Merge tag 'sched_urgent_for_v5.17_rc5' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / net / vmw_vsock / af_vsock.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware vSockets Driver
4  *
5  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6  */
7
8 /* Implementation notes:
9  *
10  * - There are two kinds of sockets: those created by user action (such as
11  * calling socket(2)) and those created by incoming connection request packets.
12  *
13  * - There are two "global" tables, one for bound sockets (sockets that have
14  * specified an address that they are responsible for) and one for connected
15  * sockets (sockets that have established a connection with another socket).
16  * These tables are "global" in that all sockets on the system are placed
17  * within them. - Note, though, that the bound table contains an extra entry
18  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19  * that list. The bound table is used solely for lookup of sockets when packets
20  * are received and that's not necessary for SOCK_DGRAM sockets since we create
21  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
22  * sockets out of the bound hash buckets will reduce the chance of collisions
23  * when looking for SOCK_STREAM sockets and prevents us from having to check the
24  * socket type in the hash table lookups.
25  *
26  * - Sockets created by user action will either be "client" sockets that
27  * initiate a connection or "server" sockets that listen for connections; we do
28  * not support simultaneous connects (two "client" sockets connecting).
29  *
30  * - "Server" sockets are referred to as listener sockets throughout this
31  * implementation because they are in the TCP_LISTEN state.  When a
32  * connection request is received (the second kind of socket mentioned above),
33  * we create a new socket and refer to it as a pending socket.  These pending
34  * sockets are placed on the pending connection list of the listener socket.
35  * When future packets are received for the address the listener socket is
36  * bound to, we check if the source of the packet is from one that has an
37  * existing pending connection.  If it does, we process the packet for the
38  * pending socket.  When that socket reaches the connected state, it is removed
39  * from the listener socket's pending list and enqueued in the listener
40  * socket's accept queue.  Callers of accept(2) will accept connected sockets
41  * from the listener socket's accept queue.  If the socket cannot be accepted
42  * for some reason then it is marked rejected.  Once the connection is
43  * accepted, it is owned by the user process and the responsibility for cleanup
44  * falls with that user process.
45  *
46  * - It is possible that these pending sockets will never reach the connected
47  * state; in fact, we may never receive another packet after the connection
48  * request.  Because of this, we must schedule a cleanup function to run in the
49  * future, after some amount of time passes where a connection should have been
50  * established.  This function ensures that the socket is off all lists so it
51  * cannot be retrieved, then drops all references to the socket so it is cleaned
52  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
53  * function will also cleanup rejected sockets, those that reach the connected
54  * state but leave it before they have been accepted.
55  *
56  * - Lock ordering for pending or accept queue sockets is:
57  *
58  *     lock_sock(listener);
59  *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60  *
61  * Using explicit nested locking keeps lockdep happy since normally only one
62  * lock of a given class may be taken at a time.
63  *
64  * - Sockets created by user action will be cleaned up when the user process
65  * calls close(2), causing our release implementation to be called. Our release
66  * implementation will perform some cleanup then drop the last reference so our
67  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
68  * perform additional cleanup that's common for both types of sockets.
69  *
70  * - A socket's reference count is what ensures that the structure won't be
71  * freed.  Each entry in a list (such as the "global" bound and connected tables
72  * and the listener socket's pending list and connected queue) ensures a
73  * reference.  When we defer work until process context and pass a socket as our
74  * argument, we must ensure the reference count is increased to ensure the
75  * socket isn't freed before the function is run; the deferred function will
76  * then drop the reference.
77  *
78  * - sk->sk_state uses the TCP state constants because they are widely used by
79  * other address families and exposed to userspace tools like ss(8):
80  *
81  *   TCP_CLOSE - unconnected
82  *   TCP_SYN_SENT - connecting
83  *   TCP_ESTABLISHED - connected
84  *   TCP_CLOSING - disconnecting
85  *   TCP_LISTEN - listening
86  */
87
88 #include <linux/compat.h>
89 #include <linux/types.h>
90 #include <linux/bitops.h>
91 #include <linux/cred.h>
92 #include <linux/init.h>
93 #include <linux/io.h>
94 #include <linux/kernel.h>
95 #include <linux/sched/signal.h>
96 #include <linux/kmod.h>
97 #include <linux/list.h>
98 #include <linux/miscdevice.h>
99 #include <linux/module.h>
100 #include <linux/mutex.h>
101 #include <linux/net.h>
102 #include <linux/poll.h>
103 #include <linux/random.h>
104 #include <linux/skbuff.h>
105 #include <linux/smp.h>
106 #include <linux/socket.h>
107 #include <linux/stddef.h>
108 #include <linux/unistd.h>
109 #include <linux/wait.h>
110 #include <linux/workqueue.h>
111 #include <net/sock.h>
112 #include <net/af_vsock.h>
113
114 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
115 static void vsock_sk_destruct(struct sock *sk);
116 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
117
118 /* Protocol family. */
119 static struct proto vsock_proto = {
120         .name = "AF_VSOCK",
121         .owner = THIS_MODULE,
122         .obj_size = sizeof(struct vsock_sock),
123 };
124
125 /* The default peer timeout indicates how long we will wait for a peer response
126  * to a control message.
127  */
128 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
129
130 #define VSOCK_DEFAULT_BUFFER_SIZE     (1024 * 256)
131 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
132 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
133
134 /* Transport used for host->guest communication */
135 static const struct vsock_transport *transport_h2g;
136 /* Transport used for guest->host communication */
137 static const struct vsock_transport *transport_g2h;
138 /* Transport used for DGRAM communication */
139 static const struct vsock_transport *transport_dgram;
140 /* Transport used for local communication */
141 static const struct vsock_transport *transport_local;
142 static DEFINE_MUTEX(vsock_register_mutex);
143
144 /**** UTILS ****/
145
146 /* Each bound VSocket is stored in the bind hash table and each connected
147  * VSocket is stored in the connected hash table.
148  *
149  * Unbound sockets are all put on the same list attached to the end of the hash
150  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
151  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
152  * represents the list that addr hashes to).
153  *
154  * Specifically, we initialize the vsock_bind_table array to a size of
155  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
156  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
157  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
158  * mods with VSOCK_HASH_SIZE to ensure this.
159  */
160 #define MAX_PORT_RETRIES        24
161
162 #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
163 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
164 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
165
166 /* XXX This can probably be implemented in a better way. */
167 #define VSOCK_CONN_HASH(src, dst)                               \
168         (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
169 #define vsock_connected_sockets(src, dst)               \
170         (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
171 #define vsock_connected_sockets_vsk(vsk)                                \
172         vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
173
174 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
175 EXPORT_SYMBOL_GPL(vsock_bind_table);
176 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
177 EXPORT_SYMBOL_GPL(vsock_connected_table);
178 DEFINE_SPINLOCK(vsock_table_lock);
179 EXPORT_SYMBOL_GPL(vsock_table_lock);
180
181 /* Autobind this socket to the local address if necessary. */
182 static int vsock_auto_bind(struct vsock_sock *vsk)
183 {
184         struct sock *sk = sk_vsock(vsk);
185         struct sockaddr_vm local_addr;
186
187         if (vsock_addr_bound(&vsk->local_addr))
188                 return 0;
189         vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
190         return __vsock_bind(sk, &local_addr);
191 }
192
193 static void vsock_init_tables(void)
194 {
195         int i;
196
197         for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
198                 INIT_LIST_HEAD(&vsock_bind_table[i]);
199
200         for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
201                 INIT_LIST_HEAD(&vsock_connected_table[i]);
202 }
203
204 static void __vsock_insert_bound(struct list_head *list,
205                                  struct vsock_sock *vsk)
206 {
207         sock_hold(&vsk->sk);
208         list_add(&vsk->bound_table, list);
209 }
210
211 static void __vsock_insert_connected(struct list_head *list,
212                                      struct vsock_sock *vsk)
213 {
214         sock_hold(&vsk->sk);
215         list_add(&vsk->connected_table, list);
216 }
217
218 static void __vsock_remove_bound(struct vsock_sock *vsk)
219 {
220         list_del_init(&vsk->bound_table);
221         sock_put(&vsk->sk);
222 }
223
224 static void __vsock_remove_connected(struct vsock_sock *vsk)
225 {
226         list_del_init(&vsk->connected_table);
227         sock_put(&vsk->sk);
228 }
229
230 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
231 {
232         struct vsock_sock *vsk;
233
234         list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
235                 if (vsock_addr_equals_addr(addr, &vsk->local_addr))
236                         return sk_vsock(vsk);
237
238                 if (addr->svm_port == vsk->local_addr.svm_port &&
239                     (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
240                      addr->svm_cid == VMADDR_CID_ANY))
241                         return sk_vsock(vsk);
242         }
243
244         return NULL;
245 }
246
247 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
248                                                   struct sockaddr_vm *dst)
249 {
250         struct vsock_sock *vsk;
251
252         list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
253                             connected_table) {
254                 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
255                     dst->svm_port == vsk->local_addr.svm_port) {
256                         return sk_vsock(vsk);
257                 }
258         }
259
260         return NULL;
261 }
262
263 static void vsock_insert_unbound(struct vsock_sock *vsk)
264 {
265         spin_lock_bh(&vsock_table_lock);
266         __vsock_insert_bound(vsock_unbound_sockets, vsk);
267         spin_unlock_bh(&vsock_table_lock);
268 }
269
270 void vsock_insert_connected(struct vsock_sock *vsk)
271 {
272         struct list_head *list = vsock_connected_sockets(
273                 &vsk->remote_addr, &vsk->local_addr);
274
275         spin_lock_bh(&vsock_table_lock);
276         __vsock_insert_connected(list, vsk);
277         spin_unlock_bh(&vsock_table_lock);
278 }
279 EXPORT_SYMBOL_GPL(vsock_insert_connected);
280
281 void vsock_remove_bound(struct vsock_sock *vsk)
282 {
283         spin_lock_bh(&vsock_table_lock);
284         if (__vsock_in_bound_table(vsk))
285                 __vsock_remove_bound(vsk);
286         spin_unlock_bh(&vsock_table_lock);
287 }
288 EXPORT_SYMBOL_GPL(vsock_remove_bound);
289
290 void vsock_remove_connected(struct vsock_sock *vsk)
291 {
292         spin_lock_bh(&vsock_table_lock);
293         if (__vsock_in_connected_table(vsk))
294                 __vsock_remove_connected(vsk);
295         spin_unlock_bh(&vsock_table_lock);
296 }
297 EXPORT_SYMBOL_GPL(vsock_remove_connected);
298
299 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
300 {
301         struct sock *sk;
302
303         spin_lock_bh(&vsock_table_lock);
304         sk = __vsock_find_bound_socket(addr);
305         if (sk)
306                 sock_hold(sk);
307
308         spin_unlock_bh(&vsock_table_lock);
309
310         return sk;
311 }
312 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
313
314 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
315                                          struct sockaddr_vm *dst)
316 {
317         struct sock *sk;
318
319         spin_lock_bh(&vsock_table_lock);
320         sk = __vsock_find_connected_socket(src, dst);
321         if (sk)
322                 sock_hold(sk);
323
324         spin_unlock_bh(&vsock_table_lock);
325
326         return sk;
327 }
328 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
329
330 void vsock_remove_sock(struct vsock_sock *vsk)
331 {
332         vsock_remove_bound(vsk);
333         vsock_remove_connected(vsk);
334 }
335 EXPORT_SYMBOL_GPL(vsock_remove_sock);
336
337 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
338 {
339         int i;
340
341         spin_lock_bh(&vsock_table_lock);
342
343         for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
344                 struct vsock_sock *vsk;
345                 list_for_each_entry(vsk, &vsock_connected_table[i],
346                                     connected_table)
347                         fn(sk_vsock(vsk));
348         }
349
350         spin_unlock_bh(&vsock_table_lock);
351 }
352 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
353
354 void vsock_add_pending(struct sock *listener, struct sock *pending)
355 {
356         struct vsock_sock *vlistener;
357         struct vsock_sock *vpending;
358
359         vlistener = vsock_sk(listener);
360         vpending = vsock_sk(pending);
361
362         sock_hold(pending);
363         sock_hold(listener);
364         list_add_tail(&vpending->pending_links, &vlistener->pending_links);
365 }
366 EXPORT_SYMBOL_GPL(vsock_add_pending);
367
368 void vsock_remove_pending(struct sock *listener, struct sock *pending)
369 {
370         struct vsock_sock *vpending = vsock_sk(pending);
371
372         list_del_init(&vpending->pending_links);
373         sock_put(listener);
374         sock_put(pending);
375 }
376 EXPORT_SYMBOL_GPL(vsock_remove_pending);
377
378 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
379 {
380         struct vsock_sock *vlistener;
381         struct vsock_sock *vconnected;
382
383         vlistener = vsock_sk(listener);
384         vconnected = vsock_sk(connected);
385
386         sock_hold(connected);
387         sock_hold(listener);
388         list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
389 }
390 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
391
392 static bool vsock_use_local_transport(unsigned int remote_cid)
393 {
394         if (!transport_local)
395                 return false;
396
397         if (remote_cid == VMADDR_CID_LOCAL)
398                 return true;
399
400         if (transport_g2h) {
401                 return remote_cid == transport_g2h->get_local_cid();
402         } else {
403                 return remote_cid == VMADDR_CID_HOST;
404         }
405 }
406
407 static void vsock_deassign_transport(struct vsock_sock *vsk)
408 {
409         if (!vsk->transport)
410                 return;
411
412         vsk->transport->destruct(vsk);
413         module_put(vsk->transport->module);
414         vsk->transport = NULL;
415 }
416
417 /* Assign a transport to a socket and call the .init transport callback.
418  *
419  * Note: for connection oriented socket this must be called when vsk->remote_addr
420  * is set (e.g. during the connect() or when a connection request on a listener
421  * socket is received).
422  * The vsk->remote_addr is used to decide which transport to use:
423  *  - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
424  *    g2h is not loaded, will use local transport;
425  *  - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
426  *    includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
427  *  - remote CID > VMADDR_CID_HOST will use host->guest transport;
428  */
429 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
430 {
431         const struct vsock_transport *new_transport;
432         struct sock *sk = sk_vsock(vsk);
433         unsigned int remote_cid = vsk->remote_addr.svm_cid;
434         __u8 remote_flags;
435         int ret;
436
437         /* If the packet is coming with the source and destination CIDs higher
438          * than VMADDR_CID_HOST, then a vsock channel where all the packets are
439          * forwarded to the host should be established. Then the host will
440          * need to forward the packets to the guest.
441          *
442          * The flag is set on the (listen) receive path (psk is not NULL). On
443          * the connect path the flag can be set by the user space application.
444          */
445         if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
446             vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
447                 vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
448
449         remote_flags = vsk->remote_addr.svm_flags;
450
451         switch (sk->sk_type) {
452         case SOCK_DGRAM:
453                 new_transport = transport_dgram;
454                 break;
455         case SOCK_STREAM:
456         case SOCK_SEQPACKET:
457                 if (vsock_use_local_transport(remote_cid))
458                         new_transport = transport_local;
459                 else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
460                          (remote_flags & VMADDR_FLAG_TO_HOST))
461                         new_transport = transport_g2h;
462                 else
463                         new_transport = transport_h2g;
464                 break;
465         default:
466                 return -ESOCKTNOSUPPORT;
467         }
468
469         if (vsk->transport) {
470                 if (vsk->transport == new_transport)
471                         return 0;
472
473                 /* transport->release() must be called with sock lock acquired.
474                  * This path can only be taken during vsock_connect(), where we
475                  * have already held the sock lock. In the other cases, this
476                  * function is called on a new socket which is not assigned to
477                  * any transport.
478                  */
479                 vsk->transport->release(vsk);
480                 vsock_deassign_transport(vsk);
481         }
482
483         /* We increase the module refcnt to prevent the transport unloading
484          * while there are open sockets assigned to it.
485          */
486         if (!new_transport || !try_module_get(new_transport->module))
487                 return -ENODEV;
488
489         if (sk->sk_type == SOCK_SEQPACKET) {
490                 if (!new_transport->seqpacket_allow ||
491                     !new_transport->seqpacket_allow(remote_cid)) {
492                         module_put(new_transport->module);
493                         return -ESOCKTNOSUPPORT;
494                 }
495         }
496
497         ret = new_transport->init(vsk, psk);
498         if (ret) {
499                 module_put(new_transport->module);
500                 return ret;
501         }
502
503         vsk->transport = new_transport;
504
505         return 0;
506 }
507 EXPORT_SYMBOL_GPL(vsock_assign_transport);
508
509 bool vsock_find_cid(unsigned int cid)
510 {
511         if (transport_g2h && cid == transport_g2h->get_local_cid())
512                 return true;
513
514         if (transport_h2g && cid == VMADDR_CID_HOST)
515                 return true;
516
517         if (transport_local && cid == VMADDR_CID_LOCAL)
518                 return true;
519
520         return false;
521 }
522 EXPORT_SYMBOL_GPL(vsock_find_cid);
523
524 static struct sock *vsock_dequeue_accept(struct sock *listener)
525 {
526         struct vsock_sock *vlistener;
527         struct vsock_sock *vconnected;
528
529         vlistener = vsock_sk(listener);
530
531         if (list_empty(&vlistener->accept_queue))
532                 return NULL;
533
534         vconnected = list_entry(vlistener->accept_queue.next,
535                                 struct vsock_sock, accept_queue);
536
537         list_del_init(&vconnected->accept_queue);
538         sock_put(listener);
539         /* The caller will need a reference on the connected socket so we let
540          * it call sock_put().
541          */
542
543         return sk_vsock(vconnected);
544 }
545
546 static bool vsock_is_accept_queue_empty(struct sock *sk)
547 {
548         struct vsock_sock *vsk = vsock_sk(sk);
549         return list_empty(&vsk->accept_queue);
550 }
551
552 static bool vsock_is_pending(struct sock *sk)
553 {
554         struct vsock_sock *vsk = vsock_sk(sk);
555         return !list_empty(&vsk->pending_links);
556 }
557
558 static int vsock_send_shutdown(struct sock *sk, int mode)
559 {
560         struct vsock_sock *vsk = vsock_sk(sk);
561
562         if (!vsk->transport)
563                 return -ENODEV;
564
565         return vsk->transport->shutdown(vsk, mode);
566 }
567
568 static void vsock_pending_work(struct work_struct *work)
569 {
570         struct sock *sk;
571         struct sock *listener;
572         struct vsock_sock *vsk;
573         bool cleanup;
574
575         vsk = container_of(work, struct vsock_sock, pending_work.work);
576         sk = sk_vsock(vsk);
577         listener = vsk->listener;
578         cleanup = true;
579
580         lock_sock(listener);
581         lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
582
583         if (vsock_is_pending(sk)) {
584                 vsock_remove_pending(listener, sk);
585
586                 sk_acceptq_removed(listener);
587         } else if (!vsk->rejected) {
588                 /* We are not on the pending list and accept() did not reject
589                  * us, so we must have been accepted by our user process.  We
590                  * just need to drop our references to the sockets and be on
591                  * our way.
592                  */
593                 cleanup = false;
594                 goto out;
595         }
596
597         /* We need to remove ourself from the global connected sockets list so
598          * incoming packets can't find this socket, and to reduce the reference
599          * count.
600          */
601         vsock_remove_connected(vsk);
602
603         sk->sk_state = TCP_CLOSE;
604
605 out:
606         release_sock(sk);
607         release_sock(listener);
608         if (cleanup)
609                 sock_put(sk);
610
611         sock_put(sk);
612         sock_put(listener);
613 }
614
615 /**** SOCKET OPERATIONS ****/
616
617 static int __vsock_bind_connectible(struct vsock_sock *vsk,
618                                     struct sockaddr_vm *addr)
619 {
620         static u32 port;
621         struct sockaddr_vm new_addr;
622
623         if (!port)
624                 port = LAST_RESERVED_PORT + 1 +
625                         prandom_u32_max(U32_MAX - LAST_RESERVED_PORT);
626
627         vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
628
629         if (addr->svm_port == VMADDR_PORT_ANY) {
630                 bool found = false;
631                 unsigned int i;
632
633                 for (i = 0; i < MAX_PORT_RETRIES; i++) {
634                         if (port <= LAST_RESERVED_PORT)
635                                 port = LAST_RESERVED_PORT + 1;
636
637                         new_addr.svm_port = port++;
638
639                         if (!__vsock_find_bound_socket(&new_addr)) {
640                                 found = true;
641                                 break;
642                         }
643                 }
644
645                 if (!found)
646                         return -EADDRNOTAVAIL;
647         } else {
648                 /* If port is in reserved range, ensure caller
649                  * has necessary privileges.
650                  */
651                 if (addr->svm_port <= LAST_RESERVED_PORT &&
652                     !capable(CAP_NET_BIND_SERVICE)) {
653                         return -EACCES;
654                 }
655
656                 if (__vsock_find_bound_socket(&new_addr))
657                         return -EADDRINUSE;
658         }
659
660         vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
661
662         /* Remove connection oriented sockets from the unbound list and add them
663          * to the hash table for easy lookup by its address.  The unbound list
664          * is simply an extra entry at the end of the hash table, a trick used
665          * by AF_UNIX.
666          */
667         __vsock_remove_bound(vsk);
668         __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
669
670         return 0;
671 }
672
673 static int __vsock_bind_dgram(struct vsock_sock *vsk,
674                               struct sockaddr_vm *addr)
675 {
676         return vsk->transport->dgram_bind(vsk, addr);
677 }
678
679 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
680 {
681         struct vsock_sock *vsk = vsock_sk(sk);
682         int retval;
683
684         /* First ensure this socket isn't already bound. */
685         if (vsock_addr_bound(&vsk->local_addr))
686                 return -EINVAL;
687
688         /* Now bind to the provided address or select appropriate values if
689          * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
690          * like AF_INET prevents binding to a non-local IP address (in most
691          * cases), we only allow binding to a local CID.
692          */
693         if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
694                 return -EADDRNOTAVAIL;
695
696         switch (sk->sk_socket->type) {
697         case SOCK_STREAM:
698         case SOCK_SEQPACKET:
699                 spin_lock_bh(&vsock_table_lock);
700                 retval = __vsock_bind_connectible(vsk, addr);
701                 spin_unlock_bh(&vsock_table_lock);
702                 break;
703
704         case SOCK_DGRAM:
705                 retval = __vsock_bind_dgram(vsk, addr);
706                 break;
707
708         default:
709                 retval = -EINVAL;
710                 break;
711         }
712
713         return retval;
714 }
715
716 static void vsock_connect_timeout(struct work_struct *work);
717
718 static struct sock *__vsock_create(struct net *net,
719                                    struct socket *sock,
720                                    struct sock *parent,
721                                    gfp_t priority,
722                                    unsigned short type,
723                                    int kern)
724 {
725         struct sock *sk;
726         struct vsock_sock *psk;
727         struct vsock_sock *vsk;
728
729         sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
730         if (!sk)
731                 return NULL;
732
733         sock_init_data(sock, sk);
734
735         /* sk->sk_type is normally set in sock_init_data, but only if sock is
736          * non-NULL. We make sure that our sockets always have a type by
737          * setting it here if needed.
738          */
739         if (!sock)
740                 sk->sk_type = type;
741
742         vsk = vsock_sk(sk);
743         vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
744         vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
745
746         sk->sk_destruct = vsock_sk_destruct;
747         sk->sk_backlog_rcv = vsock_queue_rcv_skb;
748         sock_reset_flag(sk, SOCK_DONE);
749
750         INIT_LIST_HEAD(&vsk->bound_table);
751         INIT_LIST_HEAD(&vsk->connected_table);
752         vsk->listener = NULL;
753         INIT_LIST_HEAD(&vsk->pending_links);
754         INIT_LIST_HEAD(&vsk->accept_queue);
755         vsk->rejected = false;
756         vsk->sent_request = false;
757         vsk->ignore_connecting_rst = false;
758         vsk->peer_shutdown = 0;
759         INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
760         INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
761
762         psk = parent ? vsock_sk(parent) : NULL;
763         if (parent) {
764                 vsk->trusted = psk->trusted;
765                 vsk->owner = get_cred(psk->owner);
766                 vsk->connect_timeout = psk->connect_timeout;
767                 vsk->buffer_size = psk->buffer_size;
768                 vsk->buffer_min_size = psk->buffer_min_size;
769                 vsk->buffer_max_size = psk->buffer_max_size;
770                 security_sk_clone(parent, sk);
771         } else {
772                 vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
773                 vsk->owner = get_current_cred();
774                 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
775                 vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
776                 vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
777                 vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
778         }
779
780         return sk;
781 }
782
783 static bool sock_type_connectible(u16 type)
784 {
785         return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET);
786 }
787
788 static void __vsock_release(struct sock *sk, int level)
789 {
790         if (sk) {
791                 struct sock *pending;
792                 struct vsock_sock *vsk;
793
794                 vsk = vsock_sk(sk);
795                 pending = NULL; /* Compiler warning. */
796
797                 /* When "level" is SINGLE_DEPTH_NESTING, use the nested
798                  * version to avoid the warning "possible recursive locking
799                  * detected". When "level" is 0, lock_sock_nested(sk, level)
800                  * is the same as lock_sock(sk).
801                  */
802                 lock_sock_nested(sk, level);
803
804                 if (vsk->transport)
805                         vsk->transport->release(vsk);
806                 else if (sock_type_connectible(sk->sk_type))
807                         vsock_remove_sock(vsk);
808
809                 sock_orphan(sk);
810                 sk->sk_shutdown = SHUTDOWN_MASK;
811
812                 skb_queue_purge(&sk->sk_receive_queue);
813
814                 /* Clean up any sockets that never were accepted. */
815                 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
816                         __vsock_release(pending, SINGLE_DEPTH_NESTING);
817                         sock_put(pending);
818                 }
819
820                 release_sock(sk);
821                 sock_put(sk);
822         }
823 }
824
825 static void vsock_sk_destruct(struct sock *sk)
826 {
827         struct vsock_sock *vsk = vsock_sk(sk);
828
829         vsock_deassign_transport(vsk);
830
831         /* When clearing these addresses, there's no need to set the family and
832          * possibly register the address family with the kernel.
833          */
834         vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
835         vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
836
837         put_cred(vsk->owner);
838 }
839
840 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
841 {
842         int err;
843
844         err = sock_queue_rcv_skb(sk, skb);
845         if (err)
846                 kfree_skb(skb);
847
848         return err;
849 }
850
851 struct sock *vsock_create_connected(struct sock *parent)
852 {
853         return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
854                               parent->sk_type, 0);
855 }
856 EXPORT_SYMBOL_GPL(vsock_create_connected);
857
858 s64 vsock_stream_has_data(struct vsock_sock *vsk)
859 {
860         return vsk->transport->stream_has_data(vsk);
861 }
862 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
863
864 static s64 vsock_connectible_has_data(struct vsock_sock *vsk)
865 {
866         struct sock *sk = sk_vsock(vsk);
867
868         if (sk->sk_type == SOCK_SEQPACKET)
869                 return vsk->transport->seqpacket_has_data(vsk);
870         else
871                 return vsock_stream_has_data(vsk);
872 }
873
874 s64 vsock_stream_has_space(struct vsock_sock *vsk)
875 {
876         return vsk->transport->stream_has_space(vsk);
877 }
878 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
879
880 static int vsock_release(struct socket *sock)
881 {
882         __vsock_release(sock->sk, 0);
883         sock->sk = NULL;
884         sock->state = SS_FREE;
885
886         return 0;
887 }
888
889 static int
890 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
891 {
892         int err;
893         struct sock *sk;
894         struct sockaddr_vm *vm_addr;
895
896         sk = sock->sk;
897
898         if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
899                 return -EINVAL;
900
901         lock_sock(sk);
902         err = __vsock_bind(sk, vm_addr);
903         release_sock(sk);
904
905         return err;
906 }
907
908 static int vsock_getname(struct socket *sock,
909                          struct sockaddr *addr, int peer)
910 {
911         int err;
912         struct sock *sk;
913         struct vsock_sock *vsk;
914         struct sockaddr_vm *vm_addr;
915
916         sk = sock->sk;
917         vsk = vsock_sk(sk);
918         err = 0;
919
920         lock_sock(sk);
921
922         if (peer) {
923                 if (sock->state != SS_CONNECTED) {
924                         err = -ENOTCONN;
925                         goto out;
926                 }
927                 vm_addr = &vsk->remote_addr;
928         } else {
929                 vm_addr = &vsk->local_addr;
930         }
931
932         if (!vm_addr) {
933                 err = -EINVAL;
934                 goto out;
935         }
936
937         /* sys_getsockname() and sys_getpeername() pass us a
938          * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
939          * that macro is defined in socket.c instead of .h, so we hardcode its
940          * value here.
941          */
942         BUILD_BUG_ON(sizeof(*vm_addr) > 128);
943         memcpy(addr, vm_addr, sizeof(*vm_addr));
944         err = sizeof(*vm_addr);
945
946 out:
947         release_sock(sk);
948         return err;
949 }
950
951 static int vsock_shutdown(struct socket *sock, int mode)
952 {
953         int err;
954         struct sock *sk;
955
956         /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
957          * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
958          * here like the other address families do.  Note also that the
959          * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
960          * which is what we want.
961          */
962         mode++;
963
964         if ((mode & ~SHUTDOWN_MASK) || !mode)
965                 return -EINVAL;
966
967         /* If this is a connection oriented socket and it is not connected then
968          * bail out immediately.  If it is a DGRAM socket then we must first
969          * kick the socket so that it wakes up from any sleeping calls, for
970          * example recv(), and then afterwards return the error.
971          */
972
973         sk = sock->sk;
974
975         lock_sock(sk);
976         if (sock->state == SS_UNCONNECTED) {
977                 err = -ENOTCONN;
978                 if (sock_type_connectible(sk->sk_type))
979                         goto out;
980         } else {
981                 sock->state = SS_DISCONNECTING;
982                 err = 0;
983         }
984
985         /* Receive and send shutdowns are treated alike. */
986         mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
987         if (mode) {
988                 sk->sk_shutdown |= mode;
989                 sk->sk_state_change(sk);
990
991                 if (sock_type_connectible(sk->sk_type)) {
992                         sock_reset_flag(sk, SOCK_DONE);
993                         vsock_send_shutdown(sk, mode);
994                 }
995         }
996
997 out:
998         release_sock(sk);
999         return err;
1000 }
1001
1002 static __poll_t vsock_poll(struct file *file, struct socket *sock,
1003                                poll_table *wait)
1004 {
1005         struct sock *sk;
1006         __poll_t mask;
1007         struct vsock_sock *vsk;
1008
1009         sk = sock->sk;
1010         vsk = vsock_sk(sk);
1011
1012         poll_wait(file, sk_sleep(sk), wait);
1013         mask = 0;
1014
1015         if (sk->sk_err)
1016                 /* Signify that there has been an error on this socket. */
1017                 mask |= EPOLLERR;
1018
1019         /* INET sockets treat local write shutdown and peer write shutdown as a
1020          * case of EPOLLHUP set.
1021          */
1022         if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
1023             ((sk->sk_shutdown & SEND_SHUTDOWN) &&
1024              (vsk->peer_shutdown & SEND_SHUTDOWN))) {
1025                 mask |= EPOLLHUP;
1026         }
1027
1028         if (sk->sk_shutdown & RCV_SHUTDOWN ||
1029             vsk->peer_shutdown & SEND_SHUTDOWN) {
1030                 mask |= EPOLLRDHUP;
1031         }
1032
1033         if (sock->type == SOCK_DGRAM) {
1034                 /* For datagram sockets we can read if there is something in
1035                  * the queue and write as long as the socket isn't shutdown for
1036                  * sending.
1037                  */
1038                 if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1039                     (sk->sk_shutdown & RCV_SHUTDOWN)) {
1040                         mask |= EPOLLIN | EPOLLRDNORM;
1041                 }
1042
1043                 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1044                         mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1045
1046         } else if (sock_type_connectible(sk->sk_type)) {
1047                 const struct vsock_transport *transport;
1048
1049                 lock_sock(sk);
1050
1051                 transport = vsk->transport;
1052
1053                 /* Listening sockets that have connections in their accept
1054                  * queue can be read.
1055                  */
1056                 if (sk->sk_state == TCP_LISTEN
1057                     && !vsock_is_accept_queue_empty(sk))
1058                         mask |= EPOLLIN | EPOLLRDNORM;
1059
1060                 /* If there is something in the queue then we can read. */
1061                 if (transport && transport->stream_is_active(vsk) &&
1062                     !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1063                         bool data_ready_now = false;
1064                         int ret = transport->notify_poll_in(
1065                                         vsk, 1, &data_ready_now);
1066                         if (ret < 0) {
1067                                 mask |= EPOLLERR;
1068                         } else {
1069                                 if (data_ready_now)
1070                                         mask |= EPOLLIN | EPOLLRDNORM;
1071
1072                         }
1073                 }
1074
1075                 /* Sockets whose connections have been closed, reset, or
1076                  * terminated should also be considered read, and we check the
1077                  * shutdown flag for that.
1078                  */
1079                 if (sk->sk_shutdown & RCV_SHUTDOWN ||
1080                     vsk->peer_shutdown & SEND_SHUTDOWN) {
1081                         mask |= EPOLLIN | EPOLLRDNORM;
1082                 }
1083
1084                 /* Connected sockets that can produce data can be written. */
1085                 if (transport && sk->sk_state == TCP_ESTABLISHED) {
1086                         if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1087                                 bool space_avail_now = false;
1088                                 int ret = transport->notify_poll_out(
1089                                                 vsk, 1, &space_avail_now);
1090                                 if (ret < 0) {
1091                                         mask |= EPOLLERR;
1092                                 } else {
1093                                         if (space_avail_now)
1094                                                 /* Remove EPOLLWRBAND since INET
1095                                                  * sockets are not setting it.
1096                                                  */
1097                                                 mask |= EPOLLOUT | EPOLLWRNORM;
1098
1099                                 }
1100                         }
1101                 }
1102
1103                 /* Simulate INET socket poll behaviors, which sets
1104                  * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1105                  * but local send is not shutdown.
1106                  */
1107                 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1108                         if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1109                                 mask |= EPOLLOUT | EPOLLWRNORM;
1110
1111                 }
1112
1113                 release_sock(sk);
1114         }
1115
1116         return mask;
1117 }
1118
1119 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1120                                size_t len)
1121 {
1122         int err;
1123         struct sock *sk;
1124         struct vsock_sock *vsk;
1125         struct sockaddr_vm *remote_addr;
1126         const struct vsock_transport *transport;
1127
1128         if (msg->msg_flags & MSG_OOB)
1129                 return -EOPNOTSUPP;
1130
1131         /* For now, MSG_DONTWAIT is always assumed... */
1132         err = 0;
1133         sk = sock->sk;
1134         vsk = vsock_sk(sk);
1135
1136         lock_sock(sk);
1137
1138         transport = vsk->transport;
1139
1140         err = vsock_auto_bind(vsk);
1141         if (err)
1142                 goto out;
1143
1144
1145         /* If the provided message contains an address, use that.  Otherwise
1146          * fall back on the socket's remote handle (if it has been connected).
1147          */
1148         if (msg->msg_name &&
1149             vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1150                             &remote_addr) == 0) {
1151                 /* Ensure this address is of the right type and is a valid
1152                  * destination.
1153                  */
1154
1155                 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1156                         remote_addr->svm_cid = transport->get_local_cid();
1157
1158                 if (!vsock_addr_bound(remote_addr)) {
1159                         err = -EINVAL;
1160                         goto out;
1161                 }
1162         } else if (sock->state == SS_CONNECTED) {
1163                 remote_addr = &vsk->remote_addr;
1164
1165                 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1166                         remote_addr->svm_cid = transport->get_local_cid();
1167
1168                 /* XXX Should connect() or this function ensure remote_addr is
1169                  * bound?
1170                  */
1171                 if (!vsock_addr_bound(&vsk->remote_addr)) {
1172                         err = -EINVAL;
1173                         goto out;
1174                 }
1175         } else {
1176                 err = -EINVAL;
1177                 goto out;
1178         }
1179
1180         if (!transport->dgram_allow(remote_addr->svm_cid,
1181                                     remote_addr->svm_port)) {
1182                 err = -EINVAL;
1183                 goto out;
1184         }
1185
1186         err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1187
1188 out:
1189         release_sock(sk);
1190         return err;
1191 }
1192
1193 static int vsock_dgram_connect(struct socket *sock,
1194                                struct sockaddr *addr, int addr_len, int flags)
1195 {
1196         int err;
1197         struct sock *sk;
1198         struct vsock_sock *vsk;
1199         struct sockaddr_vm *remote_addr;
1200
1201         sk = sock->sk;
1202         vsk = vsock_sk(sk);
1203
1204         err = vsock_addr_cast(addr, addr_len, &remote_addr);
1205         if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1206                 lock_sock(sk);
1207                 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1208                                 VMADDR_PORT_ANY);
1209                 sock->state = SS_UNCONNECTED;
1210                 release_sock(sk);
1211                 return 0;
1212         } else if (err != 0)
1213                 return -EINVAL;
1214
1215         lock_sock(sk);
1216
1217         err = vsock_auto_bind(vsk);
1218         if (err)
1219                 goto out;
1220
1221         if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1222                                          remote_addr->svm_port)) {
1223                 err = -EINVAL;
1224                 goto out;
1225         }
1226
1227         memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1228         sock->state = SS_CONNECTED;
1229
1230 out:
1231         release_sock(sk);
1232         return err;
1233 }
1234
1235 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1236                                size_t len, int flags)
1237 {
1238         struct vsock_sock *vsk = vsock_sk(sock->sk);
1239
1240         return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1241 }
1242
1243 static const struct proto_ops vsock_dgram_ops = {
1244         .family = PF_VSOCK,
1245         .owner = THIS_MODULE,
1246         .release = vsock_release,
1247         .bind = vsock_bind,
1248         .connect = vsock_dgram_connect,
1249         .socketpair = sock_no_socketpair,
1250         .accept = sock_no_accept,
1251         .getname = vsock_getname,
1252         .poll = vsock_poll,
1253         .ioctl = sock_no_ioctl,
1254         .listen = sock_no_listen,
1255         .shutdown = vsock_shutdown,
1256         .sendmsg = vsock_dgram_sendmsg,
1257         .recvmsg = vsock_dgram_recvmsg,
1258         .mmap = sock_no_mmap,
1259         .sendpage = sock_no_sendpage,
1260 };
1261
1262 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1263 {
1264         const struct vsock_transport *transport = vsk->transport;
1265
1266         if (!transport || !transport->cancel_pkt)
1267                 return -EOPNOTSUPP;
1268
1269         return transport->cancel_pkt(vsk);
1270 }
1271
1272 static void vsock_connect_timeout(struct work_struct *work)
1273 {
1274         struct sock *sk;
1275         struct vsock_sock *vsk;
1276
1277         vsk = container_of(work, struct vsock_sock, connect_work.work);
1278         sk = sk_vsock(vsk);
1279
1280         lock_sock(sk);
1281         if (sk->sk_state == TCP_SYN_SENT &&
1282             (sk->sk_shutdown != SHUTDOWN_MASK)) {
1283                 sk->sk_state = TCP_CLOSE;
1284                 sk->sk_err = ETIMEDOUT;
1285                 sk_error_report(sk);
1286                 vsock_transport_cancel_pkt(vsk);
1287         }
1288         release_sock(sk);
1289
1290         sock_put(sk);
1291 }
1292
1293 static int vsock_connect(struct socket *sock, struct sockaddr *addr,
1294                          int addr_len, int flags)
1295 {
1296         int err;
1297         struct sock *sk;
1298         struct vsock_sock *vsk;
1299         const struct vsock_transport *transport;
1300         struct sockaddr_vm *remote_addr;
1301         long timeout;
1302         DEFINE_WAIT(wait);
1303
1304         err = 0;
1305         sk = sock->sk;
1306         vsk = vsock_sk(sk);
1307
1308         lock_sock(sk);
1309
1310         /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1311         switch (sock->state) {
1312         case SS_CONNECTED:
1313                 err = -EISCONN;
1314                 goto out;
1315         case SS_DISCONNECTING:
1316                 err = -EINVAL;
1317                 goto out;
1318         case SS_CONNECTING:
1319                 /* This continues on so we can move sock into the SS_CONNECTED
1320                  * state once the connection has completed (at which point err
1321                  * will be set to zero also).  Otherwise, we will either wait
1322                  * for the connection or return -EALREADY should this be a
1323                  * non-blocking call.
1324                  */
1325                 err = -EALREADY;
1326                 if (flags & O_NONBLOCK)
1327                         goto out;
1328                 break;
1329         default:
1330                 if ((sk->sk_state == TCP_LISTEN) ||
1331                     vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1332                         err = -EINVAL;
1333                         goto out;
1334                 }
1335
1336                 /* Set the remote address that we are connecting to. */
1337                 memcpy(&vsk->remote_addr, remote_addr,
1338                        sizeof(vsk->remote_addr));
1339
1340                 err = vsock_assign_transport(vsk, NULL);
1341                 if (err)
1342                         goto out;
1343
1344                 transport = vsk->transport;
1345
1346                 /* The hypervisor and well-known contexts do not have socket
1347                  * endpoints.
1348                  */
1349                 if (!transport ||
1350                     !transport->stream_allow(remote_addr->svm_cid,
1351                                              remote_addr->svm_port)) {
1352                         err = -ENETUNREACH;
1353                         goto out;
1354                 }
1355
1356                 err = vsock_auto_bind(vsk);
1357                 if (err)
1358                         goto out;
1359
1360                 sk->sk_state = TCP_SYN_SENT;
1361
1362                 err = transport->connect(vsk);
1363                 if (err < 0)
1364                         goto out;
1365
1366                 /* Mark sock as connecting and set the error code to in
1367                  * progress in case this is a non-blocking connect.
1368                  */
1369                 sock->state = SS_CONNECTING;
1370                 err = -EINPROGRESS;
1371         }
1372
1373         /* The receive path will handle all communication until we are able to
1374          * enter the connected state.  Here we wait for the connection to be
1375          * completed or a notification of an error.
1376          */
1377         timeout = vsk->connect_timeout;
1378         prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1379
1380         while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1381                 if (flags & O_NONBLOCK) {
1382                         /* If we're not going to block, we schedule a timeout
1383                          * function to generate a timeout on the connection
1384                          * attempt, in case the peer doesn't respond in a
1385                          * timely manner. We hold on to the socket until the
1386                          * timeout fires.
1387                          */
1388                         sock_hold(sk);
1389                         schedule_delayed_work(&vsk->connect_work, timeout);
1390
1391                         /* Skip ahead to preserve error code set above. */
1392                         goto out_wait;
1393                 }
1394
1395                 release_sock(sk);
1396                 timeout = schedule_timeout(timeout);
1397                 lock_sock(sk);
1398
1399                 if (signal_pending(current)) {
1400                         err = sock_intr_errno(timeout);
1401                         sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
1402                         sock->state = SS_UNCONNECTED;
1403                         vsock_transport_cancel_pkt(vsk);
1404                         vsock_remove_connected(vsk);
1405                         goto out_wait;
1406                 } else if (timeout == 0) {
1407                         err = -ETIMEDOUT;
1408                         sk->sk_state = TCP_CLOSE;
1409                         sock->state = SS_UNCONNECTED;
1410                         vsock_transport_cancel_pkt(vsk);
1411                         goto out_wait;
1412                 }
1413
1414                 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1415         }
1416
1417         if (sk->sk_err) {
1418                 err = -sk->sk_err;
1419                 sk->sk_state = TCP_CLOSE;
1420                 sock->state = SS_UNCONNECTED;
1421         } else {
1422                 err = 0;
1423         }
1424
1425 out_wait:
1426         finish_wait(sk_sleep(sk), &wait);
1427 out:
1428         release_sock(sk);
1429         return err;
1430 }
1431
1432 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1433                         bool kern)
1434 {
1435         struct sock *listener;
1436         int err;
1437         struct sock *connected;
1438         struct vsock_sock *vconnected;
1439         long timeout;
1440         DEFINE_WAIT(wait);
1441
1442         err = 0;
1443         listener = sock->sk;
1444
1445         lock_sock(listener);
1446
1447         if (!sock_type_connectible(sock->type)) {
1448                 err = -EOPNOTSUPP;
1449                 goto out;
1450         }
1451
1452         if (listener->sk_state != TCP_LISTEN) {
1453                 err = -EINVAL;
1454                 goto out;
1455         }
1456
1457         /* Wait for children sockets to appear; these are the new sockets
1458          * created upon connection establishment.
1459          */
1460         timeout = sock_rcvtimeo(listener, flags & O_NONBLOCK);
1461         prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1462
1463         while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1464                listener->sk_err == 0) {
1465                 release_sock(listener);
1466                 timeout = schedule_timeout(timeout);
1467                 finish_wait(sk_sleep(listener), &wait);
1468                 lock_sock(listener);
1469
1470                 if (signal_pending(current)) {
1471                         err = sock_intr_errno(timeout);
1472                         goto out;
1473                 } else if (timeout == 0) {
1474                         err = -EAGAIN;
1475                         goto out;
1476                 }
1477
1478                 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1479         }
1480         finish_wait(sk_sleep(listener), &wait);
1481
1482         if (listener->sk_err)
1483                 err = -listener->sk_err;
1484
1485         if (connected) {
1486                 sk_acceptq_removed(listener);
1487
1488                 lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1489                 vconnected = vsock_sk(connected);
1490
1491                 /* If the listener socket has received an error, then we should
1492                  * reject this socket and return.  Note that we simply mark the
1493                  * socket rejected, drop our reference, and let the cleanup
1494                  * function handle the cleanup; the fact that we found it in
1495                  * the listener's accept queue guarantees that the cleanup
1496                  * function hasn't run yet.
1497                  */
1498                 if (err) {
1499                         vconnected->rejected = true;
1500                 } else {
1501                         newsock->state = SS_CONNECTED;
1502                         sock_graft(connected, newsock);
1503                 }
1504
1505                 release_sock(connected);
1506                 sock_put(connected);
1507         }
1508
1509 out:
1510         release_sock(listener);
1511         return err;
1512 }
1513
1514 static int vsock_listen(struct socket *sock, int backlog)
1515 {
1516         int err;
1517         struct sock *sk;
1518         struct vsock_sock *vsk;
1519
1520         sk = sock->sk;
1521
1522         lock_sock(sk);
1523
1524         if (!sock_type_connectible(sk->sk_type)) {
1525                 err = -EOPNOTSUPP;
1526                 goto out;
1527         }
1528
1529         if (sock->state != SS_UNCONNECTED) {
1530                 err = -EINVAL;
1531                 goto out;
1532         }
1533
1534         vsk = vsock_sk(sk);
1535
1536         if (!vsock_addr_bound(&vsk->local_addr)) {
1537                 err = -EINVAL;
1538                 goto out;
1539         }
1540
1541         sk->sk_max_ack_backlog = backlog;
1542         sk->sk_state = TCP_LISTEN;
1543
1544         err = 0;
1545
1546 out:
1547         release_sock(sk);
1548         return err;
1549 }
1550
1551 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1552                                      const struct vsock_transport *transport,
1553                                      u64 val)
1554 {
1555         if (val > vsk->buffer_max_size)
1556                 val = vsk->buffer_max_size;
1557
1558         if (val < vsk->buffer_min_size)
1559                 val = vsk->buffer_min_size;
1560
1561         if (val != vsk->buffer_size &&
1562             transport && transport->notify_buffer_size)
1563                 transport->notify_buffer_size(vsk, &val);
1564
1565         vsk->buffer_size = val;
1566 }
1567
1568 static int vsock_connectible_setsockopt(struct socket *sock,
1569                                         int level,
1570                                         int optname,
1571                                         sockptr_t optval,
1572                                         unsigned int optlen)
1573 {
1574         int err;
1575         struct sock *sk;
1576         struct vsock_sock *vsk;
1577         const struct vsock_transport *transport;
1578         u64 val;
1579
1580         if (level != AF_VSOCK)
1581                 return -ENOPROTOOPT;
1582
1583 #define COPY_IN(_v)                                       \
1584         do {                                              \
1585                 if (optlen < sizeof(_v)) {                \
1586                         err = -EINVAL;                    \
1587                         goto exit;                        \
1588                 }                                         \
1589                 if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) {  \
1590                         err = -EFAULT;                                  \
1591                         goto exit;                                      \
1592                 }                                                       \
1593         } while (0)
1594
1595         err = 0;
1596         sk = sock->sk;
1597         vsk = vsock_sk(sk);
1598
1599         lock_sock(sk);
1600
1601         transport = vsk->transport;
1602
1603         switch (optname) {
1604         case SO_VM_SOCKETS_BUFFER_SIZE:
1605                 COPY_IN(val);
1606                 vsock_update_buffer_size(vsk, transport, val);
1607                 break;
1608
1609         case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1610                 COPY_IN(val);
1611                 vsk->buffer_max_size = val;
1612                 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1613                 break;
1614
1615         case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1616                 COPY_IN(val);
1617                 vsk->buffer_min_size = val;
1618                 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1619                 break;
1620
1621         case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1622         case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: {
1623                 struct __kernel_sock_timeval tv;
1624
1625                 err = sock_copy_user_timeval(&tv, optval, optlen,
1626                                              optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1627                 if (err)
1628                         break;
1629                 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1630                     tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1631                         vsk->connect_timeout = tv.tv_sec * HZ +
1632                                 DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ));
1633                         if (vsk->connect_timeout == 0)
1634                                 vsk->connect_timeout =
1635                                     VSOCK_DEFAULT_CONNECT_TIMEOUT;
1636
1637                 } else {
1638                         err = -ERANGE;
1639                 }
1640                 break;
1641         }
1642
1643         default:
1644                 err = -ENOPROTOOPT;
1645                 break;
1646         }
1647
1648 #undef COPY_IN
1649
1650 exit:
1651         release_sock(sk);
1652         return err;
1653 }
1654
1655 static int vsock_connectible_getsockopt(struct socket *sock,
1656                                         int level, int optname,
1657                                         char __user *optval,
1658                                         int __user *optlen)
1659 {
1660         struct sock *sk = sock->sk;
1661         struct vsock_sock *vsk = vsock_sk(sk);
1662
1663         union {
1664                 u64 val64;
1665                 struct old_timeval32 tm32;
1666                 struct __kernel_old_timeval tm;
1667                 struct  __kernel_sock_timeval stm;
1668         } v;
1669
1670         int lv = sizeof(v.val64);
1671         int len;
1672
1673         if (level != AF_VSOCK)
1674                 return -ENOPROTOOPT;
1675
1676         if (get_user(len, optlen))
1677                 return -EFAULT;
1678
1679         memset(&v, 0, sizeof(v));
1680
1681         switch (optname) {
1682         case SO_VM_SOCKETS_BUFFER_SIZE:
1683                 v.val64 = vsk->buffer_size;
1684                 break;
1685
1686         case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1687                 v.val64 = vsk->buffer_max_size;
1688                 break;
1689
1690         case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1691                 v.val64 = vsk->buffer_min_size;
1692                 break;
1693
1694         case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1695         case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD:
1696                 lv = sock_get_timeout(vsk->connect_timeout, &v,
1697                                       optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1698                 break;
1699
1700         default:
1701                 return -ENOPROTOOPT;
1702         }
1703
1704         if (len < lv)
1705                 return -EINVAL;
1706         if (len > lv)
1707                 len = lv;
1708         if (copy_to_user(optval, &v, len))
1709                 return -EFAULT;
1710
1711         if (put_user(len, optlen))
1712                 return -EFAULT;
1713
1714         return 0;
1715 }
1716
1717 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg,
1718                                      size_t len)
1719 {
1720         struct sock *sk;
1721         struct vsock_sock *vsk;
1722         const struct vsock_transport *transport;
1723         ssize_t total_written;
1724         long timeout;
1725         int err;
1726         struct vsock_transport_send_notify_data send_data;
1727         DEFINE_WAIT_FUNC(wait, woken_wake_function);
1728
1729         sk = sock->sk;
1730         vsk = vsock_sk(sk);
1731         total_written = 0;
1732         err = 0;
1733
1734         if (msg->msg_flags & MSG_OOB)
1735                 return -EOPNOTSUPP;
1736
1737         lock_sock(sk);
1738
1739         transport = vsk->transport;
1740
1741         /* Callers should not provide a destination with connection oriented
1742          * sockets.
1743          */
1744         if (msg->msg_namelen) {
1745                 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1746                 goto out;
1747         }
1748
1749         /* Send data only if both sides are not shutdown in the direction. */
1750         if (sk->sk_shutdown & SEND_SHUTDOWN ||
1751             vsk->peer_shutdown & RCV_SHUTDOWN) {
1752                 err = -EPIPE;
1753                 goto out;
1754         }
1755
1756         if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1757             !vsock_addr_bound(&vsk->local_addr)) {
1758                 err = -ENOTCONN;
1759                 goto out;
1760         }
1761
1762         if (!vsock_addr_bound(&vsk->remote_addr)) {
1763                 err = -EDESTADDRREQ;
1764                 goto out;
1765         }
1766
1767         /* Wait for room in the produce queue to enqueue our user's data. */
1768         timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1769
1770         err = transport->notify_send_init(vsk, &send_data);
1771         if (err < 0)
1772                 goto out;
1773
1774         while (total_written < len) {
1775                 ssize_t written;
1776
1777                 add_wait_queue(sk_sleep(sk), &wait);
1778                 while (vsock_stream_has_space(vsk) == 0 &&
1779                        sk->sk_err == 0 &&
1780                        !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1781                        !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1782
1783                         /* Don't wait for non-blocking sockets. */
1784                         if (timeout == 0) {
1785                                 err = -EAGAIN;
1786                                 remove_wait_queue(sk_sleep(sk), &wait);
1787                                 goto out_err;
1788                         }
1789
1790                         err = transport->notify_send_pre_block(vsk, &send_data);
1791                         if (err < 0) {
1792                                 remove_wait_queue(sk_sleep(sk), &wait);
1793                                 goto out_err;
1794                         }
1795
1796                         release_sock(sk);
1797                         timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1798                         lock_sock(sk);
1799                         if (signal_pending(current)) {
1800                                 err = sock_intr_errno(timeout);
1801                                 remove_wait_queue(sk_sleep(sk), &wait);
1802                                 goto out_err;
1803                         } else if (timeout == 0) {
1804                                 err = -EAGAIN;
1805                                 remove_wait_queue(sk_sleep(sk), &wait);
1806                                 goto out_err;
1807                         }
1808                 }
1809                 remove_wait_queue(sk_sleep(sk), &wait);
1810
1811                 /* These checks occur both as part of and after the loop
1812                  * conditional since we need to check before and after
1813                  * sleeping.
1814                  */
1815                 if (sk->sk_err) {
1816                         err = -sk->sk_err;
1817                         goto out_err;
1818                 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1819                            (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1820                         err = -EPIPE;
1821                         goto out_err;
1822                 }
1823
1824                 err = transport->notify_send_pre_enqueue(vsk, &send_data);
1825                 if (err < 0)
1826                         goto out_err;
1827
1828                 /* Note that enqueue will only write as many bytes as are free
1829                  * in the produce queue, so we don't need to ensure len is
1830                  * smaller than the queue size.  It is the caller's
1831                  * responsibility to check how many bytes we were able to send.
1832                  */
1833
1834                 if (sk->sk_type == SOCK_SEQPACKET) {
1835                         written = transport->seqpacket_enqueue(vsk,
1836                                                 msg, len - total_written);
1837                 } else {
1838                         written = transport->stream_enqueue(vsk,
1839                                         msg, len - total_written);
1840                 }
1841                 if (written < 0) {
1842                         err = -ENOMEM;
1843                         goto out_err;
1844                 }
1845
1846                 total_written += written;
1847
1848                 err = transport->notify_send_post_enqueue(
1849                                 vsk, written, &send_data);
1850                 if (err < 0)
1851                         goto out_err;
1852
1853         }
1854
1855 out_err:
1856         if (total_written > 0) {
1857                 /* Return number of written bytes only if:
1858                  * 1) SOCK_STREAM socket.
1859                  * 2) SOCK_SEQPACKET socket when whole buffer is sent.
1860                  */
1861                 if (sk->sk_type == SOCK_STREAM || total_written == len)
1862                         err = total_written;
1863         }
1864 out:
1865         release_sock(sk);
1866         return err;
1867 }
1868
1869 static int vsock_connectible_wait_data(struct sock *sk,
1870                                        struct wait_queue_entry *wait,
1871                                        long timeout,
1872                                        struct vsock_transport_recv_notify_data *recv_data,
1873                                        size_t target)
1874 {
1875         const struct vsock_transport *transport;
1876         struct vsock_sock *vsk;
1877         s64 data;
1878         int err;
1879
1880         vsk = vsock_sk(sk);
1881         err = 0;
1882         transport = vsk->transport;
1883
1884         while ((data = vsock_connectible_has_data(vsk)) == 0) {
1885                 prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE);
1886
1887                 if (sk->sk_err != 0 ||
1888                     (sk->sk_shutdown & RCV_SHUTDOWN) ||
1889                     (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1890                         break;
1891                 }
1892
1893                 /* Don't wait for non-blocking sockets. */
1894                 if (timeout == 0) {
1895                         err = -EAGAIN;
1896                         break;
1897                 }
1898
1899                 if (recv_data) {
1900                         err = transport->notify_recv_pre_block(vsk, target, recv_data);
1901                         if (err < 0)
1902                                 break;
1903                 }
1904
1905                 release_sock(sk);
1906                 timeout = schedule_timeout(timeout);
1907                 lock_sock(sk);
1908
1909                 if (signal_pending(current)) {
1910                         err = sock_intr_errno(timeout);
1911                         break;
1912                 } else if (timeout == 0) {
1913                         err = -EAGAIN;
1914                         break;
1915                 }
1916         }
1917
1918         finish_wait(sk_sleep(sk), wait);
1919
1920         if (err)
1921                 return err;
1922
1923         /* Internal transport error when checking for available
1924          * data. XXX This should be changed to a connection
1925          * reset in a later change.
1926          */
1927         if (data < 0)
1928                 return -ENOMEM;
1929
1930         return data;
1931 }
1932
1933 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg,
1934                                   size_t len, int flags)
1935 {
1936         struct vsock_transport_recv_notify_data recv_data;
1937         const struct vsock_transport *transport;
1938         struct vsock_sock *vsk;
1939         ssize_t copied;
1940         size_t target;
1941         long timeout;
1942         int err;
1943
1944         DEFINE_WAIT(wait);
1945
1946         vsk = vsock_sk(sk);
1947         transport = vsk->transport;
1948
1949         /* We must not copy less than target bytes into the user's buffer
1950          * before returning successfully, so we wait for the consume queue to
1951          * have that much data to consume before dequeueing.  Note that this
1952          * makes it impossible to handle cases where target is greater than the
1953          * queue size.
1954          */
1955         target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1956         if (target >= transport->stream_rcvhiwat(vsk)) {
1957                 err = -ENOMEM;
1958                 goto out;
1959         }
1960         timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1961         copied = 0;
1962
1963         err = transport->notify_recv_init(vsk, target, &recv_data);
1964         if (err < 0)
1965                 goto out;
1966
1967
1968         while (1) {
1969                 ssize_t read;
1970
1971                 err = vsock_connectible_wait_data(sk, &wait, timeout,
1972                                                   &recv_data, target);
1973                 if (err <= 0)
1974                         break;
1975
1976                 err = transport->notify_recv_pre_dequeue(vsk, target,
1977                                                          &recv_data);
1978                 if (err < 0)
1979                         break;
1980
1981                 read = transport->stream_dequeue(vsk, msg, len - copied, flags);
1982                 if (read < 0) {
1983                         err = -ENOMEM;
1984                         break;
1985                 }
1986
1987                 copied += read;
1988
1989                 err = transport->notify_recv_post_dequeue(vsk, target, read,
1990                                                 !(flags & MSG_PEEK), &recv_data);
1991                 if (err < 0)
1992                         goto out;
1993
1994                 if (read >= target || flags & MSG_PEEK)
1995                         break;
1996
1997                 target -= read;
1998         }
1999
2000         if (sk->sk_err)
2001                 err = -sk->sk_err;
2002         else if (sk->sk_shutdown & RCV_SHUTDOWN)
2003                 err = 0;
2004
2005         if (copied > 0)
2006                 err = copied;
2007
2008 out:
2009         return err;
2010 }
2011
2012 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg,
2013                                      size_t len, int flags)
2014 {
2015         const struct vsock_transport *transport;
2016         struct vsock_sock *vsk;
2017         ssize_t msg_len;
2018         long timeout;
2019         int err = 0;
2020         DEFINE_WAIT(wait);
2021
2022         vsk = vsock_sk(sk);
2023         transport = vsk->transport;
2024
2025         timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2026
2027         err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0);
2028         if (err <= 0)
2029                 goto out;
2030
2031         msg_len = transport->seqpacket_dequeue(vsk, msg, flags);
2032
2033         if (msg_len < 0) {
2034                 err = -ENOMEM;
2035                 goto out;
2036         }
2037
2038         if (sk->sk_err) {
2039                 err = -sk->sk_err;
2040         } else if (sk->sk_shutdown & RCV_SHUTDOWN) {
2041                 err = 0;
2042         } else {
2043                 /* User sets MSG_TRUNC, so return real length of
2044                  * packet.
2045                  */
2046                 if (flags & MSG_TRUNC)
2047                         err = msg_len;
2048                 else
2049                         err = len - msg_data_left(msg);
2050
2051                 /* Always set MSG_TRUNC if real length of packet is
2052                  * bigger than user's buffer.
2053                  */
2054                 if (msg_len > len)
2055                         msg->msg_flags |= MSG_TRUNC;
2056         }
2057
2058 out:
2059         return err;
2060 }
2061
2062 static int
2063 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2064                           int flags)
2065 {
2066         struct sock *sk;
2067         struct vsock_sock *vsk;
2068         const struct vsock_transport *transport;
2069         int err;
2070
2071         DEFINE_WAIT(wait);
2072
2073         sk = sock->sk;
2074         vsk = vsock_sk(sk);
2075         err = 0;
2076
2077         lock_sock(sk);
2078
2079         transport = vsk->transport;
2080
2081         if (!transport || sk->sk_state != TCP_ESTABLISHED) {
2082                 /* Recvmsg is supposed to return 0 if a peer performs an
2083                  * orderly shutdown. Differentiate between that case and when a
2084                  * peer has not connected or a local shutdown occurred with the
2085                  * SOCK_DONE flag.
2086                  */
2087                 if (sock_flag(sk, SOCK_DONE))
2088                         err = 0;
2089                 else
2090                         err = -ENOTCONN;
2091
2092                 goto out;
2093         }
2094
2095         if (flags & MSG_OOB) {
2096                 err = -EOPNOTSUPP;
2097                 goto out;
2098         }
2099
2100         /* We don't check peer_shutdown flag here since peer may actually shut
2101          * down, but there can be data in the queue that a local socket can
2102          * receive.
2103          */
2104         if (sk->sk_shutdown & RCV_SHUTDOWN) {
2105                 err = 0;
2106                 goto out;
2107         }
2108
2109         /* It is valid on Linux to pass in a zero-length receive buffer.  This
2110          * is not an error.  We may as well bail out now.
2111          */
2112         if (!len) {
2113                 err = 0;
2114                 goto out;
2115         }
2116
2117         if (sk->sk_type == SOCK_STREAM)
2118                 err = __vsock_stream_recvmsg(sk, msg, len, flags);
2119         else
2120                 err = __vsock_seqpacket_recvmsg(sk, msg, len, flags);
2121
2122 out:
2123         release_sock(sk);
2124         return err;
2125 }
2126
2127 static const struct proto_ops vsock_stream_ops = {
2128         .family = PF_VSOCK,
2129         .owner = THIS_MODULE,
2130         .release = vsock_release,
2131         .bind = vsock_bind,
2132         .connect = vsock_connect,
2133         .socketpair = sock_no_socketpair,
2134         .accept = vsock_accept,
2135         .getname = vsock_getname,
2136         .poll = vsock_poll,
2137         .ioctl = sock_no_ioctl,
2138         .listen = vsock_listen,
2139         .shutdown = vsock_shutdown,
2140         .setsockopt = vsock_connectible_setsockopt,
2141         .getsockopt = vsock_connectible_getsockopt,
2142         .sendmsg = vsock_connectible_sendmsg,
2143         .recvmsg = vsock_connectible_recvmsg,
2144         .mmap = sock_no_mmap,
2145         .sendpage = sock_no_sendpage,
2146 };
2147
2148 static const struct proto_ops vsock_seqpacket_ops = {
2149         .family = PF_VSOCK,
2150         .owner = THIS_MODULE,
2151         .release = vsock_release,
2152         .bind = vsock_bind,
2153         .connect = vsock_connect,
2154         .socketpair = sock_no_socketpair,
2155         .accept = vsock_accept,
2156         .getname = vsock_getname,
2157         .poll = vsock_poll,
2158         .ioctl = sock_no_ioctl,
2159         .listen = vsock_listen,
2160         .shutdown = vsock_shutdown,
2161         .setsockopt = vsock_connectible_setsockopt,
2162         .getsockopt = vsock_connectible_getsockopt,
2163         .sendmsg = vsock_connectible_sendmsg,
2164         .recvmsg = vsock_connectible_recvmsg,
2165         .mmap = sock_no_mmap,
2166         .sendpage = sock_no_sendpage,
2167 };
2168
2169 static int vsock_create(struct net *net, struct socket *sock,
2170                         int protocol, int kern)
2171 {
2172         struct vsock_sock *vsk;
2173         struct sock *sk;
2174         int ret;
2175
2176         if (!sock)
2177                 return -EINVAL;
2178
2179         if (protocol && protocol != PF_VSOCK)
2180                 return -EPROTONOSUPPORT;
2181
2182         switch (sock->type) {
2183         case SOCK_DGRAM:
2184                 sock->ops = &vsock_dgram_ops;
2185                 break;
2186         case SOCK_STREAM:
2187                 sock->ops = &vsock_stream_ops;
2188                 break;
2189         case SOCK_SEQPACKET:
2190                 sock->ops = &vsock_seqpacket_ops;
2191                 break;
2192         default:
2193                 return -ESOCKTNOSUPPORT;
2194         }
2195
2196         sock->state = SS_UNCONNECTED;
2197
2198         sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2199         if (!sk)
2200                 return -ENOMEM;
2201
2202         vsk = vsock_sk(sk);
2203
2204         if (sock->type == SOCK_DGRAM) {
2205                 ret = vsock_assign_transport(vsk, NULL);
2206                 if (ret < 0) {
2207                         sock_put(sk);
2208                         return ret;
2209                 }
2210         }
2211
2212         vsock_insert_unbound(vsk);
2213
2214         return 0;
2215 }
2216
2217 static const struct net_proto_family vsock_family_ops = {
2218         .family = AF_VSOCK,
2219         .create = vsock_create,
2220         .owner = THIS_MODULE,
2221 };
2222
2223 static long vsock_dev_do_ioctl(struct file *filp,
2224                                unsigned int cmd, void __user *ptr)
2225 {
2226         u32 __user *p = ptr;
2227         u32 cid = VMADDR_CID_ANY;
2228         int retval = 0;
2229
2230         switch (cmd) {
2231         case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2232                 /* To be compatible with the VMCI behavior, we prioritize the
2233                  * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2234                  */
2235                 if (transport_g2h)
2236                         cid = transport_g2h->get_local_cid();
2237                 else if (transport_h2g)
2238                         cid = transport_h2g->get_local_cid();
2239
2240                 if (put_user(cid, p) != 0)
2241                         retval = -EFAULT;
2242                 break;
2243
2244         default:
2245                 retval = -ENOIOCTLCMD;
2246         }
2247
2248         return retval;
2249 }
2250
2251 static long vsock_dev_ioctl(struct file *filp,
2252                             unsigned int cmd, unsigned long arg)
2253 {
2254         return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2255 }
2256
2257 #ifdef CONFIG_COMPAT
2258 static long vsock_dev_compat_ioctl(struct file *filp,
2259                                    unsigned int cmd, unsigned long arg)
2260 {
2261         return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2262 }
2263 #endif
2264
2265 static const struct file_operations vsock_device_ops = {
2266         .owner          = THIS_MODULE,
2267         .unlocked_ioctl = vsock_dev_ioctl,
2268 #ifdef CONFIG_COMPAT
2269         .compat_ioctl   = vsock_dev_compat_ioctl,
2270 #endif
2271         .open           = nonseekable_open,
2272 };
2273
2274 static struct miscdevice vsock_device = {
2275         .name           = "vsock",
2276         .fops           = &vsock_device_ops,
2277 };
2278
2279 static int __init vsock_init(void)
2280 {
2281         int err = 0;
2282
2283         vsock_init_tables();
2284
2285         vsock_proto.owner = THIS_MODULE;
2286         vsock_device.minor = MISC_DYNAMIC_MINOR;
2287         err = misc_register(&vsock_device);
2288         if (err) {
2289                 pr_err("Failed to register misc device\n");
2290                 goto err_reset_transport;
2291         }
2292
2293         err = proto_register(&vsock_proto, 1);  /* we want our slab */
2294         if (err) {
2295                 pr_err("Cannot register vsock protocol\n");
2296                 goto err_deregister_misc;
2297         }
2298
2299         err = sock_register(&vsock_family_ops);
2300         if (err) {
2301                 pr_err("could not register af_vsock (%d) address family: %d\n",
2302                        AF_VSOCK, err);
2303                 goto err_unregister_proto;
2304         }
2305
2306         return 0;
2307
2308 err_unregister_proto:
2309         proto_unregister(&vsock_proto);
2310 err_deregister_misc:
2311         misc_deregister(&vsock_device);
2312 err_reset_transport:
2313         return err;
2314 }
2315
2316 static void __exit vsock_exit(void)
2317 {
2318         misc_deregister(&vsock_device);
2319         sock_unregister(AF_VSOCK);
2320         proto_unregister(&vsock_proto);
2321 }
2322
2323 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2324 {
2325         return vsk->transport;
2326 }
2327 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2328
2329 int vsock_core_register(const struct vsock_transport *t, int features)
2330 {
2331         const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2332         int err = mutex_lock_interruptible(&vsock_register_mutex);
2333
2334         if (err)
2335                 return err;
2336
2337         t_h2g = transport_h2g;
2338         t_g2h = transport_g2h;
2339         t_dgram = transport_dgram;
2340         t_local = transport_local;
2341
2342         if (features & VSOCK_TRANSPORT_F_H2G) {
2343                 if (t_h2g) {
2344                         err = -EBUSY;
2345                         goto err_busy;
2346                 }
2347                 t_h2g = t;
2348         }
2349
2350         if (features & VSOCK_TRANSPORT_F_G2H) {
2351                 if (t_g2h) {
2352                         err = -EBUSY;
2353                         goto err_busy;
2354                 }
2355                 t_g2h = t;
2356         }
2357
2358         if (features & VSOCK_TRANSPORT_F_DGRAM) {
2359                 if (t_dgram) {
2360                         err = -EBUSY;
2361                         goto err_busy;
2362                 }
2363                 t_dgram = t;
2364         }
2365
2366         if (features & VSOCK_TRANSPORT_F_LOCAL) {
2367                 if (t_local) {
2368                         err = -EBUSY;
2369                         goto err_busy;
2370                 }
2371                 t_local = t;
2372         }
2373
2374         transport_h2g = t_h2g;
2375         transport_g2h = t_g2h;
2376         transport_dgram = t_dgram;
2377         transport_local = t_local;
2378
2379 err_busy:
2380         mutex_unlock(&vsock_register_mutex);
2381         return err;
2382 }
2383 EXPORT_SYMBOL_GPL(vsock_core_register);
2384
2385 void vsock_core_unregister(const struct vsock_transport *t)
2386 {
2387         mutex_lock(&vsock_register_mutex);
2388
2389         if (transport_h2g == t)
2390                 transport_h2g = NULL;
2391
2392         if (transport_g2h == t)
2393                 transport_g2h = NULL;
2394
2395         if (transport_dgram == t)
2396                 transport_dgram = NULL;
2397
2398         if (transport_local == t)
2399                 transport_local = NULL;
2400
2401         mutex_unlock(&vsock_register_mutex);
2402 }
2403 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2404
2405 module_init(vsock_init);
2406 module_exit(vsock_exit);
2407
2408 MODULE_AUTHOR("VMware, Inc.");
2409 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2410 MODULE_VERSION("1.0.2.0-k");
2411 MODULE_LICENSE("GPL v2");