Linux 6.9-rc1
[linux-2.6-microblaze.git] / net / vmw_vsock / af_vsock.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware vSockets Driver
4  *
5  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6  */
7
8 /* Implementation notes:
9  *
10  * - There are two kinds of sockets: those created by user action (such as
11  * calling socket(2)) and those created by incoming connection request packets.
12  *
13  * - There are two "global" tables, one for bound sockets (sockets that have
14  * specified an address that they are responsible for) and one for connected
15  * sockets (sockets that have established a connection with another socket).
16  * These tables are "global" in that all sockets on the system are placed
17  * within them. - Note, though, that the bound table contains an extra entry
18  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19  * that list. The bound table is used solely for lookup of sockets when packets
20  * are received and that's not necessary for SOCK_DGRAM sockets since we create
21  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
22  * sockets out of the bound hash buckets will reduce the chance of collisions
23  * when looking for SOCK_STREAM sockets and prevents us from having to check the
24  * socket type in the hash table lookups.
25  *
26  * - Sockets created by user action will either be "client" sockets that
27  * initiate a connection or "server" sockets that listen for connections; we do
28  * not support simultaneous connects (two "client" sockets connecting).
29  *
30  * - "Server" sockets are referred to as listener sockets throughout this
31  * implementation because they are in the TCP_LISTEN state.  When a
32  * connection request is received (the second kind of socket mentioned above),
33  * we create a new socket and refer to it as a pending socket.  These pending
34  * sockets are placed on the pending connection list of the listener socket.
35  * When future packets are received for the address the listener socket is
36  * bound to, we check if the source of the packet is from one that has an
37  * existing pending connection.  If it does, we process the packet for the
38  * pending socket.  When that socket reaches the connected state, it is removed
39  * from the listener socket's pending list and enqueued in the listener
40  * socket's accept queue.  Callers of accept(2) will accept connected sockets
41  * from the listener socket's accept queue.  If the socket cannot be accepted
42  * for some reason then it is marked rejected.  Once the connection is
43  * accepted, it is owned by the user process and the responsibility for cleanup
44  * falls with that user process.
45  *
46  * - It is possible that these pending sockets will never reach the connected
47  * state; in fact, we may never receive another packet after the connection
48  * request.  Because of this, we must schedule a cleanup function to run in the
49  * future, after some amount of time passes where a connection should have been
50  * established.  This function ensures that the socket is off all lists so it
51  * cannot be retrieved, then drops all references to the socket so it is cleaned
52  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
53  * function will also cleanup rejected sockets, those that reach the connected
54  * state but leave it before they have been accepted.
55  *
56  * - Lock ordering for pending or accept queue sockets is:
57  *
58  *     lock_sock(listener);
59  *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60  *
61  * Using explicit nested locking keeps lockdep happy since normally only one
62  * lock of a given class may be taken at a time.
63  *
64  * - Sockets created by user action will be cleaned up when the user process
65  * calls close(2), causing our release implementation to be called. Our release
66  * implementation will perform some cleanup then drop the last reference so our
67  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
68  * perform additional cleanup that's common for both types of sockets.
69  *
70  * - A socket's reference count is what ensures that the structure won't be
71  * freed.  Each entry in a list (such as the "global" bound and connected tables
72  * and the listener socket's pending list and connected queue) ensures a
73  * reference.  When we defer work until process context and pass a socket as our
74  * argument, we must ensure the reference count is increased to ensure the
75  * socket isn't freed before the function is run; the deferred function will
76  * then drop the reference.
77  *
78  * - sk->sk_state uses the TCP state constants because they are widely used by
79  * other address families and exposed to userspace tools like ss(8):
80  *
81  *   TCP_CLOSE - unconnected
82  *   TCP_SYN_SENT - connecting
83  *   TCP_ESTABLISHED - connected
84  *   TCP_CLOSING - disconnecting
85  *   TCP_LISTEN - listening
86  */
87
88 #include <linux/compat.h>
89 #include <linux/types.h>
90 #include <linux/bitops.h>
91 #include <linux/cred.h>
92 #include <linux/errqueue.h>
93 #include <linux/init.h>
94 #include <linux/io.h>
95 #include <linux/kernel.h>
96 #include <linux/sched/signal.h>
97 #include <linux/kmod.h>
98 #include <linux/list.h>
99 #include <linux/miscdevice.h>
100 #include <linux/module.h>
101 #include <linux/mutex.h>
102 #include <linux/net.h>
103 #include <linux/poll.h>
104 #include <linux/random.h>
105 #include <linux/skbuff.h>
106 #include <linux/smp.h>
107 #include <linux/socket.h>
108 #include <linux/stddef.h>
109 #include <linux/unistd.h>
110 #include <linux/wait.h>
111 #include <linux/workqueue.h>
112 #include <net/sock.h>
113 #include <net/af_vsock.h>
114 #include <uapi/linux/vm_sockets.h>
115
116 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
117 static void vsock_sk_destruct(struct sock *sk);
118 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
119
120 /* Protocol family. */
121 struct proto vsock_proto = {
122         .name = "AF_VSOCK",
123         .owner = THIS_MODULE,
124         .obj_size = sizeof(struct vsock_sock),
125 #ifdef CONFIG_BPF_SYSCALL
126         .psock_update_sk_prot = vsock_bpf_update_proto,
127 #endif
128 };
129
130 /* The default peer timeout indicates how long we will wait for a peer response
131  * to a control message.
132  */
133 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
134
135 #define VSOCK_DEFAULT_BUFFER_SIZE     (1024 * 256)
136 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
137 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
138
139 /* Transport used for host->guest communication */
140 static const struct vsock_transport *transport_h2g;
141 /* Transport used for guest->host communication */
142 static const struct vsock_transport *transport_g2h;
143 /* Transport used for DGRAM communication */
144 static const struct vsock_transport *transport_dgram;
145 /* Transport used for local communication */
146 static const struct vsock_transport *transport_local;
147 static DEFINE_MUTEX(vsock_register_mutex);
148
149 /**** UTILS ****/
150
151 /* Each bound VSocket is stored in the bind hash table and each connected
152  * VSocket is stored in the connected hash table.
153  *
154  * Unbound sockets are all put on the same list attached to the end of the hash
155  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
156  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
157  * represents the list that addr hashes to).
158  *
159  * Specifically, we initialize the vsock_bind_table array to a size of
160  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
161  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
162  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
163  * mods with VSOCK_HASH_SIZE to ensure this.
164  */
165 #define MAX_PORT_RETRIES        24
166
167 #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
168 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
169 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
170
171 /* XXX This can probably be implemented in a better way. */
172 #define VSOCK_CONN_HASH(src, dst)                               \
173         (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
174 #define vsock_connected_sockets(src, dst)               \
175         (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
176 #define vsock_connected_sockets_vsk(vsk)                                \
177         vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
178
179 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
180 EXPORT_SYMBOL_GPL(vsock_bind_table);
181 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
182 EXPORT_SYMBOL_GPL(vsock_connected_table);
183 DEFINE_SPINLOCK(vsock_table_lock);
184 EXPORT_SYMBOL_GPL(vsock_table_lock);
185
186 /* Autobind this socket to the local address if necessary. */
187 static int vsock_auto_bind(struct vsock_sock *vsk)
188 {
189         struct sock *sk = sk_vsock(vsk);
190         struct sockaddr_vm local_addr;
191
192         if (vsock_addr_bound(&vsk->local_addr))
193                 return 0;
194         vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
195         return __vsock_bind(sk, &local_addr);
196 }
197
198 static void vsock_init_tables(void)
199 {
200         int i;
201
202         for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
203                 INIT_LIST_HEAD(&vsock_bind_table[i]);
204
205         for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
206                 INIT_LIST_HEAD(&vsock_connected_table[i]);
207 }
208
209 static void __vsock_insert_bound(struct list_head *list,
210                                  struct vsock_sock *vsk)
211 {
212         sock_hold(&vsk->sk);
213         list_add(&vsk->bound_table, list);
214 }
215
216 static void __vsock_insert_connected(struct list_head *list,
217                                      struct vsock_sock *vsk)
218 {
219         sock_hold(&vsk->sk);
220         list_add(&vsk->connected_table, list);
221 }
222
223 static void __vsock_remove_bound(struct vsock_sock *vsk)
224 {
225         list_del_init(&vsk->bound_table);
226         sock_put(&vsk->sk);
227 }
228
229 static void __vsock_remove_connected(struct vsock_sock *vsk)
230 {
231         list_del_init(&vsk->connected_table);
232         sock_put(&vsk->sk);
233 }
234
235 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
236 {
237         struct vsock_sock *vsk;
238
239         list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
240                 if (vsock_addr_equals_addr(addr, &vsk->local_addr))
241                         return sk_vsock(vsk);
242
243                 if (addr->svm_port == vsk->local_addr.svm_port &&
244                     (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
245                      addr->svm_cid == VMADDR_CID_ANY))
246                         return sk_vsock(vsk);
247         }
248
249         return NULL;
250 }
251
252 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
253                                                   struct sockaddr_vm *dst)
254 {
255         struct vsock_sock *vsk;
256
257         list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
258                             connected_table) {
259                 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
260                     dst->svm_port == vsk->local_addr.svm_port) {
261                         return sk_vsock(vsk);
262                 }
263         }
264
265         return NULL;
266 }
267
268 static void vsock_insert_unbound(struct vsock_sock *vsk)
269 {
270         spin_lock_bh(&vsock_table_lock);
271         __vsock_insert_bound(vsock_unbound_sockets, vsk);
272         spin_unlock_bh(&vsock_table_lock);
273 }
274
275 void vsock_insert_connected(struct vsock_sock *vsk)
276 {
277         struct list_head *list = vsock_connected_sockets(
278                 &vsk->remote_addr, &vsk->local_addr);
279
280         spin_lock_bh(&vsock_table_lock);
281         __vsock_insert_connected(list, vsk);
282         spin_unlock_bh(&vsock_table_lock);
283 }
284 EXPORT_SYMBOL_GPL(vsock_insert_connected);
285
286 void vsock_remove_bound(struct vsock_sock *vsk)
287 {
288         spin_lock_bh(&vsock_table_lock);
289         if (__vsock_in_bound_table(vsk))
290                 __vsock_remove_bound(vsk);
291         spin_unlock_bh(&vsock_table_lock);
292 }
293 EXPORT_SYMBOL_GPL(vsock_remove_bound);
294
295 void vsock_remove_connected(struct vsock_sock *vsk)
296 {
297         spin_lock_bh(&vsock_table_lock);
298         if (__vsock_in_connected_table(vsk))
299                 __vsock_remove_connected(vsk);
300         spin_unlock_bh(&vsock_table_lock);
301 }
302 EXPORT_SYMBOL_GPL(vsock_remove_connected);
303
304 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
305 {
306         struct sock *sk;
307
308         spin_lock_bh(&vsock_table_lock);
309         sk = __vsock_find_bound_socket(addr);
310         if (sk)
311                 sock_hold(sk);
312
313         spin_unlock_bh(&vsock_table_lock);
314
315         return sk;
316 }
317 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
318
319 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
320                                          struct sockaddr_vm *dst)
321 {
322         struct sock *sk;
323
324         spin_lock_bh(&vsock_table_lock);
325         sk = __vsock_find_connected_socket(src, dst);
326         if (sk)
327                 sock_hold(sk);
328
329         spin_unlock_bh(&vsock_table_lock);
330
331         return sk;
332 }
333 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
334
335 void vsock_remove_sock(struct vsock_sock *vsk)
336 {
337         vsock_remove_bound(vsk);
338         vsock_remove_connected(vsk);
339 }
340 EXPORT_SYMBOL_GPL(vsock_remove_sock);
341
342 void vsock_for_each_connected_socket(struct vsock_transport *transport,
343                                      void (*fn)(struct sock *sk))
344 {
345         int i;
346
347         spin_lock_bh(&vsock_table_lock);
348
349         for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
350                 struct vsock_sock *vsk;
351                 list_for_each_entry(vsk, &vsock_connected_table[i],
352                                     connected_table) {
353                         if (vsk->transport != transport)
354                                 continue;
355
356                         fn(sk_vsock(vsk));
357                 }
358         }
359
360         spin_unlock_bh(&vsock_table_lock);
361 }
362 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
363
364 void vsock_add_pending(struct sock *listener, struct sock *pending)
365 {
366         struct vsock_sock *vlistener;
367         struct vsock_sock *vpending;
368
369         vlistener = vsock_sk(listener);
370         vpending = vsock_sk(pending);
371
372         sock_hold(pending);
373         sock_hold(listener);
374         list_add_tail(&vpending->pending_links, &vlistener->pending_links);
375 }
376 EXPORT_SYMBOL_GPL(vsock_add_pending);
377
378 void vsock_remove_pending(struct sock *listener, struct sock *pending)
379 {
380         struct vsock_sock *vpending = vsock_sk(pending);
381
382         list_del_init(&vpending->pending_links);
383         sock_put(listener);
384         sock_put(pending);
385 }
386 EXPORT_SYMBOL_GPL(vsock_remove_pending);
387
388 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
389 {
390         struct vsock_sock *vlistener;
391         struct vsock_sock *vconnected;
392
393         vlistener = vsock_sk(listener);
394         vconnected = vsock_sk(connected);
395
396         sock_hold(connected);
397         sock_hold(listener);
398         list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
399 }
400 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
401
402 static bool vsock_use_local_transport(unsigned int remote_cid)
403 {
404         if (!transport_local)
405                 return false;
406
407         if (remote_cid == VMADDR_CID_LOCAL)
408                 return true;
409
410         if (transport_g2h) {
411                 return remote_cid == transport_g2h->get_local_cid();
412         } else {
413                 return remote_cid == VMADDR_CID_HOST;
414         }
415 }
416
417 static void vsock_deassign_transport(struct vsock_sock *vsk)
418 {
419         if (!vsk->transport)
420                 return;
421
422         vsk->transport->destruct(vsk);
423         module_put(vsk->transport->module);
424         vsk->transport = NULL;
425 }
426
427 /* Assign a transport to a socket and call the .init transport callback.
428  *
429  * Note: for connection oriented socket this must be called when vsk->remote_addr
430  * is set (e.g. during the connect() or when a connection request on a listener
431  * socket is received).
432  * The vsk->remote_addr is used to decide which transport to use:
433  *  - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
434  *    g2h is not loaded, will use local transport;
435  *  - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
436  *    includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
437  *  - remote CID > VMADDR_CID_HOST will use host->guest transport;
438  */
439 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
440 {
441         const struct vsock_transport *new_transport;
442         struct sock *sk = sk_vsock(vsk);
443         unsigned int remote_cid = vsk->remote_addr.svm_cid;
444         __u8 remote_flags;
445         int ret;
446
447         /* If the packet is coming with the source and destination CIDs higher
448          * than VMADDR_CID_HOST, then a vsock channel where all the packets are
449          * forwarded to the host should be established. Then the host will
450          * need to forward the packets to the guest.
451          *
452          * The flag is set on the (listen) receive path (psk is not NULL). On
453          * the connect path the flag can be set by the user space application.
454          */
455         if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
456             vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
457                 vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
458
459         remote_flags = vsk->remote_addr.svm_flags;
460
461         switch (sk->sk_type) {
462         case SOCK_DGRAM:
463                 new_transport = transport_dgram;
464                 break;
465         case SOCK_STREAM:
466         case SOCK_SEQPACKET:
467                 if (vsock_use_local_transport(remote_cid))
468                         new_transport = transport_local;
469                 else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
470                          (remote_flags & VMADDR_FLAG_TO_HOST))
471                         new_transport = transport_g2h;
472                 else
473                         new_transport = transport_h2g;
474                 break;
475         default:
476                 return -ESOCKTNOSUPPORT;
477         }
478
479         if (vsk->transport) {
480                 if (vsk->transport == new_transport)
481                         return 0;
482
483                 /* transport->release() must be called with sock lock acquired.
484                  * This path can only be taken during vsock_connect(), where we
485                  * have already held the sock lock. In the other cases, this
486                  * function is called on a new socket which is not assigned to
487                  * any transport.
488                  */
489                 vsk->transport->release(vsk);
490                 vsock_deassign_transport(vsk);
491         }
492
493         /* We increase the module refcnt to prevent the transport unloading
494          * while there are open sockets assigned to it.
495          */
496         if (!new_transport || !try_module_get(new_transport->module))
497                 return -ENODEV;
498
499         if (sk->sk_type == SOCK_SEQPACKET) {
500                 if (!new_transport->seqpacket_allow ||
501                     !new_transport->seqpacket_allow(remote_cid)) {
502                         module_put(new_transport->module);
503                         return -ESOCKTNOSUPPORT;
504                 }
505         }
506
507         ret = new_transport->init(vsk, psk);
508         if (ret) {
509                 module_put(new_transport->module);
510                 return ret;
511         }
512
513         vsk->transport = new_transport;
514
515         return 0;
516 }
517 EXPORT_SYMBOL_GPL(vsock_assign_transport);
518
519 bool vsock_find_cid(unsigned int cid)
520 {
521         if (transport_g2h && cid == transport_g2h->get_local_cid())
522                 return true;
523
524         if (transport_h2g && cid == VMADDR_CID_HOST)
525                 return true;
526
527         if (transport_local && cid == VMADDR_CID_LOCAL)
528                 return true;
529
530         return false;
531 }
532 EXPORT_SYMBOL_GPL(vsock_find_cid);
533
534 static struct sock *vsock_dequeue_accept(struct sock *listener)
535 {
536         struct vsock_sock *vlistener;
537         struct vsock_sock *vconnected;
538
539         vlistener = vsock_sk(listener);
540
541         if (list_empty(&vlistener->accept_queue))
542                 return NULL;
543
544         vconnected = list_entry(vlistener->accept_queue.next,
545                                 struct vsock_sock, accept_queue);
546
547         list_del_init(&vconnected->accept_queue);
548         sock_put(listener);
549         /* The caller will need a reference on the connected socket so we let
550          * it call sock_put().
551          */
552
553         return sk_vsock(vconnected);
554 }
555
556 static bool vsock_is_accept_queue_empty(struct sock *sk)
557 {
558         struct vsock_sock *vsk = vsock_sk(sk);
559         return list_empty(&vsk->accept_queue);
560 }
561
562 static bool vsock_is_pending(struct sock *sk)
563 {
564         struct vsock_sock *vsk = vsock_sk(sk);
565         return !list_empty(&vsk->pending_links);
566 }
567
568 static int vsock_send_shutdown(struct sock *sk, int mode)
569 {
570         struct vsock_sock *vsk = vsock_sk(sk);
571
572         if (!vsk->transport)
573                 return -ENODEV;
574
575         return vsk->transport->shutdown(vsk, mode);
576 }
577
578 static void vsock_pending_work(struct work_struct *work)
579 {
580         struct sock *sk;
581         struct sock *listener;
582         struct vsock_sock *vsk;
583         bool cleanup;
584
585         vsk = container_of(work, struct vsock_sock, pending_work.work);
586         sk = sk_vsock(vsk);
587         listener = vsk->listener;
588         cleanup = true;
589
590         lock_sock(listener);
591         lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
592
593         if (vsock_is_pending(sk)) {
594                 vsock_remove_pending(listener, sk);
595
596                 sk_acceptq_removed(listener);
597         } else if (!vsk->rejected) {
598                 /* We are not on the pending list and accept() did not reject
599                  * us, so we must have been accepted by our user process.  We
600                  * just need to drop our references to the sockets and be on
601                  * our way.
602                  */
603                 cleanup = false;
604                 goto out;
605         }
606
607         /* We need to remove ourself from the global connected sockets list so
608          * incoming packets can't find this socket, and to reduce the reference
609          * count.
610          */
611         vsock_remove_connected(vsk);
612
613         sk->sk_state = TCP_CLOSE;
614
615 out:
616         release_sock(sk);
617         release_sock(listener);
618         if (cleanup)
619                 sock_put(sk);
620
621         sock_put(sk);
622         sock_put(listener);
623 }
624
625 /**** SOCKET OPERATIONS ****/
626
627 static int __vsock_bind_connectible(struct vsock_sock *vsk,
628                                     struct sockaddr_vm *addr)
629 {
630         static u32 port;
631         struct sockaddr_vm new_addr;
632
633         if (!port)
634                 port = get_random_u32_above(LAST_RESERVED_PORT);
635
636         vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
637
638         if (addr->svm_port == VMADDR_PORT_ANY) {
639                 bool found = false;
640                 unsigned int i;
641
642                 for (i = 0; i < MAX_PORT_RETRIES; i++) {
643                         if (port <= LAST_RESERVED_PORT)
644                                 port = LAST_RESERVED_PORT + 1;
645
646                         new_addr.svm_port = port++;
647
648                         if (!__vsock_find_bound_socket(&new_addr)) {
649                                 found = true;
650                                 break;
651                         }
652                 }
653
654                 if (!found)
655                         return -EADDRNOTAVAIL;
656         } else {
657                 /* If port is in reserved range, ensure caller
658                  * has necessary privileges.
659                  */
660                 if (addr->svm_port <= LAST_RESERVED_PORT &&
661                     !capable(CAP_NET_BIND_SERVICE)) {
662                         return -EACCES;
663                 }
664
665                 if (__vsock_find_bound_socket(&new_addr))
666                         return -EADDRINUSE;
667         }
668
669         vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
670
671         /* Remove connection oriented sockets from the unbound list and add them
672          * to the hash table for easy lookup by its address.  The unbound list
673          * is simply an extra entry at the end of the hash table, a trick used
674          * by AF_UNIX.
675          */
676         __vsock_remove_bound(vsk);
677         __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
678
679         return 0;
680 }
681
682 static int __vsock_bind_dgram(struct vsock_sock *vsk,
683                               struct sockaddr_vm *addr)
684 {
685         return vsk->transport->dgram_bind(vsk, addr);
686 }
687
688 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
689 {
690         struct vsock_sock *vsk = vsock_sk(sk);
691         int retval;
692
693         /* First ensure this socket isn't already bound. */
694         if (vsock_addr_bound(&vsk->local_addr))
695                 return -EINVAL;
696
697         /* Now bind to the provided address or select appropriate values if
698          * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
699          * like AF_INET prevents binding to a non-local IP address (in most
700          * cases), we only allow binding to a local CID.
701          */
702         if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
703                 return -EADDRNOTAVAIL;
704
705         switch (sk->sk_socket->type) {
706         case SOCK_STREAM:
707         case SOCK_SEQPACKET:
708                 spin_lock_bh(&vsock_table_lock);
709                 retval = __vsock_bind_connectible(vsk, addr);
710                 spin_unlock_bh(&vsock_table_lock);
711                 break;
712
713         case SOCK_DGRAM:
714                 retval = __vsock_bind_dgram(vsk, addr);
715                 break;
716
717         default:
718                 retval = -EINVAL;
719                 break;
720         }
721
722         return retval;
723 }
724
725 static void vsock_connect_timeout(struct work_struct *work);
726
727 static struct sock *__vsock_create(struct net *net,
728                                    struct socket *sock,
729                                    struct sock *parent,
730                                    gfp_t priority,
731                                    unsigned short type,
732                                    int kern)
733 {
734         struct sock *sk;
735         struct vsock_sock *psk;
736         struct vsock_sock *vsk;
737
738         sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
739         if (!sk)
740                 return NULL;
741
742         sock_init_data(sock, sk);
743
744         /* sk->sk_type is normally set in sock_init_data, but only if sock is
745          * non-NULL. We make sure that our sockets always have a type by
746          * setting it here if needed.
747          */
748         if (!sock)
749                 sk->sk_type = type;
750
751         vsk = vsock_sk(sk);
752         vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
753         vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
754
755         sk->sk_destruct = vsock_sk_destruct;
756         sk->sk_backlog_rcv = vsock_queue_rcv_skb;
757         sock_reset_flag(sk, SOCK_DONE);
758
759         INIT_LIST_HEAD(&vsk->bound_table);
760         INIT_LIST_HEAD(&vsk->connected_table);
761         vsk->listener = NULL;
762         INIT_LIST_HEAD(&vsk->pending_links);
763         INIT_LIST_HEAD(&vsk->accept_queue);
764         vsk->rejected = false;
765         vsk->sent_request = false;
766         vsk->ignore_connecting_rst = false;
767         vsk->peer_shutdown = 0;
768         INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
769         INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
770
771         psk = parent ? vsock_sk(parent) : NULL;
772         if (parent) {
773                 vsk->trusted = psk->trusted;
774                 vsk->owner = get_cred(psk->owner);
775                 vsk->connect_timeout = psk->connect_timeout;
776                 vsk->buffer_size = psk->buffer_size;
777                 vsk->buffer_min_size = psk->buffer_min_size;
778                 vsk->buffer_max_size = psk->buffer_max_size;
779                 security_sk_clone(parent, sk);
780         } else {
781                 vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
782                 vsk->owner = get_current_cred();
783                 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
784                 vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
785                 vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
786                 vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
787         }
788
789         return sk;
790 }
791
792 static bool sock_type_connectible(u16 type)
793 {
794         return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET);
795 }
796
797 static void __vsock_release(struct sock *sk, int level)
798 {
799         if (sk) {
800                 struct sock *pending;
801                 struct vsock_sock *vsk;
802
803                 vsk = vsock_sk(sk);
804                 pending = NULL; /* Compiler warning. */
805
806                 /* When "level" is SINGLE_DEPTH_NESTING, use the nested
807                  * version to avoid the warning "possible recursive locking
808                  * detected". When "level" is 0, lock_sock_nested(sk, level)
809                  * is the same as lock_sock(sk).
810                  */
811                 lock_sock_nested(sk, level);
812
813                 if (vsk->transport)
814                         vsk->transport->release(vsk);
815                 else if (sock_type_connectible(sk->sk_type))
816                         vsock_remove_sock(vsk);
817
818                 sock_orphan(sk);
819                 sk->sk_shutdown = SHUTDOWN_MASK;
820
821                 skb_queue_purge(&sk->sk_receive_queue);
822
823                 /* Clean up any sockets that never were accepted. */
824                 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
825                         __vsock_release(pending, SINGLE_DEPTH_NESTING);
826                         sock_put(pending);
827                 }
828
829                 release_sock(sk);
830                 sock_put(sk);
831         }
832 }
833
834 static void vsock_sk_destruct(struct sock *sk)
835 {
836         struct vsock_sock *vsk = vsock_sk(sk);
837
838         vsock_deassign_transport(vsk);
839
840         /* When clearing these addresses, there's no need to set the family and
841          * possibly register the address family with the kernel.
842          */
843         vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
844         vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
845
846         put_cred(vsk->owner);
847 }
848
849 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
850 {
851         int err;
852
853         err = sock_queue_rcv_skb(sk, skb);
854         if (err)
855                 kfree_skb(skb);
856
857         return err;
858 }
859
860 struct sock *vsock_create_connected(struct sock *parent)
861 {
862         return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
863                               parent->sk_type, 0);
864 }
865 EXPORT_SYMBOL_GPL(vsock_create_connected);
866
867 s64 vsock_stream_has_data(struct vsock_sock *vsk)
868 {
869         return vsk->transport->stream_has_data(vsk);
870 }
871 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
872
873 s64 vsock_connectible_has_data(struct vsock_sock *vsk)
874 {
875         struct sock *sk = sk_vsock(vsk);
876
877         if (sk->sk_type == SOCK_SEQPACKET)
878                 return vsk->transport->seqpacket_has_data(vsk);
879         else
880                 return vsock_stream_has_data(vsk);
881 }
882 EXPORT_SYMBOL_GPL(vsock_connectible_has_data);
883
884 s64 vsock_stream_has_space(struct vsock_sock *vsk)
885 {
886         return vsk->transport->stream_has_space(vsk);
887 }
888 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
889
890 void vsock_data_ready(struct sock *sk)
891 {
892         struct vsock_sock *vsk = vsock_sk(sk);
893
894         if (vsock_stream_has_data(vsk) >= sk->sk_rcvlowat ||
895             sock_flag(sk, SOCK_DONE))
896                 sk->sk_data_ready(sk);
897 }
898 EXPORT_SYMBOL_GPL(vsock_data_ready);
899
900 static int vsock_release(struct socket *sock)
901 {
902         __vsock_release(sock->sk, 0);
903         sock->sk = NULL;
904         sock->state = SS_FREE;
905
906         return 0;
907 }
908
909 static int
910 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
911 {
912         int err;
913         struct sock *sk;
914         struct sockaddr_vm *vm_addr;
915
916         sk = sock->sk;
917
918         if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
919                 return -EINVAL;
920
921         lock_sock(sk);
922         err = __vsock_bind(sk, vm_addr);
923         release_sock(sk);
924
925         return err;
926 }
927
928 static int vsock_getname(struct socket *sock,
929                          struct sockaddr *addr, int peer)
930 {
931         int err;
932         struct sock *sk;
933         struct vsock_sock *vsk;
934         struct sockaddr_vm *vm_addr;
935
936         sk = sock->sk;
937         vsk = vsock_sk(sk);
938         err = 0;
939
940         lock_sock(sk);
941
942         if (peer) {
943                 if (sock->state != SS_CONNECTED) {
944                         err = -ENOTCONN;
945                         goto out;
946                 }
947                 vm_addr = &vsk->remote_addr;
948         } else {
949                 vm_addr = &vsk->local_addr;
950         }
951
952         if (!vm_addr) {
953                 err = -EINVAL;
954                 goto out;
955         }
956
957         /* sys_getsockname() and sys_getpeername() pass us a
958          * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
959          * that macro is defined in socket.c instead of .h, so we hardcode its
960          * value here.
961          */
962         BUILD_BUG_ON(sizeof(*vm_addr) > 128);
963         memcpy(addr, vm_addr, sizeof(*vm_addr));
964         err = sizeof(*vm_addr);
965
966 out:
967         release_sock(sk);
968         return err;
969 }
970
971 static int vsock_shutdown(struct socket *sock, int mode)
972 {
973         int err;
974         struct sock *sk;
975
976         /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
977          * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
978          * here like the other address families do.  Note also that the
979          * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
980          * which is what we want.
981          */
982         mode++;
983
984         if ((mode & ~SHUTDOWN_MASK) || !mode)
985                 return -EINVAL;
986
987         /* If this is a connection oriented socket and it is not connected then
988          * bail out immediately.  If it is a DGRAM socket then we must first
989          * kick the socket so that it wakes up from any sleeping calls, for
990          * example recv(), and then afterwards return the error.
991          */
992
993         sk = sock->sk;
994
995         lock_sock(sk);
996         if (sock->state == SS_UNCONNECTED) {
997                 err = -ENOTCONN;
998                 if (sock_type_connectible(sk->sk_type))
999                         goto out;
1000         } else {
1001                 sock->state = SS_DISCONNECTING;
1002                 err = 0;
1003         }
1004
1005         /* Receive and send shutdowns are treated alike. */
1006         mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
1007         if (mode) {
1008                 sk->sk_shutdown |= mode;
1009                 sk->sk_state_change(sk);
1010
1011                 if (sock_type_connectible(sk->sk_type)) {
1012                         sock_reset_flag(sk, SOCK_DONE);
1013                         vsock_send_shutdown(sk, mode);
1014                 }
1015         }
1016
1017 out:
1018         release_sock(sk);
1019         return err;
1020 }
1021
1022 static __poll_t vsock_poll(struct file *file, struct socket *sock,
1023                                poll_table *wait)
1024 {
1025         struct sock *sk;
1026         __poll_t mask;
1027         struct vsock_sock *vsk;
1028
1029         sk = sock->sk;
1030         vsk = vsock_sk(sk);
1031
1032         poll_wait(file, sk_sleep(sk), wait);
1033         mask = 0;
1034
1035         if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
1036                 /* Signify that there has been an error on this socket. */
1037                 mask |= EPOLLERR;
1038
1039         /* INET sockets treat local write shutdown and peer write shutdown as a
1040          * case of EPOLLHUP set.
1041          */
1042         if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
1043             ((sk->sk_shutdown & SEND_SHUTDOWN) &&
1044              (vsk->peer_shutdown & SEND_SHUTDOWN))) {
1045                 mask |= EPOLLHUP;
1046         }
1047
1048         if (sk->sk_shutdown & RCV_SHUTDOWN ||
1049             vsk->peer_shutdown & SEND_SHUTDOWN) {
1050                 mask |= EPOLLRDHUP;
1051         }
1052
1053         if (sock->type == SOCK_DGRAM) {
1054                 /* For datagram sockets we can read if there is something in
1055                  * the queue and write as long as the socket isn't shutdown for
1056                  * sending.
1057                  */
1058                 if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1059                     (sk->sk_shutdown & RCV_SHUTDOWN)) {
1060                         mask |= EPOLLIN | EPOLLRDNORM;
1061                 }
1062
1063                 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1064                         mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1065
1066         } else if (sock_type_connectible(sk->sk_type)) {
1067                 const struct vsock_transport *transport;
1068
1069                 lock_sock(sk);
1070
1071                 transport = vsk->transport;
1072
1073                 /* Listening sockets that have connections in their accept
1074                  * queue can be read.
1075                  */
1076                 if (sk->sk_state == TCP_LISTEN
1077                     && !vsock_is_accept_queue_empty(sk))
1078                         mask |= EPOLLIN | EPOLLRDNORM;
1079
1080                 /* If there is something in the queue then we can read. */
1081                 if (transport && transport->stream_is_active(vsk) &&
1082                     !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1083                         bool data_ready_now = false;
1084                         int target = sock_rcvlowat(sk, 0, INT_MAX);
1085                         int ret = transport->notify_poll_in(
1086                                         vsk, target, &data_ready_now);
1087                         if (ret < 0) {
1088                                 mask |= EPOLLERR;
1089                         } else {
1090                                 if (data_ready_now)
1091                                         mask |= EPOLLIN | EPOLLRDNORM;
1092
1093                         }
1094                 }
1095
1096                 /* Sockets whose connections have been closed, reset, or
1097                  * terminated should also be considered read, and we check the
1098                  * shutdown flag for that.
1099                  */
1100                 if (sk->sk_shutdown & RCV_SHUTDOWN ||
1101                     vsk->peer_shutdown & SEND_SHUTDOWN) {
1102                         mask |= EPOLLIN | EPOLLRDNORM;
1103                 }
1104
1105                 /* Connected sockets that can produce data can be written. */
1106                 if (transport && sk->sk_state == TCP_ESTABLISHED) {
1107                         if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1108                                 bool space_avail_now = false;
1109                                 int ret = transport->notify_poll_out(
1110                                                 vsk, 1, &space_avail_now);
1111                                 if (ret < 0) {
1112                                         mask |= EPOLLERR;
1113                                 } else {
1114                                         if (space_avail_now)
1115                                                 /* Remove EPOLLWRBAND since INET
1116                                                  * sockets are not setting it.
1117                                                  */
1118                                                 mask |= EPOLLOUT | EPOLLWRNORM;
1119
1120                                 }
1121                         }
1122                 }
1123
1124                 /* Simulate INET socket poll behaviors, which sets
1125                  * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1126                  * but local send is not shutdown.
1127                  */
1128                 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1129                         if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1130                                 mask |= EPOLLOUT | EPOLLWRNORM;
1131
1132                 }
1133
1134                 release_sock(sk);
1135         }
1136
1137         return mask;
1138 }
1139
1140 static int vsock_read_skb(struct sock *sk, skb_read_actor_t read_actor)
1141 {
1142         struct vsock_sock *vsk = vsock_sk(sk);
1143
1144         return vsk->transport->read_skb(vsk, read_actor);
1145 }
1146
1147 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1148                                size_t len)
1149 {
1150         int err;
1151         struct sock *sk;
1152         struct vsock_sock *vsk;
1153         struct sockaddr_vm *remote_addr;
1154         const struct vsock_transport *transport;
1155
1156         if (msg->msg_flags & MSG_OOB)
1157                 return -EOPNOTSUPP;
1158
1159         /* For now, MSG_DONTWAIT is always assumed... */
1160         err = 0;
1161         sk = sock->sk;
1162         vsk = vsock_sk(sk);
1163
1164         lock_sock(sk);
1165
1166         transport = vsk->transport;
1167
1168         err = vsock_auto_bind(vsk);
1169         if (err)
1170                 goto out;
1171
1172
1173         /* If the provided message contains an address, use that.  Otherwise
1174          * fall back on the socket's remote handle (if it has been connected).
1175          */
1176         if (msg->msg_name &&
1177             vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1178                             &remote_addr) == 0) {
1179                 /* Ensure this address is of the right type and is a valid
1180                  * destination.
1181                  */
1182
1183                 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1184                         remote_addr->svm_cid = transport->get_local_cid();
1185
1186                 if (!vsock_addr_bound(remote_addr)) {
1187                         err = -EINVAL;
1188                         goto out;
1189                 }
1190         } else if (sock->state == SS_CONNECTED) {
1191                 remote_addr = &vsk->remote_addr;
1192
1193                 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1194                         remote_addr->svm_cid = transport->get_local_cid();
1195
1196                 /* XXX Should connect() or this function ensure remote_addr is
1197                  * bound?
1198                  */
1199                 if (!vsock_addr_bound(&vsk->remote_addr)) {
1200                         err = -EINVAL;
1201                         goto out;
1202                 }
1203         } else {
1204                 err = -EINVAL;
1205                 goto out;
1206         }
1207
1208         if (!transport->dgram_allow(remote_addr->svm_cid,
1209                                     remote_addr->svm_port)) {
1210                 err = -EINVAL;
1211                 goto out;
1212         }
1213
1214         err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1215
1216 out:
1217         release_sock(sk);
1218         return err;
1219 }
1220
1221 static int vsock_dgram_connect(struct socket *sock,
1222                                struct sockaddr *addr, int addr_len, int flags)
1223 {
1224         int err;
1225         struct sock *sk;
1226         struct vsock_sock *vsk;
1227         struct sockaddr_vm *remote_addr;
1228
1229         sk = sock->sk;
1230         vsk = vsock_sk(sk);
1231
1232         err = vsock_addr_cast(addr, addr_len, &remote_addr);
1233         if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1234                 lock_sock(sk);
1235                 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1236                                 VMADDR_PORT_ANY);
1237                 sock->state = SS_UNCONNECTED;
1238                 release_sock(sk);
1239                 return 0;
1240         } else if (err != 0)
1241                 return -EINVAL;
1242
1243         lock_sock(sk);
1244
1245         err = vsock_auto_bind(vsk);
1246         if (err)
1247                 goto out;
1248
1249         if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1250                                          remote_addr->svm_port)) {
1251                 err = -EINVAL;
1252                 goto out;
1253         }
1254
1255         memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1256         sock->state = SS_CONNECTED;
1257
1258         /* sock map disallows redirection of non-TCP sockets with sk_state !=
1259          * TCP_ESTABLISHED (see sock_map_redirect_allowed()), so we set
1260          * TCP_ESTABLISHED here to allow redirection of connected vsock dgrams.
1261          *
1262          * This doesn't seem to be abnormal state for datagram sockets, as the
1263          * same approach can be see in other datagram socket types as well
1264          * (such as unix sockets).
1265          */
1266         sk->sk_state = TCP_ESTABLISHED;
1267
1268 out:
1269         release_sock(sk);
1270         return err;
1271 }
1272
1273 int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1274                         size_t len, int flags)
1275 {
1276 #ifdef CONFIG_BPF_SYSCALL
1277         const struct proto *prot;
1278 #endif
1279         struct vsock_sock *vsk;
1280         struct sock *sk;
1281
1282         sk = sock->sk;
1283         vsk = vsock_sk(sk);
1284
1285 #ifdef CONFIG_BPF_SYSCALL
1286         prot = READ_ONCE(sk->sk_prot);
1287         if (prot != &vsock_proto)
1288                 return prot->recvmsg(sk, msg, len, flags, NULL);
1289 #endif
1290
1291         return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1292 }
1293 EXPORT_SYMBOL_GPL(vsock_dgram_recvmsg);
1294
1295 static const struct proto_ops vsock_dgram_ops = {
1296         .family = PF_VSOCK,
1297         .owner = THIS_MODULE,
1298         .release = vsock_release,
1299         .bind = vsock_bind,
1300         .connect = vsock_dgram_connect,
1301         .socketpair = sock_no_socketpair,
1302         .accept = sock_no_accept,
1303         .getname = vsock_getname,
1304         .poll = vsock_poll,
1305         .ioctl = sock_no_ioctl,
1306         .listen = sock_no_listen,
1307         .shutdown = vsock_shutdown,
1308         .sendmsg = vsock_dgram_sendmsg,
1309         .recvmsg = vsock_dgram_recvmsg,
1310         .mmap = sock_no_mmap,
1311         .read_skb = vsock_read_skb,
1312 };
1313
1314 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1315 {
1316         const struct vsock_transport *transport = vsk->transport;
1317
1318         if (!transport || !transport->cancel_pkt)
1319                 return -EOPNOTSUPP;
1320
1321         return transport->cancel_pkt(vsk);
1322 }
1323
1324 static void vsock_connect_timeout(struct work_struct *work)
1325 {
1326         struct sock *sk;
1327         struct vsock_sock *vsk;
1328
1329         vsk = container_of(work, struct vsock_sock, connect_work.work);
1330         sk = sk_vsock(vsk);
1331
1332         lock_sock(sk);
1333         if (sk->sk_state == TCP_SYN_SENT &&
1334             (sk->sk_shutdown != SHUTDOWN_MASK)) {
1335                 sk->sk_state = TCP_CLOSE;
1336                 sk->sk_socket->state = SS_UNCONNECTED;
1337                 sk->sk_err = ETIMEDOUT;
1338                 sk_error_report(sk);
1339                 vsock_transport_cancel_pkt(vsk);
1340         }
1341         release_sock(sk);
1342
1343         sock_put(sk);
1344 }
1345
1346 static int vsock_connect(struct socket *sock, struct sockaddr *addr,
1347                          int addr_len, int flags)
1348 {
1349         int err;
1350         struct sock *sk;
1351         struct vsock_sock *vsk;
1352         const struct vsock_transport *transport;
1353         struct sockaddr_vm *remote_addr;
1354         long timeout;
1355         DEFINE_WAIT(wait);
1356
1357         err = 0;
1358         sk = sock->sk;
1359         vsk = vsock_sk(sk);
1360
1361         lock_sock(sk);
1362
1363         /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1364         switch (sock->state) {
1365         case SS_CONNECTED:
1366                 err = -EISCONN;
1367                 goto out;
1368         case SS_DISCONNECTING:
1369                 err = -EINVAL;
1370                 goto out;
1371         case SS_CONNECTING:
1372                 /* This continues on so we can move sock into the SS_CONNECTED
1373                  * state once the connection has completed (at which point err
1374                  * will be set to zero also).  Otherwise, we will either wait
1375                  * for the connection or return -EALREADY should this be a
1376                  * non-blocking call.
1377                  */
1378                 err = -EALREADY;
1379                 if (flags & O_NONBLOCK)
1380                         goto out;
1381                 break;
1382         default:
1383                 if ((sk->sk_state == TCP_LISTEN) ||
1384                     vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1385                         err = -EINVAL;
1386                         goto out;
1387                 }
1388
1389                 /* Set the remote address that we are connecting to. */
1390                 memcpy(&vsk->remote_addr, remote_addr,
1391                        sizeof(vsk->remote_addr));
1392
1393                 err = vsock_assign_transport(vsk, NULL);
1394                 if (err)
1395                         goto out;
1396
1397                 transport = vsk->transport;
1398
1399                 /* The hypervisor and well-known contexts do not have socket
1400                  * endpoints.
1401                  */
1402                 if (!transport ||
1403                     !transport->stream_allow(remote_addr->svm_cid,
1404                                              remote_addr->svm_port)) {
1405                         err = -ENETUNREACH;
1406                         goto out;
1407                 }
1408
1409                 if (vsock_msgzerocopy_allow(transport)) {
1410                         set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1411                 } else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1412                         /* If this option was set before 'connect()',
1413                          * when transport was unknown, check that this
1414                          * feature is supported here.
1415                          */
1416                         err = -EOPNOTSUPP;
1417                         goto out;
1418                 }
1419
1420                 err = vsock_auto_bind(vsk);
1421                 if (err)
1422                         goto out;
1423
1424                 sk->sk_state = TCP_SYN_SENT;
1425
1426                 err = transport->connect(vsk);
1427                 if (err < 0)
1428                         goto out;
1429
1430                 /* Mark sock as connecting and set the error code to in
1431                  * progress in case this is a non-blocking connect.
1432                  */
1433                 sock->state = SS_CONNECTING;
1434                 err = -EINPROGRESS;
1435         }
1436
1437         /* The receive path will handle all communication until we are able to
1438          * enter the connected state.  Here we wait for the connection to be
1439          * completed or a notification of an error.
1440          */
1441         timeout = vsk->connect_timeout;
1442         prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1443
1444         while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1445                 if (flags & O_NONBLOCK) {
1446                         /* If we're not going to block, we schedule a timeout
1447                          * function to generate a timeout on the connection
1448                          * attempt, in case the peer doesn't respond in a
1449                          * timely manner. We hold on to the socket until the
1450                          * timeout fires.
1451                          */
1452                         sock_hold(sk);
1453
1454                         /* If the timeout function is already scheduled,
1455                          * reschedule it, then ungrab the socket refcount to
1456                          * keep it balanced.
1457                          */
1458                         if (mod_delayed_work(system_wq, &vsk->connect_work,
1459                                              timeout))
1460                                 sock_put(sk);
1461
1462                         /* Skip ahead to preserve error code set above. */
1463                         goto out_wait;
1464                 }
1465
1466                 release_sock(sk);
1467                 timeout = schedule_timeout(timeout);
1468                 lock_sock(sk);
1469
1470                 if (signal_pending(current)) {
1471                         err = sock_intr_errno(timeout);
1472                         sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
1473                         sock->state = SS_UNCONNECTED;
1474                         vsock_transport_cancel_pkt(vsk);
1475                         vsock_remove_connected(vsk);
1476                         goto out_wait;
1477                 } else if ((sk->sk_state != TCP_ESTABLISHED) && (timeout == 0)) {
1478                         err = -ETIMEDOUT;
1479                         sk->sk_state = TCP_CLOSE;
1480                         sock->state = SS_UNCONNECTED;
1481                         vsock_transport_cancel_pkt(vsk);
1482                         goto out_wait;
1483                 }
1484
1485                 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1486         }
1487
1488         if (sk->sk_err) {
1489                 err = -sk->sk_err;
1490                 sk->sk_state = TCP_CLOSE;
1491                 sock->state = SS_UNCONNECTED;
1492         } else {
1493                 err = 0;
1494         }
1495
1496 out_wait:
1497         finish_wait(sk_sleep(sk), &wait);
1498 out:
1499         release_sock(sk);
1500         return err;
1501 }
1502
1503 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1504                         bool kern)
1505 {
1506         struct sock *listener;
1507         int err;
1508         struct sock *connected;
1509         struct vsock_sock *vconnected;
1510         long timeout;
1511         DEFINE_WAIT(wait);
1512
1513         err = 0;
1514         listener = sock->sk;
1515
1516         lock_sock(listener);
1517
1518         if (!sock_type_connectible(sock->type)) {
1519                 err = -EOPNOTSUPP;
1520                 goto out;
1521         }
1522
1523         if (listener->sk_state != TCP_LISTEN) {
1524                 err = -EINVAL;
1525                 goto out;
1526         }
1527
1528         /* Wait for children sockets to appear; these are the new sockets
1529          * created upon connection establishment.
1530          */
1531         timeout = sock_rcvtimeo(listener, flags & O_NONBLOCK);
1532         prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1533
1534         while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1535                listener->sk_err == 0) {
1536                 release_sock(listener);
1537                 timeout = schedule_timeout(timeout);
1538                 finish_wait(sk_sleep(listener), &wait);
1539                 lock_sock(listener);
1540
1541                 if (signal_pending(current)) {
1542                         err = sock_intr_errno(timeout);
1543                         goto out;
1544                 } else if (timeout == 0) {
1545                         err = -EAGAIN;
1546                         goto out;
1547                 }
1548
1549                 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1550         }
1551         finish_wait(sk_sleep(listener), &wait);
1552
1553         if (listener->sk_err)
1554                 err = -listener->sk_err;
1555
1556         if (connected) {
1557                 sk_acceptq_removed(listener);
1558
1559                 lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1560                 vconnected = vsock_sk(connected);
1561
1562                 /* If the listener socket has received an error, then we should
1563                  * reject this socket and return.  Note that we simply mark the
1564                  * socket rejected, drop our reference, and let the cleanup
1565                  * function handle the cleanup; the fact that we found it in
1566                  * the listener's accept queue guarantees that the cleanup
1567                  * function hasn't run yet.
1568                  */
1569                 if (err) {
1570                         vconnected->rejected = true;
1571                 } else {
1572                         newsock->state = SS_CONNECTED;
1573                         sock_graft(connected, newsock);
1574                         if (vsock_msgzerocopy_allow(vconnected->transport))
1575                                 set_bit(SOCK_SUPPORT_ZC,
1576                                         &connected->sk_socket->flags);
1577                 }
1578
1579                 release_sock(connected);
1580                 sock_put(connected);
1581         }
1582
1583 out:
1584         release_sock(listener);
1585         return err;
1586 }
1587
1588 static int vsock_listen(struct socket *sock, int backlog)
1589 {
1590         int err;
1591         struct sock *sk;
1592         struct vsock_sock *vsk;
1593
1594         sk = sock->sk;
1595
1596         lock_sock(sk);
1597
1598         if (!sock_type_connectible(sk->sk_type)) {
1599                 err = -EOPNOTSUPP;
1600                 goto out;
1601         }
1602
1603         if (sock->state != SS_UNCONNECTED) {
1604                 err = -EINVAL;
1605                 goto out;
1606         }
1607
1608         vsk = vsock_sk(sk);
1609
1610         if (!vsock_addr_bound(&vsk->local_addr)) {
1611                 err = -EINVAL;
1612                 goto out;
1613         }
1614
1615         sk->sk_max_ack_backlog = backlog;
1616         sk->sk_state = TCP_LISTEN;
1617
1618         err = 0;
1619
1620 out:
1621         release_sock(sk);
1622         return err;
1623 }
1624
1625 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1626                                      const struct vsock_transport *transport,
1627                                      u64 val)
1628 {
1629         if (val > vsk->buffer_max_size)
1630                 val = vsk->buffer_max_size;
1631
1632         if (val < vsk->buffer_min_size)
1633                 val = vsk->buffer_min_size;
1634
1635         if (val != vsk->buffer_size &&
1636             transport && transport->notify_buffer_size)
1637                 transport->notify_buffer_size(vsk, &val);
1638
1639         vsk->buffer_size = val;
1640 }
1641
1642 static int vsock_connectible_setsockopt(struct socket *sock,
1643                                         int level,
1644                                         int optname,
1645                                         sockptr_t optval,
1646                                         unsigned int optlen)
1647 {
1648         int err;
1649         struct sock *sk;
1650         struct vsock_sock *vsk;
1651         const struct vsock_transport *transport;
1652         u64 val;
1653
1654         if (level != AF_VSOCK && level != SOL_SOCKET)
1655                 return -ENOPROTOOPT;
1656
1657 #define COPY_IN(_v)                                       \
1658         do {                                              \
1659                 if (optlen < sizeof(_v)) {                \
1660                         err = -EINVAL;                    \
1661                         goto exit;                        \
1662                 }                                         \
1663                 if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) {  \
1664                         err = -EFAULT;                                  \
1665                         goto exit;                                      \
1666                 }                                                       \
1667         } while (0)
1668
1669         err = 0;
1670         sk = sock->sk;
1671         vsk = vsock_sk(sk);
1672
1673         lock_sock(sk);
1674
1675         transport = vsk->transport;
1676
1677         if (level == SOL_SOCKET) {
1678                 int zerocopy;
1679
1680                 if (optname != SO_ZEROCOPY) {
1681                         release_sock(sk);
1682                         return sock_setsockopt(sock, level, optname, optval, optlen);
1683                 }
1684
1685                 /* Use 'int' type here, because variable to
1686                  * set this option usually has this type.
1687                  */
1688                 COPY_IN(zerocopy);
1689
1690                 if (zerocopy < 0 || zerocopy > 1) {
1691                         err = -EINVAL;
1692                         goto exit;
1693                 }
1694
1695                 if (transport && !vsock_msgzerocopy_allow(transport)) {
1696                         err = -EOPNOTSUPP;
1697                         goto exit;
1698                 }
1699
1700                 sock_valbool_flag(sk, SOCK_ZEROCOPY, zerocopy);
1701                 goto exit;
1702         }
1703
1704         switch (optname) {
1705         case SO_VM_SOCKETS_BUFFER_SIZE:
1706                 COPY_IN(val);
1707                 vsock_update_buffer_size(vsk, transport, val);
1708                 break;
1709
1710         case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1711                 COPY_IN(val);
1712                 vsk->buffer_max_size = val;
1713                 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1714                 break;
1715
1716         case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1717                 COPY_IN(val);
1718                 vsk->buffer_min_size = val;
1719                 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1720                 break;
1721
1722         case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1723         case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: {
1724                 struct __kernel_sock_timeval tv;
1725
1726                 err = sock_copy_user_timeval(&tv, optval, optlen,
1727                                              optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1728                 if (err)
1729                         break;
1730                 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1731                     tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1732                         vsk->connect_timeout = tv.tv_sec * HZ +
1733                                 DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ));
1734                         if (vsk->connect_timeout == 0)
1735                                 vsk->connect_timeout =
1736                                     VSOCK_DEFAULT_CONNECT_TIMEOUT;
1737
1738                 } else {
1739                         err = -ERANGE;
1740                 }
1741                 break;
1742         }
1743
1744         default:
1745                 err = -ENOPROTOOPT;
1746                 break;
1747         }
1748
1749 #undef COPY_IN
1750
1751 exit:
1752         release_sock(sk);
1753         return err;
1754 }
1755
1756 static int vsock_connectible_getsockopt(struct socket *sock,
1757                                         int level, int optname,
1758                                         char __user *optval,
1759                                         int __user *optlen)
1760 {
1761         struct sock *sk = sock->sk;
1762         struct vsock_sock *vsk = vsock_sk(sk);
1763
1764         union {
1765                 u64 val64;
1766                 struct old_timeval32 tm32;
1767                 struct __kernel_old_timeval tm;
1768                 struct  __kernel_sock_timeval stm;
1769         } v;
1770
1771         int lv = sizeof(v.val64);
1772         int len;
1773
1774         if (level != AF_VSOCK)
1775                 return -ENOPROTOOPT;
1776
1777         if (get_user(len, optlen))
1778                 return -EFAULT;
1779
1780         memset(&v, 0, sizeof(v));
1781
1782         switch (optname) {
1783         case SO_VM_SOCKETS_BUFFER_SIZE:
1784                 v.val64 = vsk->buffer_size;
1785                 break;
1786
1787         case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1788                 v.val64 = vsk->buffer_max_size;
1789                 break;
1790
1791         case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1792                 v.val64 = vsk->buffer_min_size;
1793                 break;
1794
1795         case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1796         case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD:
1797                 lv = sock_get_timeout(vsk->connect_timeout, &v,
1798                                       optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1799                 break;
1800
1801         default:
1802                 return -ENOPROTOOPT;
1803         }
1804
1805         if (len < lv)
1806                 return -EINVAL;
1807         if (len > lv)
1808                 len = lv;
1809         if (copy_to_user(optval, &v, len))
1810                 return -EFAULT;
1811
1812         if (put_user(len, optlen))
1813                 return -EFAULT;
1814
1815         return 0;
1816 }
1817
1818 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg,
1819                                      size_t len)
1820 {
1821         struct sock *sk;
1822         struct vsock_sock *vsk;
1823         const struct vsock_transport *transport;
1824         ssize_t total_written;
1825         long timeout;
1826         int err;
1827         struct vsock_transport_send_notify_data send_data;
1828         DEFINE_WAIT_FUNC(wait, woken_wake_function);
1829
1830         sk = sock->sk;
1831         vsk = vsock_sk(sk);
1832         total_written = 0;
1833         err = 0;
1834
1835         if (msg->msg_flags & MSG_OOB)
1836                 return -EOPNOTSUPP;
1837
1838         lock_sock(sk);
1839
1840         transport = vsk->transport;
1841
1842         /* Callers should not provide a destination with connection oriented
1843          * sockets.
1844          */
1845         if (msg->msg_namelen) {
1846                 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1847                 goto out;
1848         }
1849
1850         /* Send data only if both sides are not shutdown in the direction. */
1851         if (sk->sk_shutdown & SEND_SHUTDOWN ||
1852             vsk->peer_shutdown & RCV_SHUTDOWN) {
1853                 err = -EPIPE;
1854                 goto out;
1855         }
1856
1857         if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1858             !vsock_addr_bound(&vsk->local_addr)) {
1859                 err = -ENOTCONN;
1860                 goto out;
1861         }
1862
1863         if (!vsock_addr_bound(&vsk->remote_addr)) {
1864                 err = -EDESTADDRREQ;
1865                 goto out;
1866         }
1867
1868         if (msg->msg_flags & MSG_ZEROCOPY &&
1869             !vsock_msgzerocopy_allow(transport)) {
1870                 err = -EOPNOTSUPP;
1871                 goto out;
1872         }
1873
1874         /* Wait for room in the produce queue to enqueue our user's data. */
1875         timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1876
1877         err = transport->notify_send_init(vsk, &send_data);
1878         if (err < 0)
1879                 goto out;
1880
1881         while (total_written < len) {
1882                 ssize_t written;
1883
1884                 add_wait_queue(sk_sleep(sk), &wait);
1885                 while (vsock_stream_has_space(vsk) == 0 &&
1886                        sk->sk_err == 0 &&
1887                        !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1888                        !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1889
1890                         /* Don't wait for non-blocking sockets. */
1891                         if (timeout == 0) {
1892                                 err = -EAGAIN;
1893                                 remove_wait_queue(sk_sleep(sk), &wait);
1894                                 goto out_err;
1895                         }
1896
1897                         err = transport->notify_send_pre_block(vsk, &send_data);
1898                         if (err < 0) {
1899                                 remove_wait_queue(sk_sleep(sk), &wait);
1900                                 goto out_err;
1901                         }
1902
1903                         release_sock(sk);
1904                         timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1905                         lock_sock(sk);
1906                         if (signal_pending(current)) {
1907                                 err = sock_intr_errno(timeout);
1908                                 remove_wait_queue(sk_sleep(sk), &wait);
1909                                 goto out_err;
1910                         } else if (timeout == 0) {
1911                                 err = -EAGAIN;
1912                                 remove_wait_queue(sk_sleep(sk), &wait);
1913                                 goto out_err;
1914                         }
1915                 }
1916                 remove_wait_queue(sk_sleep(sk), &wait);
1917
1918                 /* These checks occur both as part of and after the loop
1919                  * conditional since we need to check before and after
1920                  * sleeping.
1921                  */
1922                 if (sk->sk_err) {
1923                         err = -sk->sk_err;
1924                         goto out_err;
1925                 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1926                            (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1927                         err = -EPIPE;
1928                         goto out_err;
1929                 }
1930
1931                 err = transport->notify_send_pre_enqueue(vsk, &send_data);
1932                 if (err < 0)
1933                         goto out_err;
1934
1935                 /* Note that enqueue will only write as many bytes as are free
1936                  * in the produce queue, so we don't need to ensure len is
1937                  * smaller than the queue size.  It is the caller's
1938                  * responsibility to check how many bytes we were able to send.
1939                  */
1940
1941                 if (sk->sk_type == SOCK_SEQPACKET) {
1942                         written = transport->seqpacket_enqueue(vsk,
1943                                                 msg, len - total_written);
1944                 } else {
1945                         written = transport->stream_enqueue(vsk,
1946                                         msg, len - total_written);
1947                 }
1948
1949                 if (written < 0) {
1950                         err = written;
1951                         goto out_err;
1952                 }
1953
1954                 total_written += written;
1955
1956                 err = transport->notify_send_post_enqueue(
1957                                 vsk, written, &send_data);
1958                 if (err < 0)
1959                         goto out_err;
1960
1961         }
1962
1963 out_err:
1964         if (total_written > 0) {
1965                 /* Return number of written bytes only if:
1966                  * 1) SOCK_STREAM socket.
1967                  * 2) SOCK_SEQPACKET socket when whole buffer is sent.
1968                  */
1969                 if (sk->sk_type == SOCK_STREAM || total_written == len)
1970                         err = total_written;
1971         }
1972 out:
1973         if (sk->sk_type == SOCK_STREAM)
1974                 err = sk_stream_error(sk, msg->msg_flags, err);
1975
1976         release_sock(sk);
1977         return err;
1978 }
1979
1980 static int vsock_connectible_wait_data(struct sock *sk,
1981                                        struct wait_queue_entry *wait,
1982                                        long timeout,
1983                                        struct vsock_transport_recv_notify_data *recv_data,
1984                                        size_t target)
1985 {
1986         const struct vsock_transport *transport;
1987         struct vsock_sock *vsk;
1988         s64 data;
1989         int err;
1990
1991         vsk = vsock_sk(sk);
1992         err = 0;
1993         transport = vsk->transport;
1994
1995         while (1) {
1996                 prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE);
1997                 data = vsock_connectible_has_data(vsk);
1998                 if (data != 0)
1999                         break;
2000
2001                 if (sk->sk_err != 0 ||
2002                     (sk->sk_shutdown & RCV_SHUTDOWN) ||
2003                     (vsk->peer_shutdown & SEND_SHUTDOWN)) {
2004                         break;
2005                 }
2006
2007                 /* Don't wait for non-blocking sockets. */
2008                 if (timeout == 0) {
2009                         err = -EAGAIN;
2010                         break;
2011                 }
2012
2013                 if (recv_data) {
2014                         err = transport->notify_recv_pre_block(vsk, target, recv_data);
2015                         if (err < 0)
2016                                 break;
2017                 }
2018
2019                 release_sock(sk);
2020                 timeout = schedule_timeout(timeout);
2021                 lock_sock(sk);
2022
2023                 if (signal_pending(current)) {
2024                         err = sock_intr_errno(timeout);
2025                         break;
2026                 } else if (timeout == 0) {
2027                         err = -EAGAIN;
2028                         break;
2029                 }
2030         }
2031
2032         finish_wait(sk_sleep(sk), wait);
2033
2034         if (err)
2035                 return err;
2036
2037         /* Internal transport error when checking for available
2038          * data. XXX This should be changed to a connection
2039          * reset in a later change.
2040          */
2041         if (data < 0)
2042                 return -ENOMEM;
2043
2044         return data;
2045 }
2046
2047 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg,
2048                                   size_t len, int flags)
2049 {
2050         struct vsock_transport_recv_notify_data recv_data;
2051         const struct vsock_transport *transport;
2052         struct vsock_sock *vsk;
2053         ssize_t copied;
2054         size_t target;
2055         long timeout;
2056         int err;
2057
2058         DEFINE_WAIT(wait);
2059
2060         vsk = vsock_sk(sk);
2061         transport = vsk->transport;
2062
2063         /* We must not copy less than target bytes into the user's buffer
2064          * before returning successfully, so we wait for the consume queue to
2065          * have that much data to consume before dequeueing.  Note that this
2066          * makes it impossible to handle cases where target is greater than the
2067          * queue size.
2068          */
2069         target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2070         if (target >= transport->stream_rcvhiwat(vsk)) {
2071                 err = -ENOMEM;
2072                 goto out;
2073         }
2074         timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2075         copied = 0;
2076
2077         err = transport->notify_recv_init(vsk, target, &recv_data);
2078         if (err < 0)
2079                 goto out;
2080
2081
2082         while (1) {
2083                 ssize_t read;
2084
2085                 err = vsock_connectible_wait_data(sk, &wait, timeout,
2086                                                   &recv_data, target);
2087                 if (err <= 0)
2088                         break;
2089
2090                 err = transport->notify_recv_pre_dequeue(vsk, target,
2091                                                          &recv_data);
2092                 if (err < 0)
2093                         break;
2094
2095                 read = transport->stream_dequeue(vsk, msg, len - copied, flags);
2096                 if (read < 0) {
2097                         err = read;
2098                         break;
2099                 }
2100
2101                 copied += read;
2102
2103                 err = transport->notify_recv_post_dequeue(vsk, target, read,
2104                                                 !(flags & MSG_PEEK), &recv_data);
2105                 if (err < 0)
2106                         goto out;
2107
2108                 if (read >= target || flags & MSG_PEEK)
2109                         break;
2110
2111                 target -= read;
2112         }
2113
2114         if (sk->sk_err)
2115                 err = -sk->sk_err;
2116         else if (sk->sk_shutdown & RCV_SHUTDOWN)
2117                 err = 0;
2118
2119         if (copied > 0)
2120                 err = copied;
2121
2122 out:
2123         return err;
2124 }
2125
2126 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg,
2127                                      size_t len, int flags)
2128 {
2129         const struct vsock_transport *transport;
2130         struct vsock_sock *vsk;
2131         ssize_t msg_len;
2132         long timeout;
2133         int err = 0;
2134         DEFINE_WAIT(wait);
2135
2136         vsk = vsock_sk(sk);
2137         transport = vsk->transport;
2138
2139         timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2140
2141         err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0);
2142         if (err <= 0)
2143                 goto out;
2144
2145         msg_len = transport->seqpacket_dequeue(vsk, msg, flags);
2146
2147         if (msg_len < 0) {
2148                 err = msg_len;
2149                 goto out;
2150         }
2151
2152         if (sk->sk_err) {
2153                 err = -sk->sk_err;
2154         } else if (sk->sk_shutdown & RCV_SHUTDOWN) {
2155                 err = 0;
2156         } else {
2157                 /* User sets MSG_TRUNC, so return real length of
2158                  * packet.
2159                  */
2160                 if (flags & MSG_TRUNC)
2161                         err = msg_len;
2162                 else
2163                         err = len - msg_data_left(msg);
2164
2165                 /* Always set MSG_TRUNC if real length of packet is
2166                  * bigger than user's buffer.
2167                  */
2168                 if (msg_len > len)
2169                         msg->msg_flags |= MSG_TRUNC;
2170         }
2171
2172 out:
2173         return err;
2174 }
2175
2176 int
2177 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2178                           int flags)
2179 {
2180         struct sock *sk;
2181         struct vsock_sock *vsk;
2182         const struct vsock_transport *transport;
2183 #ifdef CONFIG_BPF_SYSCALL
2184         const struct proto *prot;
2185 #endif
2186         int err;
2187
2188         sk = sock->sk;
2189
2190         if (unlikely(flags & MSG_ERRQUEUE))
2191                 return sock_recv_errqueue(sk, msg, len, SOL_VSOCK, VSOCK_RECVERR);
2192
2193         vsk = vsock_sk(sk);
2194         err = 0;
2195
2196         lock_sock(sk);
2197
2198         transport = vsk->transport;
2199
2200         if (!transport || sk->sk_state != TCP_ESTABLISHED) {
2201                 /* Recvmsg is supposed to return 0 if a peer performs an
2202                  * orderly shutdown. Differentiate between that case and when a
2203                  * peer has not connected or a local shutdown occurred with the
2204                  * SOCK_DONE flag.
2205                  */
2206                 if (sock_flag(sk, SOCK_DONE))
2207                         err = 0;
2208                 else
2209                         err = -ENOTCONN;
2210
2211                 goto out;
2212         }
2213
2214         if (flags & MSG_OOB) {
2215                 err = -EOPNOTSUPP;
2216                 goto out;
2217         }
2218
2219         /* We don't check peer_shutdown flag here since peer may actually shut
2220          * down, but there can be data in the queue that a local socket can
2221          * receive.
2222          */
2223         if (sk->sk_shutdown & RCV_SHUTDOWN) {
2224                 err = 0;
2225                 goto out;
2226         }
2227
2228         /* It is valid on Linux to pass in a zero-length receive buffer.  This
2229          * is not an error.  We may as well bail out now.
2230          */
2231         if (!len) {
2232                 err = 0;
2233                 goto out;
2234         }
2235
2236 #ifdef CONFIG_BPF_SYSCALL
2237         prot = READ_ONCE(sk->sk_prot);
2238         if (prot != &vsock_proto) {
2239                 release_sock(sk);
2240                 return prot->recvmsg(sk, msg, len, flags, NULL);
2241         }
2242 #endif
2243
2244         if (sk->sk_type == SOCK_STREAM)
2245                 err = __vsock_stream_recvmsg(sk, msg, len, flags);
2246         else
2247                 err = __vsock_seqpacket_recvmsg(sk, msg, len, flags);
2248
2249 out:
2250         release_sock(sk);
2251         return err;
2252 }
2253 EXPORT_SYMBOL_GPL(vsock_connectible_recvmsg);
2254
2255 static int vsock_set_rcvlowat(struct sock *sk, int val)
2256 {
2257         const struct vsock_transport *transport;
2258         struct vsock_sock *vsk;
2259
2260         vsk = vsock_sk(sk);
2261
2262         if (val > vsk->buffer_size)
2263                 return -EINVAL;
2264
2265         transport = vsk->transport;
2266
2267         if (transport && transport->notify_set_rcvlowat) {
2268                 int err;
2269
2270                 err = transport->notify_set_rcvlowat(vsk, val);
2271                 if (err)
2272                         return err;
2273         }
2274
2275         WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
2276         return 0;
2277 }
2278
2279 static const struct proto_ops vsock_stream_ops = {
2280         .family = PF_VSOCK,
2281         .owner = THIS_MODULE,
2282         .release = vsock_release,
2283         .bind = vsock_bind,
2284         .connect = vsock_connect,
2285         .socketpair = sock_no_socketpair,
2286         .accept = vsock_accept,
2287         .getname = vsock_getname,
2288         .poll = vsock_poll,
2289         .ioctl = sock_no_ioctl,
2290         .listen = vsock_listen,
2291         .shutdown = vsock_shutdown,
2292         .setsockopt = vsock_connectible_setsockopt,
2293         .getsockopt = vsock_connectible_getsockopt,
2294         .sendmsg = vsock_connectible_sendmsg,
2295         .recvmsg = vsock_connectible_recvmsg,
2296         .mmap = sock_no_mmap,
2297         .set_rcvlowat = vsock_set_rcvlowat,
2298         .read_skb = vsock_read_skb,
2299 };
2300
2301 static const struct proto_ops vsock_seqpacket_ops = {
2302         .family = PF_VSOCK,
2303         .owner = THIS_MODULE,
2304         .release = vsock_release,
2305         .bind = vsock_bind,
2306         .connect = vsock_connect,
2307         .socketpair = sock_no_socketpair,
2308         .accept = vsock_accept,
2309         .getname = vsock_getname,
2310         .poll = vsock_poll,
2311         .ioctl = sock_no_ioctl,
2312         .listen = vsock_listen,
2313         .shutdown = vsock_shutdown,
2314         .setsockopt = vsock_connectible_setsockopt,
2315         .getsockopt = vsock_connectible_getsockopt,
2316         .sendmsg = vsock_connectible_sendmsg,
2317         .recvmsg = vsock_connectible_recvmsg,
2318         .mmap = sock_no_mmap,
2319         .read_skb = vsock_read_skb,
2320 };
2321
2322 static int vsock_create(struct net *net, struct socket *sock,
2323                         int protocol, int kern)
2324 {
2325         struct vsock_sock *vsk;
2326         struct sock *sk;
2327         int ret;
2328
2329         if (!sock)
2330                 return -EINVAL;
2331
2332         if (protocol && protocol != PF_VSOCK)
2333                 return -EPROTONOSUPPORT;
2334
2335         switch (sock->type) {
2336         case SOCK_DGRAM:
2337                 sock->ops = &vsock_dgram_ops;
2338                 break;
2339         case SOCK_STREAM:
2340                 sock->ops = &vsock_stream_ops;
2341                 break;
2342         case SOCK_SEQPACKET:
2343                 sock->ops = &vsock_seqpacket_ops;
2344                 break;
2345         default:
2346                 return -ESOCKTNOSUPPORT;
2347         }
2348
2349         sock->state = SS_UNCONNECTED;
2350
2351         sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2352         if (!sk)
2353                 return -ENOMEM;
2354
2355         vsk = vsock_sk(sk);
2356
2357         if (sock->type == SOCK_DGRAM) {
2358                 ret = vsock_assign_transport(vsk, NULL);
2359                 if (ret < 0) {
2360                         sock_put(sk);
2361                         return ret;
2362                 }
2363         }
2364
2365         /* SOCK_DGRAM doesn't have 'setsockopt' callback set in its
2366          * proto_ops, so there is no handler for custom logic.
2367          */
2368         if (sock_type_connectible(sock->type))
2369                 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2370
2371         vsock_insert_unbound(vsk);
2372
2373         return 0;
2374 }
2375
2376 static const struct net_proto_family vsock_family_ops = {
2377         .family = AF_VSOCK,
2378         .create = vsock_create,
2379         .owner = THIS_MODULE,
2380 };
2381
2382 static long vsock_dev_do_ioctl(struct file *filp,
2383                                unsigned int cmd, void __user *ptr)
2384 {
2385         u32 __user *p = ptr;
2386         u32 cid = VMADDR_CID_ANY;
2387         int retval = 0;
2388
2389         switch (cmd) {
2390         case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2391                 /* To be compatible with the VMCI behavior, we prioritize the
2392                  * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2393                  */
2394                 if (transport_g2h)
2395                         cid = transport_g2h->get_local_cid();
2396                 else if (transport_h2g)
2397                         cid = transport_h2g->get_local_cid();
2398
2399                 if (put_user(cid, p) != 0)
2400                         retval = -EFAULT;
2401                 break;
2402
2403         default:
2404                 retval = -ENOIOCTLCMD;
2405         }
2406
2407         return retval;
2408 }
2409
2410 static long vsock_dev_ioctl(struct file *filp,
2411                             unsigned int cmd, unsigned long arg)
2412 {
2413         return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2414 }
2415
2416 #ifdef CONFIG_COMPAT
2417 static long vsock_dev_compat_ioctl(struct file *filp,
2418                                    unsigned int cmd, unsigned long arg)
2419 {
2420         return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2421 }
2422 #endif
2423
2424 static const struct file_operations vsock_device_ops = {
2425         .owner          = THIS_MODULE,
2426         .unlocked_ioctl = vsock_dev_ioctl,
2427 #ifdef CONFIG_COMPAT
2428         .compat_ioctl   = vsock_dev_compat_ioctl,
2429 #endif
2430         .open           = nonseekable_open,
2431 };
2432
2433 static struct miscdevice vsock_device = {
2434         .name           = "vsock",
2435         .fops           = &vsock_device_ops,
2436 };
2437
2438 static int __init vsock_init(void)
2439 {
2440         int err = 0;
2441
2442         vsock_init_tables();
2443
2444         vsock_proto.owner = THIS_MODULE;
2445         vsock_device.minor = MISC_DYNAMIC_MINOR;
2446         err = misc_register(&vsock_device);
2447         if (err) {
2448                 pr_err("Failed to register misc device\n");
2449                 goto err_reset_transport;
2450         }
2451
2452         err = proto_register(&vsock_proto, 1);  /* we want our slab */
2453         if (err) {
2454                 pr_err("Cannot register vsock protocol\n");
2455                 goto err_deregister_misc;
2456         }
2457
2458         err = sock_register(&vsock_family_ops);
2459         if (err) {
2460                 pr_err("could not register af_vsock (%d) address family: %d\n",
2461                        AF_VSOCK, err);
2462                 goto err_unregister_proto;
2463         }
2464
2465         vsock_bpf_build_proto();
2466
2467         return 0;
2468
2469 err_unregister_proto:
2470         proto_unregister(&vsock_proto);
2471 err_deregister_misc:
2472         misc_deregister(&vsock_device);
2473 err_reset_transport:
2474         return err;
2475 }
2476
2477 static void __exit vsock_exit(void)
2478 {
2479         misc_deregister(&vsock_device);
2480         sock_unregister(AF_VSOCK);
2481         proto_unregister(&vsock_proto);
2482 }
2483
2484 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2485 {
2486         return vsk->transport;
2487 }
2488 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2489
2490 int vsock_core_register(const struct vsock_transport *t, int features)
2491 {
2492         const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2493         int err = mutex_lock_interruptible(&vsock_register_mutex);
2494
2495         if (err)
2496                 return err;
2497
2498         t_h2g = transport_h2g;
2499         t_g2h = transport_g2h;
2500         t_dgram = transport_dgram;
2501         t_local = transport_local;
2502
2503         if (features & VSOCK_TRANSPORT_F_H2G) {
2504                 if (t_h2g) {
2505                         err = -EBUSY;
2506                         goto err_busy;
2507                 }
2508                 t_h2g = t;
2509         }
2510
2511         if (features & VSOCK_TRANSPORT_F_G2H) {
2512                 if (t_g2h) {
2513                         err = -EBUSY;
2514                         goto err_busy;
2515                 }
2516                 t_g2h = t;
2517         }
2518
2519         if (features & VSOCK_TRANSPORT_F_DGRAM) {
2520                 if (t_dgram) {
2521                         err = -EBUSY;
2522                         goto err_busy;
2523                 }
2524                 t_dgram = t;
2525         }
2526
2527         if (features & VSOCK_TRANSPORT_F_LOCAL) {
2528                 if (t_local) {
2529                         err = -EBUSY;
2530                         goto err_busy;
2531                 }
2532                 t_local = t;
2533         }
2534
2535         transport_h2g = t_h2g;
2536         transport_g2h = t_g2h;
2537         transport_dgram = t_dgram;
2538         transport_local = t_local;
2539
2540 err_busy:
2541         mutex_unlock(&vsock_register_mutex);
2542         return err;
2543 }
2544 EXPORT_SYMBOL_GPL(vsock_core_register);
2545
2546 void vsock_core_unregister(const struct vsock_transport *t)
2547 {
2548         mutex_lock(&vsock_register_mutex);
2549
2550         if (transport_h2g == t)
2551                 transport_h2g = NULL;
2552
2553         if (transport_g2h == t)
2554                 transport_g2h = NULL;
2555
2556         if (transport_dgram == t)
2557                 transport_dgram = NULL;
2558
2559         if (transport_local == t)
2560                 transport_local = NULL;
2561
2562         mutex_unlock(&vsock_register_mutex);
2563 }
2564 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2565
2566 module_init(vsock_init);
2567 module_exit(vsock_exit);
2568
2569 MODULE_AUTHOR("VMware, Inc.");
2570 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2571 MODULE_VERSION("1.0.2.0-k");
2572 MODULE_LICENSE("GPL v2");