Merge tag 'for-5.18/parisc-1' of git://git.kernel.org/pub/scm/linux/kernel/git/deller...
[linux-2.6-microblaze.git] / net / vmw_vsock / vmci_transport.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware vSockets Driver
4  *
5  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6  */
7
8 #include <linux/types.h>
9 #include <linux/bitops.h>
10 #include <linux/cred.h>
11 #include <linux/init.h>
12 #include <linux/io.h>
13 #include <linux/kernel.h>
14 #include <linux/kmod.h>
15 #include <linux/list.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
18 #include <linux/net.h>
19 #include <linux/poll.h>
20 #include <linux/skbuff.h>
21 #include <linux/smp.h>
22 #include <linux/socket.h>
23 #include <linux/stddef.h>
24 #include <linux/unistd.h>
25 #include <linux/wait.h>
26 #include <linux/workqueue.h>
27 #include <net/sock.h>
28 #include <net/af_vsock.h>
29
30 #include "vmci_transport_notify.h"
31
32 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg);
33 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg);
34 static void vmci_transport_peer_detach_cb(u32 sub_id,
35                                           const struct vmci_event_data *ed,
36                                           void *client_data);
37 static void vmci_transport_recv_pkt_work(struct work_struct *work);
38 static void vmci_transport_cleanup(struct work_struct *work);
39 static int vmci_transport_recv_listen(struct sock *sk,
40                                       struct vmci_transport_packet *pkt);
41 static int vmci_transport_recv_connecting_server(
42                                         struct sock *sk,
43                                         struct sock *pending,
44                                         struct vmci_transport_packet *pkt);
45 static int vmci_transport_recv_connecting_client(
46                                         struct sock *sk,
47                                         struct vmci_transport_packet *pkt);
48 static int vmci_transport_recv_connecting_client_negotiate(
49                                         struct sock *sk,
50                                         struct vmci_transport_packet *pkt);
51 static int vmci_transport_recv_connecting_client_invalid(
52                                         struct sock *sk,
53                                         struct vmci_transport_packet *pkt);
54 static int vmci_transport_recv_connected(struct sock *sk,
55                                          struct vmci_transport_packet *pkt);
56 static bool vmci_transport_old_proto_override(bool *old_pkt_proto);
57 static u16 vmci_transport_new_proto_supported_versions(void);
58 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto,
59                                                   bool old_pkt_proto);
60 static bool vmci_check_transport(struct vsock_sock *vsk);
61
62 struct vmci_transport_recv_pkt_info {
63         struct work_struct work;
64         struct sock *sk;
65         struct vmci_transport_packet pkt;
66 };
67
68 static LIST_HEAD(vmci_transport_cleanup_list);
69 static DEFINE_SPINLOCK(vmci_transport_cleanup_lock);
70 static DECLARE_WORK(vmci_transport_cleanup_work, vmci_transport_cleanup);
71
72 static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID,
73                                                            VMCI_INVALID_ID };
74 static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
75
76 static int PROTOCOL_OVERRIDE = -1;
77
78 static struct vsock_transport vmci_transport; /* forward declaration */
79
80 /* Helper function to convert from a VMCI error code to a VSock error code. */
81
82 static s32 vmci_transport_error_to_vsock_error(s32 vmci_error)
83 {
84         switch (vmci_error) {
85         case VMCI_ERROR_NO_MEM:
86                 return -ENOMEM;
87         case VMCI_ERROR_DUPLICATE_ENTRY:
88         case VMCI_ERROR_ALREADY_EXISTS:
89                 return -EADDRINUSE;
90         case VMCI_ERROR_NO_ACCESS:
91                 return -EPERM;
92         case VMCI_ERROR_NO_RESOURCES:
93                 return -ENOBUFS;
94         case VMCI_ERROR_INVALID_RESOURCE:
95                 return -EHOSTUNREACH;
96         case VMCI_ERROR_INVALID_ARGS:
97         default:
98                 break;
99         }
100         return -EINVAL;
101 }
102
103 static u32 vmci_transport_peer_rid(u32 peer_cid)
104 {
105         if (VMADDR_CID_HYPERVISOR == peer_cid)
106                 return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID;
107
108         return VMCI_TRANSPORT_PACKET_RID;
109 }
110
111 static inline void
112 vmci_transport_packet_init(struct vmci_transport_packet *pkt,
113                            struct sockaddr_vm *src,
114                            struct sockaddr_vm *dst,
115                            u8 type,
116                            u64 size,
117                            u64 mode,
118                            struct vmci_transport_waiting_info *wait,
119                            u16 proto,
120                            struct vmci_handle handle)
121 {
122         /* We register the stream control handler as an any cid handle so we
123          * must always send from a source address of VMADDR_CID_ANY
124          */
125         pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY,
126                                        VMCI_TRANSPORT_PACKET_RID);
127         pkt->dg.dst = vmci_make_handle(dst->svm_cid,
128                                        vmci_transport_peer_rid(dst->svm_cid));
129         pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg);
130         pkt->version = VMCI_TRANSPORT_PACKET_VERSION;
131         pkt->type = type;
132         pkt->src_port = src->svm_port;
133         pkt->dst_port = dst->svm_port;
134         memset(&pkt->proto, 0, sizeof(pkt->proto));
135         memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2));
136
137         switch (pkt->type) {
138         case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
139                 pkt->u.size = 0;
140                 break;
141
142         case VMCI_TRANSPORT_PACKET_TYPE_REQUEST:
143         case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
144                 pkt->u.size = size;
145                 break;
146
147         case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
148         case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
149                 pkt->u.handle = handle;
150                 break;
151
152         case VMCI_TRANSPORT_PACKET_TYPE_WROTE:
153         case VMCI_TRANSPORT_PACKET_TYPE_READ:
154         case VMCI_TRANSPORT_PACKET_TYPE_RST:
155                 pkt->u.size = 0;
156                 break;
157
158         case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
159                 pkt->u.mode = mode;
160                 break;
161
162         case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ:
163         case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE:
164                 memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait));
165                 break;
166
167         case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2:
168         case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
169                 pkt->u.size = size;
170                 pkt->proto = proto;
171                 break;
172         }
173 }
174
175 static inline void
176 vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt,
177                                     struct sockaddr_vm *local,
178                                     struct sockaddr_vm *remote)
179 {
180         vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port);
181         vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port);
182 }
183
184 static int
185 __vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt,
186                                   struct sockaddr_vm *src,
187                                   struct sockaddr_vm *dst,
188                                   enum vmci_transport_packet_type type,
189                                   u64 size,
190                                   u64 mode,
191                                   struct vmci_transport_waiting_info *wait,
192                                   u16 proto,
193                                   struct vmci_handle handle,
194                                   bool convert_error)
195 {
196         int err;
197
198         vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait,
199                                    proto, handle);
200         err = vmci_datagram_send(&pkt->dg);
201         if (convert_error && (err < 0))
202                 return vmci_transport_error_to_vsock_error(err);
203
204         return err;
205 }
206
207 static int
208 vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt,
209                                       enum vmci_transport_packet_type type,
210                                       u64 size,
211                                       u64 mode,
212                                       struct vmci_transport_waiting_info *wait,
213                                       struct vmci_handle handle)
214 {
215         struct vmci_transport_packet reply;
216         struct sockaddr_vm src, dst;
217
218         if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) {
219                 return 0;
220         } else {
221                 vmci_transport_packet_get_addresses(pkt, &src, &dst);
222                 return __vmci_transport_send_control_pkt(&reply, &src, &dst,
223                                                          type,
224                                                          size, mode, wait,
225                                                          VSOCK_PROTO_INVALID,
226                                                          handle, true);
227         }
228 }
229
230 static int
231 vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src,
232                                    struct sockaddr_vm *dst,
233                                    enum vmci_transport_packet_type type,
234                                    u64 size,
235                                    u64 mode,
236                                    struct vmci_transport_waiting_info *wait,
237                                    struct vmci_handle handle)
238 {
239         /* Note that it is safe to use a single packet across all CPUs since
240          * two tasklets of the same type are guaranteed to not ever run
241          * simultaneously. If that ever changes, or VMCI stops using tasklets,
242          * we can use per-cpu packets.
243          */
244         static struct vmci_transport_packet pkt;
245
246         return __vmci_transport_send_control_pkt(&pkt, src, dst, type,
247                                                  size, mode, wait,
248                                                  VSOCK_PROTO_INVALID, handle,
249                                                  false);
250 }
251
252 static int
253 vmci_transport_alloc_send_control_pkt(struct sockaddr_vm *src,
254                                       struct sockaddr_vm *dst,
255                                       enum vmci_transport_packet_type type,
256                                       u64 size,
257                                       u64 mode,
258                                       struct vmci_transport_waiting_info *wait,
259                                       u16 proto,
260                                       struct vmci_handle handle)
261 {
262         struct vmci_transport_packet *pkt;
263         int err;
264
265         pkt = kmalloc(sizeof(*pkt), GFP_KERNEL);
266         if (!pkt)
267                 return -ENOMEM;
268
269         err = __vmci_transport_send_control_pkt(pkt, src, dst, type, size,
270                                                 mode, wait, proto, handle,
271                                                 true);
272         kfree(pkt);
273
274         return err;
275 }
276
277 static int
278 vmci_transport_send_control_pkt(struct sock *sk,
279                                 enum vmci_transport_packet_type type,
280                                 u64 size,
281                                 u64 mode,
282                                 struct vmci_transport_waiting_info *wait,
283                                 u16 proto,
284                                 struct vmci_handle handle)
285 {
286         struct vsock_sock *vsk;
287
288         vsk = vsock_sk(sk);
289
290         if (!vsock_addr_bound(&vsk->local_addr))
291                 return -EINVAL;
292
293         if (!vsock_addr_bound(&vsk->remote_addr))
294                 return -EINVAL;
295
296         return vmci_transport_alloc_send_control_pkt(&vsk->local_addr,
297                                                      &vsk->remote_addr,
298                                                      type, size, mode,
299                                                      wait, proto, handle);
300 }
301
302 static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst,
303                                         struct sockaddr_vm *src,
304                                         struct vmci_transport_packet *pkt)
305 {
306         if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
307                 return 0;
308         return vmci_transport_send_control_pkt_bh(
309                                         dst, src,
310                                         VMCI_TRANSPORT_PACKET_TYPE_RST, 0,
311                                         0, NULL, VMCI_INVALID_HANDLE);
312 }
313
314 static int vmci_transport_send_reset(struct sock *sk,
315                                      struct vmci_transport_packet *pkt)
316 {
317         struct sockaddr_vm *dst_ptr;
318         struct sockaddr_vm dst;
319         struct vsock_sock *vsk;
320
321         if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
322                 return 0;
323
324         vsk = vsock_sk(sk);
325
326         if (!vsock_addr_bound(&vsk->local_addr))
327                 return -EINVAL;
328
329         if (vsock_addr_bound(&vsk->remote_addr)) {
330                 dst_ptr = &vsk->remote_addr;
331         } else {
332                 vsock_addr_init(&dst, pkt->dg.src.context,
333                                 pkt->src_port);
334                 dst_ptr = &dst;
335         }
336         return vmci_transport_alloc_send_control_pkt(&vsk->local_addr, dst_ptr,
337                                              VMCI_TRANSPORT_PACKET_TYPE_RST,
338                                              0, 0, NULL, VSOCK_PROTO_INVALID,
339                                              VMCI_INVALID_HANDLE);
340 }
341
342 static int vmci_transport_send_negotiate(struct sock *sk, size_t size)
343 {
344         return vmci_transport_send_control_pkt(
345                                         sk,
346                                         VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE,
347                                         size, 0, NULL,
348                                         VSOCK_PROTO_INVALID,
349                                         VMCI_INVALID_HANDLE);
350 }
351
352 static int vmci_transport_send_negotiate2(struct sock *sk, size_t size,
353                                           u16 version)
354 {
355         return vmci_transport_send_control_pkt(
356                                         sk,
357                                         VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2,
358                                         size, 0, NULL, version,
359                                         VMCI_INVALID_HANDLE);
360 }
361
362 static int vmci_transport_send_qp_offer(struct sock *sk,
363                                         struct vmci_handle handle)
364 {
365         return vmci_transport_send_control_pkt(
366                                         sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0,
367                                         0, NULL,
368                                         VSOCK_PROTO_INVALID, handle);
369 }
370
371 static int vmci_transport_send_attach(struct sock *sk,
372                                       struct vmci_handle handle)
373 {
374         return vmci_transport_send_control_pkt(
375                                         sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH,
376                                         0, 0, NULL, VSOCK_PROTO_INVALID,
377                                         handle);
378 }
379
380 static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt)
381 {
382         return vmci_transport_reply_control_pkt_fast(
383                                                 pkt,
384                                                 VMCI_TRANSPORT_PACKET_TYPE_RST,
385                                                 0, 0, NULL,
386                                                 VMCI_INVALID_HANDLE);
387 }
388
389 static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst,
390                                           struct sockaddr_vm *src)
391 {
392         return vmci_transport_send_control_pkt_bh(
393                                         dst, src,
394                                         VMCI_TRANSPORT_PACKET_TYPE_INVALID,
395                                         0, 0, NULL, VMCI_INVALID_HANDLE);
396 }
397
398 int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst,
399                                  struct sockaddr_vm *src)
400 {
401         return vmci_transport_send_control_pkt_bh(
402                                         dst, src,
403                                         VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
404                                         0, NULL, VMCI_INVALID_HANDLE);
405 }
406
407 int vmci_transport_send_read_bh(struct sockaddr_vm *dst,
408                                 struct sockaddr_vm *src)
409 {
410         return vmci_transport_send_control_pkt_bh(
411                                         dst, src,
412                                         VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
413                                         0, NULL, VMCI_INVALID_HANDLE);
414 }
415
416 int vmci_transport_send_wrote(struct sock *sk)
417 {
418         return vmci_transport_send_control_pkt(
419                                         sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
420                                         0, NULL, VSOCK_PROTO_INVALID,
421                                         VMCI_INVALID_HANDLE);
422 }
423
424 int vmci_transport_send_read(struct sock *sk)
425 {
426         return vmci_transport_send_control_pkt(
427                                         sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
428                                         0, NULL, VSOCK_PROTO_INVALID,
429                                         VMCI_INVALID_HANDLE);
430 }
431
432 int vmci_transport_send_waiting_write(struct sock *sk,
433                                       struct vmci_transport_waiting_info *wait)
434 {
435         return vmci_transport_send_control_pkt(
436                                 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE,
437                                 0, 0, wait, VSOCK_PROTO_INVALID,
438                                 VMCI_INVALID_HANDLE);
439 }
440
441 int vmci_transport_send_waiting_read(struct sock *sk,
442                                      struct vmci_transport_waiting_info *wait)
443 {
444         return vmci_transport_send_control_pkt(
445                                 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ,
446                                 0, 0, wait, VSOCK_PROTO_INVALID,
447                                 VMCI_INVALID_HANDLE);
448 }
449
450 static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode)
451 {
452         return vmci_transport_send_control_pkt(
453                                         &vsk->sk,
454                                         VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN,
455                                         0, mode, NULL,
456                                         VSOCK_PROTO_INVALID,
457                                         VMCI_INVALID_HANDLE);
458 }
459
460 static int vmci_transport_send_conn_request(struct sock *sk, size_t size)
461 {
462         return vmci_transport_send_control_pkt(sk,
463                                         VMCI_TRANSPORT_PACKET_TYPE_REQUEST,
464                                         size, 0, NULL,
465                                         VSOCK_PROTO_INVALID,
466                                         VMCI_INVALID_HANDLE);
467 }
468
469 static int vmci_transport_send_conn_request2(struct sock *sk, size_t size,
470                                              u16 version)
471 {
472         return vmci_transport_send_control_pkt(
473                                         sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2,
474                                         size, 0, NULL, version,
475                                         VMCI_INVALID_HANDLE);
476 }
477
478 static struct sock *vmci_transport_get_pending(
479                                         struct sock *listener,
480                                         struct vmci_transport_packet *pkt)
481 {
482         struct vsock_sock *vlistener;
483         struct vsock_sock *vpending;
484         struct sock *pending;
485         struct sockaddr_vm src;
486
487         vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
488
489         vlistener = vsock_sk(listener);
490
491         list_for_each_entry(vpending, &vlistener->pending_links,
492                             pending_links) {
493                 if (vsock_addr_equals_addr(&src, &vpending->remote_addr) &&
494                     pkt->dst_port == vpending->local_addr.svm_port) {
495                         pending = sk_vsock(vpending);
496                         sock_hold(pending);
497                         goto found;
498                 }
499         }
500
501         pending = NULL;
502 found:
503         return pending;
504
505 }
506
507 static void vmci_transport_release_pending(struct sock *pending)
508 {
509         sock_put(pending);
510 }
511
512 /* We allow two kinds of sockets to communicate with a restricted VM: 1)
513  * trusted sockets 2) sockets from applications running as the same user as the
514  * VM (this is only true for the host side and only when using hosted products)
515  */
516
517 static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid)
518 {
519         return vsock->trusted ||
520                vmci_is_context_owner(peer_cid, vsock->owner->uid);
521 }
522
523 /* We allow sending datagrams to and receiving datagrams from a restricted VM
524  * only if it is trusted as described in vmci_transport_is_trusted.
525  */
526
527 static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid)
528 {
529         if (VMADDR_CID_HYPERVISOR == peer_cid)
530                 return true;
531
532         if (vsock->cached_peer != peer_cid) {
533                 vsock->cached_peer = peer_cid;
534                 if (!vmci_transport_is_trusted(vsock, peer_cid) &&
535                     (vmci_context_get_priv_flags(peer_cid) &
536                      VMCI_PRIVILEGE_FLAG_RESTRICTED)) {
537                         vsock->cached_peer_allow_dgram = false;
538                 } else {
539                         vsock->cached_peer_allow_dgram = true;
540                 }
541         }
542
543         return vsock->cached_peer_allow_dgram;
544 }
545
546 static int
547 vmci_transport_queue_pair_alloc(struct vmci_qp **qpair,
548                                 struct vmci_handle *handle,
549                                 u64 produce_size,
550                                 u64 consume_size,
551                                 u32 peer, u32 flags, bool trusted)
552 {
553         int err = 0;
554
555         if (trusted) {
556                 /* Try to allocate our queue pair as trusted. This will only
557                  * work if vsock is running in the host.
558                  */
559
560                 err = vmci_qpair_alloc(qpair, handle, produce_size,
561                                        consume_size,
562                                        peer, flags,
563                                        VMCI_PRIVILEGE_FLAG_TRUSTED);
564                 if (err != VMCI_ERROR_NO_ACCESS)
565                         goto out;
566
567         }
568
569         err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size,
570                                peer, flags, VMCI_NO_PRIVILEGE_FLAGS);
571 out:
572         if (err < 0) {
573                 pr_err_once("Could not attach to queue pair with %d\n", err);
574                 err = vmci_transport_error_to_vsock_error(err);
575         }
576
577         return err;
578 }
579
580 static int
581 vmci_transport_datagram_create_hnd(u32 resource_id,
582                                    u32 flags,
583                                    vmci_datagram_recv_cb recv_cb,
584                                    void *client_data,
585                                    struct vmci_handle *out_handle)
586 {
587         int err = 0;
588
589         /* Try to allocate our datagram handler as trusted. This will only work
590          * if vsock is running in the host.
591          */
592
593         err = vmci_datagram_create_handle_priv(resource_id, flags,
594                                                VMCI_PRIVILEGE_FLAG_TRUSTED,
595                                                recv_cb,
596                                                client_data, out_handle);
597
598         if (err == VMCI_ERROR_NO_ACCESS)
599                 err = vmci_datagram_create_handle(resource_id, flags,
600                                                   recv_cb, client_data,
601                                                   out_handle);
602
603         return err;
604 }
605
606 /* This is invoked as part of a tasklet that's scheduled when the VMCI
607  * interrupt fires.  This is run in bottom-half context and if it ever needs to
608  * sleep it should defer that work to a work queue.
609  */
610
611 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg)
612 {
613         struct sock *sk;
614         size_t size;
615         struct sk_buff *skb;
616         struct vsock_sock *vsk;
617
618         sk = (struct sock *)data;
619
620         /* This handler is privileged when this module is running on the host.
621          * We will get datagrams from all endpoints (even VMs that are in a
622          * restricted context). If we get one from a restricted context then
623          * the destination socket must be trusted.
624          *
625          * NOTE: We access the socket struct without holding the lock here.
626          * This is ok because the field we are interested is never modified
627          * outside of the create and destruct socket functions.
628          */
629         vsk = vsock_sk(sk);
630         if (!vmci_transport_allow_dgram(vsk, dg->src.context))
631                 return VMCI_ERROR_NO_ACCESS;
632
633         size = VMCI_DG_SIZE(dg);
634
635         /* Attach the packet to the socket's receive queue as an sk_buff. */
636         skb = alloc_skb(size, GFP_ATOMIC);
637         if (!skb)
638                 return VMCI_ERROR_NO_MEM;
639
640         /* sk_receive_skb() will do a sock_put(), so hold here. */
641         sock_hold(sk);
642         skb_put(skb, size);
643         memcpy(skb->data, dg, size);
644         sk_receive_skb(sk, skb, 0);
645
646         return VMCI_SUCCESS;
647 }
648
649 static bool vmci_transport_stream_allow(u32 cid, u32 port)
650 {
651         static const u32 non_socket_contexts[] = {
652                 VMADDR_CID_LOCAL,
653         };
654         int i;
655
656         BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts));
657
658         for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) {
659                 if (cid == non_socket_contexts[i])
660                         return false;
661         }
662
663         return true;
664 }
665
666 /* This is invoked as part of a tasklet that's scheduled when the VMCI
667  * interrupt fires.  This is run in bottom-half context but it defers most of
668  * its work to the packet handling work queue.
669  */
670
671 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg)
672 {
673         struct sock *sk;
674         struct sockaddr_vm dst;
675         struct sockaddr_vm src;
676         struct vmci_transport_packet *pkt;
677         struct vsock_sock *vsk;
678         bool bh_process_pkt;
679         int err;
680
681         sk = NULL;
682         err = VMCI_SUCCESS;
683         bh_process_pkt = false;
684
685         /* Ignore incoming packets from contexts without sockets, or resources
686          * that aren't vsock implementations.
687          */
688
689         if (!vmci_transport_stream_allow(dg->src.context, -1)
690             || vmci_transport_peer_rid(dg->src.context) != dg->src.resource)
691                 return VMCI_ERROR_NO_ACCESS;
692
693         if (VMCI_DG_SIZE(dg) < sizeof(*pkt))
694                 /* Drop datagrams that do not contain full VSock packets. */
695                 return VMCI_ERROR_INVALID_ARGS;
696
697         pkt = (struct vmci_transport_packet *)dg;
698
699         /* Find the socket that should handle this packet.  First we look for a
700          * connected socket and if there is none we look for a socket bound to
701          * the destintation address.
702          */
703         vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
704         vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port);
705
706         sk = vsock_find_connected_socket(&src, &dst);
707         if (!sk) {
708                 sk = vsock_find_bound_socket(&dst);
709                 if (!sk) {
710                         /* We could not find a socket for this specified
711                          * address.  If this packet is a RST, we just drop it.
712                          * If it is another packet, we send a RST.  Note that
713                          * we do not send a RST reply to RSTs so that we do not
714                          * continually send RSTs between two endpoints.
715                          *
716                          * Note that since this is a reply, dst is src and src
717                          * is dst.
718                          */
719                         if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
720                                 pr_err("unable to send reset\n");
721
722                         err = VMCI_ERROR_NOT_FOUND;
723                         goto out;
724                 }
725         }
726
727         /* If the received packet type is beyond all types known to this
728          * implementation, reply with an invalid message.  Hopefully this will
729          * help when implementing backwards compatibility in the future.
730          */
731         if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) {
732                 vmci_transport_send_invalid_bh(&dst, &src);
733                 err = VMCI_ERROR_INVALID_ARGS;
734                 goto out;
735         }
736
737         /* This handler is privileged when this module is running on the host.
738          * We will get datagram connect requests from all endpoints (even VMs
739          * that are in a restricted context). If we get one from a restricted
740          * context then the destination socket must be trusted.
741          *
742          * NOTE: We access the socket struct without holding the lock here.
743          * This is ok because the field we are interested is never modified
744          * outside of the create and destruct socket functions.
745          */
746         vsk = vsock_sk(sk);
747         if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) {
748                 err = VMCI_ERROR_NO_ACCESS;
749                 goto out;
750         }
751
752         /* We do most everything in a work queue, but let's fast path the
753          * notification of reads and writes to help data transfer performance.
754          * We can only do this if there is no process context code executing
755          * for this socket since that may change the state.
756          */
757         bh_lock_sock(sk);
758
759         if (!sock_owned_by_user(sk)) {
760                 /* The local context ID may be out of date, update it. */
761                 vsk->local_addr.svm_cid = dst.svm_cid;
762
763                 if (sk->sk_state == TCP_ESTABLISHED)
764                         vmci_trans(vsk)->notify_ops->handle_notify_pkt(
765                                         sk, pkt, true, &dst, &src,
766                                         &bh_process_pkt);
767         }
768
769         bh_unlock_sock(sk);
770
771         if (!bh_process_pkt) {
772                 struct vmci_transport_recv_pkt_info *recv_pkt_info;
773
774                 recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC);
775                 if (!recv_pkt_info) {
776                         if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
777                                 pr_err("unable to send reset\n");
778
779                         err = VMCI_ERROR_NO_MEM;
780                         goto out;
781                 }
782
783                 recv_pkt_info->sk = sk;
784                 memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt));
785                 INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work);
786
787                 schedule_work(&recv_pkt_info->work);
788                 /* Clear sk so that the reference count incremented by one of
789                  * the Find functions above is not decremented below.  We need
790                  * that reference count for the packet handler we've scheduled
791                  * to run.
792                  */
793                 sk = NULL;
794         }
795
796 out:
797         if (sk)
798                 sock_put(sk);
799
800         return err;
801 }
802
803 static void vmci_transport_handle_detach(struct sock *sk)
804 {
805         struct vsock_sock *vsk;
806
807         vsk = vsock_sk(sk);
808         if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) {
809                 sock_set_flag(sk, SOCK_DONE);
810
811                 /* On a detach the peer will not be sending or receiving
812                  * anymore.
813                  */
814                 vsk->peer_shutdown = SHUTDOWN_MASK;
815
816                 /* We should not be sending anymore since the peer won't be
817                  * there to receive, but we can still receive if there is data
818                  * left in our consume queue. If the local endpoint is a host,
819                  * we can't call vsock_stream_has_data, since that may block,
820                  * but a host endpoint can't read data once the VM has
821                  * detached, so there is no available data in that case.
822                  */
823                 if (vsk->local_addr.svm_cid == VMADDR_CID_HOST ||
824                     vsock_stream_has_data(vsk) <= 0) {
825                         if (sk->sk_state == TCP_SYN_SENT) {
826                                 /* The peer may detach from a queue pair while
827                                  * we are still in the connecting state, i.e.,
828                                  * if the peer VM is killed after attaching to
829                                  * a queue pair, but before we complete the
830                                  * handshake. In that case, we treat the detach
831                                  * event like a reset.
832                                  */
833
834                                 sk->sk_state = TCP_CLOSE;
835                                 sk->sk_err = ECONNRESET;
836                                 sk_error_report(sk);
837                                 return;
838                         }
839                         sk->sk_state = TCP_CLOSE;
840                 }
841                 sk->sk_state_change(sk);
842         }
843 }
844
845 static void vmci_transport_peer_detach_cb(u32 sub_id,
846                                           const struct vmci_event_data *e_data,
847                                           void *client_data)
848 {
849         struct vmci_transport *trans = client_data;
850         const struct vmci_event_payload_qp *e_payload;
851
852         e_payload = vmci_event_data_const_payload(e_data);
853
854         /* XXX This is lame, we should provide a way to lookup sockets by
855          * qp_handle.
856          */
857         if (vmci_handle_is_invalid(e_payload->handle) ||
858             !vmci_handle_is_equal(trans->qp_handle, e_payload->handle))
859                 return;
860
861         /* We don't ask for delayed CBs when we subscribe to this event (we
862          * pass 0 as flags to vmci_event_subscribe()).  VMCI makes no
863          * guarantees in that case about what context we might be running in,
864          * so it could be BH or process, blockable or non-blockable.  So we
865          * need to account for all possible contexts here.
866          */
867         spin_lock_bh(&trans->lock);
868         if (!trans->sk)
869                 goto out;
870
871         /* Apart from here, trans->lock is only grabbed as part of sk destruct,
872          * where trans->sk isn't locked.
873          */
874         bh_lock_sock(trans->sk);
875
876         vmci_transport_handle_detach(trans->sk);
877
878         bh_unlock_sock(trans->sk);
879  out:
880         spin_unlock_bh(&trans->lock);
881 }
882
883 static void vmci_transport_qp_resumed_cb(u32 sub_id,
884                                          const struct vmci_event_data *e_data,
885                                          void *client_data)
886 {
887         vsock_for_each_connected_socket(&vmci_transport,
888                                         vmci_transport_handle_detach);
889 }
890
891 static void vmci_transport_recv_pkt_work(struct work_struct *work)
892 {
893         struct vmci_transport_recv_pkt_info *recv_pkt_info;
894         struct vmci_transport_packet *pkt;
895         struct sock *sk;
896
897         recv_pkt_info =
898                 container_of(work, struct vmci_transport_recv_pkt_info, work);
899         sk = recv_pkt_info->sk;
900         pkt = &recv_pkt_info->pkt;
901
902         lock_sock(sk);
903
904         /* The local context ID may be out of date. */
905         vsock_sk(sk)->local_addr.svm_cid = pkt->dg.dst.context;
906
907         switch (sk->sk_state) {
908         case TCP_LISTEN:
909                 vmci_transport_recv_listen(sk, pkt);
910                 break;
911         case TCP_SYN_SENT:
912                 /* Processing of pending connections for servers goes through
913                  * the listening socket, so see vmci_transport_recv_listen()
914                  * for that path.
915                  */
916                 vmci_transport_recv_connecting_client(sk, pkt);
917                 break;
918         case TCP_ESTABLISHED:
919                 vmci_transport_recv_connected(sk, pkt);
920                 break;
921         default:
922                 /* Because this function does not run in the same context as
923                  * vmci_transport_recv_stream_cb it is possible that the
924                  * socket has closed. We need to let the other side know or it
925                  * could be sitting in a connect and hang forever. Send a
926                  * reset to prevent that.
927                  */
928                 vmci_transport_send_reset(sk, pkt);
929                 break;
930         }
931
932         release_sock(sk);
933         kfree(recv_pkt_info);
934         /* Release reference obtained in the stream callback when we fetched
935          * this socket out of the bound or connected list.
936          */
937         sock_put(sk);
938 }
939
940 static int vmci_transport_recv_listen(struct sock *sk,
941                                       struct vmci_transport_packet *pkt)
942 {
943         struct sock *pending;
944         struct vsock_sock *vpending;
945         int err;
946         u64 qp_size;
947         bool old_request = false;
948         bool old_pkt_proto = false;
949
950         /* Because we are in the listen state, we could be receiving a packet
951          * for ourself or any previous connection requests that we received.
952          * If it's the latter, we try to find a socket in our list of pending
953          * connections and, if we do, call the appropriate handler for the
954          * state that that socket is in.  Otherwise we try to service the
955          * connection request.
956          */
957         pending = vmci_transport_get_pending(sk, pkt);
958         if (pending) {
959                 lock_sock(pending);
960
961                 /* The local context ID may be out of date. */
962                 vsock_sk(pending)->local_addr.svm_cid = pkt->dg.dst.context;
963
964                 switch (pending->sk_state) {
965                 case TCP_SYN_SENT:
966                         err = vmci_transport_recv_connecting_server(sk,
967                                                                     pending,
968                                                                     pkt);
969                         break;
970                 default:
971                         vmci_transport_send_reset(pending, pkt);
972                         err = -EINVAL;
973                 }
974
975                 if (err < 0)
976                         vsock_remove_pending(sk, pending);
977
978                 release_sock(pending);
979                 vmci_transport_release_pending(pending);
980
981                 return err;
982         }
983
984         /* The listen state only accepts connection requests.  Reply with a
985          * reset unless we received a reset.
986          */
987
988         if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST ||
989               pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) {
990                 vmci_transport_reply_reset(pkt);
991                 return -EINVAL;
992         }
993
994         if (pkt->u.size == 0) {
995                 vmci_transport_reply_reset(pkt);
996                 return -EINVAL;
997         }
998
999         /* If this socket can't accommodate this connection request, we send a
1000          * reset.  Otherwise we create and initialize a child socket and reply
1001          * with a connection negotiation.
1002          */
1003         if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) {
1004                 vmci_transport_reply_reset(pkt);
1005                 return -ECONNREFUSED;
1006         }
1007
1008         pending = vsock_create_connected(sk);
1009         if (!pending) {
1010                 vmci_transport_send_reset(sk, pkt);
1011                 return -ENOMEM;
1012         }
1013
1014         vpending = vsock_sk(pending);
1015
1016         vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context,
1017                         pkt->dst_port);
1018         vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context,
1019                         pkt->src_port);
1020
1021         err = vsock_assign_transport(vpending, vsock_sk(sk));
1022         /* Transport assigned (looking at remote_addr) must be the same
1023          * where we received the request.
1024          */
1025         if (err || !vmci_check_transport(vpending)) {
1026                 vmci_transport_send_reset(sk, pkt);
1027                 sock_put(pending);
1028                 return err;
1029         }
1030
1031         /* If the proposed size fits within our min/max, accept it. Otherwise
1032          * propose our own size.
1033          */
1034         if (pkt->u.size >= vpending->buffer_min_size &&
1035             pkt->u.size <= vpending->buffer_max_size) {
1036                 qp_size = pkt->u.size;
1037         } else {
1038                 qp_size = vpending->buffer_size;
1039         }
1040
1041         /* Figure out if we are using old or new requests based on the
1042          * overrides pkt types sent by our peer.
1043          */
1044         if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1045                 old_request = old_pkt_proto;
1046         } else {
1047                 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST)
1048                         old_request = true;
1049                 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)
1050                         old_request = false;
1051
1052         }
1053
1054         if (old_request) {
1055                 /* Handle a REQUEST (or override) */
1056                 u16 version = VSOCK_PROTO_INVALID;
1057                 if (vmci_transport_proto_to_notify_struct(
1058                         pending, &version, true))
1059                         err = vmci_transport_send_negotiate(pending, qp_size);
1060                 else
1061                         err = -EINVAL;
1062
1063         } else {
1064                 /* Handle a REQUEST2 (or override) */
1065                 int proto_int = pkt->proto;
1066                 int pos;
1067                 u16 active_proto_version = 0;
1068
1069                 /* The list of possible protocols is the intersection of all
1070                  * protocols the client supports ... plus all the protocols we
1071                  * support.
1072                  */
1073                 proto_int &= vmci_transport_new_proto_supported_versions();
1074
1075                 /* We choose the highest possible protocol version and use that
1076                  * one.
1077                  */
1078                 pos = fls(proto_int);
1079                 if (pos) {
1080                         active_proto_version = (1 << (pos - 1));
1081                         if (vmci_transport_proto_to_notify_struct(
1082                                 pending, &active_proto_version, false))
1083                                 err = vmci_transport_send_negotiate2(pending,
1084                                                         qp_size,
1085                                                         active_proto_version);
1086                         else
1087                                 err = -EINVAL;
1088
1089                 } else {
1090                         err = -EINVAL;
1091                 }
1092         }
1093
1094         if (err < 0) {
1095                 vmci_transport_send_reset(sk, pkt);
1096                 sock_put(pending);
1097                 err = vmci_transport_error_to_vsock_error(err);
1098                 goto out;
1099         }
1100
1101         vsock_add_pending(sk, pending);
1102         sk_acceptq_added(sk);
1103
1104         pending->sk_state = TCP_SYN_SENT;
1105         vmci_trans(vpending)->produce_size =
1106                 vmci_trans(vpending)->consume_size = qp_size;
1107         vpending->buffer_size = qp_size;
1108
1109         vmci_trans(vpending)->notify_ops->process_request(pending);
1110
1111         /* We might never receive another message for this socket and it's not
1112          * connected to any process, so we have to ensure it gets cleaned up
1113          * ourself.  Our delayed work function will take care of that.  Note
1114          * that we do not ever cancel this function since we have few
1115          * guarantees about its state when calling cancel_delayed_work().
1116          * Instead we hold a reference on the socket for that function and make
1117          * it capable of handling cases where it needs to do nothing but
1118          * release that reference.
1119          */
1120         vpending->listener = sk;
1121         sock_hold(sk);
1122         sock_hold(pending);
1123         schedule_delayed_work(&vpending->pending_work, HZ);
1124
1125 out:
1126         return err;
1127 }
1128
1129 static int
1130 vmci_transport_recv_connecting_server(struct sock *listener,
1131                                       struct sock *pending,
1132                                       struct vmci_transport_packet *pkt)
1133 {
1134         struct vsock_sock *vpending;
1135         struct vmci_handle handle;
1136         struct vmci_qp *qpair;
1137         bool is_local;
1138         u32 flags;
1139         u32 detach_sub_id;
1140         int err;
1141         int skerr;
1142
1143         vpending = vsock_sk(pending);
1144         detach_sub_id = VMCI_INVALID_ID;
1145
1146         switch (pkt->type) {
1147         case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
1148                 if (vmci_handle_is_invalid(pkt->u.handle)) {
1149                         vmci_transport_send_reset(pending, pkt);
1150                         skerr = EPROTO;
1151                         err = -EINVAL;
1152                         goto destroy;
1153                 }
1154                 break;
1155         default:
1156                 /* Close and cleanup the connection. */
1157                 vmci_transport_send_reset(pending, pkt);
1158                 skerr = EPROTO;
1159                 err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL;
1160                 goto destroy;
1161         }
1162
1163         /* In order to complete the connection we need to attach to the offered
1164          * queue pair and send an attach notification.  We also subscribe to the
1165          * detach event so we know when our peer goes away, and we do that
1166          * before attaching so we don't miss an event.  If all this succeeds,
1167          * we update our state and wakeup anything waiting in accept() for a
1168          * connection.
1169          */
1170
1171         /* We don't care about attach since we ensure the other side has
1172          * attached by specifying the ATTACH_ONLY flag below.
1173          */
1174         err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1175                                    vmci_transport_peer_detach_cb,
1176                                    vmci_trans(vpending), &detach_sub_id);
1177         if (err < VMCI_SUCCESS) {
1178                 vmci_transport_send_reset(pending, pkt);
1179                 err = vmci_transport_error_to_vsock_error(err);
1180                 skerr = -err;
1181                 goto destroy;
1182         }
1183
1184         vmci_trans(vpending)->detach_sub_id = detach_sub_id;
1185
1186         /* Now attach to the queue pair the client created. */
1187         handle = pkt->u.handle;
1188
1189         /* vpending->local_addr always has a context id so we do not need to
1190          * worry about VMADDR_CID_ANY in this case.
1191          */
1192         is_local =
1193             vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid;
1194         flags = VMCI_QPFLAG_ATTACH_ONLY;
1195         flags |= is_local ? VMCI_QPFLAG_LOCAL : 0;
1196
1197         err = vmci_transport_queue_pair_alloc(
1198                                         &qpair,
1199                                         &handle,
1200                                         vmci_trans(vpending)->produce_size,
1201                                         vmci_trans(vpending)->consume_size,
1202                                         pkt->dg.src.context,
1203                                         flags,
1204                                         vmci_transport_is_trusted(
1205                                                 vpending,
1206                                                 vpending->remote_addr.svm_cid));
1207         if (err < 0) {
1208                 vmci_transport_send_reset(pending, pkt);
1209                 skerr = -err;
1210                 goto destroy;
1211         }
1212
1213         vmci_trans(vpending)->qp_handle = handle;
1214         vmci_trans(vpending)->qpair = qpair;
1215
1216         /* When we send the attach message, we must be ready to handle incoming
1217          * control messages on the newly connected socket. So we move the
1218          * pending socket to the connected state before sending the attach
1219          * message. Otherwise, an incoming packet triggered by the attach being
1220          * received by the peer may be processed concurrently with what happens
1221          * below after sending the attach message, and that incoming packet
1222          * will find the listening socket instead of the (currently) pending
1223          * socket. Note that enqueueing the socket increments the reference
1224          * count, so even if a reset comes before the connection is accepted,
1225          * the socket will be valid until it is removed from the queue.
1226          *
1227          * If we fail sending the attach below, we remove the socket from the
1228          * connected list and move the socket to TCP_CLOSE before
1229          * releasing the lock, so a pending slow path processing of an incoming
1230          * packet will not see the socket in the connected state in that case.
1231          */
1232         pending->sk_state = TCP_ESTABLISHED;
1233
1234         vsock_insert_connected(vpending);
1235
1236         /* Notify our peer of our attach. */
1237         err = vmci_transport_send_attach(pending, handle);
1238         if (err < 0) {
1239                 vsock_remove_connected(vpending);
1240                 pr_err("Could not send attach\n");
1241                 vmci_transport_send_reset(pending, pkt);
1242                 err = vmci_transport_error_to_vsock_error(err);
1243                 skerr = -err;
1244                 goto destroy;
1245         }
1246
1247         /* We have a connection. Move the now connected socket from the
1248          * listener's pending list to the accept queue so callers of accept()
1249          * can find it.
1250          */
1251         vsock_remove_pending(listener, pending);
1252         vsock_enqueue_accept(listener, pending);
1253
1254         /* Callers of accept() will be waiting on the listening socket, not
1255          * the pending socket.
1256          */
1257         listener->sk_data_ready(listener);
1258
1259         return 0;
1260
1261 destroy:
1262         pending->sk_err = skerr;
1263         pending->sk_state = TCP_CLOSE;
1264         /* As long as we drop our reference, all necessary cleanup will handle
1265          * when the cleanup function drops its reference and our destruct
1266          * implementation is called.  Note that since the listen handler will
1267          * remove pending from the pending list upon our failure, the cleanup
1268          * function won't drop the additional reference, which is why we do it
1269          * here.
1270          */
1271         sock_put(pending);
1272
1273         return err;
1274 }
1275
1276 static int
1277 vmci_transport_recv_connecting_client(struct sock *sk,
1278                                       struct vmci_transport_packet *pkt)
1279 {
1280         struct vsock_sock *vsk;
1281         int err;
1282         int skerr;
1283
1284         vsk = vsock_sk(sk);
1285
1286         switch (pkt->type) {
1287         case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
1288                 if (vmci_handle_is_invalid(pkt->u.handle) ||
1289                     !vmci_handle_is_equal(pkt->u.handle,
1290                                           vmci_trans(vsk)->qp_handle)) {
1291                         skerr = EPROTO;
1292                         err = -EINVAL;
1293                         goto destroy;
1294                 }
1295
1296                 /* Signify the socket is connected and wakeup the waiter in
1297                  * connect(). Also place the socket in the connected table for
1298                  * accounting (it can already be found since it's in the bound
1299                  * table).
1300                  */
1301                 sk->sk_state = TCP_ESTABLISHED;
1302                 sk->sk_socket->state = SS_CONNECTED;
1303                 vsock_insert_connected(vsk);
1304                 sk->sk_state_change(sk);
1305
1306                 break;
1307         case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
1308         case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
1309                 if (pkt->u.size == 0
1310                     || pkt->dg.src.context != vsk->remote_addr.svm_cid
1311                     || pkt->src_port != vsk->remote_addr.svm_port
1312                     || !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)
1313                     || vmci_trans(vsk)->qpair
1314                     || vmci_trans(vsk)->produce_size != 0
1315                     || vmci_trans(vsk)->consume_size != 0
1316                     || vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) {
1317                         skerr = EPROTO;
1318                         err = -EINVAL;
1319
1320                         goto destroy;
1321                 }
1322
1323                 err = vmci_transport_recv_connecting_client_negotiate(sk, pkt);
1324                 if (err) {
1325                         skerr = -err;
1326                         goto destroy;
1327                 }
1328
1329                 break;
1330         case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
1331                 err = vmci_transport_recv_connecting_client_invalid(sk, pkt);
1332                 if (err) {
1333                         skerr = -err;
1334                         goto destroy;
1335                 }
1336
1337                 break;
1338         case VMCI_TRANSPORT_PACKET_TYPE_RST:
1339                 /* Older versions of the linux code (WS 6.5 / ESX 4.0) used to
1340                  * continue processing here after they sent an INVALID packet.
1341                  * This meant that we got a RST after the INVALID. We ignore a
1342                  * RST after an INVALID. The common code doesn't send the RST
1343                  * ... so we can hang if an old version of the common code
1344                  * fails between getting a REQUEST and sending an OFFER back.
1345                  * Not much we can do about it... except hope that it doesn't
1346                  * happen.
1347                  */
1348                 if (vsk->ignore_connecting_rst) {
1349                         vsk->ignore_connecting_rst = false;
1350                 } else {
1351                         skerr = ECONNRESET;
1352                         err = 0;
1353                         goto destroy;
1354                 }
1355
1356                 break;
1357         default:
1358                 /* Close and cleanup the connection. */
1359                 skerr = EPROTO;
1360                 err = -EINVAL;
1361                 goto destroy;
1362         }
1363
1364         return 0;
1365
1366 destroy:
1367         vmci_transport_send_reset(sk, pkt);
1368
1369         sk->sk_state = TCP_CLOSE;
1370         sk->sk_err = skerr;
1371         sk_error_report(sk);
1372         return err;
1373 }
1374
1375 static int vmci_transport_recv_connecting_client_negotiate(
1376                                         struct sock *sk,
1377                                         struct vmci_transport_packet *pkt)
1378 {
1379         int err;
1380         struct vsock_sock *vsk;
1381         struct vmci_handle handle;
1382         struct vmci_qp *qpair;
1383         u32 detach_sub_id;
1384         bool is_local;
1385         u32 flags;
1386         bool old_proto = true;
1387         bool old_pkt_proto;
1388         u16 version;
1389
1390         vsk = vsock_sk(sk);
1391         handle = VMCI_INVALID_HANDLE;
1392         detach_sub_id = VMCI_INVALID_ID;
1393
1394         /* If we have gotten here then we should be past the point where old
1395          * linux vsock could have sent the bogus rst.
1396          */
1397         vsk->sent_request = false;
1398         vsk->ignore_connecting_rst = false;
1399
1400         /* Verify that we're OK with the proposed queue pair size */
1401         if (pkt->u.size < vsk->buffer_min_size ||
1402             pkt->u.size > vsk->buffer_max_size) {
1403                 err = -EINVAL;
1404                 goto destroy;
1405         }
1406
1407         /* At this point we know the CID the peer is using to talk to us. */
1408
1409         if (vsk->local_addr.svm_cid == VMADDR_CID_ANY)
1410                 vsk->local_addr.svm_cid = pkt->dg.dst.context;
1411
1412         /* Setup the notify ops to be the highest supported version that both
1413          * the server and the client support.
1414          */
1415
1416         if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1417                 old_proto = old_pkt_proto;
1418         } else {
1419                 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE)
1420                         old_proto = true;
1421                 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2)
1422                         old_proto = false;
1423
1424         }
1425
1426         if (old_proto)
1427                 version = VSOCK_PROTO_INVALID;
1428         else
1429                 version = pkt->proto;
1430
1431         if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) {
1432                 err = -EINVAL;
1433                 goto destroy;
1434         }
1435
1436         /* Subscribe to detach events first.
1437          *
1438          * XXX We attach once for each queue pair created for now so it is easy
1439          * to find the socket (it's provided), but later we should only
1440          * subscribe once and add a way to lookup sockets by queue pair handle.
1441          */
1442         err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1443                                    vmci_transport_peer_detach_cb,
1444                                    vmci_trans(vsk), &detach_sub_id);
1445         if (err < VMCI_SUCCESS) {
1446                 err = vmci_transport_error_to_vsock_error(err);
1447                 goto destroy;
1448         }
1449
1450         /* Make VMCI select the handle for us. */
1451         handle = VMCI_INVALID_HANDLE;
1452         is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid;
1453         flags = is_local ? VMCI_QPFLAG_LOCAL : 0;
1454
1455         err = vmci_transport_queue_pair_alloc(&qpair,
1456                                               &handle,
1457                                               pkt->u.size,
1458                                               pkt->u.size,
1459                                               vsk->remote_addr.svm_cid,
1460                                               flags,
1461                                               vmci_transport_is_trusted(
1462                                                   vsk,
1463                                                   vsk->
1464                                                   remote_addr.svm_cid));
1465         if (err < 0)
1466                 goto destroy;
1467
1468         err = vmci_transport_send_qp_offer(sk, handle);
1469         if (err < 0) {
1470                 err = vmci_transport_error_to_vsock_error(err);
1471                 goto destroy;
1472         }
1473
1474         vmci_trans(vsk)->qp_handle = handle;
1475         vmci_trans(vsk)->qpair = qpair;
1476
1477         vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size =
1478                 pkt->u.size;
1479
1480         vmci_trans(vsk)->detach_sub_id = detach_sub_id;
1481
1482         vmci_trans(vsk)->notify_ops->process_negotiate(sk);
1483
1484         return 0;
1485
1486 destroy:
1487         if (detach_sub_id != VMCI_INVALID_ID)
1488                 vmci_event_unsubscribe(detach_sub_id);
1489
1490         if (!vmci_handle_is_invalid(handle))
1491                 vmci_qpair_detach(&qpair);
1492
1493         return err;
1494 }
1495
1496 static int
1497 vmci_transport_recv_connecting_client_invalid(struct sock *sk,
1498                                               struct vmci_transport_packet *pkt)
1499 {
1500         int err = 0;
1501         struct vsock_sock *vsk = vsock_sk(sk);
1502
1503         if (vsk->sent_request) {
1504                 vsk->sent_request = false;
1505                 vsk->ignore_connecting_rst = true;
1506
1507                 err = vmci_transport_send_conn_request(sk, vsk->buffer_size);
1508                 if (err < 0)
1509                         err = vmci_transport_error_to_vsock_error(err);
1510                 else
1511                         err = 0;
1512
1513         }
1514
1515         return err;
1516 }
1517
1518 static int vmci_transport_recv_connected(struct sock *sk,
1519                                          struct vmci_transport_packet *pkt)
1520 {
1521         struct vsock_sock *vsk;
1522         bool pkt_processed = false;
1523
1524         /* In cases where we are closing the connection, it's sufficient to
1525          * mark the state change (and maybe error) and wake up any waiting
1526          * threads. Since this is a connected socket, it's owned by a user
1527          * process and will be cleaned up when the failure is passed back on
1528          * the current or next system call.  Our system call implementations
1529          * must therefore check for error and state changes on entry and when
1530          * being awoken.
1531          */
1532         switch (pkt->type) {
1533         case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
1534                 if (pkt->u.mode) {
1535                         vsk = vsock_sk(sk);
1536
1537                         vsk->peer_shutdown |= pkt->u.mode;
1538                         sk->sk_state_change(sk);
1539                 }
1540                 break;
1541
1542         case VMCI_TRANSPORT_PACKET_TYPE_RST:
1543                 vsk = vsock_sk(sk);
1544                 /* It is possible that we sent our peer a message (e.g a
1545                  * WAITING_READ) right before we got notified that the peer had
1546                  * detached. If that happens then we can get a RST pkt back
1547                  * from our peer even though there is data available for us to
1548                  * read. In that case, don't shutdown the socket completely but
1549                  * instead allow the local client to finish reading data off
1550                  * the queuepair. Always treat a RST pkt in connected mode like
1551                  * a clean shutdown.
1552                  */
1553                 sock_set_flag(sk, SOCK_DONE);
1554                 vsk->peer_shutdown = SHUTDOWN_MASK;
1555                 if (vsock_stream_has_data(vsk) <= 0)
1556                         sk->sk_state = TCP_CLOSING;
1557
1558                 sk->sk_state_change(sk);
1559                 break;
1560
1561         default:
1562                 vsk = vsock_sk(sk);
1563                 vmci_trans(vsk)->notify_ops->handle_notify_pkt(
1564                                 sk, pkt, false, NULL, NULL,
1565                                 &pkt_processed);
1566                 if (!pkt_processed)
1567                         return -EINVAL;
1568
1569                 break;
1570         }
1571
1572         return 0;
1573 }
1574
1575 static int vmci_transport_socket_init(struct vsock_sock *vsk,
1576                                       struct vsock_sock *psk)
1577 {
1578         vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL);
1579         if (!vsk->trans)
1580                 return -ENOMEM;
1581
1582         vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1583         vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE;
1584         vmci_trans(vsk)->qpair = NULL;
1585         vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0;
1586         vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID;
1587         vmci_trans(vsk)->notify_ops = NULL;
1588         INIT_LIST_HEAD(&vmci_trans(vsk)->elem);
1589         vmci_trans(vsk)->sk = &vsk->sk;
1590         spin_lock_init(&vmci_trans(vsk)->lock);
1591
1592         return 0;
1593 }
1594
1595 static void vmci_transport_free_resources(struct list_head *transport_list)
1596 {
1597         while (!list_empty(transport_list)) {
1598                 struct vmci_transport *transport =
1599                     list_first_entry(transport_list, struct vmci_transport,
1600                                      elem);
1601                 list_del(&transport->elem);
1602
1603                 if (transport->detach_sub_id != VMCI_INVALID_ID) {
1604                         vmci_event_unsubscribe(transport->detach_sub_id);
1605                         transport->detach_sub_id = VMCI_INVALID_ID;
1606                 }
1607
1608                 if (!vmci_handle_is_invalid(transport->qp_handle)) {
1609                         vmci_qpair_detach(&transport->qpair);
1610                         transport->qp_handle = VMCI_INVALID_HANDLE;
1611                         transport->produce_size = 0;
1612                         transport->consume_size = 0;
1613                 }
1614
1615                 kfree(transport);
1616         }
1617 }
1618
1619 static void vmci_transport_cleanup(struct work_struct *work)
1620 {
1621         LIST_HEAD(pending);
1622
1623         spin_lock_bh(&vmci_transport_cleanup_lock);
1624         list_replace_init(&vmci_transport_cleanup_list, &pending);
1625         spin_unlock_bh(&vmci_transport_cleanup_lock);
1626         vmci_transport_free_resources(&pending);
1627 }
1628
1629 static void vmci_transport_destruct(struct vsock_sock *vsk)
1630 {
1631         /* transport can be NULL if we hit a failure at init() time */
1632         if (!vmci_trans(vsk))
1633                 return;
1634
1635         /* Ensure that the detach callback doesn't use the sk/vsk
1636          * we are about to destruct.
1637          */
1638         spin_lock_bh(&vmci_trans(vsk)->lock);
1639         vmci_trans(vsk)->sk = NULL;
1640         spin_unlock_bh(&vmci_trans(vsk)->lock);
1641
1642         if (vmci_trans(vsk)->notify_ops)
1643                 vmci_trans(vsk)->notify_ops->socket_destruct(vsk);
1644
1645         spin_lock_bh(&vmci_transport_cleanup_lock);
1646         list_add(&vmci_trans(vsk)->elem, &vmci_transport_cleanup_list);
1647         spin_unlock_bh(&vmci_transport_cleanup_lock);
1648         schedule_work(&vmci_transport_cleanup_work);
1649
1650         vsk->trans = NULL;
1651 }
1652
1653 static void vmci_transport_release(struct vsock_sock *vsk)
1654 {
1655         vsock_remove_sock(vsk);
1656
1657         if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) {
1658                 vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle);
1659                 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1660         }
1661 }
1662
1663 static int vmci_transport_dgram_bind(struct vsock_sock *vsk,
1664                                      struct sockaddr_vm *addr)
1665 {
1666         u32 port;
1667         u32 flags;
1668         int err;
1669
1670         /* VMCI will select a resource ID for us if we provide
1671          * VMCI_INVALID_ID.
1672          */
1673         port = addr->svm_port == VMADDR_PORT_ANY ?
1674                         VMCI_INVALID_ID : addr->svm_port;
1675
1676         if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE))
1677                 return -EACCES;
1678
1679         flags = addr->svm_cid == VMADDR_CID_ANY ?
1680                                 VMCI_FLAG_ANYCID_DG_HND : 0;
1681
1682         err = vmci_transport_datagram_create_hnd(port, flags,
1683                                                  vmci_transport_recv_dgram_cb,
1684                                                  &vsk->sk,
1685                                                  &vmci_trans(vsk)->dg_handle);
1686         if (err < VMCI_SUCCESS)
1687                 return vmci_transport_error_to_vsock_error(err);
1688         vsock_addr_init(&vsk->local_addr, addr->svm_cid,
1689                         vmci_trans(vsk)->dg_handle.resource);
1690
1691         return 0;
1692 }
1693
1694 static int vmci_transport_dgram_enqueue(
1695         struct vsock_sock *vsk,
1696         struct sockaddr_vm *remote_addr,
1697         struct msghdr *msg,
1698         size_t len)
1699 {
1700         int err;
1701         struct vmci_datagram *dg;
1702
1703         if (len > VMCI_MAX_DG_PAYLOAD_SIZE)
1704                 return -EMSGSIZE;
1705
1706         if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid))
1707                 return -EPERM;
1708
1709         /* Allocate a buffer for the user's message and our packet header. */
1710         dg = kmalloc(len + sizeof(*dg), GFP_KERNEL);
1711         if (!dg)
1712                 return -ENOMEM;
1713
1714         memcpy_from_msg(VMCI_DG_PAYLOAD(dg), msg, len);
1715
1716         dg->dst = vmci_make_handle(remote_addr->svm_cid,
1717                                    remote_addr->svm_port);
1718         dg->src = vmci_make_handle(vsk->local_addr.svm_cid,
1719                                    vsk->local_addr.svm_port);
1720         dg->payload_size = len;
1721
1722         err = vmci_datagram_send(dg);
1723         kfree(dg);
1724         if (err < 0)
1725                 return vmci_transport_error_to_vsock_error(err);
1726
1727         return err - sizeof(*dg);
1728 }
1729
1730 static int vmci_transport_dgram_dequeue(struct vsock_sock *vsk,
1731                                         struct msghdr *msg, size_t len,
1732                                         int flags)
1733 {
1734         int err;
1735         int noblock;
1736         struct vmci_datagram *dg;
1737         size_t payload_len;
1738         struct sk_buff *skb;
1739
1740         noblock = flags & MSG_DONTWAIT;
1741
1742         if (flags & MSG_OOB || flags & MSG_ERRQUEUE)
1743                 return -EOPNOTSUPP;
1744
1745         /* Retrieve the head sk_buff from the socket's receive queue. */
1746         err = 0;
1747         skb = skb_recv_datagram(&vsk->sk, flags, noblock, &err);
1748         if (!skb)
1749                 return err;
1750
1751         dg = (struct vmci_datagram *)skb->data;
1752         if (!dg)
1753                 /* err is 0, meaning we read zero bytes. */
1754                 goto out;
1755
1756         payload_len = dg->payload_size;
1757         /* Ensure the sk_buff matches the payload size claimed in the packet. */
1758         if (payload_len != skb->len - sizeof(*dg)) {
1759                 err = -EINVAL;
1760                 goto out;
1761         }
1762
1763         if (payload_len > len) {
1764                 payload_len = len;
1765                 msg->msg_flags |= MSG_TRUNC;
1766         }
1767
1768         /* Place the datagram payload in the user's iovec. */
1769         err = skb_copy_datagram_msg(skb, sizeof(*dg), msg, payload_len);
1770         if (err)
1771                 goto out;
1772
1773         if (msg->msg_name) {
1774                 /* Provide the address of the sender. */
1775                 DECLARE_SOCKADDR(struct sockaddr_vm *, vm_addr, msg->msg_name);
1776                 vsock_addr_init(vm_addr, dg->src.context, dg->src.resource);
1777                 msg->msg_namelen = sizeof(*vm_addr);
1778         }
1779         err = payload_len;
1780
1781 out:
1782         skb_free_datagram(&vsk->sk, skb);
1783         return err;
1784 }
1785
1786 static bool vmci_transport_dgram_allow(u32 cid, u32 port)
1787 {
1788         if (cid == VMADDR_CID_HYPERVISOR) {
1789                 /* Registrations of PBRPC Servers do not modify VMX/Hypervisor
1790                  * state and are allowed.
1791                  */
1792                 return port == VMCI_UNITY_PBRPC_REGISTER;
1793         }
1794
1795         return true;
1796 }
1797
1798 static int vmci_transport_connect(struct vsock_sock *vsk)
1799 {
1800         int err;
1801         bool old_pkt_proto = false;
1802         struct sock *sk = &vsk->sk;
1803
1804         if (vmci_transport_old_proto_override(&old_pkt_proto) &&
1805                 old_pkt_proto) {
1806                 err = vmci_transport_send_conn_request(sk, vsk->buffer_size);
1807                 if (err < 0) {
1808                         sk->sk_state = TCP_CLOSE;
1809                         return err;
1810                 }
1811         } else {
1812                 int supported_proto_versions =
1813                         vmci_transport_new_proto_supported_versions();
1814                 err = vmci_transport_send_conn_request2(sk, vsk->buffer_size,
1815                                 supported_proto_versions);
1816                 if (err < 0) {
1817                         sk->sk_state = TCP_CLOSE;
1818                         return err;
1819                 }
1820
1821                 vsk->sent_request = true;
1822         }
1823
1824         return err;
1825 }
1826
1827 static ssize_t vmci_transport_stream_dequeue(
1828         struct vsock_sock *vsk,
1829         struct msghdr *msg,
1830         size_t len,
1831         int flags)
1832 {
1833         if (flags & MSG_PEEK)
1834                 return vmci_qpair_peekv(vmci_trans(vsk)->qpair, msg, len, 0);
1835         else
1836                 return vmci_qpair_dequev(vmci_trans(vsk)->qpair, msg, len, 0);
1837 }
1838
1839 static ssize_t vmci_transport_stream_enqueue(
1840         struct vsock_sock *vsk,
1841         struct msghdr *msg,
1842         size_t len)
1843 {
1844         return vmci_qpair_enquev(vmci_trans(vsk)->qpair, msg, len, 0);
1845 }
1846
1847 static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk)
1848 {
1849         return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair);
1850 }
1851
1852 static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk)
1853 {
1854         return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair);
1855 }
1856
1857 static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk)
1858 {
1859         return vmci_trans(vsk)->consume_size;
1860 }
1861
1862 static bool vmci_transport_stream_is_active(struct vsock_sock *vsk)
1863 {
1864         return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle);
1865 }
1866
1867 static int vmci_transport_notify_poll_in(
1868         struct vsock_sock *vsk,
1869         size_t target,
1870         bool *data_ready_now)
1871 {
1872         return vmci_trans(vsk)->notify_ops->poll_in(
1873                         &vsk->sk, target, data_ready_now);
1874 }
1875
1876 static int vmci_transport_notify_poll_out(
1877         struct vsock_sock *vsk,
1878         size_t target,
1879         bool *space_available_now)
1880 {
1881         return vmci_trans(vsk)->notify_ops->poll_out(
1882                         &vsk->sk, target, space_available_now);
1883 }
1884
1885 static int vmci_transport_notify_recv_init(
1886         struct vsock_sock *vsk,
1887         size_t target,
1888         struct vsock_transport_recv_notify_data *data)
1889 {
1890         return vmci_trans(vsk)->notify_ops->recv_init(
1891                         &vsk->sk, target,
1892                         (struct vmci_transport_recv_notify_data *)data);
1893 }
1894
1895 static int vmci_transport_notify_recv_pre_block(
1896         struct vsock_sock *vsk,
1897         size_t target,
1898         struct vsock_transport_recv_notify_data *data)
1899 {
1900         return vmci_trans(vsk)->notify_ops->recv_pre_block(
1901                         &vsk->sk, target,
1902                         (struct vmci_transport_recv_notify_data *)data);
1903 }
1904
1905 static int vmci_transport_notify_recv_pre_dequeue(
1906         struct vsock_sock *vsk,
1907         size_t target,
1908         struct vsock_transport_recv_notify_data *data)
1909 {
1910         return vmci_trans(vsk)->notify_ops->recv_pre_dequeue(
1911                         &vsk->sk, target,
1912                         (struct vmci_transport_recv_notify_data *)data);
1913 }
1914
1915 static int vmci_transport_notify_recv_post_dequeue(
1916         struct vsock_sock *vsk,
1917         size_t target,
1918         ssize_t copied,
1919         bool data_read,
1920         struct vsock_transport_recv_notify_data *data)
1921 {
1922         return vmci_trans(vsk)->notify_ops->recv_post_dequeue(
1923                         &vsk->sk, target, copied, data_read,
1924                         (struct vmci_transport_recv_notify_data *)data);
1925 }
1926
1927 static int vmci_transport_notify_send_init(
1928         struct vsock_sock *vsk,
1929         struct vsock_transport_send_notify_data *data)
1930 {
1931         return vmci_trans(vsk)->notify_ops->send_init(
1932                         &vsk->sk,
1933                         (struct vmci_transport_send_notify_data *)data);
1934 }
1935
1936 static int vmci_transport_notify_send_pre_block(
1937         struct vsock_sock *vsk,
1938         struct vsock_transport_send_notify_data *data)
1939 {
1940         return vmci_trans(vsk)->notify_ops->send_pre_block(
1941                         &vsk->sk,
1942                         (struct vmci_transport_send_notify_data *)data);
1943 }
1944
1945 static int vmci_transport_notify_send_pre_enqueue(
1946         struct vsock_sock *vsk,
1947         struct vsock_transport_send_notify_data *data)
1948 {
1949         return vmci_trans(vsk)->notify_ops->send_pre_enqueue(
1950                         &vsk->sk,
1951                         (struct vmci_transport_send_notify_data *)data);
1952 }
1953
1954 static int vmci_transport_notify_send_post_enqueue(
1955         struct vsock_sock *vsk,
1956         ssize_t written,
1957         struct vsock_transport_send_notify_data *data)
1958 {
1959         return vmci_trans(vsk)->notify_ops->send_post_enqueue(
1960                         &vsk->sk, written,
1961                         (struct vmci_transport_send_notify_data *)data);
1962 }
1963
1964 static bool vmci_transport_old_proto_override(bool *old_pkt_proto)
1965 {
1966         if (PROTOCOL_OVERRIDE != -1) {
1967                 if (PROTOCOL_OVERRIDE == 0)
1968                         *old_pkt_proto = true;
1969                 else
1970                         *old_pkt_proto = false;
1971
1972                 pr_info("Proto override in use\n");
1973                 return true;
1974         }
1975
1976         return false;
1977 }
1978
1979 static bool vmci_transport_proto_to_notify_struct(struct sock *sk,
1980                                                   u16 *proto,
1981                                                   bool old_pkt_proto)
1982 {
1983         struct vsock_sock *vsk = vsock_sk(sk);
1984
1985         if (old_pkt_proto) {
1986                 if (*proto != VSOCK_PROTO_INVALID) {
1987                         pr_err("Can't set both an old and new protocol\n");
1988                         return false;
1989                 }
1990                 vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops;
1991                 goto exit;
1992         }
1993
1994         switch (*proto) {
1995         case VSOCK_PROTO_PKT_ON_NOTIFY:
1996                 vmci_trans(vsk)->notify_ops =
1997                         &vmci_transport_notify_pkt_q_state_ops;
1998                 break;
1999         default:
2000                 pr_err("Unknown notify protocol version\n");
2001                 return false;
2002         }
2003
2004 exit:
2005         vmci_trans(vsk)->notify_ops->socket_init(sk);
2006         return true;
2007 }
2008
2009 static u16 vmci_transport_new_proto_supported_versions(void)
2010 {
2011         if (PROTOCOL_OVERRIDE != -1)
2012                 return PROTOCOL_OVERRIDE;
2013
2014         return VSOCK_PROTO_ALL_SUPPORTED;
2015 }
2016
2017 static u32 vmci_transport_get_local_cid(void)
2018 {
2019         return vmci_get_context_id();
2020 }
2021
2022 static struct vsock_transport vmci_transport = {
2023         .module = THIS_MODULE,
2024         .init = vmci_transport_socket_init,
2025         .destruct = vmci_transport_destruct,
2026         .release = vmci_transport_release,
2027         .connect = vmci_transport_connect,
2028         .dgram_bind = vmci_transport_dgram_bind,
2029         .dgram_dequeue = vmci_transport_dgram_dequeue,
2030         .dgram_enqueue = vmci_transport_dgram_enqueue,
2031         .dgram_allow = vmci_transport_dgram_allow,
2032         .stream_dequeue = vmci_transport_stream_dequeue,
2033         .stream_enqueue = vmci_transport_stream_enqueue,
2034         .stream_has_data = vmci_transport_stream_has_data,
2035         .stream_has_space = vmci_transport_stream_has_space,
2036         .stream_rcvhiwat = vmci_transport_stream_rcvhiwat,
2037         .stream_is_active = vmci_transport_stream_is_active,
2038         .stream_allow = vmci_transport_stream_allow,
2039         .notify_poll_in = vmci_transport_notify_poll_in,
2040         .notify_poll_out = vmci_transport_notify_poll_out,
2041         .notify_recv_init = vmci_transport_notify_recv_init,
2042         .notify_recv_pre_block = vmci_transport_notify_recv_pre_block,
2043         .notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue,
2044         .notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue,
2045         .notify_send_init = vmci_transport_notify_send_init,
2046         .notify_send_pre_block = vmci_transport_notify_send_pre_block,
2047         .notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue,
2048         .notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue,
2049         .shutdown = vmci_transport_shutdown,
2050         .get_local_cid = vmci_transport_get_local_cid,
2051 };
2052
2053 static bool vmci_check_transport(struct vsock_sock *vsk)
2054 {
2055         return vsk->transport == &vmci_transport;
2056 }
2057
2058 static void vmci_vsock_transport_cb(bool is_host)
2059 {
2060         int features;
2061
2062         if (is_host)
2063                 features = VSOCK_TRANSPORT_F_H2G;
2064         else
2065                 features = VSOCK_TRANSPORT_F_G2H;
2066
2067         vsock_core_register(&vmci_transport, features);
2068 }
2069
2070 static int __init vmci_transport_init(void)
2071 {
2072         int err;
2073
2074         /* Create the datagram handle that we will use to send and receive all
2075          * VSocket control messages for this context.
2076          */
2077         err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID,
2078                                                  VMCI_FLAG_ANYCID_DG_HND,
2079                                                  vmci_transport_recv_stream_cb,
2080                                                  NULL,
2081                                                  &vmci_transport_stream_handle);
2082         if (err < VMCI_SUCCESS) {
2083                 pr_err("Unable to create datagram handle. (%d)\n", err);
2084                 return vmci_transport_error_to_vsock_error(err);
2085         }
2086         err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED,
2087                                    vmci_transport_qp_resumed_cb,
2088                                    NULL, &vmci_transport_qp_resumed_sub_id);
2089         if (err < VMCI_SUCCESS) {
2090                 pr_err("Unable to subscribe to resumed event. (%d)\n", err);
2091                 err = vmci_transport_error_to_vsock_error(err);
2092                 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2093                 goto err_destroy_stream_handle;
2094         }
2095
2096         /* Register only with dgram feature, other features (H2G, G2H) will be
2097          * registered when the first host or guest becomes active.
2098          */
2099         err = vsock_core_register(&vmci_transport, VSOCK_TRANSPORT_F_DGRAM);
2100         if (err < 0)
2101                 goto err_unsubscribe;
2102
2103         err = vmci_register_vsock_callback(vmci_vsock_transport_cb);
2104         if (err < 0)
2105                 goto err_unregister;
2106
2107         return 0;
2108
2109 err_unregister:
2110         vsock_core_unregister(&vmci_transport);
2111 err_unsubscribe:
2112         vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2113 err_destroy_stream_handle:
2114         vmci_datagram_destroy_handle(vmci_transport_stream_handle);
2115         return err;
2116 }
2117 module_init(vmci_transport_init);
2118
2119 static void __exit vmci_transport_exit(void)
2120 {
2121         cancel_work_sync(&vmci_transport_cleanup_work);
2122         vmci_transport_free_resources(&vmci_transport_cleanup_list);
2123
2124         if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) {
2125                 if (vmci_datagram_destroy_handle(
2126                         vmci_transport_stream_handle) != VMCI_SUCCESS)
2127                         pr_err("Couldn't destroy datagram handle\n");
2128                 vmci_transport_stream_handle = VMCI_INVALID_HANDLE;
2129         }
2130
2131         if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) {
2132                 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2133                 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2134         }
2135
2136         vmci_register_vsock_callback(NULL);
2137         vsock_core_unregister(&vmci_transport);
2138 }
2139 module_exit(vmci_transport_exit);
2140
2141 MODULE_AUTHOR("VMware, Inc.");
2142 MODULE_DESCRIPTION("VMCI transport for Virtual Sockets");
2143 MODULE_VERSION("1.0.5.0-k");
2144 MODULE_LICENSE("GPL v2");
2145 MODULE_ALIAS("vmware_vsock");
2146 MODULE_ALIAS_NETPROTO(PF_VSOCK);