Merge tag 'for-linus-5.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rw/uml
[linux-2.6-microblaze.git] / net / vmw_vsock / af_vsock.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware vSockets Driver
4  *
5  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6  */
7
8 /* Implementation notes:
9  *
10  * - There are two kinds of sockets: those created by user action (such as
11  * calling socket(2)) and those created by incoming connection request packets.
12  *
13  * - There are two "global" tables, one for bound sockets (sockets that have
14  * specified an address that they are responsible for) and one for connected
15  * sockets (sockets that have established a connection with another socket).
16  * These tables are "global" in that all sockets on the system are placed
17  * within them. - Note, though, that the bound table contains an extra entry
18  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19  * that list. The bound table is used solely for lookup of sockets when packets
20  * are received and that's not necessary for SOCK_DGRAM sockets since we create
21  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
22  * sockets out of the bound hash buckets will reduce the chance of collisions
23  * when looking for SOCK_STREAM sockets and prevents us from having to check the
24  * socket type in the hash table lookups.
25  *
26  * - Sockets created by user action will either be "client" sockets that
27  * initiate a connection or "server" sockets that listen for connections; we do
28  * not support simultaneous connects (two "client" sockets connecting).
29  *
30  * - "Server" sockets are referred to as listener sockets throughout this
31  * implementation because they are in the TCP_LISTEN state.  When a
32  * connection request is received (the second kind of socket mentioned above),
33  * we create a new socket and refer to it as a pending socket.  These pending
34  * sockets are placed on the pending connection list of the listener socket.
35  * When future packets are received for the address the listener socket is
36  * bound to, we check if the source of the packet is from one that has an
37  * existing pending connection.  If it does, we process the packet for the
38  * pending socket.  When that socket reaches the connected state, it is removed
39  * from the listener socket's pending list and enqueued in the listener
40  * socket's accept queue.  Callers of accept(2) will accept connected sockets
41  * from the listener socket's accept queue.  If the socket cannot be accepted
42  * for some reason then it is marked rejected.  Once the connection is
43  * accepted, it is owned by the user process and the responsibility for cleanup
44  * falls with that user process.
45  *
46  * - It is possible that these pending sockets will never reach the connected
47  * state; in fact, we may never receive another packet after the connection
48  * request.  Because of this, we must schedule a cleanup function to run in the
49  * future, after some amount of time passes where a connection should have been
50  * established.  This function ensures that the socket is off all lists so it
51  * cannot be retrieved, then drops all references to the socket so it is cleaned
52  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
53  * function will also cleanup rejected sockets, those that reach the connected
54  * state but leave it before they have been accepted.
55  *
56  * - Lock ordering for pending or accept queue sockets is:
57  *
58  *     lock_sock(listener);
59  *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60  *
61  * Using explicit nested locking keeps lockdep happy since normally only one
62  * lock of a given class may be taken at a time.
63  *
64  * - Sockets created by user action will be cleaned up when the user process
65  * calls close(2), causing our release implementation to be called. Our release
66  * implementation will perform some cleanup then drop the last reference so our
67  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
68  * perform additional cleanup that's common for both types of sockets.
69  *
70  * - A socket's reference count is what ensures that the structure won't be
71  * freed.  Each entry in a list (such as the "global" bound and connected tables
72  * and the listener socket's pending list and connected queue) ensures a
73  * reference.  When we defer work until process context and pass a socket as our
74  * argument, we must ensure the reference count is increased to ensure the
75  * socket isn't freed before the function is run; the deferred function will
76  * then drop the reference.
77  *
78  * - sk->sk_state uses the TCP state constants because they are widely used by
79  * other address families and exposed to userspace tools like ss(8):
80  *
81  *   TCP_CLOSE - unconnected
82  *   TCP_SYN_SENT - connecting
83  *   TCP_ESTABLISHED - connected
84  *   TCP_CLOSING - disconnecting
85  *   TCP_LISTEN - listening
86  */
87
88 #include <linux/types.h>
89 #include <linux/bitops.h>
90 #include <linux/cred.h>
91 #include <linux/init.h>
92 #include <linux/io.h>
93 #include <linux/kernel.h>
94 #include <linux/sched/signal.h>
95 #include <linux/kmod.h>
96 #include <linux/list.h>
97 #include <linux/miscdevice.h>
98 #include <linux/module.h>
99 #include <linux/mutex.h>
100 #include <linux/net.h>
101 #include <linux/poll.h>
102 #include <linux/random.h>
103 #include <linux/skbuff.h>
104 #include <linux/smp.h>
105 #include <linux/socket.h>
106 #include <linux/stddef.h>
107 #include <linux/unistd.h>
108 #include <linux/wait.h>
109 #include <linux/workqueue.h>
110 #include <net/sock.h>
111 #include <net/af_vsock.h>
112
113 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
114 static void vsock_sk_destruct(struct sock *sk);
115 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
116
117 /* Protocol family. */
118 static struct proto vsock_proto = {
119         .name = "AF_VSOCK",
120         .owner = THIS_MODULE,
121         .obj_size = sizeof(struct vsock_sock),
122 };
123
124 /* The default peer timeout indicates how long we will wait for a peer response
125  * to a control message.
126  */
127 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
128
129 #define VSOCK_DEFAULT_BUFFER_SIZE     (1024 * 256)
130 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
131 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
132
133 /* Transport used for host->guest communication */
134 static const struct vsock_transport *transport_h2g;
135 /* Transport used for guest->host communication */
136 static const struct vsock_transport *transport_g2h;
137 /* Transport used for DGRAM communication */
138 static const struct vsock_transport *transport_dgram;
139 /* Transport used for local communication */
140 static const struct vsock_transport *transport_local;
141 static DEFINE_MUTEX(vsock_register_mutex);
142
143 /**** UTILS ****/
144
145 /* Each bound VSocket is stored in the bind hash table and each connected
146  * VSocket is stored in the connected hash table.
147  *
148  * Unbound sockets are all put on the same list attached to the end of the hash
149  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
150  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
151  * represents the list that addr hashes to).
152  *
153  * Specifically, we initialize the vsock_bind_table array to a size of
154  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
155  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
156  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
157  * mods with VSOCK_HASH_SIZE to ensure this.
158  */
159 #define MAX_PORT_RETRIES        24
160
161 #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
162 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
163 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
164
165 /* XXX This can probably be implemented in a better way. */
166 #define VSOCK_CONN_HASH(src, dst)                               \
167         (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
168 #define vsock_connected_sockets(src, dst)               \
169         (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
170 #define vsock_connected_sockets_vsk(vsk)                                \
171         vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
172
173 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
174 EXPORT_SYMBOL_GPL(vsock_bind_table);
175 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
176 EXPORT_SYMBOL_GPL(vsock_connected_table);
177 DEFINE_SPINLOCK(vsock_table_lock);
178 EXPORT_SYMBOL_GPL(vsock_table_lock);
179
180 /* Autobind this socket to the local address if necessary. */
181 static int vsock_auto_bind(struct vsock_sock *vsk)
182 {
183         struct sock *sk = sk_vsock(vsk);
184         struct sockaddr_vm local_addr;
185
186         if (vsock_addr_bound(&vsk->local_addr))
187                 return 0;
188         vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
189         return __vsock_bind(sk, &local_addr);
190 }
191
192 static void vsock_init_tables(void)
193 {
194         int i;
195
196         for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
197                 INIT_LIST_HEAD(&vsock_bind_table[i]);
198
199         for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
200                 INIT_LIST_HEAD(&vsock_connected_table[i]);
201 }
202
203 static void __vsock_insert_bound(struct list_head *list,
204                                  struct vsock_sock *vsk)
205 {
206         sock_hold(&vsk->sk);
207         list_add(&vsk->bound_table, list);
208 }
209
210 static void __vsock_insert_connected(struct list_head *list,
211                                      struct vsock_sock *vsk)
212 {
213         sock_hold(&vsk->sk);
214         list_add(&vsk->connected_table, list);
215 }
216
217 static void __vsock_remove_bound(struct vsock_sock *vsk)
218 {
219         list_del_init(&vsk->bound_table);
220         sock_put(&vsk->sk);
221 }
222
223 static void __vsock_remove_connected(struct vsock_sock *vsk)
224 {
225         list_del_init(&vsk->connected_table);
226         sock_put(&vsk->sk);
227 }
228
229 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
230 {
231         struct vsock_sock *vsk;
232
233         list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
234                 if (vsock_addr_equals_addr(addr, &vsk->local_addr))
235                         return sk_vsock(vsk);
236
237                 if (addr->svm_port == vsk->local_addr.svm_port &&
238                     (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
239                      addr->svm_cid == VMADDR_CID_ANY))
240                         return sk_vsock(vsk);
241         }
242
243         return NULL;
244 }
245
246 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
247                                                   struct sockaddr_vm *dst)
248 {
249         struct vsock_sock *vsk;
250
251         list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
252                             connected_table) {
253                 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
254                     dst->svm_port == vsk->local_addr.svm_port) {
255                         return sk_vsock(vsk);
256                 }
257         }
258
259         return NULL;
260 }
261
262 static void vsock_insert_unbound(struct vsock_sock *vsk)
263 {
264         spin_lock_bh(&vsock_table_lock);
265         __vsock_insert_bound(vsock_unbound_sockets, vsk);
266         spin_unlock_bh(&vsock_table_lock);
267 }
268
269 void vsock_insert_connected(struct vsock_sock *vsk)
270 {
271         struct list_head *list = vsock_connected_sockets(
272                 &vsk->remote_addr, &vsk->local_addr);
273
274         spin_lock_bh(&vsock_table_lock);
275         __vsock_insert_connected(list, vsk);
276         spin_unlock_bh(&vsock_table_lock);
277 }
278 EXPORT_SYMBOL_GPL(vsock_insert_connected);
279
280 void vsock_remove_bound(struct vsock_sock *vsk)
281 {
282         spin_lock_bh(&vsock_table_lock);
283         if (__vsock_in_bound_table(vsk))
284                 __vsock_remove_bound(vsk);
285         spin_unlock_bh(&vsock_table_lock);
286 }
287 EXPORT_SYMBOL_GPL(vsock_remove_bound);
288
289 void vsock_remove_connected(struct vsock_sock *vsk)
290 {
291         spin_lock_bh(&vsock_table_lock);
292         if (__vsock_in_connected_table(vsk))
293                 __vsock_remove_connected(vsk);
294         spin_unlock_bh(&vsock_table_lock);
295 }
296 EXPORT_SYMBOL_GPL(vsock_remove_connected);
297
298 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
299 {
300         struct sock *sk;
301
302         spin_lock_bh(&vsock_table_lock);
303         sk = __vsock_find_bound_socket(addr);
304         if (sk)
305                 sock_hold(sk);
306
307         spin_unlock_bh(&vsock_table_lock);
308
309         return sk;
310 }
311 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
312
313 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
314                                          struct sockaddr_vm *dst)
315 {
316         struct sock *sk;
317
318         spin_lock_bh(&vsock_table_lock);
319         sk = __vsock_find_connected_socket(src, dst);
320         if (sk)
321                 sock_hold(sk);
322
323         spin_unlock_bh(&vsock_table_lock);
324
325         return sk;
326 }
327 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
328
329 void vsock_remove_sock(struct vsock_sock *vsk)
330 {
331         vsock_remove_bound(vsk);
332         vsock_remove_connected(vsk);
333 }
334 EXPORT_SYMBOL_GPL(vsock_remove_sock);
335
336 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
337 {
338         int i;
339
340         spin_lock_bh(&vsock_table_lock);
341
342         for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
343                 struct vsock_sock *vsk;
344                 list_for_each_entry(vsk, &vsock_connected_table[i],
345                                     connected_table)
346                         fn(sk_vsock(vsk));
347         }
348
349         spin_unlock_bh(&vsock_table_lock);
350 }
351 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
352
353 void vsock_add_pending(struct sock *listener, struct sock *pending)
354 {
355         struct vsock_sock *vlistener;
356         struct vsock_sock *vpending;
357
358         vlistener = vsock_sk(listener);
359         vpending = vsock_sk(pending);
360
361         sock_hold(pending);
362         sock_hold(listener);
363         list_add_tail(&vpending->pending_links, &vlistener->pending_links);
364 }
365 EXPORT_SYMBOL_GPL(vsock_add_pending);
366
367 void vsock_remove_pending(struct sock *listener, struct sock *pending)
368 {
369         struct vsock_sock *vpending = vsock_sk(pending);
370
371         list_del_init(&vpending->pending_links);
372         sock_put(listener);
373         sock_put(pending);
374 }
375 EXPORT_SYMBOL_GPL(vsock_remove_pending);
376
377 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
378 {
379         struct vsock_sock *vlistener;
380         struct vsock_sock *vconnected;
381
382         vlistener = vsock_sk(listener);
383         vconnected = vsock_sk(connected);
384
385         sock_hold(connected);
386         sock_hold(listener);
387         list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
388 }
389 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
390
391 static bool vsock_use_local_transport(unsigned int remote_cid)
392 {
393         if (!transport_local)
394                 return false;
395
396         if (remote_cid == VMADDR_CID_LOCAL)
397                 return true;
398
399         if (transport_g2h) {
400                 return remote_cid == transport_g2h->get_local_cid();
401         } else {
402                 return remote_cid == VMADDR_CID_HOST;
403         }
404 }
405
406 static void vsock_deassign_transport(struct vsock_sock *vsk)
407 {
408         if (!vsk->transport)
409                 return;
410
411         vsk->transport->destruct(vsk);
412         module_put(vsk->transport->module);
413         vsk->transport = NULL;
414 }
415
416 /* Assign a transport to a socket and call the .init transport callback.
417  *
418  * Note: for stream socket this must be called when vsk->remote_addr is set
419  * (e.g. during the connect() or when a connection request on a listener
420  * socket is received).
421  * The vsk->remote_addr is used to decide which transport to use:
422  *  - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
423  *    g2h is not loaded, will use local transport;
424  *  - remote CID <= VMADDR_CID_HOST will use guest->host transport;
425  *  - remote CID > VMADDR_CID_HOST will use host->guest transport;
426  */
427 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
428 {
429         const struct vsock_transport *new_transport;
430         struct sock *sk = sk_vsock(vsk);
431         unsigned int remote_cid = vsk->remote_addr.svm_cid;
432         int ret;
433
434         switch (sk->sk_type) {
435         case SOCK_DGRAM:
436                 new_transport = transport_dgram;
437                 break;
438         case SOCK_STREAM:
439                 if (vsock_use_local_transport(remote_cid))
440                         new_transport = transport_local;
441                 else if (remote_cid <= VMADDR_CID_HOST)
442                         new_transport = transport_g2h;
443                 else
444                         new_transport = transport_h2g;
445                 break;
446         default:
447                 return -ESOCKTNOSUPPORT;
448         }
449
450         if (vsk->transport) {
451                 if (vsk->transport == new_transport)
452                         return 0;
453
454                 vsk->transport->release(vsk);
455                 vsock_deassign_transport(vsk);
456         }
457
458         /* We increase the module refcnt to prevent the transport unloading
459          * while there are open sockets assigned to it.
460          */
461         if (!new_transport || !try_module_get(new_transport->module))
462                 return -ENODEV;
463
464         ret = new_transport->init(vsk, psk);
465         if (ret) {
466                 module_put(new_transport->module);
467                 return ret;
468         }
469
470         vsk->transport = new_transport;
471
472         return 0;
473 }
474 EXPORT_SYMBOL_GPL(vsock_assign_transport);
475
476 bool vsock_find_cid(unsigned int cid)
477 {
478         if (transport_g2h && cid == transport_g2h->get_local_cid())
479                 return true;
480
481         if (transport_h2g && cid == VMADDR_CID_HOST)
482                 return true;
483
484         if (transport_local && cid == VMADDR_CID_LOCAL)
485                 return true;
486
487         return false;
488 }
489 EXPORT_SYMBOL_GPL(vsock_find_cid);
490
491 static struct sock *vsock_dequeue_accept(struct sock *listener)
492 {
493         struct vsock_sock *vlistener;
494         struct vsock_sock *vconnected;
495
496         vlistener = vsock_sk(listener);
497
498         if (list_empty(&vlistener->accept_queue))
499                 return NULL;
500
501         vconnected = list_entry(vlistener->accept_queue.next,
502                                 struct vsock_sock, accept_queue);
503
504         list_del_init(&vconnected->accept_queue);
505         sock_put(listener);
506         /* The caller will need a reference on the connected socket so we let
507          * it call sock_put().
508          */
509
510         return sk_vsock(vconnected);
511 }
512
513 static bool vsock_is_accept_queue_empty(struct sock *sk)
514 {
515         struct vsock_sock *vsk = vsock_sk(sk);
516         return list_empty(&vsk->accept_queue);
517 }
518
519 static bool vsock_is_pending(struct sock *sk)
520 {
521         struct vsock_sock *vsk = vsock_sk(sk);
522         return !list_empty(&vsk->pending_links);
523 }
524
525 static int vsock_send_shutdown(struct sock *sk, int mode)
526 {
527         struct vsock_sock *vsk = vsock_sk(sk);
528
529         if (!vsk->transport)
530                 return -ENODEV;
531
532         return vsk->transport->shutdown(vsk, mode);
533 }
534
535 static void vsock_pending_work(struct work_struct *work)
536 {
537         struct sock *sk;
538         struct sock *listener;
539         struct vsock_sock *vsk;
540         bool cleanup;
541
542         vsk = container_of(work, struct vsock_sock, pending_work.work);
543         sk = sk_vsock(vsk);
544         listener = vsk->listener;
545         cleanup = true;
546
547         lock_sock(listener);
548         lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
549
550         if (vsock_is_pending(sk)) {
551                 vsock_remove_pending(listener, sk);
552
553                 sk_acceptq_removed(listener);
554         } else if (!vsk->rejected) {
555                 /* We are not on the pending list and accept() did not reject
556                  * us, so we must have been accepted by our user process.  We
557                  * just need to drop our references to the sockets and be on
558                  * our way.
559                  */
560                 cleanup = false;
561                 goto out;
562         }
563
564         /* We need to remove ourself from the global connected sockets list so
565          * incoming packets can't find this socket, and to reduce the reference
566          * count.
567          */
568         vsock_remove_connected(vsk);
569
570         sk->sk_state = TCP_CLOSE;
571
572 out:
573         release_sock(sk);
574         release_sock(listener);
575         if (cleanup)
576                 sock_put(sk);
577
578         sock_put(sk);
579         sock_put(listener);
580 }
581
582 /**** SOCKET OPERATIONS ****/
583
584 static int __vsock_bind_stream(struct vsock_sock *vsk,
585                                struct sockaddr_vm *addr)
586 {
587         static u32 port;
588         struct sockaddr_vm new_addr;
589
590         if (!port)
591                 port = LAST_RESERVED_PORT + 1 +
592                         prandom_u32_max(U32_MAX - LAST_RESERVED_PORT);
593
594         vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
595
596         if (addr->svm_port == VMADDR_PORT_ANY) {
597                 bool found = false;
598                 unsigned int i;
599
600                 for (i = 0; i < MAX_PORT_RETRIES; i++) {
601                         if (port <= LAST_RESERVED_PORT)
602                                 port = LAST_RESERVED_PORT + 1;
603
604                         new_addr.svm_port = port++;
605
606                         if (!__vsock_find_bound_socket(&new_addr)) {
607                                 found = true;
608                                 break;
609                         }
610                 }
611
612                 if (!found)
613                         return -EADDRNOTAVAIL;
614         } else {
615                 /* If port is in reserved range, ensure caller
616                  * has necessary privileges.
617                  */
618                 if (addr->svm_port <= LAST_RESERVED_PORT &&
619                     !capable(CAP_NET_BIND_SERVICE)) {
620                         return -EACCES;
621                 }
622
623                 if (__vsock_find_bound_socket(&new_addr))
624                         return -EADDRINUSE;
625         }
626
627         vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
628
629         /* Remove stream sockets from the unbound list and add them to the hash
630          * table for easy lookup by its address.  The unbound list is simply an
631          * extra entry at the end of the hash table, a trick used by AF_UNIX.
632          */
633         __vsock_remove_bound(vsk);
634         __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
635
636         return 0;
637 }
638
639 static int __vsock_bind_dgram(struct vsock_sock *vsk,
640                               struct sockaddr_vm *addr)
641 {
642         return vsk->transport->dgram_bind(vsk, addr);
643 }
644
645 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
646 {
647         struct vsock_sock *vsk = vsock_sk(sk);
648         int retval;
649
650         /* First ensure this socket isn't already bound. */
651         if (vsock_addr_bound(&vsk->local_addr))
652                 return -EINVAL;
653
654         /* Now bind to the provided address or select appropriate values if
655          * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
656          * like AF_INET prevents binding to a non-local IP address (in most
657          * cases), we only allow binding to a local CID.
658          */
659         if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
660                 return -EADDRNOTAVAIL;
661
662         switch (sk->sk_socket->type) {
663         case SOCK_STREAM:
664                 spin_lock_bh(&vsock_table_lock);
665                 retval = __vsock_bind_stream(vsk, addr);
666                 spin_unlock_bh(&vsock_table_lock);
667                 break;
668
669         case SOCK_DGRAM:
670                 retval = __vsock_bind_dgram(vsk, addr);
671                 break;
672
673         default:
674                 retval = -EINVAL;
675                 break;
676         }
677
678         return retval;
679 }
680
681 static void vsock_connect_timeout(struct work_struct *work);
682
683 static struct sock *__vsock_create(struct net *net,
684                                    struct socket *sock,
685                                    struct sock *parent,
686                                    gfp_t priority,
687                                    unsigned short type,
688                                    int kern)
689 {
690         struct sock *sk;
691         struct vsock_sock *psk;
692         struct vsock_sock *vsk;
693
694         sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
695         if (!sk)
696                 return NULL;
697
698         sock_init_data(sock, sk);
699
700         /* sk->sk_type is normally set in sock_init_data, but only if sock is
701          * non-NULL. We make sure that our sockets always have a type by
702          * setting it here if needed.
703          */
704         if (!sock)
705                 sk->sk_type = type;
706
707         vsk = vsock_sk(sk);
708         vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
709         vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
710
711         sk->sk_destruct = vsock_sk_destruct;
712         sk->sk_backlog_rcv = vsock_queue_rcv_skb;
713         sock_reset_flag(sk, SOCK_DONE);
714
715         INIT_LIST_HEAD(&vsk->bound_table);
716         INIT_LIST_HEAD(&vsk->connected_table);
717         vsk->listener = NULL;
718         INIT_LIST_HEAD(&vsk->pending_links);
719         INIT_LIST_HEAD(&vsk->accept_queue);
720         vsk->rejected = false;
721         vsk->sent_request = false;
722         vsk->ignore_connecting_rst = false;
723         vsk->peer_shutdown = 0;
724         INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
725         INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
726
727         psk = parent ? vsock_sk(parent) : NULL;
728         if (parent) {
729                 vsk->trusted = psk->trusted;
730                 vsk->owner = get_cred(psk->owner);
731                 vsk->connect_timeout = psk->connect_timeout;
732                 vsk->buffer_size = psk->buffer_size;
733                 vsk->buffer_min_size = psk->buffer_min_size;
734                 vsk->buffer_max_size = psk->buffer_max_size;
735         } else {
736                 vsk->trusted = capable(CAP_NET_ADMIN);
737                 vsk->owner = get_current_cred();
738                 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
739                 vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
740                 vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
741                 vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
742         }
743
744         return sk;
745 }
746
747 static void __vsock_release(struct sock *sk, int level)
748 {
749         if (sk) {
750                 struct sock *pending;
751                 struct vsock_sock *vsk;
752
753                 vsk = vsock_sk(sk);
754                 pending = NULL; /* Compiler warning. */
755
756                 /* The release call is supposed to use lock_sock_nested()
757                  * rather than lock_sock(), if a sock lock should be acquired.
758                  */
759                 if (vsk->transport)
760                         vsk->transport->release(vsk);
761                 else if (sk->sk_type == SOCK_STREAM)
762                         vsock_remove_sock(vsk);
763
764                 /* When "level" is SINGLE_DEPTH_NESTING, use the nested
765                  * version to avoid the warning "possible recursive locking
766                  * detected". When "level" is 0, lock_sock_nested(sk, level)
767                  * is the same as lock_sock(sk).
768                  */
769                 lock_sock_nested(sk, level);
770                 sock_orphan(sk);
771                 sk->sk_shutdown = SHUTDOWN_MASK;
772
773                 skb_queue_purge(&sk->sk_receive_queue);
774
775                 /* Clean up any sockets that never were accepted. */
776                 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
777                         __vsock_release(pending, SINGLE_DEPTH_NESTING);
778                         sock_put(pending);
779                 }
780
781                 release_sock(sk);
782                 sock_put(sk);
783         }
784 }
785
786 static void vsock_sk_destruct(struct sock *sk)
787 {
788         struct vsock_sock *vsk = vsock_sk(sk);
789
790         vsock_deassign_transport(vsk);
791
792         /* When clearing these addresses, there's no need to set the family and
793          * possibly register the address family with the kernel.
794          */
795         vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
796         vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
797
798         put_cred(vsk->owner);
799 }
800
801 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
802 {
803         int err;
804
805         err = sock_queue_rcv_skb(sk, skb);
806         if (err)
807                 kfree_skb(skb);
808
809         return err;
810 }
811
812 struct sock *vsock_create_connected(struct sock *parent)
813 {
814         return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
815                               parent->sk_type, 0);
816 }
817 EXPORT_SYMBOL_GPL(vsock_create_connected);
818
819 s64 vsock_stream_has_data(struct vsock_sock *vsk)
820 {
821         return vsk->transport->stream_has_data(vsk);
822 }
823 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
824
825 s64 vsock_stream_has_space(struct vsock_sock *vsk)
826 {
827         return vsk->transport->stream_has_space(vsk);
828 }
829 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
830
831 static int vsock_release(struct socket *sock)
832 {
833         __vsock_release(sock->sk, 0);
834         sock->sk = NULL;
835         sock->state = SS_FREE;
836
837         return 0;
838 }
839
840 static int
841 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
842 {
843         int err;
844         struct sock *sk;
845         struct sockaddr_vm *vm_addr;
846
847         sk = sock->sk;
848
849         if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
850                 return -EINVAL;
851
852         lock_sock(sk);
853         err = __vsock_bind(sk, vm_addr);
854         release_sock(sk);
855
856         return err;
857 }
858
859 static int vsock_getname(struct socket *sock,
860                          struct sockaddr *addr, int peer)
861 {
862         int err;
863         struct sock *sk;
864         struct vsock_sock *vsk;
865         struct sockaddr_vm *vm_addr;
866
867         sk = sock->sk;
868         vsk = vsock_sk(sk);
869         err = 0;
870
871         lock_sock(sk);
872
873         if (peer) {
874                 if (sock->state != SS_CONNECTED) {
875                         err = -ENOTCONN;
876                         goto out;
877                 }
878                 vm_addr = &vsk->remote_addr;
879         } else {
880                 vm_addr = &vsk->local_addr;
881         }
882
883         if (!vm_addr) {
884                 err = -EINVAL;
885                 goto out;
886         }
887
888         /* sys_getsockname() and sys_getpeername() pass us a
889          * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
890          * that macro is defined in socket.c instead of .h, so we hardcode its
891          * value here.
892          */
893         BUILD_BUG_ON(sizeof(*vm_addr) > 128);
894         memcpy(addr, vm_addr, sizeof(*vm_addr));
895         err = sizeof(*vm_addr);
896
897 out:
898         release_sock(sk);
899         return err;
900 }
901
902 static int vsock_shutdown(struct socket *sock, int mode)
903 {
904         int err;
905         struct sock *sk;
906
907         /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
908          * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
909          * here like the other address families do.  Note also that the
910          * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
911          * which is what we want.
912          */
913         mode++;
914
915         if ((mode & ~SHUTDOWN_MASK) || !mode)
916                 return -EINVAL;
917
918         /* If this is a STREAM socket and it is not connected then bail out
919          * immediately.  If it is a DGRAM socket then we must first kick the
920          * socket so that it wakes up from any sleeping calls, for example
921          * recv(), and then afterwards return the error.
922          */
923
924         sk = sock->sk;
925         if (sock->state == SS_UNCONNECTED) {
926                 err = -ENOTCONN;
927                 if (sk->sk_type == SOCK_STREAM)
928                         return err;
929         } else {
930                 sock->state = SS_DISCONNECTING;
931                 err = 0;
932         }
933
934         /* Receive and send shutdowns are treated alike. */
935         mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
936         if (mode) {
937                 lock_sock(sk);
938                 sk->sk_shutdown |= mode;
939                 sk->sk_state_change(sk);
940                 release_sock(sk);
941
942                 if (sk->sk_type == SOCK_STREAM) {
943                         sock_reset_flag(sk, SOCK_DONE);
944                         vsock_send_shutdown(sk, mode);
945                 }
946         }
947
948         return err;
949 }
950
951 static __poll_t vsock_poll(struct file *file, struct socket *sock,
952                                poll_table *wait)
953 {
954         struct sock *sk;
955         __poll_t mask;
956         struct vsock_sock *vsk;
957
958         sk = sock->sk;
959         vsk = vsock_sk(sk);
960
961         poll_wait(file, sk_sleep(sk), wait);
962         mask = 0;
963
964         if (sk->sk_err)
965                 /* Signify that there has been an error on this socket. */
966                 mask |= EPOLLERR;
967
968         /* INET sockets treat local write shutdown and peer write shutdown as a
969          * case of EPOLLHUP set.
970          */
971         if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
972             ((sk->sk_shutdown & SEND_SHUTDOWN) &&
973              (vsk->peer_shutdown & SEND_SHUTDOWN))) {
974                 mask |= EPOLLHUP;
975         }
976
977         if (sk->sk_shutdown & RCV_SHUTDOWN ||
978             vsk->peer_shutdown & SEND_SHUTDOWN) {
979                 mask |= EPOLLRDHUP;
980         }
981
982         if (sock->type == SOCK_DGRAM) {
983                 /* For datagram sockets we can read if there is something in
984                  * the queue and write as long as the socket isn't shutdown for
985                  * sending.
986                  */
987                 if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
988                     (sk->sk_shutdown & RCV_SHUTDOWN)) {
989                         mask |= EPOLLIN | EPOLLRDNORM;
990                 }
991
992                 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
993                         mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
994
995         } else if (sock->type == SOCK_STREAM) {
996                 const struct vsock_transport *transport = vsk->transport;
997                 lock_sock(sk);
998
999                 /* Listening sockets that have connections in their accept
1000                  * queue can be read.
1001                  */
1002                 if (sk->sk_state == TCP_LISTEN
1003                     && !vsock_is_accept_queue_empty(sk))
1004                         mask |= EPOLLIN | EPOLLRDNORM;
1005
1006                 /* If there is something in the queue then we can read. */
1007                 if (transport && transport->stream_is_active(vsk) &&
1008                     !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1009                         bool data_ready_now = false;
1010                         int ret = transport->notify_poll_in(
1011                                         vsk, 1, &data_ready_now);
1012                         if (ret < 0) {
1013                                 mask |= EPOLLERR;
1014                         } else {
1015                                 if (data_ready_now)
1016                                         mask |= EPOLLIN | EPOLLRDNORM;
1017
1018                         }
1019                 }
1020
1021                 /* Sockets whose connections have been closed, reset, or
1022                  * terminated should also be considered read, and we check the
1023                  * shutdown flag for that.
1024                  */
1025                 if (sk->sk_shutdown & RCV_SHUTDOWN ||
1026                     vsk->peer_shutdown & SEND_SHUTDOWN) {
1027                         mask |= EPOLLIN | EPOLLRDNORM;
1028                 }
1029
1030                 /* Connected sockets that can produce data can be written. */
1031                 if (sk->sk_state == TCP_ESTABLISHED) {
1032                         if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1033                                 bool space_avail_now = false;
1034                                 int ret = transport->notify_poll_out(
1035                                                 vsk, 1, &space_avail_now);
1036                                 if (ret < 0) {
1037                                         mask |= EPOLLERR;
1038                                 } else {
1039                                         if (space_avail_now)
1040                                                 /* Remove EPOLLWRBAND since INET
1041                                                  * sockets are not setting it.
1042                                                  */
1043                                                 mask |= EPOLLOUT | EPOLLWRNORM;
1044
1045                                 }
1046                         }
1047                 }
1048
1049                 /* Simulate INET socket poll behaviors, which sets
1050                  * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1051                  * but local send is not shutdown.
1052                  */
1053                 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1054                         if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1055                                 mask |= EPOLLOUT | EPOLLWRNORM;
1056
1057                 }
1058
1059                 release_sock(sk);
1060         }
1061
1062         return mask;
1063 }
1064
1065 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1066                                size_t len)
1067 {
1068         int err;
1069         struct sock *sk;
1070         struct vsock_sock *vsk;
1071         struct sockaddr_vm *remote_addr;
1072         const struct vsock_transport *transport;
1073
1074         if (msg->msg_flags & MSG_OOB)
1075                 return -EOPNOTSUPP;
1076
1077         /* For now, MSG_DONTWAIT is always assumed... */
1078         err = 0;
1079         sk = sock->sk;
1080         vsk = vsock_sk(sk);
1081         transport = vsk->transport;
1082
1083         lock_sock(sk);
1084
1085         err = vsock_auto_bind(vsk);
1086         if (err)
1087                 goto out;
1088
1089
1090         /* If the provided message contains an address, use that.  Otherwise
1091          * fall back on the socket's remote handle (if it has been connected).
1092          */
1093         if (msg->msg_name &&
1094             vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1095                             &remote_addr) == 0) {
1096                 /* Ensure this address is of the right type and is a valid
1097                  * destination.
1098                  */
1099
1100                 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1101                         remote_addr->svm_cid = transport->get_local_cid();
1102
1103                 if (!vsock_addr_bound(remote_addr)) {
1104                         err = -EINVAL;
1105                         goto out;
1106                 }
1107         } else if (sock->state == SS_CONNECTED) {
1108                 remote_addr = &vsk->remote_addr;
1109
1110                 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1111                         remote_addr->svm_cid = transport->get_local_cid();
1112
1113                 /* XXX Should connect() or this function ensure remote_addr is
1114                  * bound?
1115                  */
1116                 if (!vsock_addr_bound(&vsk->remote_addr)) {
1117                         err = -EINVAL;
1118                         goto out;
1119                 }
1120         } else {
1121                 err = -EINVAL;
1122                 goto out;
1123         }
1124
1125         if (!transport->dgram_allow(remote_addr->svm_cid,
1126                                     remote_addr->svm_port)) {
1127                 err = -EINVAL;
1128                 goto out;
1129         }
1130
1131         err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1132
1133 out:
1134         release_sock(sk);
1135         return err;
1136 }
1137
1138 static int vsock_dgram_connect(struct socket *sock,
1139                                struct sockaddr *addr, int addr_len, int flags)
1140 {
1141         int err;
1142         struct sock *sk;
1143         struct vsock_sock *vsk;
1144         struct sockaddr_vm *remote_addr;
1145
1146         sk = sock->sk;
1147         vsk = vsock_sk(sk);
1148
1149         err = vsock_addr_cast(addr, addr_len, &remote_addr);
1150         if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1151                 lock_sock(sk);
1152                 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1153                                 VMADDR_PORT_ANY);
1154                 sock->state = SS_UNCONNECTED;
1155                 release_sock(sk);
1156                 return 0;
1157         } else if (err != 0)
1158                 return -EINVAL;
1159
1160         lock_sock(sk);
1161
1162         err = vsock_auto_bind(vsk);
1163         if (err)
1164                 goto out;
1165
1166         if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1167                                          remote_addr->svm_port)) {
1168                 err = -EINVAL;
1169                 goto out;
1170         }
1171
1172         memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1173         sock->state = SS_CONNECTED;
1174
1175 out:
1176         release_sock(sk);
1177         return err;
1178 }
1179
1180 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1181                                size_t len, int flags)
1182 {
1183         struct vsock_sock *vsk = vsock_sk(sock->sk);
1184
1185         return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1186 }
1187
1188 static const struct proto_ops vsock_dgram_ops = {
1189         .family = PF_VSOCK,
1190         .owner = THIS_MODULE,
1191         .release = vsock_release,
1192         .bind = vsock_bind,
1193         .connect = vsock_dgram_connect,
1194         .socketpair = sock_no_socketpair,
1195         .accept = sock_no_accept,
1196         .getname = vsock_getname,
1197         .poll = vsock_poll,
1198         .ioctl = sock_no_ioctl,
1199         .listen = sock_no_listen,
1200         .shutdown = vsock_shutdown,
1201         .setsockopt = sock_no_setsockopt,
1202         .getsockopt = sock_no_getsockopt,
1203         .sendmsg = vsock_dgram_sendmsg,
1204         .recvmsg = vsock_dgram_recvmsg,
1205         .mmap = sock_no_mmap,
1206         .sendpage = sock_no_sendpage,
1207 };
1208
1209 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1210 {
1211         const struct vsock_transport *transport = vsk->transport;
1212
1213         if (!transport->cancel_pkt)
1214                 return -EOPNOTSUPP;
1215
1216         return transport->cancel_pkt(vsk);
1217 }
1218
1219 static void vsock_connect_timeout(struct work_struct *work)
1220 {
1221         struct sock *sk;
1222         struct vsock_sock *vsk;
1223         int cancel = 0;
1224
1225         vsk = container_of(work, struct vsock_sock, connect_work.work);
1226         sk = sk_vsock(vsk);
1227
1228         lock_sock(sk);
1229         if (sk->sk_state == TCP_SYN_SENT &&
1230             (sk->sk_shutdown != SHUTDOWN_MASK)) {
1231                 sk->sk_state = TCP_CLOSE;
1232                 sk->sk_err = ETIMEDOUT;
1233                 sk->sk_error_report(sk);
1234                 cancel = 1;
1235         }
1236         release_sock(sk);
1237         if (cancel)
1238                 vsock_transport_cancel_pkt(vsk);
1239
1240         sock_put(sk);
1241 }
1242
1243 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1244                                 int addr_len, int flags)
1245 {
1246         int err;
1247         struct sock *sk;
1248         struct vsock_sock *vsk;
1249         const struct vsock_transport *transport;
1250         struct sockaddr_vm *remote_addr;
1251         long timeout;
1252         DEFINE_WAIT(wait);
1253
1254         err = 0;
1255         sk = sock->sk;
1256         vsk = vsock_sk(sk);
1257
1258         lock_sock(sk);
1259
1260         /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1261         switch (sock->state) {
1262         case SS_CONNECTED:
1263                 err = -EISCONN;
1264                 goto out;
1265         case SS_DISCONNECTING:
1266                 err = -EINVAL;
1267                 goto out;
1268         case SS_CONNECTING:
1269                 /* This continues on so we can move sock into the SS_CONNECTED
1270                  * state once the connection has completed (at which point err
1271                  * will be set to zero also).  Otherwise, we will either wait
1272                  * for the connection or return -EALREADY should this be a
1273                  * non-blocking call.
1274                  */
1275                 err = -EALREADY;
1276                 break;
1277         default:
1278                 if ((sk->sk_state == TCP_LISTEN) ||
1279                     vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1280                         err = -EINVAL;
1281                         goto out;
1282                 }
1283
1284                 /* Set the remote address that we are connecting to. */
1285                 memcpy(&vsk->remote_addr, remote_addr,
1286                        sizeof(vsk->remote_addr));
1287
1288                 err = vsock_assign_transport(vsk, NULL);
1289                 if (err)
1290                         goto out;
1291
1292                 transport = vsk->transport;
1293
1294                 /* The hypervisor and well-known contexts do not have socket
1295                  * endpoints.
1296                  */
1297                 if (!transport ||
1298                     !transport->stream_allow(remote_addr->svm_cid,
1299                                              remote_addr->svm_port)) {
1300                         err = -ENETUNREACH;
1301                         goto out;
1302                 }
1303
1304                 err = vsock_auto_bind(vsk);
1305                 if (err)
1306                         goto out;
1307
1308                 sk->sk_state = TCP_SYN_SENT;
1309
1310                 err = transport->connect(vsk);
1311                 if (err < 0)
1312                         goto out;
1313
1314                 /* Mark sock as connecting and set the error code to in
1315                  * progress in case this is a non-blocking connect.
1316                  */
1317                 sock->state = SS_CONNECTING;
1318                 err = -EINPROGRESS;
1319         }
1320
1321         /* The receive path will handle all communication until we are able to
1322          * enter the connected state.  Here we wait for the connection to be
1323          * completed or a notification of an error.
1324          */
1325         timeout = vsk->connect_timeout;
1326         prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1327
1328         while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1329                 if (flags & O_NONBLOCK) {
1330                         /* If we're not going to block, we schedule a timeout
1331                          * function to generate a timeout on the connection
1332                          * attempt, in case the peer doesn't respond in a
1333                          * timely manner. We hold on to the socket until the
1334                          * timeout fires.
1335                          */
1336                         sock_hold(sk);
1337                         schedule_delayed_work(&vsk->connect_work, timeout);
1338
1339                         /* Skip ahead to preserve error code set above. */
1340                         goto out_wait;
1341                 }
1342
1343                 release_sock(sk);
1344                 timeout = schedule_timeout(timeout);
1345                 lock_sock(sk);
1346
1347                 if (signal_pending(current)) {
1348                         err = sock_intr_errno(timeout);
1349                         sk->sk_state = TCP_CLOSE;
1350                         sock->state = SS_UNCONNECTED;
1351                         vsock_transport_cancel_pkt(vsk);
1352                         goto out_wait;
1353                 } else if (timeout == 0) {
1354                         err = -ETIMEDOUT;
1355                         sk->sk_state = TCP_CLOSE;
1356                         sock->state = SS_UNCONNECTED;
1357                         vsock_transport_cancel_pkt(vsk);
1358                         goto out_wait;
1359                 }
1360
1361                 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1362         }
1363
1364         if (sk->sk_err) {
1365                 err = -sk->sk_err;
1366                 sk->sk_state = TCP_CLOSE;
1367                 sock->state = SS_UNCONNECTED;
1368         } else {
1369                 err = 0;
1370         }
1371
1372 out_wait:
1373         finish_wait(sk_sleep(sk), &wait);
1374 out:
1375         release_sock(sk);
1376         return err;
1377 }
1378
1379 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1380                         bool kern)
1381 {
1382         struct sock *listener;
1383         int err;
1384         struct sock *connected;
1385         struct vsock_sock *vconnected;
1386         long timeout;
1387         DEFINE_WAIT(wait);
1388
1389         err = 0;
1390         listener = sock->sk;
1391
1392         lock_sock(listener);
1393
1394         if (sock->type != SOCK_STREAM) {
1395                 err = -EOPNOTSUPP;
1396                 goto out;
1397         }
1398
1399         if (listener->sk_state != TCP_LISTEN) {
1400                 err = -EINVAL;
1401                 goto out;
1402         }
1403
1404         /* Wait for children sockets to appear; these are the new sockets
1405          * created upon connection establishment.
1406          */
1407         timeout = sock_sndtimeo(listener, flags & O_NONBLOCK);
1408         prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1409
1410         while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1411                listener->sk_err == 0) {
1412                 release_sock(listener);
1413                 timeout = schedule_timeout(timeout);
1414                 finish_wait(sk_sleep(listener), &wait);
1415                 lock_sock(listener);
1416
1417                 if (signal_pending(current)) {
1418                         err = sock_intr_errno(timeout);
1419                         goto out;
1420                 } else if (timeout == 0) {
1421                         err = -EAGAIN;
1422                         goto out;
1423                 }
1424
1425                 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1426         }
1427         finish_wait(sk_sleep(listener), &wait);
1428
1429         if (listener->sk_err)
1430                 err = -listener->sk_err;
1431
1432         if (connected) {
1433                 sk_acceptq_removed(listener);
1434
1435                 lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1436                 vconnected = vsock_sk(connected);
1437
1438                 /* If the listener socket has received an error, then we should
1439                  * reject this socket and return.  Note that we simply mark the
1440                  * socket rejected, drop our reference, and let the cleanup
1441                  * function handle the cleanup; the fact that we found it in
1442                  * the listener's accept queue guarantees that the cleanup
1443                  * function hasn't run yet.
1444                  */
1445                 if (err) {
1446                         vconnected->rejected = true;
1447                 } else {
1448                         newsock->state = SS_CONNECTED;
1449                         sock_graft(connected, newsock);
1450                 }
1451
1452                 release_sock(connected);
1453                 sock_put(connected);
1454         }
1455
1456 out:
1457         release_sock(listener);
1458         return err;
1459 }
1460
1461 static int vsock_listen(struct socket *sock, int backlog)
1462 {
1463         int err;
1464         struct sock *sk;
1465         struct vsock_sock *vsk;
1466
1467         sk = sock->sk;
1468
1469         lock_sock(sk);
1470
1471         if (sock->type != SOCK_STREAM) {
1472                 err = -EOPNOTSUPP;
1473                 goto out;
1474         }
1475
1476         if (sock->state != SS_UNCONNECTED) {
1477                 err = -EINVAL;
1478                 goto out;
1479         }
1480
1481         vsk = vsock_sk(sk);
1482
1483         if (!vsock_addr_bound(&vsk->local_addr)) {
1484                 err = -EINVAL;
1485                 goto out;
1486         }
1487
1488         sk->sk_max_ack_backlog = backlog;
1489         sk->sk_state = TCP_LISTEN;
1490
1491         err = 0;
1492
1493 out:
1494         release_sock(sk);
1495         return err;
1496 }
1497
1498 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1499                                      const struct vsock_transport *transport,
1500                                      u64 val)
1501 {
1502         if (val > vsk->buffer_max_size)
1503                 val = vsk->buffer_max_size;
1504
1505         if (val < vsk->buffer_min_size)
1506                 val = vsk->buffer_min_size;
1507
1508         if (val != vsk->buffer_size &&
1509             transport && transport->notify_buffer_size)
1510                 transport->notify_buffer_size(vsk, &val);
1511
1512         vsk->buffer_size = val;
1513 }
1514
1515 static int vsock_stream_setsockopt(struct socket *sock,
1516                                    int level,
1517                                    int optname,
1518                                    char __user *optval,
1519                                    unsigned int optlen)
1520 {
1521         int err;
1522         struct sock *sk;
1523         struct vsock_sock *vsk;
1524         const struct vsock_transport *transport;
1525         u64 val;
1526
1527         if (level != AF_VSOCK)
1528                 return -ENOPROTOOPT;
1529
1530 #define COPY_IN(_v)                                       \
1531         do {                                              \
1532                 if (optlen < sizeof(_v)) {                \
1533                         err = -EINVAL;                    \
1534                         goto exit;                        \
1535                 }                                         \
1536                 if (copy_from_user(&_v, optval, sizeof(_v)) != 0) {     \
1537                         err = -EFAULT;                                  \
1538                         goto exit;                                      \
1539                 }                                                       \
1540         } while (0)
1541
1542         err = 0;
1543         sk = sock->sk;
1544         vsk = vsock_sk(sk);
1545         transport = vsk->transport;
1546
1547         lock_sock(sk);
1548
1549         switch (optname) {
1550         case SO_VM_SOCKETS_BUFFER_SIZE:
1551                 COPY_IN(val);
1552                 vsock_update_buffer_size(vsk, transport, val);
1553                 break;
1554
1555         case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1556                 COPY_IN(val);
1557                 vsk->buffer_max_size = val;
1558                 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1559                 break;
1560
1561         case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1562                 COPY_IN(val);
1563                 vsk->buffer_min_size = val;
1564                 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1565                 break;
1566
1567         case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1568                 struct __kernel_old_timeval tv;
1569                 COPY_IN(tv);
1570                 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1571                     tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1572                         vsk->connect_timeout = tv.tv_sec * HZ +
1573                             DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1574                         if (vsk->connect_timeout == 0)
1575                                 vsk->connect_timeout =
1576                                     VSOCK_DEFAULT_CONNECT_TIMEOUT;
1577
1578                 } else {
1579                         err = -ERANGE;
1580                 }
1581                 break;
1582         }
1583
1584         default:
1585                 err = -ENOPROTOOPT;
1586                 break;
1587         }
1588
1589 #undef COPY_IN
1590
1591 exit:
1592         release_sock(sk);
1593         return err;
1594 }
1595
1596 static int vsock_stream_getsockopt(struct socket *sock,
1597                                    int level, int optname,
1598                                    char __user *optval,
1599                                    int __user *optlen)
1600 {
1601         int err;
1602         int len;
1603         struct sock *sk;
1604         struct vsock_sock *vsk;
1605         u64 val;
1606
1607         if (level != AF_VSOCK)
1608                 return -ENOPROTOOPT;
1609
1610         err = get_user(len, optlen);
1611         if (err != 0)
1612                 return err;
1613
1614 #define COPY_OUT(_v)                            \
1615         do {                                    \
1616                 if (len < sizeof(_v))           \
1617                         return -EINVAL;         \
1618                                                 \
1619                 len = sizeof(_v);               \
1620                 if (copy_to_user(optval, &_v, len) != 0)        \
1621                         return -EFAULT;                         \
1622                                                                 \
1623         } while (0)
1624
1625         err = 0;
1626         sk = sock->sk;
1627         vsk = vsock_sk(sk);
1628
1629         switch (optname) {
1630         case SO_VM_SOCKETS_BUFFER_SIZE:
1631                 val = vsk->buffer_size;
1632                 COPY_OUT(val);
1633                 break;
1634
1635         case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1636                 val = vsk->buffer_max_size;
1637                 COPY_OUT(val);
1638                 break;
1639
1640         case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1641                 val = vsk->buffer_min_size;
1642                 COPY_OUT(val);
1643                 break;
1644
1645         case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1646                 struct __kernel_old_timeval tv;
1647                 tv.tv_sec = vsk->connect_timeout / HZ;
1648                 tv.tv_usec =
1649                     (vsk->connect_timeout -
1650                      tv.tv_sec * HZ) * (1000000 / HZ);
1651                 COPY_OUT(tv);
1652                 break;
1653         }
1654         default:
1655                 return -ENOPROTOOPT;
1656         }
1657
1658         err = put_user(len, optlen);
1659         if (err != 0)
1660                 return -EFAULT;
1661
1662 #undef COPY_OUT
1663
1664         return 0;
1665 }
1666
1667 static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1668                                 size_t len)
1669 {
1670         struct sock *sk;
1671         struct vsock_sock *vsk;
1672         const struct vsock_transport *transport;
1673         ssize_t total_written;
1674         long timeout;
1675         int err;
1676         struct vsock_transport_send_notify_data send_data;
1677         DEFINE_WAIT_FUNC(wait, woken_wake_function);
1678
1679         sk = sock->sk;
1680         vsk = vsock_sk(sk);
1681         transport = vsk->transport;
1682         total_written = 0;
1683         err = 0;
1684
1685         if (msg->msg_flags & MSG_OOB)
1686                 return -EOPNOTSUPP;
1687
1688         lock_sock(sk);
1689
1690         /* Callers should not provide a destination with stream sockets. */
1691         if (msg->msg_namelen) {
1692                 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1693                 goto out;
1694         }
1695
1696         /* Send data only if both sides are not shutdown in the direction. */
1697         if (sk->sk_shutdown & SEND_SHUTDOWN ||
1698             vsk->peer_shutdown & RCV_SHUTDOWN) {
1699                 err = -EPIPE;
1700                 goto out;
1701         }
1702
1703         if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1704             !vsock_addr_bound(&vsk->local_addr)) {
1705                 err = -ENOTCONN;
1706                 goto out;
1707         }
1708
1709         if (!vsock_addr_bound(&vsk->remote_addr)) {
1710                 err = -EDESTADDRREQ;
1711                 goto out;
1712         }
1713
1714         /* Wait for room in the produce queue to enqueue our user's data. */
1715         timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1716
1717         err = transport->notify_send_init(vsk, &send_data);
1718         if (err < 0)
1719                 goto out;
1720
1721         while (total_written < len) {
1722                 ssize_t written;
1723
1724                 add_wait_queue(sk_sleep(sk), &wait);
1725                 while (vsock_stream_has_space(vsk) == 0 &&
1726                        sk->sk_err == 0 &&
1727                        !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1728                        !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1729
1730                         /* Don't wait for non-blocking sockets. */
1731                         if (timeout == 0) {
1732                                 err = -EAGAIN;
1733                                 remove_wait_queue(sk_sleep(sk), &wait);
1734                                 goto out_err;
1735                         }
1736
1737                         err = transport->notify_send_pre_block(vsk, &send_data);
1738                         if (err < 0) {
1739                                 remove_wait_queue(sk_sleep(sk), &wait);
1740                                 goto out_err;
1741                         }
1742
1743                         release_sock(sk);
1744                         timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1745                         lock_sock(sk);
1746                         if (signal_pending(current)) {
1747                                 err = sock_intr_errno(timeout);
1748                                 remove_wait_queue(sk_sleep(sk), &wait);
1749                                 goto out_err;
1750                         } else if (timeout == 0) {
1751                                 err = -EAGAIN;
1752                                 remove_wait_queue(sk_sleep(sk), &wait);
1753                                 goto out_err;
1754                         }
1755                 }
1756                 remove_wait_queue(sk_sleep(sk), &wait);
1757
1758                 /* These checks occur both as part of and after the loop
1759                  * conditional since we need to check before and after
1760                  * sleeping.
1761                  */
1762                 if (sk->sk_err) {
1763                         err = -sk->sk_err;
1764                         goto out_err;
1765                 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1766                            (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1767                         err = -EPIPE;
1768                         goto out_err;
1769                 }
1770
1771                 err = transport->notify_send_pre_enqueue(vsk, &send_data);
1772                 if (err < 0)
1773                         goto out_err;
1774
1775                 /* Note that enqueue will only write as many bytes as are free
1776                  * in the produce queue, so we don't need to ensure len is
1777                  * smaller than the queue size.  It is the caller's
1778                  * responsibility to check how many bytes we were able to send.
1779                  */
1780
1781                 written = transport->stream_enqueue(
1782                                 vsk, msg,
1783                                 len - total_written);
1784                 if (written < 0) {
1785                         err = -ENOMEM;
1786                         goto out_err;
1787                 }
1788
1789                 total_written += written;
1790
1791                 err = transport->notify_send_post_enqueue(
1792                                 vsk, written, &send_data);
1793                 if (err < 0)
1794                         goto out_err;
1795
1796         }
1797
1798 out_err:
1799         if (total_written > 0)
1800                 err = total_written;
1801 out:
1802         release_sock(sk);
1803         return err;
1804 }
1805
1806
1807 static int
1808 vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1809                      int flags)
1810 {
1811         struct sock *sk;
1812         struct vsock_sock *vsk;
1813         const struct vsock_transport *transport;
1814         int err;
1815         size_t target;
1816         ssize_t copied;
1817         long timeout;
1818         struct vsock_transport_recv_notify_data recv_data;
1819
1820         DEFINE_WAIT(wait);
1821
1822         sk = sock->sk;
1823         vsk = vsock_sk(sk);
1824         transport = vsk->transport;
1825         err = 0;
1826
1827         lock_sock(sk);
1828
1829         if (!transport || sk->sk_state != TCP_ESTABLISHED) {
1830                 /* Recvmsg is supposed to return 0 if a peer performs an
1831                  * orderly shutdown. Differentiate between that case and when a
1832                  * peer has not connected or a local shutdown occured with the
1833                  * SOCK_DONE flag.
1834                  */
1835                 if (sock_flag(sk, SOCK_DONE))
1836                         err = 0;
1837                 else
1838                         err = -ENOTCONN;
1839
1840                 goto out;
1841         }
1842
1843         if (flags & MSG_OOB) {
1844                 err = -EOPNOTSUPP;
1845                 goto out;
1846         }
1847
1848         /* We don't check peer_shutdown flag here since peer may actually shut
1849          * down, but there can be data in the queue that a local socket can
1850          * receive.
1851          */
1852         if (sk->sk_shutdown & RCV_SHUTDOWN) {
1853                 err = 0;
1854                 goto out;
1855         }
1856
1857         /* It is valid on Linux to pass in a zero-length receive buffer.  This
1858          * is not an error.  We may as well bail out now.
1859          */
1860         if (!len) {
1861                 err = 0;
1862                 goto out;
1863         }
1864
1865         /* We must not copy less than target bytes into the user's buffer
1866          * before returning successfully, so we wait for the consume queue to
1867          * have that much data to consume before dequeueing.  Note that this
1868          * makes it impossible to handle cases where target is greater than the
1869          * queue size.
1870          */
1871         target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1872         if (target >= transport->stream_rcvhiwat(vsk)) {
1873                 err = -ENOMEM;
1874                 goto out;
1875         }
1876         timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1877         copied = 0;
1878
1879         err = transport->notify_recv_init(vsk, target, &recv_data);
1880         if (err < 0)
1881                 goto out;
1882
1883
1884         while (1) {
1885                 s64 ready;
1886
1887                 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1888                 ready = vsock_stream_has_data(vsk);
1889
1890                 if (ready == 0) {
1891                         if (sk->sk_err != 0 ||
1892                             (sk->sk_shutdown & RCV_SHUTDOWN) ||
1893                             (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1894                                 finish_wait(sk_sleep(sk), &wait);
1895                                 break;
1896                         }
1897                         /* Don't wait for non-blocking sockets. */
1898                         if (timeout == 0) {
1899                                 err = -EAGAIN;
1900                                 finish_wait(sk_sleep(sk), &wait);
1901                                 break;
1902                         }
1903
1904                         err = transport->notify_recv_pre_block(
1905                                         vsk, target, &recv_data);
1906                         if (err < 0) {
1907                                 finish_wait(sk_sleep(sk), &wait);
1908                                 break;
1909                         }
1910                         release_sock(sk);
1911                         timeout = schedule_timeout(timeout);
1912                         lock_sock(sk);
1913
1914                         if (signal_pending(current)) {
1915                                 err = sock_intr_errno(timeout);
1916                                 finish_wait(sk_sleep(sk), &wait);
1917                                 break;
1918                         } else if (timeout == 0) {
1919                                 err = -EAGAIN;
1920                                 finish_wait(sk_sleep(sk), &wait);
1921                                 break;
1922                         }
1923                 } else {
1924                         ssize_t read;
1925
1926                         finish_wait(sk_sleep(sk), &wait);
1927
1928                         if (ready < 0) {
1929                                 /* Invalid queue pair content. XXX This should
1930                                 * be changed to a connection reset in a later
1931                                 * change.
1932                                 */
1933
1934                                 err = -ENOMEM;
1935                                 goto out;
1936                         }
1937
1938                         err = transport->notify_recv_pre_dequeue(
1939                                         vsk, target, &recv_data);
1940                         if (err < 0)
1941                                 break;
1942
1943                         read = transport->stream_dequeue(
1944                                         vsk, msg,
1945                                         len - copied, flags);
1946                         if (read < 0) {
1947                                 err = -ENOMEM;
1948                                 break;
1949                         }
1950
1951                         copied += read;
1952
1953                         err = transport->notify_recv_post_dequeue(
1954                                         vsk, target, read,
1955                                         !(flags & MSG_PEEK), &recv_data);
1956                         if (err < 0)
1957                                 goto out;
1958
1959                         if (read >= target || flags & MSG_PEEK)
1960                                 break;
1961
1962                         target -= read;
1963                 }
1964         }
1965
1966         if (sk->sk_err)
1967                 err = -sk->sk_err;
1968         else if (sk->sk_shutdown & RCV_SHUTDOWN)
1969                 err = 0;
1970
1971         if (copied > 0)
1972                 err = copied;
1973
1974 out:
1975         release_sock(sk);
1976         return err;
1977 }
1978
1979 static const struct proto_ops vsock_stream_ops = {
1980         .family = PF_VSOCK,
1981         .owner = THIS_MODULE,
1982         .release = vsock_release,
1983         .bind = vsock_bind,
1984         .connect = vsock_stream_connect,
1985         .socketpair = sock_no_socketpair,
1986         .accept = vsock_accept,
1987         .getname = vsock_getname,
1988         .poll = vsock_poll,
1989         .ioctl = sock_no_ioctl,
1990         .listen = vsock_listen,
1991         .shutdown = vsock_shutdown,
1992         .setsockopt = vsock_stream_setsockopt,
1993         .getsockopt = vsock_stream_getsockopt,
1994         .sendmsg = vsock_stream_sendmsg,
1995         .recvmsg = vsock_stream_recvmsg,
1996         .mmap = sock_no_mmap,
1997         .sendpage = sock_no_sendpage,
1998 };
1999
2000 static int vsock_create(struct net *net, struct socket *sock,
2001                         int protocol, int kern)
2002 {
2003         struct vsock_sock *vsk;
2004         struct sock *sk;
2005         int ret;
2006
2007         if (!sock)
2008                 return -EINVAL;
2009
2010         if (protocol && protocol != PF_VSOCK)
2011                 return -EPROTONOSUPPORT;
2012
2013         switch (sock->type) {
2014         case SOCK_DGRAM:
2015                 sock->ops = &vsock_dgram_ops;
2016                 break;
2017         case SOCK_STREAM:
2018                 sock->ops = &vsock_stream_ops;
2019                 break;
2020         default:
2021                 return -ESOCKTNOSUPPORT;
2022         }
2023
2024         sock->state = SS_UNCONNECTED;
2025
2026         sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2027         if (!sk)
2028                 return -ENOMEM;
2029
2030         vsk = vsock_sk(sk);
2031
2032         if (sock->type == SOCK_DGRAM) {
2033                 ret = vsock_assign_transport(vsk, NULL);
2034                 if (ret < 0) {
2035                         sock_put(sk);
2036                         return ret;
2037                 }
2038         }
2039
2040         vsock_insert_unbound(vsk);
2041
2042         return 0;
2043 }
2044
2045 static const struct net_proto_family vsock_family_ops = {
2046         .family = AF_VSOCK,
2047         .create = vsock_create,
2048         .owner = THIS_MODULE,
2049 };
2050
2051 static long vsock_dev_do_ioctl(struct file *filp,
2052                                unsigned int cmd, void __user *ptr)
2053 {
2054         u32 __user *p = ptr;
2055         u32 cid = VMADDR_CID_ANY;
2056         int retval = 0;
2057
2058         switch (cmd) {
2059         case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2060                 /* To be compatible with the VMCI behavior, we prioritize the
2061                  * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2062                  */
2063                 if (transport_g2h)
2064                         cid = transport_g2h->get_local_cid();
2065                 else if (transport_h2g)
2066                         cid = transport_h2g->get_local_cid();
2067
2068                 if (put_user(cid, p) != 0)
2069                         retval = -EFAULT;
2070                 break;
2071
2072         default:
2073                 pr_err("Unknown ioctl %d\n", cmd);
2074                 retval = -EINVAL;
2075         }
2076
2077         return retval;
2078 }
2079
2080 static long vsock_dev_ioctl(struct file *filp,
2081                             unsigned int cmd, unsigned long arg)
2082 {
2083         return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2084 }
2085
2086 #ifdef CONFIG_COMPAT
2087 static long vsock_dev_compat_ioctl(struct file *filp,
2088                                    unsigned int cmd, unsigned long arg)
2089 {
2090         return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2091 }
2092 #endif
2093
2094 static const struct file_operations vsock_device_ops = {
2095         .owner          = THIS_MODULE,
2096         .unlocked_ioctl = vsock_dev_ioctl,
2097 #ifdef CONFIG_COMPAT
2098         .compat_ioctl   = vsock_dev_compat_ioctl,
2099 #endif
2100         .open           = nonseekable_open,
2101 };
2102
2103 static struct miscdevice vsock_device = {
2104         .name           = "vsock",
2105         .fops           = &vsock_device_ops,
2106 };
2107
2108 static int __init vsock_init(void)
2109 {
2110         int err = 0;
2111
2112         vsock_init_tables();
2113
2114         vsock_proto.owner = THIS_MODULE;
2115         vsock_device.minor = MISC_DYNAMIC_MINOR;
2116         err = misc_register(&vsock_device);
2117         if (err) {
2118                 pr_err("Failed to register misc device\n");
2119                 goto err_reset_transport;
2120         }
2121
2122         err = proto_register(&vsock_proto, 1);  /* we want our slab */
2123         if (err) {
2124                 pr_err("Cannot register vsock protocol\n");
2125                 goto err_deregister_misc;
2126         }
2127
2128         err = sock_register(&vsock_family_ops);
2129         if (err) {
2130                 pr_err("could not register af_vsock (%d) address family: %d\n",
2131                        AF_VSOCK, err);
2132                 goto err_unregister_proto;
2133         }
2134
2135         return 0;
2136
2137 err_unregister_proto:
2138         proto_unregister(&vsock_proto);
2139 err_deregister_misc:
2140         misc_deregister(&vsock_device);
2141 err_reset_transport:
2142         return err;
2143 }
2144
2145 static void __exit vsock_exit(void)
2146 {
2147         misc_deregister(&vsock_device);
2148         sock_unregister(AF_VSOCK);
2149         proto_unregister(&vsock_proto);
2150 }
2151
2152 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2153 {
2154         return vsk->transport;
2155 }
2156 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2157
2158 int vsock_core_register(const struct vsock_transport *t, int features)
2159 {
2160         const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2161         int err = mutex_lock_interruptible(&vsock_register_mutex);
2162
2163         if (err)
2164                 return err;
2165
2166         t_h2g = transport_h2g;
2167         t_g2h = transport_g2h;
2168         t_dgram = transport_dgram;
2169         t_local = transport_local;
2170
2171         if (features & VSOCK_TRANSPORT_F_H2G) {
2172                 if (t_h2g) {
2173                         err = -EBUSY;
2174                         goto err_busy;
2175                 }
2176                 t_h2g = t;
2177         }
2178
2179         if (features & VSOCK_TRANSPORT_F_G2H) {
2180                 if (t_g2h) {
2181                         err = -EBUSY;
2182                         goto err_busy;
2183                 }
2184                 t_g2h = t;
2185         }
2186
2187         if (features & VSOCK_TRANSPORT_F_DGRAM) {
2188                 if (t_dgram) {
2189                         err = -EBUSY;
2190                         goto err_busy;
2191                 }
2192                 t_dgram = t;
2193         }
2194
2195         if (features & VSOCK_TRANSPORT_F_LOCAL) {
2196                 if (t_local) {
2197                         err = -EBUSY;
2198                         goto err_busy;
2199                 }
2200                 t_local = t;
2201         }
2202
2203         transport_h2g = t_h2g;
2204         transport_g2h = t_g2h;
2205         transport_dgram = t_dgram;
2206         transport_local = t_local;
2207
2208 err_busy:
2209         mutex_unlock(&vsock_register_mutex);
2210         return err;
2211 }
2212 EXPORT_SYMBOL_GPL(vsock_core_register);
2213
2214 void vsock_core_unregister(const struct vsock_transport *t)
2215 {
2216         mutex_lock(&vsock_register_mutex);
2217
2218         if (transport_h2g == t)
2219                 transport_h2g = NULL;
2220
2221         if (transport_g2h == t)
2222                 transport_g2h = NULL;
2223
2224         if (transport_dgram == t)
2225                 transport_dgram = NULL;
2226
2227         if (transport_local == t)
2228                 transport_local = NULL;
2229
2230         mutex_unlock(&vsock_register_mutex);
2231 }
2232 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2233
2234 module_init(vsock_init);
2235 module_exit(vsock_exit);
2236
2237 MODULE_AUTHOR("VMware, Inc.");
2238 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2239 MODULE_VERSION("1.0.2.0-k");
2240 MODULE_LICENSE("GPL v2");