Merge tag 'soundwire-5.13-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 - 2021 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22
23
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *      be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *      regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83         REG_REQ_OK,
84         REG_REQ_IGNORE,
85         REG_REQ_INTERSECT,
86         REG_REQ_ALREADY_SET,
87 };
88
89 static struct regulatory_request core_request_world = {
90         .initiator = NL80211_REGDOM_SET_BY_CORE,
91         .alpha2[0] = '0',
92         .alpha2[1] = '0',
93         .intersect = false,
94         .processed = true,
95         .country_ie_env = ENVIRON_ANY,
96 };
97
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103         (void __force __rcu *)&core_request_world;
104
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static DEFINE_SPINLOCK(reg_indoor_lock);
130
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136
137 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
138 {
139         return rcu_dereference_rtnl(cfg80211_regdomain);
140 }
141
142 /*
143  * Returns the regulatory domain associated with the wiphy.
144  *
145  * Requires any of RTNL, wiphy mutex or RCU protection.
146  */
147 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
148 {
149         return rcu_dereference_check(wiphy->regd,
150                                      lockdep_is_held(&wiphy->mtx) ||
151                                      lockdep_rtnl_is_held());
152 }
153 EXPORT_SYMBOL(get_wiphy_regdom);
154
155 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
156 {
157         switch (dfs_region) {
158         case NL80211_DFS_UNSET:
159                 return "unset";
160         case NL80211_DFS_FCC:
161                 return "FCC";
162         case NL80211_DFS_ETSI:
163                 return "ETSI";
164         case NL80211_DFS_JP:
165                 return "JP";
166         }
167         return "Unknown";
168 }
169
170 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
171 {
172         const struct ieee80211_regdomain *regd = NULL;
173         const struct ieee80211_regdomain *wiphy_regd = NULL;
174
175         rcu_read_lock();
176         regd = get_cfg80211_regdom();
177
178         if (!wiphy)
179                 goto out;
180
181         wiphy_regd = get_wiphy_regdom(wiphy);
182         if (!wiphy_regd)
183                 goto out;
184
185         if (wiphy_regd->dfs_region == regd->dfs_region)
186                 goto out;
187
188         pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
189                  dev_name(&wiphy->dev),
190                  reg_dfs_region_str(wiphy_regd->dfs_region),
191                  reg_dfs_region_str(regd->dfs_region));
192
193 out:
194         rcu_read_unlock();
195
196         return regd->dfs_region;
197 }
198
199 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
200 {
201         if (!r)
202                 return;
203         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
204 }
205
206 static struct regulatory_request *get_last_request(void)
207 {
208         return rcu_dereference_rtnl(last_request);
209 }
210
211 /* Used to queue up regulatory hints */
212 static LIST_HEAD(reg_requests_list);
213 static DEFINE_SPINLOCK(reg_requests_lock);
214
215 /* Used to queue up beacon hints for review */
216 static LIST_HEAD(reg_pending_beacons);
217 static DEFINE_SPINLOCK(reg_pending_beacons_lock);
218
219 /* Used to keep track of processed beacon hints */
220 static LIST_HEAD(reg_beacon_list);
221
222 struct reg_beacon {
223         struct list_head list;
224         struct ieee80211_channel chan;
225 };
226
227 static void reg_check_chans_work(struct work_struct *work);
228 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
229
230 static void reg_todo(struct work_struct *work);
231 static DECLARE_WORK(reg_work, reg_todo);
232
233 /* We keep a static world regulatory domain in case of the absence of CRDA */
234 static const struct ieee80211_regdomain world_regdom = {
235         .n_reg_rules = 8,
236         .alpha2 =  "00",
237         .reg_rules = {
238                 /* IEEE 802.11b/g, channels 1..11 */
239                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
240                 /* IEEE 802.11b/g, channels 12..13. */
241                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
242                         NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
243                 /* IEEE 802.11 channel 14 - Only JP enables
244                  * this and for 802.11b only */
245                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
246                         NL80211_RRF_NO_IR |
247                         NL80211_RRF_NO_OFDM),
248                 /* IEEE 802.11a, channel 36..48 */
249                 REG_RULE(5180-10, 5240+10, 80, 6, 20,
250                         NL80211_RRF_NO_IR |
251                         NL80211_RRF_AUTO_BW),
252
253                 /* IEEE 802.11a, channel 52..64 - DFS required */
254                 REG_RULE(5260-10, 5320+10, 80, 6, 20,
255                         NL80211_RRF_NO_IR |
256                         NL80211_RRF_AUTO_BW |
257                         NL80211_RRF_DFS),
258
259                 /* IEEE 802.11a, channel 100..144 - DFS required */
260                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
261                         NL80211_RRF_NO_IR |
262                         NL80211_RRF_DFS),
263
264                 /* IEEE 802.11a, channel 149..165 */
265                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
266                         NL80211_RRF_NO_IR),
267
268                 /* IEEE 802.11ad (60GHz), channels 1..3 */
269                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
270         }
271 };
272
273 /* protected by RTNL */
274 static const struct ieee80211_regdomain *cfg80211_world_regdom =
275         &world_regdom;
276
277 static char *ieee80211_regdom = "00";
278 static char user_alpha2[2];
279 static const struct ieee80211_regdomain *cfg80211_user_regdom;
280
281 module_param(ieee80211_regdom, charp, 0444);
282 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
283
284 static void reg_free_request(struct regulatory_request *request)
285 {
286         if (request == &core_request_world)
287                 return;
288
289         if (request != get_last_request())
290                 kfree(request);
291 }
292
293 static void reg_free_last_request(void)
294 {
295         struct regulatory_request *lr = get_last_request();
296
297         if (lr != &core_request_world && lr)
298                 kfree_rcu(lr, rcu_head);
299 }
300
301 static void reg_update_last_request(struct regulatory_request *request)
302 {
303         struct regulatory_request *lr;
304
305         lr = get_last_request();
306         if (lr == request)
307                 return;
308
309         reg_free_last_request();
310         rcu_assign_pointer(last_request, request);
311 }
312
313 static void reset_regdomains(bool full_reset,
314                              const struct ieee80211_regdomain *new_regdom)
315 {
316         const struct ieee80211_regdomain *r;
317
318         ASSERT_RTNL();
319
320         r = get_cfg80211_regdom();
321
322         /* avoid freeing static information or freeing something twice */
323         if (r == cfg80211_world_regdom)
324                 r = NULL;
325         if (cfg80211_world_regdom == &world_regdom)
326                 cfg80211_world_regdom = NULL;
327         if (r == &world_regdom)
328                 r = NULL;
329
330         rcu_free_regdom(r);
331         rcu_free_regdom(cfg80211_world_regdom);
332
333         cfg80211_world_regdom = &world_regdom;
334         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
335
336         if (!full_reset)
337                 return;
338
339         reg_update_last_request(&core_request_world);
340 }
341
342 /*
343  * Dynamic world regulatory domain requested by the wireless
344  * core upon initialization
345  */
346 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
347 {
348         struct regulatory_request *lr;
349
350         lr = get_last_request();
351
352         WARN_ON(!lr);
353
354         reset_regdomains(false, rd);
355
356         cfg80211_world_regdom = rd;
357 }
358
359 bool is_world_regdom(const char *alpha2)
360 {
361         if (!alpha2)
362                 return false;
363         return alpha2[0] == '0' && alpha2[1] == '0';
364 }
365
366 static bool is_alpha2_set(const char *alpha2)
367 {
368         if (!alpha2)
369                 return false;
370         return alpha2[0] && alpha2[1];
371 }
372
373 static bool is_unknown_alpha2(const char *alpha2)
374 {
375         if (!alpha2)
376                 return false;
377         /*
378          * Special case where regulatory domain was built by driver
379          * but a specific alpha2 cannot be determined
380          */
381         return alpha2[0] == '9' && alpha2[1] == '9';
382 }
383
384 static bool is_intersected_alpha2(const char *alpha2)
385 {
386         if (!alpha2)
387                 return false;
388         /*
389          * Special case where regulatory domain is the
390          * result of an intersection between two regulatory domain
391          * structures
392          */
393         return alpha2[0] == '9' && alpha2[1] == '8';
394 }
395
396 static bool is_an_alpha2(const char *alpha2)
397 {
398         if (!alpha2)
399                 return false;
400         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
401 }
402
403 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
404 {
405         if (!alpha2_x || !alpha2_y)
406                 return false;
407         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
408 }
409
410 static bool regdom_changes(const char *alpha2)
411 {
412         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
413
414         if (!r)
415                 return true;
416         return !alpha2_equal(r->alpha2, alpha2);
417 }
418
419 /*
420  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
421  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
422  * has ever been issued.
423  */
424 static bool is_user_regdom_saved(void)
425 {
426         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
427                 return false;
428
429         /* This would indicate a mistake on the design */
430         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
431                  "Unexpected user alpha2: %c%c\n",
432                  user_alpha2[0], user_alpha2[1]))
433                 return false;
434
435         return true;
436 }
437
438 static const struct ieee80211_regdomain *
439 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
440 {
441         struct ieee80211_regdomain *regd;
442         unsigned int i;
443
444         regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
445                        GFP_KERNEL);
446         if (!regd)
447                 return ERR_PTR(-ENOMEM);
448
449         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
450
451         for (i = 0; i < src_regd->n_reg_rules; i++)
452                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
453                        sizeof(struct ieee80211_reg_rule));
454
455         return regd;
456 }
457
458 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
459 {
460         ASSERT_RTNL();
461
462         if (!IS_ERR(cfg80211_user_regdom))
463                 kfree(cfg80211_user_regdom);
464         cfg80211_user_regdom = reg_copy_regd(rd);
465 }
466
467 struct reg_regdb_apply_request {
468         struct list_head list;
469         const struct ieee80211_regdomain *regdom;
470 };
471
472 static LIST_HEAD(reg_regdb_apply_list);
473 static DEFINE_MUTEX(reg_regdb_apply_mutex);
474
475 static void reg_regdb_apply(struct work_struct *work)
476 {
477         struct reg_regdb_apply_request *request;
478
479         rtnl_lock();
480
481         mutex_lock(&reg_regdb_apply_mutex);
482         while (!list_empty(&reg_regdb_apply_list)) {
483                 request = list_first_entry(&reg_regdb_apply_list,
484                                            struct reg_regdb_apply_request,
485                                            list);
486                 list_del(&request->list);
487
488                 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
489                 kfree(request);
490         }
491         mutex_unlock(&reg_regdb_apply_mutex);
492
493         rtnl_unlock();
494 }
495
496 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
497
498 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
499 {
500         struct reg_regdb_apply_request *request;
501
502         request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
503         if (!request) {
504                 kfree(regdom);
505                 return -ENOMEM;
506         }
507
508         request->regdom = regdom;
509
510         mutex_lock(&reg_regdb_apply_mutex);
511         list_add_tail(&request->list, &reg_regdb_apply_list);
512         mutex_unlock(&reg_regdb_apply_mutex);
513
514         schedule_work(&reg_regdb_work);
515         return 0;
516 }
517
518 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
519 /* Max number of consecutive attempts to communicate with CRDA  */
520 #define REG_MAX_CRDA_TIMEOUTS 10
521
522 static u32 reg_crda_timeouts;
523
524 static void crda_timeout_work(struct work_struct *work);
525 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
526
527 static void crda_timeout_work(struct work_struct *work)
528 {
529         pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
530         rtnl_lock();
531         reg_crda_timeouts++;
532         restore_regulatory_settings(true, false);
533         rtnl_unlock();
534 }
535
536 static void cancel_crda_timeout(void)
537 {
538         cancel_delayed_work(&crda_timeout);
539 }
540
541 static void cancel_crda_timeout_sync(void)
542 {
543         cancel_delayed_work_sync(&crda_timeout);
544 }
545
546 static void reset_crda_timeouts(void)
547 {
548         reg_crda_timeouts = 0;
549 }
550
551 /*
552  * This lets us keep regulatory code which is updated on a regulatory
553  * basis in userspace.
554  */
555 static int call_crda(const char *alpha2)
556 {
557         char country[12];
558         char *env[] = { country, NULL };
559         int ret;
560
561         snprintf(country, sizeof(country), "COUNTRY=%c%c",
562                  alpha2[0], alpha2[1]);
563
564         if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
565                 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
566                 return -EINVAL;
567         }
568
569         if (!is_world_regdom((char *) alpha2))
570                 pr_debug("Calling CRDA for country: %c%c\n",
571                          alpha2[0], alpha2[1]);
572         else
573                 pr_debug("Calling CRDA to update world regulatory domain\n");
574
575         ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
576         if (ret)
577                 return ret;
578
579         queue_delayed_work(system_power_efficient_wq,
580                            &crda_timeout, msecs_to_jiffies(3142));
581         return 0;
582 }
583 #else
584 static inline void cancel_crda_timeout(void) {}
585 static inline void cancel_crda_timeout_sync(void) {}
586 static inline void reset_crda_timeouts(void) {}
587 static inline int call_crda(const char *alpha2)
588 {
589         return -ENODATA;
590 }
591 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
592
593 /* code to directly load a firmware database through request_firmware */
594 static const struct fwdb_header *regdb;
595
596 struct fwdb_country {
597         u8 alpha2[2];
598         __be16 coll_ptr;
599         /* this struct cannot be extended */
600 } __packed __aligned(4);
601
602 struct fwdb_collection {
603         u8 len;
604         u8 n_rules;
605         u8 dfs_region;
606         /* no optional data yet */
607         /* aligned to 2, then followed by __be16 array of rule pointers */
608 } __packed __aligned(4);
609
610 enum fwdb_flags {
611         FWDB_FLAG_NO_OFDM       = BIT(0),
612         FWDB_FLAG_NO_OUTDOOR    = BIT(1),
613         FWDB_FLAG_DFS           = BIT(2),
614         FWDB_FLAG_NO_IR         = BIT(3),
615         FWDB_FLAG_AUTO_BW       = BIT(4),
616 };
617
618 struct fwdb_wmm_ac {
619         u8 ecw;
620         u8 aifsn;
621         __be16 cot;
622 } __packed;
623
624 struct fwdb_wmm_rule {
625         struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
626         struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
627 } __packed;
628
629 struct fwdb_rule {
630         u8 len;
631         u8 flags;
632         __be16 max_eirp;
633         __be32 start, end, max_bw;
634         /* start of optional data */
635         __be16 cac_timeout;
636         __be16 wmm_ptr;
637 } __packed __aligned(4);
638
639 #define FWDB_MAGIC 0x52474442
640 #define FWDB_VERSION 20
641
642 struct fwdb_header {
643         __be32 magic;
644         __be32 version;
645         struct fwdb_country country[];
646 } __packed __aligned(4);
647
648 static int ecw2cw(int ecw)
649 {
650         return (1 << ecw) - 1;
651 }
652
653 static bool valid_wmm(struct fwdb_wmm_rule *rule)
654 {
655         struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
656         int i;
657
658         for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
659                 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
660                 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
661                 u8 aifsn = ac[i].aifsn;
662
663                 if (cw_min >= cw_max)
664                         return false;
665
666                 if (aifsn < 1)
667                         return false;
668         }
669
670         return true;
671 }
672
673 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
674 {
675         struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
676
677         if ((u8 *)rule + sizeof(rule->len) > data + size)
678                 return false;
679
680         /* mandatory fields */
681         if (rule->len < offsetofend(struct fwdb_rule, max_bw))
682                 return false;
683         if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
684                 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
685                 struct fwdb_wmm_rule *wmm;
686
687                 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
688                         return false;
689
690                 wmm = (void *)(data + wmm_ptr);
691
692                 if (!valid_wmm(wmm))
693                         return false;
694         }
695         return true;
696 }
697
698 static bool valid_country(const u8 *data, unsigned int size,
699                           const struct fwdb_country *country)
700 {
701         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
702         struct fwdb_collection *coll = (void *)(data + ptr);
703         __be16 *rules_ptr;
704         unsigned int i;
705
706         /* make sure we can read len/n_rules */
707         if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
708                 return false;
709
710         /* make sure base struct and all rules fit */
711         if ((u8 *)coll + ALIGN(coll->len, 2) +
712             (coll->n_rules * 2) > data + size)
713                 return false;
714
715         /* mandatory fields must exist */
716         if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
717                 return false;
718
719         rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
720
721         for (i = 0; i < coll->n_rules; i++) {
722                 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
723
724                 if (!valid_rule(data, size, rule_ptr))
725                         return false;
726         }
727
728         return true;
729 }
730
731 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
732 static struct key *builtin_regdb_keys;
733
734 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
735 {
736         const u8 *end = p + buflen;
737         size_t plen;
738         key_ref_t key;
739
740         while (p < end) {
741                 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
742                  * than 256 bytes in size.
743                  */
744                 if (end - p < 4)
745                         goto dodgy_cert;
746                 if (p[0] != 0x30 &&
747                     p[1] != 0x82)
748                         goto dodgy_cert;
749                 plen = (p[2] << 8) | p[3];
750                 plen += 4;
751                 if (plen > end - p)
752                         goto dodgy_cert;
753
754                 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
755                                            "asymmetric", NULL, p, plen,
756                                            ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
757                                             KEY_USR_VIEW | KEY_USR_READ),
758                                            KEY_ALLOC_NOT_IN_QUOTA |
759                                            KEY_ALLOC_BUILT_IN |
760                                            KEY_ALLOC_BYPASS_RESTRICTION);
761                 if (IS_ERR(key)) {
762                         pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
763                                PTR_ERR(key));
764                 } else {
765                         pr_notice("Loaded X.509 cert '%s'\n",
766                                   key_ref_to_ptr(key)->description);
767                         key_ref_put(key);
768                 }
769                 p += plen;
770         }
771
772         return;
773
774 dodgy_cert:
775         pr_err("Problem parsing in-kernel X.509 certificate list\n");
776 }
777
778 static int __init load_builtin_regdb_keys(void)
779 {
780         builtin_regdb_keys =
781                 keyring_alloc(".builtin_regdb_keys",
782                               KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
783                               ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
784                               KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
785                               KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
786         if (IS_ERR(builtin_regdb_keys))
787                 return PTR_ERR(builtin_regdb_keys);
788
789         pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
790
791 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
792         load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
793 #endif
794 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
795         if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
796                 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
797 #endif
798
799         return 0;
800 }
801
802 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
803 {
804         const struct firmware *sig;
805         bool result;
806
807         if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
808                 return false;
809
810         result = verify_pkcs7_signature(data, size, sig->data, sig->size,
811                                         builtin_regdb_keys,
812                                         VERIFYING_UNSPECIFIED_SIGNATURE,
813                                         NULL, NULL) == 0;
814
815         release_firmware(sig);
816
817         return result;
818 }
819
820 static void free_regdb_keyring(void)
821 {
822         key_put(builtin_regdb_keys);
823 }
824 #else
825 static int load_builtin_regdb_keys(void)
826 {
827         return 0;
828 }
829
830 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
831 {
832         return true;
833 }
834
835 static void free_regdb_keyring(void)
836 {
837 }
838 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
839
840 static bool valid_regdb(const u8 *data, unsigned int size)
841 {
842         const struct fwdb_header *hdr = (void *)data;
843         const struct fwdb_country *country;
844
845         if (size < sizeof(*hdr))
846                 return false;
847
848         if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
849                 return false;
850
851         if (hdr->version != cpu_to_be32(FWDB_VERSION))
852                 return false;
853
854         if (!regdb_has_valid_signature(data, size))
855                 return false;
856
857         country = &hdr->country[0];
858         while ((u8 *)(country + 1) <= data + size) {
859                 if (!country->coll_ptr)
860                         break;
861                 if (!valid_country(data, size, country))
862                         return false;
863                 country++;
864         }
865
866         return true;
867 }
868
869 static void set_wmm_rule(const struct fwdb_header *db,
870                          const struct fwdb_country *country,
871                          const struct fwdb_rule *rule,
872                          struct ieee80211_reg_rule *rrule)
873 {
874         struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
875         struct fwdb_wmm_rule *wmm;
876         unsigned int i, wmm_ptr;
877
878         wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
879         wmm = (void *)((u8 *)db + wmm_ptr);
880
881         if (!valid_wmm(wmm)) {
882                 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
883                        be32_to_cpu(rule->start), be32_to_cpu(rule->end),
884                        country->alpha2[0], country->alpha2[1]);
885                 return;
886         }
887
888         for (i = 0; i < IEEE80211_NUM_ACS; i++) {
889                 wmm_rule->client[i].cw_min =
890                         ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
891                 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
892                 wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
893                 wmm_rule->client[i].cot =
894                         1000 * be16_to_cpu(wmm->client[i].cot);
895                 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
896                 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
897                 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
898                 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
899         }
900
901         rrule->has_wmm = true;
902 }
903
904 static int __regdb_query_wmm(const struct fwdb_header *db,
905                              const struct fwdb_country *country, int freq,
906                              struct ieee80211_reg_rule *rrule)
907 {
908         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
909         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
910         int i;
911
912         for (i = 0; i < coll->n_rules; i++) {
913                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
914                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
915                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
916
917                 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
918                         continue;
919
920                 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
921                     freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
922                         set_wmm_rule(db, country, rule, rrule);
923                         return 0;
924                 }
925         }
926
927         return -ENODATA;
928 }
929
930 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
931 {
932         const struct fwdb_header *hdr = regdb;
933         const struct fwdb_country *country;
934
935         if (!regdb)
936                 return -ENODATA;
937
938         if (IS_ERR(regdb))
939                 return PTR_ERR(regdb);
940
941         country = &hdr->country[0];
942         while (country->coll_ptr) {
943                 if (alpha2_equal(alpha2, country->alpha2))
944                         return __regdb_query_wmm(regdb, country, freq, rule);
945
946                 country++;
947         }
948
949         return -ENODATA;
950 }
951 EXPORT_SYMBOL(reg_query_regdb_wmm);
952
953 static int regdb_query_country(const struct fwdb_header *db,
954                                const struct fwdb_country *country)
955 {
956         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
957         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
958         struct ieee80211_regdomain *regdom;
959         unsigned int i;
960
961         regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
962                          GFP_KERNEL);
963         if (!regdom)
964                 return -ENOMEM;
965
966         regdom->n_reg_rules = coll->n_rules;
967         regdom->alpha2[0] = country->alpha2[0];
968         regdom->alpha2[1] = country->alpha2[1];
969         regdom->dfs_region = coll->dfs_region;
970
971         for (i = 0; i < regdom->n_reg_rules; i++) {
972                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
973                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
974                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
975                 struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
976
977                 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
978                 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
979                 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
980
981                 rrule->power_rule.max_antenna_gain = 0;
982                 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
983
984                 rrule->flags = 0;
985                 if (rule->flags & FWDB_FLAG_NO_OFDM)
986                         rrule->flags |= NL80211_RRF_NO_OFDM;
987                 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
988                         rrule->flags |= NL80211_RRF_NO_OUTDOOR;
989                 if (rule->flags & FWDB_FLAG_DFS)
990                         rrule->flags |= NL80211_RRF_DFS;
991                 if (rule->flags & FWDB_FLAG_NO_IR)
992                         rrule->flags |= NL80211_RRF_NO_IR;
993                 if (rule->flags & FWDB_FLAG_AUTO_BW)
994                         rrule->flags |= NL80211_RRF_AUTO_BW;
995
996                 rrule->dfs_cac_ms = 0;
997
998                 /* handle optional data */
999                 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
1000                         rrule->dfs_cac_ms =
1001                                 1000 * be16_to_cpu(rule->cac_timeout);
1002                 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
1003                         set_wmm_rule(db, country, rule, rrule);
1004         }
1005
1006         return reg_schedule_apply(regdom);
1007 }
1008
1009 static int query_regdb(const char *alpha2)
1010 {
1011         const struct fwdb_header *hdr = regdb;
1012         const struct fwdb_country *country;
1013
1014         ASSERT_RTNL();
1015
1016         if (IS_ERR(regdb))
1017                 return PTR_ERR(regdb);
1018
1019         country = &hdr->country[0];
1020         while (country->coll_ptr) {
1021                 if (alpha2_equal(alpha2, country->alpha2))
1022                         return regdb_query_country(regdb, country);
1023                 country++;
1024         }
1025
1026         return -ENODATA;
1027 }
1028
1029 static void regdb_fw_cb(const struct firmware *fw, void *context)
1030 {
1031         int set_error = 0;
1032         bool restore = true;
1033         void *db;
1034
1035         if (!fw) {
1036                 pr_info("failed to load regulatory.db\n");
1037                 set_error = -ENODATA;
1038         } else if (!valid_regdb(fw->data, fw->size)) {
1039                 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1040                 set_error = -EINVAL;
1041         }
1042
1043         rtnl_lock();
1044         if (regdb && !IS_ERR(regdb)) {
1045                 /* negative case - a bug
1046                  * positive case - can happen due to race in case of multiple cb's in
1047                  * queue, due to usage of asynchronous callback
1048                  *
1049                  * Either case, just restore and free new db.
1050                  */
1051         } else if (set_error) {
1052                 regdb = ERR_PTR(set_error);
1053         } else if (fw) {
1054                 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1055                 if (db) {
1056                         regdb = db;
1057                         restore = context && query_regdb(context);
1058                 } else {
1059                         restore = true;
1060                 }
1061         }
1062
1063         if (restore)
1064                 restore_regulatory_settings(true, false);
1065
1066         rtnl_unlock();
1067
1068         kfree(context);
1069
1070         release_firmware(fw);
1071 }
1072
1073 static int query_regdb_file(const char *alpha2)
1074 {
1075         ASSERT_RTNL();
1076
1077         if (regdb)
1078                 return query_regdb(alpha2);
1079
1080         alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1081         if (!alpha2)
1082                 return -ENOMEM;
1083
1084         return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1085                                        &reg_pdev->dev, GFP_KERNEL,
1086                                        (void *)alpha2, regdb_fw_cb);
1087 }
1088
1089 int reg_reload_regdb(void)
1090 {
1091         const struct firmware *fw;
1092         void *db;
1093         int err;
1094
1095         err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1096         if (err)
1097                 return err;
1098
1099         if (!valid_regdb(fw->data, fw->size)) {
1100                 err = -ENODATA;
1101                 goto out;
1102         }
1103
1104         db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1105         if (!db) {
1106                 err = -ENOMEM;
1107                 goto out;
1108         }
1109
1110         rtnl_lock();
1111         if (!IS_ERR_OR_NULL(regdb))
1112                 kfree(regdb);
1113         regdb = db;
1114         rtnl_unlock();
1115
1116  out:
1117         release_firmware(fw);
1118         return err;
1119 }
1120
1121 static bool reg_query_database(struct regulatory_request *request)
1122 {
1123         if (query_regdb_file(request->alpha2) == 0)
1124                 return true;
1125
1126         if (call_crda(request->alpha2) == 0)
1127                 return true;
1128
1129         return false;
1130 }
1131
1132 bool reg_is_valid_request(const char *alpha2)
1133 {
1134         struct regulatory_request *lr = get_last_request();
1135
1136         if (!lr || lr->processed)
1137                 return false;
1138
1139         return alpha2_equal(lr->alpha2, alpha2);
1140 }
1141
1142 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1143 {
1144         struct regulatory_request *lr = get_last_request();
1145
1146         /*
1147          * Follow the driver's regulatory domain, if present, unless a country
1148          * IE has been processed or a user wants to help complaince further
1149          */
1150         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1151             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1152             wiphy->regd)
1153                 return get_wiphy_regdom(wiphy);
1154
1155         return get_cfg80211_regdom();
1156 }
1157
1158 static unsigned int
1159 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1160                                  const struct ieee80211_reg_rule *rule)
1161 {
1162         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1163         const struct ieee80211_freq_range *freq_range_tmp;
1164         const struct ieee80211_reg_rule *tmp;
1165         u32 start_freq, end_freq, idx, no;
1166
1167         for (idx = 0; idx < rd->n_reg_rules; idx++)
1168                 if (rule == &rd->reg_rules[idx])
1169                         break;
1170
1171         if (idx == rd->n_reg_rules)
1172                 return 0;
1173
1174         /* get start_freq */
1175         no = idx;
1176
1177         while (no) {
1178                 tmp = &rd->reg_rules[--no];
1179                 freq_range_tmp = &tmp->freq_range;
1180
1181                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1182                         break;
1183
1184                 freq_range = freq_range_tmp;
1185         }
1186
1187         start_freq = freq_range->start_freq_khz;
1188
1189         /* get end_freq */
1190         freq_range = &rule->freq_range;
1191         no = idx;
1192
1193         while (no < rd->n_reg_rules - 1) {
1194                 tmp = &rd->reg_rules[++no];
1195                 freq_range_tmp = &tmp->freq_range;
1196
1197                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1198                         break;
1199
1200                 freq_range = freq_range_tmp;
1201         }
1202
1203         end_freq = freq_range->end_freq_khz;
1204
1205         return end_freq - start_freq;
1206 }
1207
1208 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1209                                    const struct ieee80211_reg_rule *rule)
1210 {
1211         unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1212
1213         if (rule->flags & NL80211_RRF_NO_160MHZ)
1214                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1215         if (rule->flags & NL80211_RRF_NO_80MHZ)
1216                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1217
1218         /*
1219          * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1220          * are not allowed.
1221          */
1222         if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1223             rule->flags & NL80211_RRF_NO_HT40PLUS)
1224                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1225
1226         return bw;
1227 }
1228
1229 /* Sanity check on a regulatory rule */
1230 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1231 {
1232         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1233         u32 freq_diff;
1234
1235         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1236                 return false;
1237
1238         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1239                 return false;
1240
1241         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1242
1243         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1244             freq_range->max_bandwidth_khz > freq_diff)
1245                 return false;
1246
1247         return true;
1248 }
1249
1250 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1251 {
1252         const struct ieee80211_reg_rule *reg_rule = NULL;
1253         unsigned int i;
1254
1255         if (!rd->n_reg_rules)
1256                 return false;
1257
1258         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1259                 return false;
1260
1261         for (i = 0; i < rd->n_reg_rules; i++) {
1262                 reg_rule = &rd->reg_rules[i];
1263                 if (!is_valid_reg_rule(reg_rule))
1264                         return false;
1265         }
1266
1267         return true;
1268 }
1269
1270 /**
1271  * freq_in_rule_band - tells us if a frequency is in a frequency band
1272  * @freq_range: frequency rule we want to query
1273  * @freq_khz: frequency we are inquiring about
1274  *
1275  * This lets us know if a specific frequency rule is or is not relevant to
1276  * a specific frequency's band. Bands are device specific and artificial
1277  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1278  * however it is safe for now to assume that a frequency rule should not be
1279  * part of a frequency's band if the start freq or end freq are off by more
1280  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1281  * 60 GHz band.
1282  * This resolution can be lowered and should be considered as we add
1283  * regulatory rule support for other "bands".
1284  **/
1285 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1286                               u32 freq_khz)
1287 {
1288 #define ONE_GHZ_IN_KHZ  1000000
1289         /*
1290          * From 802.11ad: directional multi-gigabit (DMG):
1291          * Pertaining to operation in a frequency band containing a channel
1292          * with the Channel starting frequency above 45 GHz.
1293          */
1294         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1295                         20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1296         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1297                 return true;
1298         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1299                 return true;
1300         return false;
1301 #undef ONE_GHZ_IN_KHZ
1302 }
1303
1304 /*
1305  * Later on we can perhaps use the more restrictive DFS
1306  * region but we don't have information for that yet so
1307  * for now simply disallow conflicts.
1308  */
1309 static enum nl80211_dfs_regions
1310 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1311                          const enum nl80211_dfs_regions dfs_region2)
1312 {
1313         if (dfs_region1 != dfs_region2)
1314                 return NL80211_DFS_UNSET;
1315         return dfs_region1;
1316 }
1317
1318 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1319                                     const struct ieee80211_wmm_ac *wmm_ac2,
1320                                     struct ieee80211_wmm_ac *intersect)
1321 {
1322         intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1323         intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1324         intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1325         intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1326 }
1327
1328 /*
1329  * Helper for regdom_intersect(), this does the real
1330  * mathematical intersection fun
1331  */
1332 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1333                                const struct ieee80211_regdomain *rd2,
1334                                const struct ieee80211_reg_rule *rule1,
1335                                const struct ieee80211_reg_rule *rule2,
1336                                struct ieee80211_reg_rule *intersected_rule)
1337 {
1338         const struct ieee80211_freq_range *freq_range1, *freq_range2;
1339         struct ieee80211_freq_range *freq_range;
1340         const struct ieee80211_power_rule *power_rule1, *power_rule2;
1341         struct ieee80211_power_rule *power_rule;
1342         const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1343         struct ieee80211_wmm_rule *wmm_rule;
1344         u32 freq_diff, max_bandwidth1, max_bandwidth2;
1345
1346         freq_range1 = &rule1->freq_range;
1347         freq_range2 = &rule2->freq_range;
1348         freq_range = &intersected_rule->freq_range;
1349
1350         power_rule1 = &rule1->power_rule;
1351         power_rule2 = &rule2->power_rule;
1352         power_rule = &intersected_rule->power_rule;
1353
1354         wmm_rule1 = &rule1->wmm_rule;
1355         wmm_rule2 = &rule2->wmm_rule;
1356         wmm_rule = &intersected_rule->wmm_rule;
1357
1358         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1359                                          freq_range2->start_freq_khz);
1360         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1361                                        freq_range2->end_freq_khz);
1362
1363         max_bandwidth1 = freq_range1->max_bandwidth_khz;
1364         max_bandwidth2 = freq_range2->max_bandwidth_khz;
1365
1366         if (rule1->flags & NL80211_RRF_AUTO_BW)
1367                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1368         if (rule2->flags & NL80211_RRF_AUTO_BW)
1369                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1370
1371         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1372
1373         intersected_rule->flags = rule1->flags | rule2->flags;
1374
1375         /*
1376          * In case NL80211_RRF_AUTO_BW requested for both rules
1377          * set AUTO_BW in intersected rule also. Next we will
1378          * calculate BW correctly in handle_channel function.
1379          * In other case remove AUTO_BW flag while we calculate
1380          * maximum bandwidth correctly and auto calculation is
1381          * not required.
1382          */
1383         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1384             (rule2->flags & NL80211_RRF_AUTO_BW))
1385                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1386         else
1387                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1388
1389         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1390         if (freq_range->max_bandwidth_khz > freq_diff)
1391                 freq_range->max_bandwidth_khz = freq_diff;
1392
1393         power_rule->max_eirp = min(power_rule1->max_eirp,
1394                 power_rule2->max_eirp);
1395         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1396                 power_rule2->max_antenna_gain);
1397
1398         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1399                                            rule2->dfs_cac_ms);
1400
1401         if (rule1->has_wmm && rule2->has_wmm) {
1402                 u8 ac;
1403
1404                 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1405                         reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1406                                                 &wmm_rule2->client[ac],
1407                                                 &wmm_rule->client[ac]);
1408                         reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1409                                                 &wmm_rule2->ap[ac],
1410                                                 &wmm_rule->ap[ac]);
1411                 }
1412
1413                 intersected_rule->has_wmm = true;
1414         } else if (rule1->has_wmm) {
1415                 *wmm_rule = *wmm_rule1;
1416                 intersected_rule->has_wmm = true;
1417         } else if (rule2->has_wmm) {
1418                 *wmm_rule = *wmm_rule2;
1419                 intersected_rule->has_wmm = true;
1420         } else {
1421                 intersected_rule->has_wmm = false;
1422         }
1423
1424         if (!is_valid_reg_rule(intersected_rule))
1425                 return -EINVAL;
1426
1427         return 0;
1428 }
1429
1430 /* check whether old rule contains new rule */
1431 static bool rule_contains(struct ieee80211_reg_rule *r1,
1432                           struct ieee80211_reg_rule *r2)
1433 {
1434         /* for simplicity, currently consider only same flags */
1435         if (r1->flags != r2->flags)
1436                 return false;
1437
1438         /* verify r1 is more restrictive */
1439         if ((r1->power_rule.max_antenna_gain >
1440              r2->power_rule.max_antenna_gain) ||
1441             r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1442                 return false;
1443
1444         /* make sure r2's range is contained within r1 */
1445         if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1446             r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1447                 return false;
1448
1449         /* and finally verify that r1.max_bw >= r2.max_bw */
1450         if (r1->freq_range.max_bandwidth_khz <
1451             r2->freq_range.max_bandwidth_khz)
1452                 return false;
1453
1454         return true;
1455 }
1456
1457 /* add or extend current rules. do nothing if rule is already contained */
1458 static void add_rule(struct ieee80211_reg_rule *rule,
1459                      struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1460 {
1461         struct ieee80211_reg_rule *tmp_rule;
1462         int i;
1463
1464         for (i = 0; i < *n_rules; i++) {
1465                 tmp_rule = &reg_rules[i];
1466                 /* rule is already contained - do nothing */
1467                 if (rule_contains(tmp_rule, rule))
1468                         return;
1469
1470                 /* extend rule if possible */
1471                 if (rule_contains(rule, tmp_rule)) {
1472                         memcpy(tmp_rule, rule, sizeof(*rule));
1473                         return;
1474                 }
1475         }
1476
1477         memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1478         (*n_rules)++;
1479 }
1480
1481 /**
1482  * regdom_intersect - do the intersection between two regulatory domains
1483  * @rd1: first regulatory domain
1484  * @rd2: second regulatory domain
1485  *
1486  * Use this function to get the intersection between two regulatory domains.
1487  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1488  * as no one single alpha2 can represent this regulatory domain.
1489  *
1490  * Returns a pointer to the regulatory domain structure which will hold the
1491  * resulting intersection of rules between rd1 and rd2. We will
1492  * kzalloc() this structure for you.
1493  */
1494 static struct ieee80211_regdomain *
1495 regdom_intersect(const struct ieee80211_regdomain *rd1,
1496                  const struct ieee80211_regdomain *rd2)
1497 {
1498         int r;
1499         unsigned int x, y;
1500         unsigned int num_rules = 0;
1501         const struct ieee80211_reg_rule *rule1, *rule2;
1502         struct ieee80211_reg_rule intersected_rule;
1503         struct ieee80211_regdomain *rd;
1504
1505         if (!rd1 || !rd2)
1506                 return NULL;
1507
1508         /*
1509          * First we get a count of the rules we'll need, then we actually
1510          * build them. This is to so we can malloc() and free() a
1511          * regdomain once. The reason we use reg_rules_intersect() here
1512          * is it will return -EINVAL if the rule computed makes no sense.
1513          * All rules that do check out OK are valid.
1514          */
1515
1516         for (x = 0; x < rd1->n_reg_rules; x++) {
1517                 rule1 = &rd1->reg_rules[x];
1518                 for (y = 0; y < rd2->n_reg_rules; y++) {
1519                         rule2 = &rd2->reg_rules[y];
1520                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1521                                                  &intersected_rule))
1522                                 num_rules++;
1523                 }
1524         }
1525
1526         if (!num_rules)
1527                 return NULL;
1528
1529         rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1530         if (!rd)
1531                 return NULL;
1532
1533         for (x = 0; x < rd1->n_reg_rules; x++) {
1534                 rule1 = &rd1->reg_rules[x];
1535                 for (y = 0; y < rd2->n_reg_rules; y++) {
1536                         rule2 = &rd2->reg_rules[y];
1537                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1538                                                 &intersected_rule);
1539                         /*
1540                          * No need to memset here the intersected rule here as
1541                          * we're not using the stack anymore
1542                          */
1543                         if (r)
1544                                 continue;
1545
1546                         add_rule(&intersected_rule, rd->reg_rules,
1547                                  &rd->n_reg_rules);
1548                 }
1549         }
1550
1551         rd->alpha2[0] = '9';
1552         rd->alpha2[1] = '8';
1553         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1554                                                   rd2->dfs_region);
1555
1556         return rd;
1557 }
1558
1559 /*
1560  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1561  * want to just have the channel structure use these
1562  */
1563 static u32 map_regdom_flags(u32 rd_flags)
1564 {
1565         u32 channel_flags = 0;
1566         if (rd_flags & NL80211_RRF_NO_IR_ALL)
1567                 channel_flags |= IEEE80211_CHAN_NO_IR;
1568         if (rd_flags & NL80211_RRF_DFS)
1569                 channel_flags |= IEEE80211_CHAN_RADAR;
1570         if (rd_flags & NL80211_RRF_NO_OFDM)
1571                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1572         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1573                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1574         if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1575                 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1576         if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1577                 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1578         if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1579                 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1580         if (rd_flags & NL80211_RRF_NO_80MHZ)
1581                 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1582         if (rd_flags & NL80211_RRF_NO_160MHZ)
1583                 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1584         if (rd_flags & NL80211_RRF_NO_HE)
1585                 channel_flags |= IEEE80211_CHAN_NO_HE;
1586         return channel_flags;
1587 }
1588
1589 static const struct ieee80211_reg_rule *
1590 freq_reg_info_regd(u32 center_freq,
1591                    const struct ieee80211_regdomain *regd, u32 bw)
1592 {
1593         int i;
1594         bool band_rule_found = false;
1595         bool bw_fits = false;
1596
1597         if (!regd)
1598                 return ERR_PTR(-EINVAL);
1599
1600         for (i = 0; i < regd->n_reg_rules; i++) {
1601                 const struct ieee80211_reg_rule *rr;
1602                 const struct ieee80211_freq_range *fr = NULL;
1603
1604                 rr = &regd->reg_rules[i];
1605                 fr = &rr->freq_range;
1606
1607                 /*
1608                  * We only need to know if one frequency rule was
1609                  * in center_freq's band, that's enough, so let's
1610                  * not overwrite it once found
1611                  */
1612                 if (!band_rule_found)
1613                         band_rule_found = freq_in_rule_band(fr, center_freq);
1614
1615                 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1616
1617                 if (band_rule_found && bw_fits)
1618                         return rr;
1619         }
1620
1621         if (!band_rule_found)
1622                 return ERR_PTR(-ERANGE);
1623
1624         return ERR_PTR(-EINVAL);
1625 }
1626
1627 static const struct ieee80211_reg_rule *
1628 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1629 {
1630         const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1631         static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1632         const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1633         int i = ARRAY_SIZE(bws) - 1;
1634         u32 bw;
1635
1636         for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1637                 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1638                 if (!IS_ERR(reg_rule))
1639                         return reg_rule;
1640         }
1641
1642         return reg_rule;
1643 }
1644
1645 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1646                                                u32 center_freq)
1647 {
1648         u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1649
1650         return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1651 }
1652 EXPORT_SYMBOL(freq_reg_info);
1653
1654 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1655 {
1656         switch (initiator) {
1657         case NL80211_REGDOM_SET_BY_CORE:
1658                 return "core";
1659         case NL80211_REGDOM_SET_BY_USER:
1660                 return "user";
1661         case NL80211_REGDOM_SET_BY_DRIVER:
1662                 return "driver";
1663         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1664                 return "country element";
1665         default:
1666                 WARN_ON(1);
1667                 return "bug";
1668         }
1669 }
1670 EXPORT_SYMBOL(reg_initiator_name);
1671
1672 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1673                                           const struct ieee80211_reg_rule *reg_rule,
1674                                           const struct ieee80211_channel *chan)
1675 {
1676         const struct ieee80211_freq_range *freq_range = NULL;
1677         u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1678         bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1679
1680         freq_range = &reg_rule->freq_range;
1681
1682         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1683         center_freq_khz = ieee80211_channel_to_khz(chan);
1684         /* Check if auto calculation requested */
1685         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1686                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1687
1688         /* If we get a reg_rule we can assume that at least 5Mhz fit */
1689         if (!cfg80211_does_bw_fit_range(freq_range,
1690                                         center_freq_khz,
1691                                         MHZ_TO_KHZ(10)))
1692                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1693         if (!cfg80211_does_bw_fit_range(freq_range,
1694                                         center_freq_khz,
1695                                         MHZ_TO_KHZ(20)))
1696                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1697
1698         if (is_s1g) {
1699                 /* S1G is strict about non overlapping channels. We can
1700                  * calculate which bandwidth is allowed per channel by finding
1701                  * the largest bandwidth which cleanly divides the freq_range.
1702                  */
1703                 int edge_offset;
1704                 int ch_bw = max_bandwidth_khz;
1705
1706                 while (ch_bw) {
1707                         edge_offset = (center_freq_khz - ch_bw / 2) -
1708                                       freq_range->start_freq_khz;
1709                         if (edge_offset % ch_bw == 0) {
1710                                 switch (KHZ_TO_MHZ(ch_bw)) {
1711                                 case 1:
1712                                         bw_flags |= IEEE80211_CHAN_1MHZ;
1713                                         break;
1714                                 case 2:
1715                                         bw_flags |= IEEE80211_CHAN_2MHZ;
1716                                         break;
1717                                 case 4:
1718                                         bw_flags |= IEEE80211_CHAN_4MHZ;
1719                                         break;
1720                                 case 8:
1721                                         bw_flags |= IEEE80211_CHAN_8MHZ;
1722                                         break;
1723                                 case 16:
1724                                         bw_flags |= IEEE80211_CHAN_16MHZ;
1725                                         break;
1726                                 default:
1727                                         /* If we got here, no bandwidths fit on
1728                                          * this frequency, ie. band edge.
1729                                          */
1730                                         bw_flags |= IEEE80211_CHAN_DISABLED;
1731                                         break;
1732                                 }
1733                                 break;
1734                         }
1735                         ch_bw /= 2;
1736                 }
1737         } else {
1738                 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1739                         bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1740                 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1741                         bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1742                 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1743                         bw_flags |= IEEE80211_CHAN_NO_HT40;
1744                 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1745                         bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1746                 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1747                         bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1748         }
1749         return bw_flags;
1750 }
1751
1752 static void handle_channel_single_rule(struct wiphy *wiphy,
1753                                        enum nl80211_reg_initiator initiator,
1754                                        struct ieee80211_channel *chan,
1755                                        u32 flags,
1756                                        struct regulatory_request *lr,
1757                                        struct wiphy *request_wiphy,
1758                                        const struct ieee80211_reg_rule *reg_rule)
1759 {
1760         u32 bw_flags = 0;
1761         const struct ieee80211_power_rule *power_rule = NULL;
1762         const struct ieee80211_regdomain *regd;
1763
1764         regd = reg_get_regdomain(wiphy);
1765
1766         power_rule = &reg_rule->power_rule;
1767         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1768
1769         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1770             request_wiphy && request_wiphy == wiphy &&
1771             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1772                 /*
1773                  * This guarantees the driver's requested regulatory domain
1774                  * will always be used as a base for further regulatory
1775                  * settings
1776                  */
1777                 chan->flags = chan->orig_flags =
1778                         map_regdom_flags(reg_rule->flags) | bw_flags;
1779                 chan->max_antenna_gain = chan->orig_mag =
1780                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1781                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1782                         (int) MBM_TO_DBM(power_rule->max_eirp);
1783
1784                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1785                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1786                         if (reg_rule->dfs_cac_ms)
1787                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1788                 }
1789
1790                 return;
1791         }
1792
1793         chan->dfs_state = NL80211_DFS_USABLE;
1794         chan->dfs_state_entered = jiffies;
1795
1796         chan->beacon_found = false;
1797         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1798         chan->max_antenna_gain =
1799                 min_t(int, chan->orig_mag,
1800                       MBI_TO_DBI(power_rule->max_antenna_gain));
1801         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1802
1803         if (chan->flags & IEEE80211_CHAN_RADAR) {
1804                 if (reg_rule->dfs_cac_ms)
1805                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1806                 else
1807                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1808         }
1809
1810         if (chan->orig_mpwr) {
1811                 /*
1812                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1813                  * will always follow the passed country IE power settings.
1814                  */
1815                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1816                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1817                         chan->max_power = chan->max_reg_power;
1818                 else
1819                         chan->max_power = min(chan->orig_mpwr,
1820                                               chan->max_reg_power);
1821         } else
1822                 chan->max_power = chan->max_reg_power;
1823 }
1824
1825 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1826                                           enum nl80211_reg_initiator initiator,
1827                                           struct ieee80211_channel *chan,
1828                                           u32 flags,
1829                                           struct regulatory_request *lr,
1830                                           struct wiphy *request_wiphy,
1831                                           const struct ieee80211_reg_rule *rrule1,
1832                                           const struct ieee80211_reg_rule *rrule2,
1833                                           struct ieee80211_freq_range *comb_range)
1834 {
1835         u32 bw_flags1 = 0;
1836         u32 bw_flags2 = 0;
1837         const struct ieee80211_power_rule *power_rule1 = NULL;
1838         const struct ieee80211_power_rule *power_rule2 = NULL;
1839         const struct ieee80211_regdomain *regd;
1840
1841         regd = reg_get_regdomain(wiphy);
1842
1843         power_rule1 = &rrule1->power_rule;
1844         power_rule2 = &rrule2->power_rule;
1845         bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1846         bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1847
1848         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1849             request_wiphy && request_wiphy == wiphy &&
1850             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1851                 /* This guarantees the driver's requested regulatory domain
1852                  * will always be used as a base for further regulatory
1853                  * settings
1854                  */
1855                 chan->flags =
1856                         map_regdom_flags(rrule1->flags) |
1857                         map_regdom_flags(rrule2->flags) |
1858                         bw_flags1 |
1859                         bw_flags2;
1860                 chan->orig_flags = chan->flags;
1861                 chan->max_antenna_gain =
1862                         min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1863                               MBI_TO_DBI(power_rule2->max_antenna_gain));
1864                 chan->orig_mag = chan->max_antenna_gain;
1865                 chan->max_reg_power =
1866                         min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1867                               MBM_TO_DBM(power_rule2->max_eirp));
1868                 chan->max_power = chan->max_reg_power;
1869                 chan->orig_mpwr = chan->max_reg_power;
1870
1871                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1872                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1873                         if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1874                                 chan->dfs_cac_ms = max_t(unsigned int,
1875                                                          rrule1->dfs_cac_ms,
1876                                                          rrule2->dfs_cac_ms);
1877                 }
1878
1879                 return;
1880         }
1881
1882         chan->dfs_state = NL80211_DFS_USABLE;
1883         chan->dfs_state_entered = jiffies;
1884
1885         chan->beacon_found = false;
1886         chan->flags = flags | bw_flags1 | bw_flags2 |
1887                       map_regdom_flags(rrule1->flags) |
1888                       map_regdom_flags(rrule2->flags);
1889
1890         /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1891          * (otherwise no adj. rule case), recheck therefore
1892          */
1893         if (cfg80211_does_bw_fit_range(comb_range,
1894                                        ieee80211_channel_to_khz(chan),
1895                                        MHZ_TO_KHZ(10)))
1896                 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1897         if (cfg80211_does_bw_fit_range(comb_range,
1898                                        ieee80211_channel_to_khz(chan),
1899                                        MHZ_TO_KHZ(20)))
1900                 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1901
1902         chan->max_antenna_gain =
1903                 min_t(int, chan->orig_mag,
1904                       min_t(int,
1905                             MBI_TO_DBI(power_rule1->max_antenna_gain),
1906                             MBI_TO_DBI(power_rule2->max_antenna_gain)));
1907         chan->max_reg_power = min_t(int,
1908                                     MBM_TO_DBM(power_rule1->max_eirp),
1909                                     MBM_TO_DBM(power_rule2->max_eirp));
1910
1911         if (chan->flags & IEEE80211_CHAN_RADAR) {
1912                 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1913                         chan->dfs_cac_ms = max_t(unsigned int,
1914                                                  rrule1->dfs_cac_ms,
1915                                                  rrule2->dfs_cac_ms);
1916                 else
1917                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1918         }
1919
1920         if (chan->orig_mpwr) {
1921                 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1922                  * will always follow the passed country IE power settings.
1923                  */
1924                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1925                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1926                         chan->max_power = chan->max_reg_power;
1927                 else
1928                         chan->max_power = min(chan->orig_mpwr,
1929                                               chan->max_reg_power);
1930         } else {
1931                 chan->max_power = chan->max_reg_power;
1932         }
1933 }
1934
1935 /* Note that right now we assume the desired channel bandwidth
1936  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1937  * per channel, the primary and the extension channel).
1938  */
1939 static void handle_channel(struct wiphy *wiphy,
1940                            enum nl80211_reg_initiator initiator,
1941                            struct ieee80211_channel *chan)
1942 {
1943         const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1944         struct regulatory_request *lr = get_last_request();
1945         struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1946         const struct ieee80211_reg_rule *rrule = NULL;
1947         const struct ieee80211_reg_rule *rrule1 = NULL;
1948         const struct ieee80211_reg_rule *rrule2 = NULL;
1949
1950         u32 flags = chan->orig_flags;
1951
1952         rrule = freq_reg_info(wiphy, orig_chan_freq);
1953         if (IS_ERR(rrule)) {
1954                 /* check for adjacent match, therefore get rules for
1955                  * chan - 20 MHz and chan + 20 MHz and test
1956                  * if reg rules are adjacent
1957                  */
1958                 rrule1 = freq_reg_info(wiphy,
1959                                        orig_chan_freq - MHZ_TO_KHZ(20));
1960                 rrule2 = freq_reg_info(wiphy,
1961                                        orig_chan_freq + MHZ_TO_KHZ(20));
1962                 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1963                         struct ieee80211_freq_range comb_range;
1964
1965                         if (rrule1->freq_range.end_freq_khz !=
1966                             rrule2->freq_range.start_freq_khz)
1967                                 goto disable_chan;
1968
1969                         comb_range.start_freq_khz =
1970                                 rrule1->freq_range.start_freq_khz;
1971                         comb_range.end_freq_khz =
1972                                 rrule2->freq_range.end_freq_khz;
1973                         comb_range.max_bandwidth_khz =
1974                                 min_t(u32,
1975                                       rrule1->freq_range.max_bandwidth_khz,
1976                                       rrule2->freq_range.max_bandwidth_khz);
1977
1978                         if (!cfg80211_does_bw_fit_range(&comb_range,
1979                                                         orig_chan_freq,
1980                                                         MHZ_TO_KHZ(20)))
1981                                 goto disable_chan;
1982
1983                         handle_channel_adjacent_rules(wiphy, initiator, chan,
1984                                                       flags, lr, request_wiphy,
1985                                                       rrule1, rrule2,
1986                                                       &comb_range);
1987                         return;
1988                 }
1989
1990 disable_chan:
1991                 /* We will disable all channels that do not match our
1992                  * received regulatory rule unless the hint is coming
1993                  * from a Country IE and the Country IE had no information
1994                  * about a band. The IEEE 802.11 spec allows for an AP
1995                  * to send only a subset of the regulatory rules allowed,
1996                  * so an AP in the US that only supports 2.4 GHz may only send
1997                  * a country IE with information for the 2.4 GHz band
1998                  * while 5 GHz is still supported.
1999                  */
2000                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2001                     PTR_ERR(rrule) == -ERANGE)
2002                         return;
2003
2004                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2005                     request_wiphy && request_wiphy == wiphy &&
2006                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2007                         pr_debug("Disabling freq %d.%03d MHz for good\n",
2008                                  chan->center_freq, chan->freq_offset);
2009                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2010                         chan->flags = chan->orig_flags;
2011                 } else {
2012                         pr_debug("Disabling freq %d.%03d MHz\n",
2013                                  chan->center_freq, chan->freq_offset);
2014                         chan->flags |= IEEE80211_CHAN_DISABLED;
2015                 }
2016                 return;
2017         }
2018
2019         handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2020                                    request_wiphy, rrule);
2021 }
2022
2023 static void handle_band(struct wiphy *wiphy,
2024                         enum nl80211_reg_initiator initiator,
2025                         struct ieee80211_supported_band *sband)
2026 {
2027         unsigned int i;
2028
2029         if (!sband)
2030                 return;
2031
2032         for (i = 0; i < sband->n_channels; i++)
2033                 handle_channel(wiphy, initiator, &sband->channels[i]);
2034 }
2035
2036 static bool reg_request_cell_base(struct regulatory_request *request)
2037 {
2038         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2039                 return false;
2040         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2041 }
2042
2043 bool reg_last_request_cell_base(void)
2044 {
2045         return reg_request_cell_base(get_last_request());
2046 }
2047
2048 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2049 /* Core specific check */
2050 static enum reg_request_treatment
2051 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2052 {
2053         struct regulatory_request *lr = get_last_request();
2054
2055         if (!reg_num_devs_support_basehint)
2056                 return REG_REQ_IGNORE;
2057
2058         if (reg_request_cell_base(lr) &&
2059             !regdom_changes(pending_request->alpha2))
2060                 return REG_REQ_ALREADY_SET;
2061
2062         return REG_REQ_OK;
2063 }
2064
2065 /* Device specific check */
2066 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2067 {
2068         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2069 }
2070 #else
2071 static enum reg_request_treatment
2072 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2073 {
2074         return REG_REQ_IGNORE;
2075 }
2076
2077 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2078 {
2079         return true;
2080 }
2081 #endif
2082
2083 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2084 {
2085         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2086             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2087                 return true;
2088         return false;
2089 }
2090
2091 static bool ignore_reg_update(struct wiphy *wiphy,
2092                               enum nl80211_reg_initiator initiator)
2093 {
2094         struct regulatory_request *lr = get_last_request();
2095
2096         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2097                 return true;
2098
2099         if (!lr) {
2100                 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2101                          reg_initiator_name(initiator));
2102                 return true;
2103         }
2104
2105         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2106             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2107                 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2108                          reg_initiator_name(initiator));
2109                 return true;
2110         }
2111
2112         /*
2113          * wiphy->regd will be set once the device has its own
2114          * desired regulatory domain set
2115          */
2116         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2117             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2118             !is_world_regdom(lr->alpha2)) {
2119                 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2120                          reg_initiator_name(initiator));
2121                 return true;
2122         }
2123
2124         if (reg_request_cell_base(lr))
2125                 return reg_dev_ignore_cell_hint(wiphy);
2126
2127         return false;
2128 }
2129
2130 static bool reg_is_world_roaming(struct wiphy *wiphy)
2131 {
2132         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2133         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2134         struct regulatory_request *lr = get_last_request();
2135
2136         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2137                 return true;
2138
2139         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2140             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2141                 return true;
2142
2143         return false;
2144 }
2145
2146 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2147                               struct reg_beacon *reg_beacon)
2148 {
2149         struct ieee80211_supported_band *sband;
2150         struct ieee80211_channel *chan;
2151         bool channel_changed = false;
2152         struct ieee80211_channel chan_before;
2153
2154         sband = wiphy->bands[reg_beacon->chan.band];
2155         chan = &sband->channels[chan_idx];
2156
2157         if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2158                 return;
2159
2160         if (chan->beacon_found)
2161                 return;
2162
2163         chan->beacon_found = true;
2164
2165         if (!reg_is_world_roaming(wiphy))
2166                 return;
2167
2168         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2169                 return;
2170
2171         chan_before = *chan;
2172
2173         if (chan->flags & IEEE80211_CHAN_NO_IR) {
2174                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
2175                 channel_changed = true;
2176         }
2177
2178         if (channel_changed)
2179                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2180 }
2181
2182 /*
2183  * Called when a scan on a wiphy finds a beacon on
2184  * new channel
2185  */
2186 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2187                                     struct reg_beacon *reg_beacon)
2188 {
2189         unsigned int i;
2190         struct ieee80211_supported_band *sband;
2191
2192         if (!wiphy->bands[reg_beacon->chan.band])
2193                 return;
2194
2195         sband = wiphy->bands[reg_beacon->chan.band];
2196
2197         for (i = 0; i < sband->n_channels; i++)
2198                 handle_reg_beacon(wiphy, i, reg_beacon);
2199 }
2200
2201 /*
2202  * Called upon reg changes or a new wiphy is added
2203  */
2204 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2205 {
2206         unsigned int i;
2207         struct ieee80211_supported_band *sband;
2208         struct reg_beacon *reg_beacon;
2209
2210         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2211                 if (!wiphy->bands[reg_beacon->chan.band])
2212                         continue;
2213                 sband = wiphy->bands[reg_beacon->chan.band];
2214                 for (i = 0; i < sband->n_channels; i++)
2215                         handle_reg_beacon(wiphy, i, reg_beacon);
2216         }
2217 }
2218
2219 /* Reap the advantages of previously found beacons */
2220 static void reg_process_beacons(struct wiphy *wiphy)
2221 {
2222         /*
2223          * Means we are just firing up cfg80211, so no beacons would
2224          * have been processed yet.
2225          */
2226         if (!last_request)
2227                 return;
2228         wiphy_update_beacon_reg(wiphy);
2229 }
2230
2231 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2232 {
2233         if (!chan)
2234                 return false;
2235         if (chan->flags & IEEE80211_CHAN_DISABLED)
2236                 return false;
2237         /* This would happen when regulatory rules disallow HT40 completely */
2238         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2239                 return false;
2240         return true;
2241 }
2242
2243 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2244                                          struct ieee80211_channel *channel)
2245 {
2246         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2247         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2248         const struct ieee80211_regdomain *regd;
2249         unsigned int i;
2250         u32 flags;
2251
2252         if (!is_ht40_allowed(channel)) {
2253                 channel->flags |= IEEE80211_CHAN_NO_HT40;
2254                 return;
2255         }
2256
2257         /*
2258          * We need to ensure the extension channels exist to
2259          * be able to use HT40- or HT40+, this finds them (or not)
2260          */
2261         for (i = 0; i < sband->n_channels; i++) {
2262                 struct ieee80211_channel *c = &sband->channels[i];
2263
2264                 if (c->center_freq == (channel->center_freq - 20))
2265                         channel_before = c;
2266                 if (c->center_freq == (channel->center_freq + 20))
2267                         channel_after = c;
2268         }
2269
2270         flags = 0;
2271         regd = get_wiphy_regdom(wiphy);
2272         if (regd) {
2273                 const struct ieee80211_reg_rule *reg_rule =
2274                         freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2275                                            regd, MHZ_TO_KHZ(20));
2276
2277                 if (!IS_ERR(reg_rule))
2278                         flags = reg_rule->flags;
2279         }
2280
2281         /*
2282          * Please note that this assumes target bandwidth is 20 MHz,
2283          * if that ever changes we also need to change the below logic
2284          * to include that as well.
2285          */
2286         if (!is_ht40_allowed(channel_before) ||
2287             flags & NL80211_RRF_NO_HT40MINUS)
2288                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2289         else
2290                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2291
2292         if (!is_ht40_allowed(channel_after) ||
2293             flags & NL80211_RRF_NO_HT40PLUS)
2294                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2295         else
2296                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2297 }
2298
2299 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2300                                       struct ieee80211_supported_band *sband)
2301 {
2302         unsigned int i;
2303
2304         if (!sband)
2305                 return;
2306
2307         for (i = 0; i < sband->n_channels; i++)
2308                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2309 }
2310
2311 static void reg_process_ht_flags(struct wiphy *wiphy)
2312 {
2313         enum nl80211_band band;
2314
2315         if (!wiphy)
2316                 return;
2317
2318         for (band = 0; band < NUM_NL80211_BANDS; band++)
2319                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2320 }
2321
2322 static void reg_call_notifier(struct wiphy *wiphy,
2323                               struct regulatory_request *request)
2324 {
2325         if (wiphy->reg_notifier)
2326                 wiphy->reg_notifier(wiphy, request);
2327 }
2328
2329 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2330 {
2331         struct cfg80211_chan_def chandef = {};
2332         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2333         enum nl80211_iftype iftype;
2334
2335         wdev_lock(wdev);
2336         iftype = wdev->iftype;
2337
2338         /* make sure the interface is active */
2339         if (!wdev->netdev || !netif_running(wdev->netdev))
2340                 goto wdev_inactive_unlock;
2341
2342         switch (iftype) {
2343         case NL80211_IFTYPE_AP:
2344         case NL80211_IFTYPE_P2P_GO:
2345                 if (!wdev->beacon_interval)
2346                         goto wdev_inactive_unlock;
2347                 chandef = wdev->chandef;
2348                 break;
2349         case NL80211_IFTYPE_ADHOC:
2350                 if (!wdev->ssid_len)
2351                         goto wdev_inactive_unlock;
2352                 chandef = wdev->chandef;
2353                 break;
2354         case NL80211_IFTYPE_STATION:
2355         case NL80211_IFTYPE_P2P_CLIENT:
2356                 if (!wdev->current_bss ||
2357                     !wdev->current_bss->pub.channel)
2358                         goto wdev_inactive_unlock;
2359
2360                 if (!rdev->ops->get_channel ||
2361                     rdev_get_channel(rdev, wdev, &chandef))
2362                         cfg80211_chandef_create(&chandef,
2363                                                 wdev->current_bss->pub.channel,
2364                                                 NL80211_CHAN_NO_HT);
2365                 break;
2366         case NL80211_IFTYPE_MONITOR:
2367         case NL80211_IFTYPE_AP_VLAN:
2368         case NL80211_IFTYPE_P2P_DEVICE:
2369                 /* no enforcement required */
2370                 break;
2371         default:
2372                 /* others not implemented for now */
2373                 WARN_ON(1);
2374                 break;
2375         }
2376
2377         wdev_unlock(wdev);
2378
2379         switch (iftype) {
2380         case NL80211_IFTYPE_AP:
2381         case NL80211_IFTYPE_P2P_GO:
2382         case NL80211_IFTYPE_ADHOC:
2383                 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2384         case NL80211_IFTYPE_STATION:
2385         case NL80211_IFTYPE_P2P_CLIENT:
2386                 return cfg80211_chandef_usable(wiphy, &chandef,
2387                                                IEEE80211_CHAN_DISABLED);
2388         default:
2389                 break;
2390         }
2391
2392         return true;
2393
2394 wdev_inactive_unlock:
2395         wdev_unlock(wdev);
2396         return true;
2397 }
2398
2399 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2400 {
2401         struct wireless_dev *wdev;
2402         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2403
2404         ASSERT_RTNL();
2405
2406         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2407                 if (!reg_wdev_chan_valid(wiphy, wdev))
2408                         cfg80211_leave(rdev, wdev);
2409 }
2410
2411 static void reg_check_chans_work(struct work_struct *work)
2412 {
2413         struct cfg80211_registered_device *rdev;
2414
2415         pr_debug("Verifying active interfaces after reg change\n");
2416         rtnl_lock();
2417
2418         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2419                 if (!(rdev->wiphy.regulatory_flags &
2420                       REGULATORY_IGNORE_STALE_KICKOFF))
2421                         reg_leave_invalid_chans(&rdev->wiphy);
2422
2423         rtnl_unlock();
2424 }
2425
2426 static void reg_check_channels(void)
2427 {
2428         /*
2429          * Give usermode a chance to do something nicer (move to another
2430          * channel, orderly disconnection), before forcing a disconnection.
2431          */
2432         mod_delayed_work(system_power_efficient_wq,
2433                          &reg_check_chans,
2434                          msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2435 }
2436
2437 static void wiphy_update_regulatory(struct wiphy *wiphy,
2438                                     enum nl80211_reg_initiator initiator)
2439 {
2440         enum nl80211_band band;
2441         struct regulatory_request *lr = get_last_request();
2442
2443         if (ignore_reg_update(wiphy, initiator)) {
2444                 /*
2445                  * Regulatory updates set by CORE are ignored for custom
2446                  * regulatory cards. Let us notify the changes to the driver,
2447                  * as some drivers used this to restore its orig_* reg domain.
2448                  */
2449                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2450                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2451                     !(wiphy->regulatory_flags &
2452                       REGULATORY_WIPHY_SELF_MANAGED))
2453                         reg_call_notifier(wiphy, lr);
2454                 return;
2455         }
2456
2457         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2458
2459         for (band = 0; band < NUM_NL80211_BANDS; band++)
2460                 handle_band(wiphy, initiator, wiphy->bands[band]);
2461
2462         reg_process_beacons(wiphy);
2463         reg_process_ht_flags(wiphy);
2464         reg_call_notifier(wiphy, lr);
2465 }
2466
2467 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2468 {
2469         struct cfg80211_registered_device *rdev;
2470         struct wiphy *wiphy;
2471
2472         ASSERT_RTNL();
2473
2474         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2475                 wiphy = &rdev->wiphy;
2476                 wiphy_update_regulatory(wiphy, initiator);
2477         }
2478
2479         reg_check_channels();
2480 }
2481
2482 static void handle_channel_custom(struct wiphy *wiphy,
2483                                   struct ieee80211_channel *chan,
2484                                   const struct ieee80211_regdomain *regd,
2485                                   u32 min_bw)
2486 {
2487         u32 bw_flags = 0;
2488         const struct ieee80211_reg_rule *reg_rule = NULL;
2489         const struct ieee80211_power_rule *power_rule = NULL;
2490         u32 bw, center_freq_khz;
2491
2492         center_freq_khz = ieee80211_channel_to_khz(chan);
2493         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2494                 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2495                 if (!IS_ERR(reg_rule))
2496                         break;
2497         }
2498
2499         if (IS_ERR_OR_NULL(reg_rule)) {
2500                 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2501                          chan->center_freq, chan->freq_offset);
2502                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2503                         chan->flags |= IEEE80211_CHAN_DISABLED;
2504                 } else {
2505                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2506                         chan->flags = chan->orig_flags;
2507                 }
2508                 return;
2509         }
2510
2511         power_rule = &reg_rule->power_rule;
2512         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2513
2514         chan->dfs_state_entered = jiffies;
2515         chan->dfs_state = NL80211_DFS_USABLE;
2516
2517         chan->beacon_found = false;
2518
2519         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2520                 chan->flags = chan->orig_flags | bw_flags |
2521                               map_regdom_flags(reg_rule->flags);
2522         else
2523                 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2524
2525         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2526         chan->max_reg_power = chan->max_power =
2527                 (int) MBM_TO_DBM(power_rule->max_eirp);
2528
2529         if (chan->flags & IEEE80211_CHAN_RADAR) {
2530                 if (reg_rule->dfs_cac_ms)
2531                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2532                 else
2533                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2534         }
2535
2536         chan->max_power = chan->max_reg_power;
2537 }
2538
2539 static void handle_band_custom(struct wiphy *wiphy,
2540                                struct ieee80211_supported_band *sband,
2541                                const struct ieee80211_regdomain *regd)
2542 {
2543         unsigned int i;
2544
2545         if (!sband)
2546                 return;
2547
2548         /*
2549          * We currently assume that you always want at least 20 MHz,
2550          * otherwise channel 12 might get enabled if this rule is
2551          * compatible to US, which permits 2402 - 2472 MHz.
2552          */
2553         for (i = 0; i < sband->n_channels; i++)
2554                 handle_channel_custom(wiphy, &sband->channels[i], regd,
2555                                       MHZ_TO_KHZ(20));
2556 }
2557
2558 /* Used by drivers prior to wiphy registration */
2559 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2560                                    const struct ieee80211_regdomain *regd)
2561 {
2562         const struct ieee80211_regdomain *new_regd, *tmp;
2563         enum nl80211_band band;
2564         unsigned int bands_set = 0;
2565
2566         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2567              "wiphy should have REGULATORY_CUSTOM_REG\n");
2568         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2569
2570         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2571                 if (!wiphy->bands[band])
2572                         continue;
2573                 handle_band_custom(wiphy, wiphy->bands[band], regd);
2574                 bands_set++;
2575         }
2576
2577         /*
2578          * no point in calling this if it won't have any effect
2579          * on your device's supported bands.
2580          */
2581         WARN_ON(!bands_set);
2582         new_regd = reg_copy_regd(regd);
2583         if (IS_ERR(new_regd))
2584                 return;
2585
2586         rtnl_lock();
2587         wiphy_lock(wiphy);
2588
2589         tmp = get_wiphy_regdom(wiphy);
2590         rcu_assign_pointer(wiphy->regd, new_regd);
2591         rcu_free_regdom(tmp);
2592
2593         wiphy_unlock(wiphy);
2594         rtnl_unlock();
2595 }
2596 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2597
2598 static void reg_set_request_processed(void)
2599 {
2600         bool need_more_processing = false;
2601         struct regulatory_request *lr = get_last_request();
2602
2603         lr->processed = true;
2604
2605         spin_lock(&reg_requests_lock);
2606         if (!list_empty(&reg_requests_list))
2607                 need_more_processing = true;
2608         spin_unlock(&reg_requests_lock);
2609
2610         cancel_crda_timeout();
2611
2612         if (need_more_processing)
2613                 schedule_work(&reg_work);
2614 }
2615
2616 /**
2617  * reg_process_hint_core - process core regulatory requests
2618  * @core_request: a pending core regulatory request
2619  *
2620  * The wireless subsystem can use this function to process
2621  * a regulatory request issued by the regulatory core.
2622  */
2623 static enum reg_request_treatment
2624 reg_process_hint_core(struct regulatory_request *core_request)
2625 {
2626         if (reg_query_database(core_request)) {
2627                 core_request->intersect = false;
2628                 core_request->processed = false;
2629                 reg_update_last_request(core_request);
2630                 return REG_REQ_OK;
2631         }
2632
2633         return REG_REQ_IGNORE;
2634 }
2635
2636 static enum reg_request_treatment
2637 __reg_process_hint_user(struct regulatory_request *user_request)
2638 {
2639         struct regulatory_request *lr = get_last_request();
2640
2641         if (reg_request_cell_base(user_request))
2642                 return reg_ignore_cell_hint(user_request);
2643
2644         if (reg_request_cell_base(lr))
2645                 return REG_REQ_IGNORE;
2646
2647         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2648                 return REG_REQ_INTERSECT;
2649         /*
2650          * If the user knows better the user should set the regdom
2651          * to their country before the IE is picked up
2652          */
2653         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2654             lr->intersect)
2655                 return REG_REQ_IGNORE;
2656         /*
2657          * Process user requests only after previous user/driver/core
2658          * requests have been processed
2659          */
2660         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2661              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2662              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2663             regdom_changes(lr->alpha2))
2664                 return REG_REQ_IGNORE;
2665
2666         if (!regdom_changes(user_request->alpha2))
2667                 return REG_REQ_ALREADY_SET;
2668
2669         return REG_REQ_OK;
2670 }
2671
2672 /**
2673  * reg_process_hint_user - process user regulatory requests
2674  * @user_request: a pending user regulatory request
2675  *
2676  * The wireless subsystem can use this function to process
2677  * a regulatory request initiated by userspace.
2678  */
2679 static enum reg_request_treatment
2680 reg_process_hint_user(struct regulatory_request *user_request)
2681 {
2682         enum reg_request_treatment treatment;
2683
2684         treatment = __reg_process_hint_user(user_request);
2685         if (treatment == REG_REQ_IGNORE ||
2686             treatment == REG_REQ_ALREADY_SET)
2687                 return REG_REQ_IGNORE;
2688
2689         user_request->intersect = treatment == REG_REQ_INTERSECT;
2690         user_request->processed = false;
2691
2692         if (reg_query_database(user_request)) {
2693                 reg_update_last_request(user_request);
2694                 user_alpha2[0] = user_request->alpha2[0];
2695                 user_alpha2[1] = user_request->alpha2[1];
2696                 return REG_REQ_OK;
2697         }
2698
2699         return REG_REQ_IGNORE;
2700 }
2701
2702 static enum reg_request_treatment
2703 __reg_process_hint_driver(struct regulatory_request *driver_request)
2704 {
2705         struct regulatory_request *lr = get_last_request();
2706
2707         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2708                 if (regdom_changes(driver_request->alpha2))
2709                         return REG_REQ_OK;
2710                 return REG_REQ_ALREADY_SET;
2711         }
2712
2713         /*
2714          * This would happen if you unplug and plug your card
2715          * back in or if you add a new device for which the previously
2716          * loaded card also agrees on the regulatory domain.
2717          */
2718         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2719             !regdom_changes(driver_request->alpha2))
2720                 return REG_REQ_ALREADY_SET;
2721
2722         return REG_REQ_INTERSECT;
2723 }
2724
2725 /**
2726  * reg_process_hint_driver - process driver regulatory requests
2727  * @wiphy: the wireless device for the regulatory request
2728  * @driver_request: a pending driver regulatory request
2729  *
2730  * The wireless subsystem can use this function to process
2731  * a regulatory request issued by an 802.11 driver.
2732  *
2733  * Returns one of the different reg request treatment values.
2734  */
2735 static enum reg_request_treatment
2736 reg_process_hint_driver(struct wiphy *wiphy,
2737                         struct regulatory_request *driver_request)
2738 {
2739         const struct ieee80211_regdomain *regd, *tmp;
2740         enum reg_request_treatment treatment;
2741
2742         treatment = __reg_process_hint_driver(driver_request);
2743
2744         switch (treatment) {
2745         case REG_REQ_OK:
2746                 break;
2747         case REG_REQ_IGNORE:
2748                 return REG_REQ_IGNORE;
2749         case REG_REQ_INTERSECT:
2750         case REG_REQ_ALREADY_SET:
2751                 regd = reg_copy_regd(get_cfg80211_regdom());
2752                 if (IS_ERR(regd))
2753                         return REG_REQ_IGNORE;
2754
2755                 tmp = get_wiphy_regdom(wiphy);
2756                 ASSERT_RTNL();
2757                 wiphy_lock(wiphy);
2758                 rcu_assign_pointer(wiphy->regd, regd);
2759                 wiphy_unlock(wiphy);
2760                 rcu_free_regdom(tmp);
2761         }
2762
2763
2764         driver_request->intersect = treatment == REG_REQ_INTERSECT;
2765         driver_request->processed = false;
2766
2767         /*
2768          * Since CRDA will not be called in this case as we already
2769          * have applied the requested regulatory domain before we just
2770          * inform userspace we have processed the request
2771          */
2772         if (treatment == REG_REQ_ALREADY_SET) {
2773                 nl80211_send_reg_change_event(driver_request);
2774                 reg_update_last_request(driver_request);
2775                 reg_set_request_processed();
2776                 return REG_REQ_ALREADY_SET;
2777         }
2778
2779         if (reg_query_database(driver_request)) {
2780                 reg_update_last_request(driver_request);
2781                 return REG_REQ_OK;
2782         }
2783
2784         return REG_REQ_IGNORE;
2785 }
2786
2787 static enum reg_request_treatment
2788 __reg_process_hint_country_ie(struct wiphy *wiphy,
2789                               struct regulatory_request *country_ie_request)
2790 {
2791         struct wiphy *last_wiphy = NULL;
2792         struct regulatory_request *lr = get_last_request();
2793
2794         if (reg_request_cell_base(lr)) {
2795                 /* Trust a Cell base station over the AP's country IE */
2796                 if (regdom_changes(country_ie_request->alpha2))
2797                         return REG_REQ_IGNORE;
2798                 return REG_REQ_ALREADY_SET;
2799         } else {
2800                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2801                         return REG_REQ_IGNORE;
2802         }
2803
2804         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2805                 return -EINVAL;
2806
2807         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2808                 return REG_REQ_OK;
2809
2810         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2811
2812         if (last_wiphy != wiphy) {
2813                 /*
2814                  * Two cards with two APs claiming different
2815                  * Country IE alpha2s. We could
2816                  * intersect them, but that seems unlikely
2817                  * to be correct. Reject second one for now.
2818                  */
2819                 if (regdom_changes(country_ie_request->alpha2))
2820                         return REG_REQ_IGNORE;
2821                 return REG_REQ_ALREADY_SET;
2822         }
2823
2824         if (regdom_changes(country_ie_request->alpha2))
2825                 return REG_REQ_OK;
2826         return REG_REQ_ALREADY_SET;
2827 }
2828
2829 /**
2830  * reg_process_hint_country_ie - process regulatory requests from country IEs
2831  * @wiphy: the wireless device for the regulatory request
2832  * @country_ie_request: a regulatory request from a country IE
2833  *
2834  * The wireless subsystem can use this function to process
2835  * a regulatory request issued by a country Information Element.
2836  *
2837  * Returns one of the different reg request treatment values.
2838  */
2839 static enum reg_request_treatment
2840 reg_process_hint_country_ie(struct wiphy *wiphy,
2841                             struct regulatory_request *country_ie_request)
2842 {
2843         enum reg_request_treatment treatment;
2844
2845         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2846
2847         switch (treatment) {
2848         case REG_REQ_OK:
2849                 break;
2850         case REG_REQ_IGNORE:
2851                 return REG_REQ_IGNORE;
2852         case REG_REQ_ALREADY_SET:
2853                 reg_free_request(country_ie_request);
2854                 return REG_REQ_ALREADY_SET;
2855         case REG_REQ_INTERSECT:
2856                 /*
2857                  * This doesn't happen yet, not sure we
2858                  * ever want to support it for this case.
2859                  */
2860                 WARN_ONCE(1, "Unexpected intersection for country elements");
2861                 return REG_REQ_IGNORE;
2862         }
2863
2864         country_ie_request->intersect = false;
2865         country_ie_request->processed = false;
2866
2867         if (reg_query_database(country_ie_request)) {
2868                 reg_update_last_request(country_ie_request);
2869                 return REG_REQ_OK;
2870         }
2871
2872         return REG_REQ_IGNORE;
2873 }
2874
2875 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2876 {
2877         const struct ieee80211_regdomain *wiphy1_regd = NULL;
2878         const struct ieee80211_regdomain *wiphy2_regd = NULL;
2879         const struct ieee80211_regdomain *cfg80211_regd = NULL;
2880         bool dfs_domain_same;
2881
2882         rcu_read_lock();
2883
2884         cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2885         wiphy1_regd = rcu_dereference(wiphy1->regd);
2886         if (!wiphy1_regd)
2887                 wiphy1_regd = cfg80211_regd;
2888
2889         wiphy2_regd = rcu_dereference(wiphy2->regd);
2890         if (!wiphy2_regd)
2891                 wiphy2_regd = cfg80211_regd;
2892
2893         dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2894
2895         rcu_read_unlock();
2896
2897         return dfs_domain_same;
2898 }
2899
2900 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2901                                     struct ieee80211_channel *src_chan)
2902 {
2903         if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2904             !(src_chan->flags & IEEE80211_CHAN_RADAR))
2905                 return;
2906
2907         if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2908             src_chan->flags & IEEE80211_CHAN_DISABLED)
2909                 return;
2910
2911         if (src_chan->center_freq == dst_chan->center_freq &&
2912             dst_chan->dfs_state == NL80211_DFS_USABLE) {
2913                 dst_chan->dfs_state = src_chan->dfs_state;
2914                 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2915         }
2916 }
2917
2918 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2919                                        struct wiphy *src_wiphy)
2920 {
2921         struct ieee80211_supported_band *src_sband, *dst_sband;
2922         struct ieee80211_channel *src_chan, *dst_chan;
2923         int i, j, band;
2924
2925         if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2926                 return;
2927
2928         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2929                 dst_sband = dst_wiphy->bands[band];
2930                 src_sband = src_wiphy->bands[band];
2931                 if (!dst_sband || !src_sband)
2932                         continue;
2933
2934                 for (i = 0; i < dst_sband->n_channels; i++) {
2935                         dst_chan = &dst_sband->channels[i];
2936                         for (j = 0; j < src_sband->n_channels; j++) {
2937                                 src_chan = &src_sband->channels[j];
2938                                 reg_copy_dfs_chan_state(dst_chan, src_chan);
2939                         }
2940                 }
2941         }
2942 }
2943
2944 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2945 {
2946         struct cfg80211_registered_device *rdev;
2947
2948         ASSERT_RTNL();
2949
2950         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2951                 if (wiphy == &rdev->wiphy)
2952                         continue;
2953                 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2954         }
2955 }
2956
2957 /* This processes *all* regulatory hints */
2958 static void reg_process_hint(struct regulatory_request *reg_request)
2959 {
2960         struct wiphy *wiphy = NULL;
2961         enum reg_request_treatment treatment;
2962         enum nl80211_reg_initiator initiator = reg_request->initiator;
2963
2964         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2965                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2966
2967         switch (initiator) {
2968         case NL80211_REGDOM_SET_BY_CORE:
2969                 treatment = reg_process_hint_core(reg_request);
2970                 break;
2971         case NL80211_REGDOM_SET_BY_USER:
2972                 treatment = reg_process_hint_user(reg_request);
2973                 break;
2974         case NL80211_REGDOM_SET_BY_DRIVER:
2975                 if (!wiphy)
2976                         goto out_free;
2977                 treatment = reg_process_hint_driver(wiphy, reg_request);
2978                 break;
2979         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2980                 if (!wiphy)
2981                         goto out_free;
2982                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2983                 break;
2984         default:
2985                 WARN(1, "invalid initiator %d\n", initiator);
2986                 goto out_free;
2987         }
2988
2989         if (treatment == REG_REQ_IGNORE)
2990                 goto out_free;
2991
2992         WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2993              "unexpected treatment value %d\n", treatment);
2994
2995         /* This is required so that the orig_* parameters are saved.
2996          * NOTE: treatment must be set for any case that reaches here!
2997          */
2998         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2999             wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3000                 wiphy_update_regulatory(wiphy, initiator);
3001                 wiphy_all_share_dfs_chan_state(wiphy);
3002                 reg_check_channels();
3003         }
3004
3005         return;
3006
3007 out_free:
3008         reg_free_request(reg_request);
3009 }
3010
3011 static void notify_self_managed_wiphys(struct regulatory_request *request)
3012 {
3013         struct cfg80211_registered_device *rdev;
3014         struct wiphy *wiphy;
3015
3016         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3017                 wiphy = &rdev->wiphy;
3018                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3019                     request->initiator == NL80211_REGDOM_SET_BY_USER)
3020                         reg_call_notifier(wiphy, request);
3021         }
3022 }
3023
3024 /*
3025  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3026  * Regulatory hints come on a first come first serve basis and we
3027  * must process each one atomically.
3028  */
3029 static void reg_process_pending_hints(void)
3030 {
3031         struct regulatory_request *reg_request, *lr;
3032
3033         lr = get_last_request();
3034
3035         /* When last_request->processed becomes true this will be rescheduled */
3036         if (lr && !lr->processed) {
3037                 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3038                 return;
3039         }
3040
3041         spin_lock(&reg_requests_lock);
3042
3043         if (list_empty(&reg_requests_list)) {
3044                 spin_unlock(&reg_requests_lock);
3045                 return;
3046         }
3047
3048         reg_request = list_first_entry(&reg_requests_list,
3049                                        struct regulatory_request,
3050                                        list);
3051         list_del_init(&reg_request->list);
3052
3053         spin_unlock(&reg_requests_lock);
3054
3055         notify_self_managed_wiphys(reg_request);
3056
3057         reg_process_hint(reg_request);
3058
3059         lr = get_last_request();
3060
3061         spin_lock(&reg_requests_lock);
3062         if (!list_empty(&reg_requests_list) && lr && lr->processed)
3063                 schedule_work(&reg_work);
3064         spin_unlock(&reg_requests_lock);
3065 }
3066
3067 /* Processes beacon hints -- this has nothing to do with country IEs */
3068 static void reg_process_pending_beacon_hints(void)
3069 {
3070         struct cfg80211_registered_device *rdev;
3071         struct reg_beacon *pending_beacon, *tmp;
3072
3073         /* This goes through the _pending_ beacon list */
3074         spin_lock_bh(&reg_pending_beacons_lock);
3075
3076         list_for_each_entry_safe(pending_beacon, tmp,
3077                                  &reg_pending_beacons, list) {
3078                 list_del_init(&pending_beacon->list);
3079
3080                 /* Applies the beacon hint to current wiphys */
3081                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3082                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3083
3084                 /* Remembers the beacon hint for new wiphys or reg changes */
3085                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
3086         }
3087
3088         spin_unlock_bh(&reg_pending_beacons_lock);
3089 }
3090
3091 static void reg_process_self_managed_hint(struct wiphy *wiphy)
3092 {
3093         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3094         const struct ieee80211_regdomain *tmp;
3095         const struct ieee80211_regdomain *regd;
3096         enum nl80211_band band;
3097         struct regulatory_request request = {};
3098
3099         ASSERT_RTNL();
3100         lockdep_assert_wiphy(wiphy);
3101
3102         spin_lock(&reg_requests_lock);
3103         regd = rdev->requested_regd;
3104         rdev->requested_regd = NULL;
3105         spin_unlock(&reg_requests_lock);
3106
3107         if (!regd)
3108                 return;
3109
3110         tmp = get_wiphy_regdom(wiphy);
3111         rcu_assign_pointer(wiphy->regd, regd);
3112         rcu_free_regdom(tmp);
3113
3114         for (band = 0; band < NUM_NL80211_BANDS; band++)
3115                 handle_band_custom(wiphy, wiphy->bands[band], regd);
3116
3117         reg_process_ht_flags(wiphy);
3118
3119         request.wiphy_idx = get_wiphy_idx(wiphy);
3120         request.alpha2[0] = regd->alpha2[0];
3121         request.alpha2[1] = regd->alpha2[1];
3122         request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3123
3124         nl80211_send_wiphy_reg_change_event(&request);
3125 }
3126
3127 static void reg_process_self_managed_hints(void)
3128 {
3129         struct cfg80211_registered_device *rdev;
3130
3131         ASSERT_RTNL();
3132
3133         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3134                 wiphy_lock(&rdev->wiphy);
3135                 reg_process_self_managed_hint(&rdev->wiphy);
3136                 wiphy_unlock(&rdev->wiphy);
3137         }
3138
3139         reg_check_channels();
3140 }
3141
3142 static void reg_todo(struct work_struct *work)
3143 {
3144         rtnl_lock();
3145         reg_process_pending_hints();
3146         reg_process_pending_beacon_hints();
3147         reg_process_self_managed_hints();
3148         rtnl_unlock();
3149 }
3150
3151 static void queue_regulatory_request(struct regulatory_request *request)
3152 {
3153         request->alpha2[0] = toupper(request->alpha2[0]);
3154         request->alpha2[1] = toupper(request->alpha2[1]);
3155
3156         spin_lock(&reg_requests_lock);
3157         list_add_tail(&request->list, &reg_requests_list);
3158         spin_unlock(&reg_requests_lock);
3159
3160         schedule_work(&reg_work);
3161 }
3162
3163 /*
3164  * Core regulatory hint -- happens during cfg80211_init()
3165  * and when we restore regulatory settings.
3166  */
3167 static int regulatory_hint_core(const char *alpha2)
3168 {
3169         struct regulatory_request *request;
3170
3171         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3172         if (!request)
3173                 return -ENOMEM;
3174
3175         request->alpha2[0] = alpha2[0];
3176         request->alpha2[1] = alpha2[1];
3177         request->initiator = NL80211_REGDOM_SET_BY_CORE;
3178         request->wiphy_idx = WIPHY_IDX_INVALID;
3179
3180         queue_regulatory_request(request);
3181
3182         return 0;
3183 }
3184
3185 /* User hints */
3186 int regulatory_hint_user(const char *alpha2,
3187                          enum nl80211_user_reg_hint_type user_reg_hint_type)
3188 {
3189         struct regulatory_request *request;
3190
3191         if (WARN_ON(!alpha2))
3192                 return -EINVAL;
3193
3194         if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3195                 return -EINVAL;
3196
3197         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3198         if (!request)
3199                 return -ENOMEM;
3200
3201         request->wiphy_idx = WIPHY_IDX_INVALID;
3202         request->alpha2[0] = alpha2[0];
3203         request->alpha2[1] = alpha2[1];
3204         request->initiator = NL80211_REGDOM_SET_BY_USER;
3205         request->user_reg_hint_type = user_reg_hint_type;
3206
3207         /* Allow calling CRDA again */
3208         reset_crda_timeouts();
3209
3210         queue_regulatory_request(request);
3211
3212         return 0;
3213 }
3214
3215 int regulatory_hint_indoor(bool is_indoor, u32 portid)
3216 {
3217         spin_lock(&reg_indoor_lock);
3218
3219         /* It is possible that more than one user space process is trying to
3220          * configure the indoor setting. To handle such cases, clear the indoor
3221          * setting in case that some process does not think that the device
3222          * is operating in an indoor environment. In addition, if a user space
3223          * process indicates that it is controlling the indoor setting, save its
3224          * portid, i.e., make it the owner.
3225          */
3226         reg_is_indoor = is_indoor;
3227         if (reg_is_indoor) {
3228                 if (!reg_is_indoor_portid)
3229                         reg_is_indoor_portid = portid;
3230         } else {
3231                 reg_is_indoor_portid = 0;
3232         }
3233
3234         spin_unlock(&reg_indoor_lock);
3235
3236         if (!is_indoor)
3237                 reg_check_channels();
3238
3239         return 0;
3240 }
3241
3242 void regulatory_netlink_notify(u32 portid)
3243 {
3244         spin_lock(&reg_indoor_lock);
3245
3246         if (reg_is_indoor_portid != portid) {
3247                 spin_unlock(&reg_indoor_lock);
3248                 return;
3249         }
3250
3251         reg_is_indoor = false;
3252         reg_is_indoor_portid = 0;
3253
3254         spin_unlock(&reg_indoor_lock);
3255
3256         reg_check_channels();
3257 }
3258
3259 /* Driver hints */
3260 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3261 {
3262         struct regulatory_request *request;
3263
3264         if (WARN_ON(!alpha2 || !wiphy))
3265                 return -EINVAL;
3266
3267         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3268
3269         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3270         if (!request)
3271                 return -ENOMEM;
3272
3273         request->wiphy_idx = get_wiphy_idx(wiphy);
3274
3275         request->alpha2[0] = alpha2[0];
3276         request->alpha2[1] = alpha2[1];
3277         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3278
3279         /* Allow calling CRDA again */
3280         reset_crda_timeouts();
3281
3282         queue_regulatory_request(request);
3283
3284         return 0;
3285 }
3286 EXPORT_SYMBOL(regulatory_hint);
3287
3288 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3289                                 const u8 *country_ie, u8 country_ie_len)
3290 {
3291         char alpha2[2];
3292         enum environment_cap env = ENVIRON_ANY;
3293         struct regulatory_request *request = NULL, *lr;
3294
3295         /* IE len must be evenly divisible by 2 */
3296         if (country_ie_len & 0x01)
3297                 return;
3298
3299         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3300                 return;
3301
3302         request = kzalloc(sizeof(*request), GFP_KERNEL);
3303         if (!request)
3304                 return;
3305
3306         alpha2[0] = country_ie[0];
3307         alpha2[1] = country_ie[1];
3308
3309         if (country_ie[2] == 'I')
3310                 env = ENVIRON_INDOOR;
3311         else if (country_ie[2] == 'O')
3312                 env = ENVIRON_OUTDOOR;
3313
3314         rcu_read_lock();
3315         lr = get_last_request();
3316
3317         if (unlikely(!lr))
3318                 goto out;
3319
3320         /*
3321          * We will run this only upon a successful connection on cfg80211.
3322          * We leave conflict resolution to the workqueue, where can hold
3323          * the RTNL.
3324          */
3325         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3326             lr->wiphy_idx != WIPHY_IDX_INVALID)
3327                 goto out;
3328
3329         request->wiphy_idx = get_wiphy_idx(wiphy);
3330         request->alpha2[0] = alpha2[0];
3331         request->alpha2[1] = alpha2[1];
3332         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3333         request->country_ie_env = env;
3334
3335         /* Allow calling CRDA again */
3336         reset_crda_timeouts();
3337
3338         queue_regulatory_request(request);
3339         request = NULL;
3340 out:
3341         kfree(request);
3342         rcu_read_unlock();
3343 }
3344
3345 static void restore_alpha2(char *alpha2, bool reset_user)
3346 {
3347         /* indicates there is no alpha2 to consider for restoration */
3348         alpha2[0] = '9';
3349         alpha2[1] = '7';
3350
3351         /* The user setting has precedence over the module parameter */
3352         if (is_user_regdom_saved()) {
3353                 /* Unless we're asked to ignore it and reset it */
3354                 if (reset_user) {
3355                         pr_debug("Restoring regulatory settings including user preference\n");
3356                         user_alpha2[0] = '9';
3357                         user_alpha2[1] = '7';
3358
3359                         /*
3360                          * If we're ignoring user settings, we still need to
3361                          * check the module parameter to ensure we put things
3362                          * back as they were for a full restore.
3363                          */
3364                         if (!is_world_regdom(ieee80211_regdom)) {
3365                                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3366                                          ieee80211_regdom[0], ieee80211_regdom[1]);
3367                                 alpha2[0] = ieee80211_regdom[0];
3368                                 alpha2[1] = ieee80211_regdom[1];
3369                         }
3370                 } else {
3371                         pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3372                                  user_alpha2[0], user_alpha2[1]);
3373                         alpha2[0] = user_alpha2[0];
3374                         alpha2[1] = user_alpha2[1];
3375                 }
3376         } else if (!is_world_regdom(ieee80211_regdom)) {
3377                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3378                          ieee80211_regdom[0], ieee80211_regdom[1]);
3379                 alpha2[0] = ieee80211_regdom[0];
3380                 alpha2[1] = ieee80211_regdom[1];
3381         } else
3382                 pr_debug("Restoring regulatory settings\n");
3383 }
3384
3385 static void restore_custom_reg_settings(struct wiphy *wiphy)
3386 {
3387         struct ieee80211_supported_band *sband;
3388         enum nl80211_band band;
3389         struct ieee80211_channel *chan;
3390         int i;
3391
3392         for (band = 0; band < NUM_NL80211_BANDS; band++) {
3393                 sband = wiphy->bands[band];
3394                 if (!sband)
3395                         continue;
3396                 for (i = 0; i < sband->n_channels; i++) {
3397                         chan = &sband->channels[i];
3398                         chan->flags = chan->orig_flags;
3399                         chan->max_antenna_gain = chan->orig_mag;
3400                         chan->max_power = chan->orig_mpwr;
3401                         chan->beacon_found = false;
3402                 }
3403         }
3404 }
3405
3406 /*
3407  * Restoring regulatory settings involves ignoring any
3408  * possibly stale country IE information and user regulatory
3409  * settings if so desired, this includes any beacon hints
3410  * learned as we could have traveled outside to another country
3411  * after disconnection. To restore regulatory settings we do
3412  * exactly what we did at bootup:
3413  *
3414  *   - send a core regulatory hint
3415  *   - send a user regulatory hint if applicable
3416  *
3417  * Device drivers that send a regulatory hint for a specific country
3418  * keep their own regulatory domain on wiphy->regd so that does
3419  * not need to be remembered.
3420  */
3421 static void restore_regulatory_settings(bool reset_user, bool cached)
3422 {
3423         char alpha2[2];
3424         char world_alpha2[2];
3425         struct reg_beacon *reg_beacon, *btmp;
3426         LIST_HEAD(tmp_reg_req_list);
3427         struct cfg80211_registered_device *rdev;
3428
3429         ASSERT_RTNL();
3430
3431         /*
3432          * Clear the indoor setting in case that it is not controlled by user
3433          * space, as otherwise there is no guarantee that the device is still
3434          * operating in an indoor environment.
3435          */
3436         spin_lock(&reg_indoor_lock);
3437         if (reg_is_indoor && !reg_is_indoor_portid) {
3438                 reg_is_indoor = false;
3439                 reg_check_channels();
3440         }
3441         spin_unlock(&reg_indoor_lock);
3442
3443         reset_regdomains(true, &world_regdom);
3444         restore_alpha2(alpha2, reset_user);
3445
3446         /*
3447          * If there's any pending requests we simply
3448          * stash them to a temporary pending queue and
3449          * add then after we've restored regulatory
3450          * settings.
3451          */
3452         spin_lock(&reg_requests_lock);
3453         list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3454         spin_unlock(&reg_requests_lock);
3455
3456         /* Clear beacon hints */
3457         spin_lock_bh(&reg_pending_beacons_lock);
3458         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3459                 list_del(&reg_beacon->list);
3460                 kfree(reg_beacon);
3461         }
3462         spin_unlock_bh(&reg_pending_beacons_lock);
3463
3464         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3465                 list_del(&reg_beacon->list);
3466                 kfree(reg_beacon);
3467         }
3468
3469         /* First restore to the basic regulatory settings */
3470         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3471         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3472
3473         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3474                 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3475                         continue;
3476                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3477                         restore_custom_reg_settings(&rdev->wiphy);
3478         }
3479
3480         if (cached && (!is_an_alpha2(alpha2) ||
3481                        !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3482                 reset_regdomains(false, cfg80211_world_regdom);
3483                 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3484                 print_regdomain(get_cfg80211_regdom());
3485                 nl80211_send_reg_change_event(&core_request_world);
3486                 reg_set_request_processed();
3487
3488                 if (is_an_alpha2(alpha2) &&
3489                     !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3490                         struct regulatory_request *ureq;
3491
3492                         spin_lock(&reg_requests_lock);
3493                         ureq = list_last_entry(&reg_requests_list,
3494                                                struct regulatory_request,
3495                                                list);
3496                         list_del(&ureq->list);
3497                         spin_unlock(&reg_requests_lock);
3498
3499                         notify_self_managed_wiphys(ureq);
3500                         reg_update_last_request(ureq);
3501                         set_regdom(reg_copy_regd(cfg80211_user_regdom),
3502                                    REGD_SOURCE_CACHED);
3503                 }
3504         } else {
3505                 regulatory_hint_core(world_alpha2);
3506
3507                 /*
3508                  * This restores the ieee80211_regdom module parameter
3509                  * preference or the last user requested regulatory
3510                  * settings, user regulatory settings takes precedence.
3511                  */
3512                 if (is_an_alpha2(alpha2))
3513                         regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3514         }
3515
3516         spin_lock(&reg_requests_lock);
3517         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3518         spin_unlock(&reg_requests_lock);
3519
3520         pr_debug("Kicking the queue\n");
3521
3522         schedule_work(&reg_work);
3523 }
3524
3525 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3526 {
3527         struct cfg80211_registered_device *rdev;
3528         struct wireless_dev *wdev;
3529
3530         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3531                 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3532                         wdev_lock(wdev);
3533                         if (!(wdev->wiphy->regulatory_flags & flag)) {
3534                                 wdev_unlock(wdev);
3535                                 return false;
3536                         }
3537                         wdev_unlock(wdev);
3538                 }
3539         }
3540
3541         return true;
3542 }
3543
3544 void regulatory_hint_disconnect(void)
3545 {
3546         /* Restore of regulatory settings is not required when wiphy(s)
3547          * ignore IE from connected access point but clearance of beacon hints
3548          * is required when wiphy(s) supports beacon hints.
3549          */
3550         if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3551                 struct reg_beacon *reg_beacon, *btmp;
3552
3553                 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3554                         return;
3555
3556                 spin_lock_bh(&reg_pending_beacons_lock);
3557                 list_for_each_entry_safe(reg_beacon, btmp,
3558                                          &reg_pending_beacons, list) {
3559                         list_del(&reg_beacon->list);
3560                         kfree(reg_beacon);
3561                 }
3562                 spin_unlock_bh(&reg_pending_beacons_lock);
3563
3564                 list_for_each_entry_safe(reg_beacon, btmp,
3565                                          &reg_beacon_list, list) {
3566                         list_del(&reg_beacon->list);
3567                         kfree(reg_beacon);
3568                 }
3569
3570                 return;
3571         }
3572
3573         pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3574         restore_regulatory_settings(false, true);
3575 }
3576
3577 static bool freq_is_chan_12_13_14(u32 freq)
3578 {
3579         if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3580             freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3581             freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3582                 return true;
3583         return false;
3584 }
3585
3586 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3587 {
3588         struct reg_beacon *pending_beacon;
3589
3590         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3591                 if (ieee80211_channel_equal(beacon_chan,
3592                                             &pending_beacon->chan))
3593                         return true;
3594         return false;
3595 }
3596
3597 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3598                                  struct ieee80211_channel *beacon_chan,
3599                                  gfp_t gfp)
3600 {
3601         struct reg_beacon *reg_beacon;
3602         bool processing;
3603
3604         if (beacon_chan->beacon_found ||
3605             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3606             (beacon_chan->band == NL80211_BAND_2GHZ &&
3607              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3608                 return 0;
3609
3610         spin_lock_bh(&reg_pending_beacons_lock);
3611         processing = pending_reg_beacon(beacon_chan);
3612         spin_unlock_bh(&reg_pending_beacons_lock);
3613
3614         if (processing)
3615                 return 0;
3616
3617         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3618         if (!reg_beacon)
3619                 return -ENOMEM;
3620
3621         pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3622                  beacon_chan->center_freq, beacon_chan->freq_offset,
3623                  ieee80211_freq_khz_to_channel(
3624                          ieee80211_channel_to_khz(beacon_chan)),
3625                  wiphy_name(wiphy));
3626
3627         memcpy(&reg_beacon->chan, beacon_chan,
3628                sizeof(struct ieee80211_channel));
3629
3630         /*
3631          * Since we can be called from BH or and non-BH context
3632          * we must use spin_lock_bh()
3633          */
3634         spin_lock_bh(&reg_pending_beacons_lock);
3635         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3636         spin_unlock_bh(&reg_pending_beacons_lock);
3637
3638         schedule_work(&reg_work);
3639
3640         return 0;
3641 }
3642
3643 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3644 {
3645         unsigned int i;
3646         const struct ieee80211_reg_rule *reg_rule = NULL;
3647         const struct ieee80211_freq_range *freq_range = NULL;
3648         const struct ieee80211_power_rule *power_rule = NULL;
3649         char bw[32], cac_time[32];
3650
3651         pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3652
3653         for (i = 0; i < rd->n_reg_rules; i++) {
3654                 reg_rule = &rd->reg_rules[i];
3655                 freq_range = &reg_rule->freq_range;
3656                 power_rule = &reg_rule->power_rule;
3657
3658                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3659                         snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3660                                  freq_range->max_bandwidth_khz,
3661                                  reg_get_max_bandwidth(rd, reg_rule));
3662                 else
3663                         snprintf(bw, sizeof(bw), "%d KHz",
3664                                  freq_range->max_bandwidth_khz);
3665
3666                 if (reg_rule->flags & NL80211_RRF_DFS)
3667                         scnprintf(cac_time, sizeof(cac_time), "%u s",
3668                                   reg_rule->dfs_cac_ms/1000);
3669                 else
3670                         scnprintf(cac_time, sizeof(cac_time), "N/A");
3671
3672
3673                 /*
3674                  * There may not be documentation for max antenna gain
3675                  * in certain regions
3676                  */
3677                 if (power_rule->max_antenna_gain)
3678                         pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3679                                 freq_range->start_freq_khz,
3680                                 freq_range->end_freq_khz,
3681                                 bw,
3682                                 power_rule->max_antenna_gain,
3683                                 power_rule->max_eirp,
3684                                 cac_time);
3685                 else
3686                         pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3687                                 freq_range->start_freq_khz,
3688                                 freq_range->end_freq_khz,
3689                                 bw,
3690                                 power_rule->max_eirp,
3691                                 cac_time);
3692         }
3693 }
3694
3695 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3696 {
3697         switch (dfs_region) {
3698         case NL80211_DFS_UNSET:
3699         case NL80211_DFS_FCC:
3700         case NL80211_DFS_ETSI:
3701         case NL80211_DFS_JP:
3702                 return true;
3703         default:
3704                 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3705                 return false;
3706         }
3707 }
3708
3709 static void print_regdomain(const struct ieee80211_regdomain *rd)
3710 {
3711         struct regulatory_request *lr = get_last_request();
3712
3713         if (is_intersected_alpha2(rd->alpha2)) {
3714                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3715                         struct cfg80211_registered_device *rdev;
3716                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3717                         if (rdev) {
3718                                 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3719                                         rdev->country_ie_alpha2[0],
3720                                         rdev->country_ie_alpha2[1]);
3721                         } else
3722                                 pr_debug("Current regulatory domain intersected:\n");
3723                 } else
3724                         pr_debug("Current regulatory domain intersected:\n");
3725         } else if (is_world_regdom(rd->alpha2)) {
3726                 pr_debug("World regulatory domain updated:\n");
3727         } else {
3728                 if (is_unknown_alpha2(rd->alpha2))
3729                         pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3730                 else {
3731                         if (reg_request_cell_base(lr))
3732                                 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3733                                         rd->alpha2[0], rd->alpha2[1]);
3734                         else
3735                                 pr_debug("Regulatory domain changed to country: %c%c\n",
3736                                         rd->alpha2[0], rd->alpha2[1]);
3737                 }
3738         }
3739
3740         pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3741         print_rd_rules(rd);
3742 }
3743
3744 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3745 {
3746         pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3747         print_rd_rules(rd);
3748 }
3749
3750 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3751 {
3752         if (!is_world_regdom(rd->alpha2))
3753                 return -EINVAL;
3754         update_world_regdomain(rd);
3755         return 0;
3756 }
3757
3758 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3759                            struct regulatory_request *user_request)
3760 {
3761         const struct ieee80211_regdomain *intersected_rd = NULL;
3762
3763         if (!regdom_changes(rd->alpha2))
3764                 return -EALREADY;
3765
3766         if (!is_valid_rd(rd)) {
3767                 pr_err("Invalid regulatory domain detected: %c%c\n",
3768                        rd->alpha2[0], rd->alpha2[1]);
3769                 print_regdomain_info(rd);
3770                 return -EINVAL;
3771         }
3772
3773         if (!user_request->intersect) {
3774                 reset_regdomains(false, rd);
3775                 return 0;
3776         }
3777
3778         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3779         if (!intersected_rd)
3780                 return -EINVAL;
3781
3782         kfree(rd);
3783         rd = NULL;
3784         reset_regdomains(false, intersected_rd);
3785
3786         return 0;
3787 }
3788
3789 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3790                              struct regulatory_request *driver_request)
3791 {
3792         const struct ieee80211_regdomain *regd;
3793         const struct ieee80211_regdomain *intersected_rd = NULL;
3794         const struct ieee80211_regdomain *tmp;
3795         struct wiphy *request_wiphy;
3796
3797         if (is_world_regdom(rd->alpha2))
3798                 return -EINVAL;
3799
3800         if (!regdom_changes(rd->alpha2))
3801                 return -EALREADY;
3802
3803         if (!is_valid_rd(rd)) {
3804                 pr_err("Invalid regulatory domain detected: %c%c\n",
3805                        rd->alpha2[0], rd->alpha2[1]);
3806                 print_regdomain_info(rd);
3807                 return -EINVAL;
3808         }
3809
3810         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3811         if (!request_wiphy)
3812                 return -ENODEV;
3813
3814         if (!driver_request->intersect) {
3815                 ASSERT_RTNL();
3816                 wiphy_lock(request_wiphy);
3817                 if (request_wiphy->regd) {
3818                         wiphy_unlock(request_wiphy);
3819                         return -EALREADY;
3820                 }
3821
3822                 regd = reg_copy_regd(rd);
3823                 if (IS_ERR(regd)) {
3824                         wiphy_unlock(request_wiphy);
3825                         return PTR_ERR(regd);
3826                 }
3827
3828                 rcu_assign_pointer(request_wiphy->regd, regd);
3829                 wiphy_unlock(request_wiphy);
3830                 reset_regdomains(false, rd);
3831                 return 0;
3832         }
3833
3834         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3835         if (!intersected_rd)
3836                 return -EINVAL;
3837
3838         /*
3839          * We can trash what CRDA provided now.
3840          * However if a driver requested this specific regulatory
3841          * domain we keep it for its private use
3842          */
3843         tmp = get_wiphy_regdom(request_wiphy);
3844         rcu_assign_pointer(request_wiphy->regd, rd);
3845         rcu_free_regdom(tmp);
3846
3847         rd = NULL;
3848
3849         reset_regdomains(false, intersected_rd);
3850
3851         return 0;
3852 }
3853
3854 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3855                                  struct regulatory_request *country_ie_request)
3856 {
3857         struct wiphy *request_wiphy;
3858
3859         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3860             !is_unknown_alpha2(rd->alpha2))
3861                 return -EINVAL;
3862
3863         /*
3864          * Lets only bother proceeding on the same alpha2 if the current
3865          * rd is non static (it means CRDA was present and was used last)
3866          * and the pending request came in from a country IE
3867          */
3868
3869         if (!is_valid_rd(rd)) {
3870                 pr_err("Invalid regulatory domain detected: %c%c\n",
3871                        rd->alpha2[0], rd->alpha2[1]);
3872                 print_regdomain_info(rd);
3873                 return -EINVAL;
3874         }
3875
3876         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3877         if (!request_wiphy)
3878                 return -ENODEV;
3879
3880         if (country_ie_request->intersect)
3881                 return -EINVAL;
3882
3883         reset_regdomains(false, rd);
3884         return 0;
3885 }
3886
3887 /*
3888  * Use this call to set the current regulatory domain. Conflicts with
3889  * multiple drivers can be ironed out later. Caller must've already
3890  * kmalloc'd the rd structure.
3891  */
3892 int set_regdom(const struct ieee80211_regdomain *rd,
3893                enum ieee80211_regd_source regd_src)
3894 {
3895         struct regulatory_request *lr;
3896         bool user_reset = false;
3897         int r;
3898
3899         if (IS_ERR_OR_NULL(rd))
3900                 return -ENODATA;
3901
3902         if (!reg_is_valid_request(rd->alpha2)) {
3903                 kfree(rd);
3904                 return -EINVAL;
3905         }
3906
3907         if (regd_src == REGD_SOURCE_CRDA)
3908                 reset_crda_timeouts();
3909
3910         lr = get_last_request();
3911
3912         /* Note that this doesn't update the wiphys, this is done below */
3913         switch (lr->initiator) {
3914         case NL80211_REGDOM_SET_BY_CORE:
3915                 r = reg_set_rd_core(rd);
3916                 break;
3917         case NL80211_REGDOM_SET_BY_USER:
3918                 cfg80211_save_user_regdom(rd);
3919                 r = reg_set_rd_user(rd, lr);
3920                 user_reset = true;
3921                 break;
3922         case NL80211_REGDOM_SET_BY_DRIVER:
3923                 r = reg_set_rd_driver(rd, lr);
3924                 break;
3925         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3926                 r = reg_set_rd_country_ie(rd, lr);
3927                 break;
3928         default:
3929                 WARN(1, "invalid initiator %d\n", lr->initiator);
3930                 kfree(rd);
3931                 return -EINVAL;
3932         }
3933
3934         if (r) {
3935                 switch (r) {
3936                 case -EALREADY:
3937                         reg_set_request_processed();
3938                         break;
3939                 default:
3940                         /* Back to world regulatory in case of errors */
3941                         restore_regulatory_settings(user_reset, false);
3942                 }
3943
3944                 kfree(rd);
3945                 return r;
3946         }
3947
3948         /* This would make this whole thing pointless */
3949         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3950                 return -EINVAL;
3951
3952         /* update all wiphys now with the new established regulatory domain */
3953         update_all_wiphy_regulatory(lr->initiator);
3954
3955         print_regdomain(get_cfg80211_regdom());
3956
3957         nl80211_send_reg_change_event(lr);
3958
3959         reg_set_request_processed();
3960
3961         return 0;
3962 }
3963
3964 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3965                                        struct ieee80211_regdomain *rd)
3966 {
3967         const struct ieee80211_regdomain *regd;
3968         const struct ieee80211_regdomain *prev_regd;
3969         struct cfg80211_registered_device *rdev;
3970
3971         if (WARN_ON(!wiphy || !rd))
3972                 return -EINVAL;
3973
3974         if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3975                  "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3976                 return -EPERM;
3977
3978         if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3979                 print_regdomain_info(rd);
3980                 return -EINVAL;
3981         }
3982
3983         regd = reg_copy_regd(rd);
3984         if (IS_ERR(regd))
3985                 return PTR_ERR(regd);
3986
3987         rdev = wiphy_to_rdev(wiphy);
3988
3989         spin_lock(&reg_requests_lock);
3990         prev_regd = rdev->requested_regd;
3991         rdev->requested_regd = regd;
3992         spin_unlock(&reg_requests_lock);
3993
3994         kfree(prev_regd);
3995         return 0;
3996 }
3997
3998 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3999                               struct ieee80211_regdomain *rd)
4000 {
4001         int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4002
4003         if (ret)
4004                 return ret;
4005
4006         schedule_work(&reg_work);
4007         return 0;
4008 }
4009 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4010
4011 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4012                                    struct ieee80211_regdomain *rd)
4013 {
4014         int ret;
4015
4016         ASSERT_RTNL();
4017
4018         ret = __regulatory_set_wiphy_regd(wiphy, rd);
4019         if (ret)
4020                 return ret;
4021
4022         /* process the request immediately */
4023         reg_process_self_managed_hint(wiphy);
4024         reg_check_channels();
4025         return 0;
4026 }
4027 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4028
4029 void wiphy_regulatory_register(struct wiphy *wiphy)
4030 {
4031         struct regulatory_request *lr = get_last_request();
4032
4033         /* self-managed devices ignore beacon hints and country IE */
4034         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4035                 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4036                                            REGULATORY_COUNTRY_IE_IGNORE;
4037
4038                 /*
4039                  * The last request may have been received before this
4040                  * registration call. Call the driver notifier if
4041                  * initiator is USER.
4042                  */
4043                 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4044                         reg_call_notifier(wiphy, lr);
4045         }
4046
4047         if (!reg_dev_ignore_cell_hint(wiphy))
4048                 reg_num_devs_support_basehint++;
4049
4050         wiphy_update_regulatory(wiphy, lr->initiator);
4051         wiphy_all_share_dfs_chan_state(wiphy);
4052 }
4053
4054 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4055 {
4056         struct wiphy *request_wiphy = NULL;
4057         struct regulatory_request *lr;
4058
4059         lr = get_last_request();
4060
4061         if (!reg_dev_ignore_cell_hint(wiphy))
4062                 reg_num_devs_support_basehint--;
4063
4064         rcu_free_regdom(get_wiphy_regdom(wiphy));
4065         RCU_INIT_POINTER(wiphy->regd, NULL);
4066
4067         if (lr)
4068                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4069
4070         if (!request_wiphy || request_wiphy != wiphy)
4071                 return;
4072
4073         lr->wiphy_idx = WIPHY_IDX_INVALID;
4074         lr->country_ie_env = ENVIRON_ANY;
4075 }
4076
4077 /*
4078  * See FCC notices for UNII band definitions
4079  *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4080  *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4081  */
4082 int cfg80211_get_unii(int freq)
4083 {
4084         /* UNII-1 */
4085         if (freq >= 5150 && freq <= 5250)
4086                 return 0;
4087
4088         /* UNII-2A */
4089         if (freq > 5250 && freq <= 5350)
4090                 return 1;
4091
4092         /* UNII-2B */
4093         if (freq > 5350 && freq <= 5470)
4094                 return 2;
4095
4096         /* UNII-2C */
4097         if (freq > 5470 && freq <= 5725)
4098                 return 3;
4099
4100         /* UNII-3 */
4101         if (freq > 5725 && freq <= 5825)
4102                 return 4;
4103
4104         /* UNII-5 */
4105         if (freq > 5925 && freq <= 6425)
4106                 return 5;
4107
4108         /* UNII-6 */
4109         if (freq > 6425 && freq <= 6525)
4110                 return 6;
4111
4112         /* UNII-7 */
4113         if (freq > 6525 && freq <= 6875)
4114                 return 7;
4115
4116         /* UNII-8 */
4117         if (freq > 6875 && freq <= 7125)
4118                 return 8;
4119
4120         return -EINVAL;
4121 }
4122
4123 bool regulatory_indoor_allowed(void)
4124 {
4125         return reg_is_indoor;
4126 }
4127
4128 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4129 {
4130         const struct ieee80211_regdomain *regd = NULL;
4131         const struct ieee80211_regdomain *wiphy_regd = NULL;
4132         bool pre_cac_allowed = false;
4133
4134         rcu_read_lock();
4135
4136         regd = rcu_dereference(cfg80211_regdomain);
4137         wiphy_regd = rcu_dereference(wiphy->regd);
4138         if (!wiphy_regd) {
4139                 if (regd->dfs_region == NL80211_DFS_ETSI)
4140                         pre_cac_allowed = true;
4141
4142                 rcu_read_unlock();
4143
4144                 return pre_cac_allowed;
4145         }
4146
4147         if (regd->dfs_region == wiphy_regd->dfs_region &&
4148             wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4149                 pre_cac_allowed = true;
4150
4151         rcu_read_unlock();
4152
4153         return pre_cac_allowed;
4154 }
4155 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4156
4157 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4158 {
4159         struct wireless_dev *wdev;
4160         /* If we finished CAC or received radar, we should end any
4161          * CAC running on the same channels.
4162          * the check !cfg80211_chandef_dfs_usable contain 2 options:
4163          * either all channels are available - those the CAC_FINISHED
4164          * event has effected another wdev state, or there is a channel
4165          * in unavailable state in wdev chandef - those the RADAR_DETECTED
4166          * event has effected another wdev state.
4167          * In both cases we should end the CAC on the wdev.
4168          */
4169         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4170                 if (wdev->cac_started &&
4171                     !cfg80211_chandef_dfs_usable(&rdev->wiphy, &wdev->chandef))
4172                         rdev_end_cac(rdev, wdev->netdev);
4173         }
4174 }
4175
4176 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4177                                     struct cfg80211_chan_def *chandef,
4178                                     enum nl80211_dfs_state dfs_state,
4179                                     enum nl80211_radar_event event)
4180 {
4181         struct cfg80211_registered_device *rdev;
4182
4183         ASSERT_RTNL();
4184
4185         if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4186                 return;
4187
4188         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4189                 if (wiphy == &rdev->wiphy)
4190                         continue;
4191
4192                 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4193                         continue;
4194
4195                 if (!ieee80211_get_channel(&rdev->wiphy,
4196                                            chandef->chan->center_freq))
4197                         continue;
4198
4199                 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4200
4201                 if (event == NL80211_RADAR_DETECTED ||
4202                     event == NL80211_RADAR_CAC_FINISHED) {
4203                         cfg80211_sched_dfs_chan_update(rdev);
4204                         cfg80211_check_and_end_cac(rdev);
4205                 }
4206
4207                 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4208         }
4209 }
4210
4211 static int __init regulatory_init_db(void)
4212 {
4213         int err;
4214
4215         /*
4216          * It's possible that - due to other bugs/issues - cfg80211
4217          * never called regulatory_init() below, or that it failed;
4218          * in that case, don't try to do any further work here as
4219          * it's doomed to lead to crashes.
4220          */
4221         if (IS_ERR_OR_NULL(reg_pdev))
4222                 return -EINVAL;
4223
4224         err = load_builtin_regdb_keys();
4225         if (err)
4226                 return err;
4227
4228         /* We always try to get an update for the static regdomain */
4229         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4230         if (err) {
4231                 if (err == -ENOMEM) {
4232                         platform_device_unregister(reg_pdev);
4233                         return err;
4234                 }
4235                 /*
4236                  * N.B. kobject_uevent_env() can fail mainly for when we're out
4237                  * memory which is handled and propagated appropriately above
4238                  * but it can also fail during a netlink_broadcast() or during
4239                  * early boot for call_usermodehelper(). For now treat these
4240                  * errors as non-fatal.
4241                  */
4242                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4243         }
4244
4245         /*
4246          * Finally, if the user set the module parameter treat it
4247          * as a user hint.
4248          */
4249         if (!is_world_regdom(ieee80211_regdom))
4250                 regulatory_hint_user(ieee80211_regdom,
4251                                      NL80211_USER_REG_HINT_USER);
4252
4253         return 0;
4254 }
4255 #ifndef MODULE
4256 late_initcall(regulatory_init_db);
4257 #endif
4258
4259 int __init regulatory_init(void)
4260 {
4261         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4262         if (IS_ERR(reg_pdev))
4263                 return PTR_ERR(reg_pdev);
4264
4265         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4266
4267         user_alpha2[0] = '9';
4268         user_alpha2[1] = '7';
4269
4270 #ifdef MODULE
4271         return regulatory_init_db();
4272 #else
4273         return 0;
4274 #endif
4275 }
4276
4277 void regulatory_exit(void)
4278 {
4279         struct regulatory_request *reg_request, *tmp;
4280         struct reg_beacon *reg_beacon, *btmp;
4281
4282         cancel_work_sync(&reg_work);
4283         cancel_crda_timeout_sync();
4284         cancel_delayed_work_sync(&reg_check_chans);
4285
4286         /* Lock to suppress warnings */
4287         rtnl_lock();
4288         reset_regdomains(true, NULL);
4289         rtnl_unlock();
4290
4291         dev_set_uevent_suppress(&reg_pdev->dev, true);
4292
4293         platform_device_unregister(reg_pdev);
4294
4295         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4296                 list_del(&reg_beacon->list);
4297                 kfree(reg_beacon);
4298         }
4299
4300         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4301                 list_del(&reg_beacon->list);
4302                 kfree(reg_beacon);
4303         }
4304
4305         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4306                 list_del(&reg_request->list);
4307                 kfree(reg_request);
4308         }
4309
4310         if (!IS_ERR_OR_NULL(regdb))
4311                 kfree(regdb);
4312         if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4313                 kfree(cfg80211_user_regdom);
4314
4315         free_regdb_keyring();
4316 }