }
2969
2970 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2971 {
2972         spin_lock(&reg_indoor_lock);
2973
2974         /* It is possible that more than one user space process is trying to
2975          * configure the indoor setting. To handle such cases, clear the indoor
2976          * setting in case that some process does not think that the device
2977          * is operating in an indoor environment. In addition, if a user space
2978          * process indicates that it is controlling the indoor setting, save its
2979          * portid, i.e., make it the owner.
2980          */
2981         reg_is_indoor = is_indoor;
2982         if (reg_is_indoor) {
2983                 if (!reg_is_indoor_portid)
2984                         reg_is_indoor_portid = portid;
2985         } else {
2986                 reg_is_indoor_portid = 0;
2987         }
2988
2989         spin_unlock(&reg_indoor_lock);
2990
2991         if (!is_indoor)
2992                 reg_check_channels();
2993
2994         return 0;
2995 }
2996
2997 void regulatory_netlink_notify(u32 portid)
2998 {
2999         spin_lock(&reg_indoor_lock);
3000
3001         if (reg_is_indoor_portid != portid) {
3002                 spin_unlock(&reg_indoor_lock);
3003                 return;
3004         }
3005
3006         reg_is_indoor = false;
3007         reg_is_indoor_portid = 0;
3008
3009         spin_unlock(&reg_indoor_lock);
3010
3011         reg_check_channels();
3012 }
3013
3014 /* Driver hints */
3015 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3016 {
3017         struct regulatory_request *request;
3018
3019         if (WARN_ON(!alpha2 || !wiphy))
3020                 return -EINVAL;
3021
3022         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3023
3024         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3025         if (!request)
3026                 return -ENOMEM;
3027
3028         request->wiphy_idx = get_wiphy_idx(wiphy);
3029
3030         request->alpha2[0] = alpha2[0];
3031         request->alpha2[1] = alpha2[1];
3032         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3033
3034         /* Allow calling CRDA again */
3035         reset_crda_timeouts();
3036
3037         queue_regulatory_request(request);
3038
3039         return 0;
3040 }
3041 EXPORT_SYMBOL(regulatory_hint);
3042
3043 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3044                                 const u8 *country_ie, u8 country_ie_len)
3045 {
3046         char alpha2[2];
3047         enum environment_cap env = ENVIRON_ANY;
3048         struct regulatory_request *request = NULL, *lr;
3049
3050         /* IE len must be evenly divisible by 2 */
3051         if (country_ie_len & 0x01)
3052                 return;
3053
3054         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3055                 return;
3056
3057         request = kzalloc(sizeof(*request), GFP_KERNEL);
3058         if (!request)
3059                 return;
3060
3061         alpha2[0] = country_ie[0];
3062         alpha2[1] = country_ie[1];
3063
3064         if (country_ie[2] == 'I')
3065                 env = ENVIRON_INDOOR;
3066         else if (country_ie[2] == 'O')
3067                 env = ENVIRON_OUTDOOR;
3068
3069         rcu_read_lock();
3070         lr = get_last_request();
3071
3072         if (unlikely(!lr))
3073                 goto out;
3074
3075         /*
3076          * We will run this only upon a successful connection on cfg80211.
3077          * We leave conflict resolution to the workqueue, where can hold
3078          * the RTNL.
3079          */
3080         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3081             lr->wiphy_idx != WIPHY_IDX_INVALID)
3082                 goto out;
3083
3084         request->wiphy_idx = get_wiphy_idx(wiphy);
3085         request->alpha2[0] = alpha2[0];
3086         request->alpha2[1] = alpha2[1];
3087         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3088         request->country_ie_env = env;
3089
3090         /* Allow calling CRDA again */
3091         reset_crda_timeouts();
3092
3093         queue_regulatory_request(request);
3094         request = NULL;
3095 out:
3096         kfree(request);
3097         rcu_read_unlock();
3098 }
3099
3100 static void restore_alpha2(char *alpha2, bool reset_user)
3101 {
3102         /* indicates there is no alpha2 to consider for restoration */
3103         alpha2[0] = '9';
3104         alpha2[1] = '7';
3105
3106         /* The user setting has precedence over the module parameter */
3107         if (is_user_regdom_saved()) {
3108                 /* Unless we're asked to ignore it and reset it */
3109                 if (reset_user) {
3110                         pr_debug("Restoring regulatory settings including user preference\n");
3111                         user_alpha2[0] = '9';
3112                         user_alpha2[1] = '7';
3113
3114                         /*
3115                          * If we're ignoring user settings, we still need to
3116                          * check the module parameter to ensure we put things
3117                          * back as they were for a full restore.
3118                          */
3119                         if (!is_world_regdom(ieee80211_regdom)) {
3120                                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3121                                          ieee80211_regdom[0], ieee80211_regdom[1]);
3122                                 alpha2[0] = ieee80211_regdom[0];
3123                                 alpha2[1] = ieee80211_regdom[1];
3124                         }
3125                 } else {
3126                         pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3127                                  user_alpha2[0], user_alpha2[1]);
3128                         alpha2[0] = user_alpha2[0];
3129                         alpha2[1] = user_alpha2[1];
3130                 }
3131         } else if (!is_world_regdom(ieee80211_regdom)) {
3132                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3133                          ieee80211_regdom[0], ieee80211_regdom[1]);
3134                 alpha2[0] = ieee80211_regdom[0];
3135                 alpha2[1] = ieee80211_regdom[1];
3136         } else
3137                 pr_debug("Restoring regulatory settings\n");
3138 }
3139
3140 static void restore_custom_reg_settings(struct wiphy *wiphy)
3141 {
3142         struct ieee80211_supported_band *sband;
3143         enum nl80211_band band;
3144         struct ieee80211_channel *chan;
3145         int i;
3146
3147         for (band = 0; band < NUM_NL80211_BANDS; band++) {
3148                 sband = wiphy->bands[band];
3149                 if (!sband)
3150                         continue;
3151                 for (i = 0; i < sband->n_channels; i++) {
3152                         chan = &sband->channels[i];
3153                         chan->flags = chan->orig_flags;
3154                         chan->max_antenna_gain = chan->orig_mag;
3155                         chan->max_power = chan->orig_mpwr;
3156                         chan->beacon_found = false;
3157                 }
3158         }
3159 }
3160
3161 /*
3162  * Restoring regulatory settings involves ingoring any
3163  * possibly stale country IE information and user regulatory
3164  * settings if so desired, this includes any beacon hints
3165  * learned as we could have traveled outside to another country
3166  * after disconnection. To restore regulatory settings we do
3167  * exactly what we did at bootup:
3168  *
3169  *   - send a core regulatory hint
3170  *   - send a user regulatory hint if applicable
3171  *
3172  * Device drivers that send a regulatory hint for a specific country
3173  * keep their own regulatory domain on wiphy->regd so that does does
3174  * not need to be remembered.
3175  */
3176 static void restore_regulatory_settings(bool reset_user)
3177 {
3178         char alpha2[2];
3179         char world_alpha2[2];
3180         struct reg_beacon *reg_beacon, *btmp;
3181         LIST_HEAD(tmp_reg_req_list);
3182         struct cfg80211_registered_device *rdev;
3183
3184         ASSERT_RTNL();
3185
3186         /*
3187          * Clear the indoor setting in case that it is not controlled by user
3188          * space, as otherwise there is no guarantee that the device is still
3189          * operating in an indoor environment.
3190          */
3191         spin_lock(&reg_indoor_lock);
3192         if (reg_is_indoor && !reg_is_indoor_portid) {
3193                 reg_is_indoor = false;
3194                 reg_check_channels();
3195         }
3196         spin_unlock(&reg_indoor_lock);
3197
3198         reset_regdomains(true, &world_regdom);
3199         restore_alpha2(alpha2, reset_user);
3200
3201         /*
3202          * If there's any pending requests we simply
3203          * stash them to a temporary pending queue and
3204          * add then after we've restored regulatory
3205          * settings.
3206          */
3207         spin_lock(&reg_requests_lock);
3208         list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3209         spin_unlock(&reg_requests_lock);
3210
3211         /* Clear beacon hints */
3212         spin_lock_bh(&reg_pending_beacons_lock);
3213         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3214                 list_del(&reg_beacon->list);
3215                 kfree(reg_beacon);
3216         }
3217         spin_unlock_bh(&reg_pending_beacons_lock);
3218
3219         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3220                 list_del(&reg_beacon->list);
3221                 kfree(reg_beacon);
3222         }
3223
3224         /* First restore to the basic regulatory settings */
3225         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3226         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3227
3228         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3229                 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3230                         continue;
3231                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3232                         restore_custom_reg_settings(&rdev->wiphy);
3233         }
3234
3235         regulatory_hint_core(world_alpha2);
3236
3237         /*
3238          * This restores the ieee80211_regdom module parameter
3239          * preference or the last user requested regulatory
3240          * settings, user regulatory settings takes precedence.
3241          */
3242         if (is_an_alpha2(alpha2))
3243                 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3244
3245         spin_lock(&reg_requests_lock);
3246         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3247         spin_unlock(&reg_requests_lock);
3248
3249         pr_debug("Kicking the queue\n");
3250
3251         schedule_work(&reg_work);
3252 }
3253
3254 void regulatory_hint_disconnect(void)
3255 {
3256         pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3257         restore_regulatory_settings(false);
3258 }
3259
3260 static bool freq_is_chan_12_13_14(u16 freq)
3261 {
3262         if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3263             freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3264             freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3265                 return true;
3266         return false;
3267 }
3268
3269 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3270 {
3271         struct reg_beacon *pending_beacon;
3272
3273         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3274                 if (beacon_chan->center_freq ==
3275                     pending_beacon->chan.center_freq)
3276                         return true;
3277         return false;
3278 }
3279
3280 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3281                                  struct ieee80211_channel *beacon_chan,
3282                                  gfp_t gfp)
3283 {
3284         struct reg_beacon *reg_beacon;
3285         bool processing;
3286
3287         if (beacon_chan->beacon_found ||
3288             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3289             (beacon_chan->band == NL80211_BAND_2GHZ &&
3290              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3291                 return 0;
3292
3293         spin_lock_bh(&reg_pending_beacons_lock);
3294         processing = pending_reg_beacon(beacon_chan);
3295         spin_unlock_bh(&reg_pending_beacons_lock);
3296
3297         if (processing)
3298                 return 0;
3299
3300         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3301         if (!reg_beacon)
3302                 return -ENOMEM;
3303
3304         pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
3305                  beacon_chan->center_freq,
3306                  ieee80211_frequency_to_channel(beacon_chan->center_freq),
3307                  wiphy_name(wiphy));
3308
3309         memcpy(&reg_beacon->chan, beacon_chan,
3310                sizeof(struct ieee80211_channel));
3311
3312         /*
3313          * Since we can be called from BH or and non-BH context
3314          * we must use spin_lock_bh()
3315          */
3316         spin_lock_bh(&reg_pending_beacons_lock);
3317         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3318         spin_unlock_bh(&reg_pending_beacons_lock);
3319
3320         schedule_work(&reg_work);
3321
3322         return 0;
3323 }
3324
3325 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3326 {
3327         unsigned int i;
3328         const struct ieee80211_reg_rule *reg_rule = NULL;
3329         const struct ieee80211_freq_range *freq_range = NULL;
3330         const struct ieee80211_power_rule *power_rule = NULL;
3331         char bw[32], cac_time[32];
3332
3333         pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3334
3335         for (i = 0; i < rd->n_reg_rules; i++) {
3336                 reg_rule = &rd->reg_rules[i];
3337                 freq_range = &reg_rule->freq_range;
3338                 power_rule = &reg_rule->power_rule;
3339
3340                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3341                         snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
3342                                  freq_range->max_bandwidth_khz,
3343                                  reg_get_max_bandwidth(rd, reg_rule));
3344                 else
3345                         snprintf(bw, sizeof(bw), "%d KHz",
3346                                  freq_range->max_bandwidth_khz);
3347
3348                 if (reg_rule->flags & NL80211_RRF_DFS)
3349                         scnprintf(cac_time, sizeof(cac_time), "%u s",
3350                                   reg_rule->dfs_cac_ms/1000);
3351                 else
3352                         scnprintf(cac_time, sizeof(cac_time), "N/A");
3353
3354
3355                 /*
3356                  * There may not be documentation for max antenna gain
3357                  * in certain regions
3358                  */
3359                 if (power_rule->max_antenna_gain)
3360                         pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3361                                 freq_range->start_freq_khz,
3362                                 freq_range->end_freq_khz,
3363                                 bw,
3364                                 power_rule->max_antenna_gain,
3365                                 power_rule->max_eirp,
3366                                 cac_time);
3367                 else
3368                         pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3369                                 freq_range->start_freq_khz,
3370                                 freq_range->end_freq_khz,
3371                                 bw,
3372                                 power_rule->max_eirp,
3373                                 cac_time);
3374         }
3375 }
3376
3377 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3378 {
3379         switch (dfs_region) {
3380         case NL80211_DFS_UNSET:
3381         case NL80211_DFS_FCC:
3382         case NL80211_DFS_ETSI:
3383         case NL80211_DFS_JP:
3384                 return true;
3385         default:
3386                 pr_debug("Ignoring uknown DFS master region: %d\n", dfs_region);
3387                 return false;
3388         }
3389 }
3390
3391 static void print_regdomain(const struct ieee80211_regdomain *rd)
3392 {
3393         struct regulatory_request *lr = get_last_request();
3394
3395         if (is_intersected_alpha2(rd->alpha2)) {
3396                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3397                         struct cfg80211_registered_device *rdev;
3398                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3399                         if (rdev) {
3400                                 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3401                                         rdev->country_ie_alpha2[0],
3402                                         rdev->country_ie_alpha2[1]);
3403                         } else
3404                                 pr_debug("Current regulatory domain intersected:\n");
3405                 } else
3406                         pr_debug("Current regulatory domain intersected:\n");
3407         } else if (is_world_regdom(rd->alpha2)) {
3408                 pr_debug("World regulatory domain updated:\n");
3409         } else {
3410                 if (is_unknown_alpha2(rd->alpha2))
3411                         pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3412                 else {
3413                         if (reg_request_cell_base(lr))
3414                                 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3415                                         rd->alpha2[0], rd->alpha2[1]);
3416                         else
3417                                 pr_debug("Regulatory domain changed to country: %c%c\n",
3418                                         rd->alpha2[0], rd->alpha2[1]);
3419                 }
3420         }
3421
3422         pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3423         print_rd_rules(rd);
3424 }
3425
3426 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3427 {
3428         pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3429         print_rd_rules(rd);
3430 }
3431
3432 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3433 {
3434         if (!is_world_regdom(rd->alpha2))
3435                 return -EINVAL;
3436         update_world_regdomain(rd);
3437         return 0;
3438 }
3439
3440 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3441                            struct regulatory_request *user_request)
3442 {
3443         const struct ieee80211_regdomain *intersected_rd = NULL;
3444
3445         if (!regdom_changes(rd->alpha2))
3446                 return -EALREADY;
3447
3448         if (!is_valid_rd(rd)) {
3449                 pr_err("Invalid regulatory domain detected: %c%c\n",
3450                        rd->alpha2[0], rd->alpha2[1]);
3451                 print_regdomain_info(rd);
3452                 return -EINVAL;
3453         }
3454
3455         if (!user_request->intersect) {
3456                 reset_regdomains(false, rd);
3457                 return 0;
3458         }
3459
3460         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3461         if (!intersected_rd)
3462                 return -EINVAL;
3463
3464         kfree(rd);
3465         rd = NULL;
3466         reset_regdomains(false, intersected_rd);
3467
3468         return 0;
3469 }
3470
3471 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3472                              struct regulatory_request *driver_request)
3473 {
3474         const struct ieee80211_regdomain *regd;
3475         const struct ieee80211_regdomain *intersected_rd = NULL;
3476         const struct ieee80211_regdomain *tmp;
3477         struct wiphy *request_wiphy;
3478
3479         if (is_world_regdom(rd->alpha2))
3480                 return -EINVAL;
3481
3482         if (!regdom_changes(rd->alpha2))
3483                 return -EALREADY;
3484
3485         if (!is_valid_rd(rd)) {
3486                 pr_err("Invalid regulatory domain detected: %c%c\n",
3487                        rd->alpha2[0], rd->alpha2[1]);
3488                 print_regdomain_info(rd);
3489                 return -EINVAL;
3490         }
3491
3492         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3493         if (!request_wiphy)
3494                 return -ENODEV;
3495
3496         if (!driver_request->intersect) {
3497                 if (request_wiphy->regd)
3498                         return -EALREADY;
3499
3500                 regd = reg_copy_regd(rd);
3501                 if (IS_ERR(regd))
3502                         return PTR_ERR(regd);
3503
3504                 rcu_assign_pointer(request_wiphy->regd, regd);
3505                 reset_regdomains(false, rd);
3506                 return 0;
3507         }
3508
3509         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3510         if (!intersected_rd)
3511                 return -EINVAL;
3512
3513         /*
3514          * We can trash what CRDA provided now.
3515          * However if a driver requested this specific regulatory
3516          * domain we keep it for its private use
3517          */
3518         tmp = get_wiphy_regdom(request_wiphy);
3519         rcu_assign_pointer(request_wiphy->regd, rd);
3520         rcu_free_regdom(tmp);
3521
3522         rd = NULL;
3523
3524         reset_regdomains(false, intersected_rd);
3525
3526         return 0;
3527 }
3528
3529 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3530                                  struct regulatory_request *country_ie_request)
3531 {
3532         struct wiphy *request_wiphy;
3533
3534         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3535             !is_unknown_alpha2(rd->alpha2))
3536                 return -EINVAL;
3537
3538         /*
3539          * Lets only bother proceeding on the same alpha2 if the current
3540          * rd is non static (it means CRDA was present and was used last)
3541          * and the pending request came in from a country IE
3542          */
3543
3544         if (!is_valid_rd(rd)) {
3545                 pr_err("Invalid regulatory domain detected: %c%c\n",
3546                        rd->alpha2[0], rd->alpha2[1]);
3547                 print_regdomain_info(rd);
3548                 return -EINVAL;
3549         }
3550
3551         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3552         if (!request_wiphy)
3553                 return -ENODEV;
3554
3555         if (country_ie_request->intersect)
3556                 return -EINVAL;
3557
3558         reset_regdomains(false, rd);
3559         return 0;
3560 }
3561
3562 /*
3563  * Use this call to set the current regulatory domain. Conflicts with
3564  * multiple drivers can be ironed out later. Caller must've already
3565  * kmalloc'd the rd structure.
3566  */
3567 int set_regdom(const struct ieee80211_regdomain *rd,
3568                enum ieee80211_regd_source regd_src)
3569 {
3570         struct regulatory_request *lr;
3571         bool user_reset = false;
3572         int r;
3573
3574         if (!reg_is_valid_request(rd->alpha2)) {
3575                 kfree(rd);
3576                 return -EINVAL;
3577         }
3578
3579         if (regd_src == REGD_SOURCE_CRDA)
3580                 reset_crda_timeouts();
3581
3582         lr = get_last_request();
3583
3584         /* Note that this doesn't update the wiphys, this is done below */
3585         switch (lr->initiator) {
3586         case NL80211_REGDOM_SET_BY_CORE:
3587                 r = reg_set_rd_core(rd);
3588                 break;
3589         case NL80211_REGDOM_SET_BY_USER:
3590                 r = reg_set_rd_user(rd, lr);
3591                 user_reset = true;
3592                 break;
3593         case NL80211_REGDOM_SET_BY_DRIVER:
3594                 r = reg_set_rd_driver(rd, lr);
3595                 break;
3596         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3597                 r = reg_set_rd_country_ie(rd, lr);
3598                 break;
3599         default:
3600                 WARN(1, "invalid initiator %d\n", lr->initiator);
3601                 kfree(rd);
3602                 return -EINVAL;
3603         }
3604
3605         if (r) {
3606                 switch (r) {
3607                 case -EALREADY:
3608                         reg_set_request_processed();
3609                         break;
3610                 default:
3611                         /* Back to world regulatory in case of errors */
3612                         restore_regulatory_settings(user_reset);
3613                 }
3614
3615                 kfree(rd);
3616                 return r;
3617         }
3618
3619         /* This would make this whole thing pointless */
3620         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3621                 return -EINVAL;
3622
3623         /* update all wiphys now with the new established regulatory domain */
3624         update_all_wiphy_regulatory(lr->initiator);
3625
3626         print_regdomain(get_cfg80211_regdom());
3627
3628         nl80211_send_reg_change_event(lr);
3629
3630         reg_set_request_processed();
3631
3632         return 0;
3633 }
3634
3635 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3636                                        struct ieee80211_regdomain *rd)
3637 {
3638         const struct ieee80211_regdomain *regd;
3639         const struct ieee80211_regdomain *prev_regd;
3640         struct cfg80211_registered_device *rdev;
3641
3642         if (WARN_ON(!wiphy || !rd))
3643                 return -EINVAL;
3644
3645         if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3646                  "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3647                 return -EPERM;
3648
3649         if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3650                 print_regdomain_info(rd);
3651                 return -EINVAL;
3652         }
3653
3654         regd = reg_copy_regd(rd);
3655         if (IS_ERR(regd))
3656                 return PTR_ERR(regd);
3657
3658         rdev = wiphy_to_rdev(wiphy);
3659
3660         spin_lock(&reg_requests_lock);
3661         prev_regd = rdev->requested_regd;
3662         rdev->requested_regd = regd;
3663         spin_unlock(&reg_requests_lock);
3664
3665         kfree(prev_regd);
3666         return 0;
3667 }
3668
3669 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3670                               struct ieee80211_regdomain *rd)
3671 {
3672         int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3673
3674         if (ret)
3675                 return ret;
3676
3677         schedule_work(&reg_work);
3678         return 0;
3679 }
3680 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3681
3682 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3683                                         struct ieee80211_regdomain *rd)
3684 {
3685         int ret;
3686
3687         ASSERT_RTNL();
3688
3689         ret = __regulatory_set_wiphy_regd(wiphy, rd);
3690         if (ret)
3691                 return ret;
3692
3693         /* process the request immediately */
3694         reg_process_self_managed_hints();
3695         return 0;
3696 }
3697 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3698
3699 void wiphy_regulatory_register(struct wiphy *wiphy)
3700 {
3701         struct regulatory_request *lr;
3702
3703         /* self-managed devices ignore external hints */
3704         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3705                 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3706                                            REGULATORY_COUNTRY_IE_IGNORE;
3707
3708         if (!reg_dev_ignore_cell_hint(wiphy))
3709                 reg_num_devs_support_basehint++;
3710
3711         lr = get_last_request();
3712         wiphy_update_regulatory(wiphy, lr->initiator);
3713         wiphy_all_share_dfs_chan_state(wiphy);
3714 }
3715
3716 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3717 {
3718         struct wiphy *request_wiphy = NULL;
3719         struct regulatory_request *lr;
3720
3721         lr = get_last_request();
3722
3723         if (!reg_dev_ignore_cell_hint(wiphy))
3724                 reg_num_devs_support_basehint--;
3725
3726         rcu_free_regdom(get_wiphy_regdom(wiphy));
3727         RCU_INIT_POINTER(wiphy->regd, NULL);
3728
3729         if (lr)
3730                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3731
3732         if (!request_wiphy || request_wiphy != wiphy)
3733                 return;
3734
3735         lr->wiphy_idx = WIPHY_IDX_INVALID;
3736         lr->country_ie_env = ENVIRON_ANY;
3737 }
3738
3739 /*
3740  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3741  * UNII band definitions
3742  */
3743 int cfg80211_get_unii(int freq)
3744 {
3745         /* UNII-1 */
3746         if (freq >= 5150 && freq <= 5250)
3747                 return 0;
3748
3749         /* UNII-2A */
3750         if (freq > 5250 && freq <= 5350)
3751                 return 1;
3752
3753         /* UNII-2B */
3754         if (freq > 5350 && freq <= 5470)
3755                 return 2;
3756
3757         /* UNII-2C */
3758         if (freq > 5470 && freq <= 5725)
3759                 return 3;
3760
3761         /* UNII-3 */
3762         if (freq > 5725 && freq <= 5825)
3763                 return 4;
3764
3765         return -EINVAL;
3766 }
3767
3768 bool regulatory_indoor_allowed(void)
3769 {
3770         return reg_is_indoor;
3771 }
3772
3773 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
3774 {
3775         const struct ieee80211_regdomain *regd = NULL;
3776         const struct ieee80211_regdomain *wiphy_regd = NULL;
3777         bool pre_cac_allowed = false;
3778
3779         rcu_read_lock();
3780
3781         regd = rcu_dereference(cfg80211_regdomain);
3782         wiphy_regd = rcu_dereference(wiphy->regd);
3783         if (!wiphy_regd) {
3784                 if (regd->dfs_region == NL80211_DFS_ETSI)
3785                         pre_cac_allowed = true;
3786
3787                 rcu_read_unlock();
3788
3789                 return pre_cac_allowed;
3790         }
3791
3792         if (regd->dfs_region == wiphy_regd->dfs_region &&
3793             wiphy_regd->dfs_region == NL80211_DFS_ETSI)
3794                 pre_cac_allowed = true;
3795
3796         rcu_read_unlock();
3797
3798         return pre_cac_allowed;
3799 }
3800
3801 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
3802                                     struct cfg80211_chan_def *chandef,
3803                                     enum nl80211_dfs_state dfs_state,
3804                                     enum nl80211_radar_event event)
3805 {
3806         struct cfg80211_registered_device *rdev;
3807
3808         ASSERT_RTNL();
3809
3810         if (WARN_ON(!cfg80211_chandef_valid(chandef)))
3811                 return;
3812
3813         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3814                 if (wiphy == &rdev->wiphy)
3815                         continue;
3816
3817                 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
3818                         continue;
3819
3820                 if (!ieee80211_get_channel(&rdev->wiphy,
3821                                            chandef->chan->center_freq))
3822                         continue;
3823
3824                 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
3825
3826                 if (event == NL80211_RADAR_DETECTED ||
3827                     event == NL80211_RADAR_CAC_FINISHED)
3828                         cfg80211_sched_dfs_chan_update(rdev);
3829
3830                 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
3831         }
3832 }
3833
3834 static int __init regulatory_init_db(void)
3835 {
3836         int err;
3837
3838         err = load_builtin_regdb_keys();
3839         if (err)
3840                 return err;
3841
3842         /* We always try to get an update for the static regdomain */
3843         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3844         if (err) {
3845                 if (err == -ENOMEM) {
3846                         platform_device_unregister(reg_pdev);
3847                         return err;
3848                 }
3849                 /*
3850                  * N.B. kobject_uevent_env() can fail mainly for when we're out
3851                  * memory which is handled and propagated appropriately above
3852                  * but it can also fail during a netlink_broadcast() or during
3853                  * early boot for call_usermodehelper(). For now treat these
3854                  * errors as non-fatal.
3855                  */
3856                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3857         }
3858
3859         /*
3860          * Finally, if the user set the module parameter treat it
3861          * as a user hint.
3862          */
3863         if (!is_world_regdom(ieee80211_regdom))
3864                 regulatory_hint_user(ieee80211_regdom,
3865                                      NL80211_USER_REG_HINT_USER);
3866
3867         return 0;
3868 }
3869 #ifndef MODULE
3870 late_initcall(regulatory_init_db);
3871 #endif
3872
3873 int __init regulatory_init(void)
3874 {
3875         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3876         if (IS_ERR(reg_pdev))
3877                 return PTR_ERR(reg_pdev);
3878
3879         spin_lock_init(&reg_requests_lock);
3880         spin_lock_init(&reg_pending_beacons_lock);
3881         spin_lock_init(&reg_indoor_lock);
3882
3883         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3884
3885         user_alpha2[0] = '9';
3886         user_alpha2[1] = '7';
3887
3888 #ifdef MODULE
3889         return regulatory_init_db();
3890 #else
3891         return 0;
3892 #endif
3893 }
3894
3895 void regulatory_exit(void)
3896 {
3897         struct regulatory_request *reg_request, *tmp;
3898         struct reg_beacon *reg_beacon, *btmp;
3899
3900         cancel_work_sync(&reg_work);
3901         cancel_crda_timeout_sync();
3902         cancel_delayed_work_sync(&reg_check_chans);
3903
3904         /* Lock to suppress warnings */
3905         rtnl_lock();
3906         reset_regdomains(true, NULL);
3907         rtnl_unlock();
3908
3909         dev_set_uevent_suppress(&reg_pdev->dev, true);
3910
3911         platform_device_unregister(reg_pdev);
3912
3913         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3914                 list_del(&reg_beacon->list);
3915                 kfree(reg_beacon);
3916         }
3917
3918         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3919                 list_del(&reg_beacon->list);
3920                 kfree(reg_beacon);
3921         }
3922
3923         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3924                 list_del(&reg_request->list);
3925                 kfree(reg_request);
3926         }
3927
3928         if (!IS_ERR_OR_NULL(regdb))
3929                 kfree(regdb);
3930
3931         free_regdb_keyring();
3932 }