Merge branches 'pm-cpufreq' and 'pm-opp'
[linux-2.6-microblaze.git] / net / vmw_vsock / af_vsock.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware vSockets Driver
4  *
5  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6  */
7
8 /* Implementation notes:
9  *
10  * - There are two kinds of sockets: those created by user action (such as
11  * calling socket(2)) and those created by incoming connection request packets.
12  *
13  * - There are two "global" tables, one for bound sockets (sockets that have
14  * specified an address that they are responsible for) and one for connected
15  * sockets (sockets that have established a connection with another socket).
16  * These tables are "global" in that all sockets on the system are placed
17  * within them. - Note, though, that the bound table contains an extra entry
18  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19  * that list. The bound table is used solely for lookup of sockets when packets
20  * are received and that's not necessary for SOCK_DGRAM sockets since we create
21  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
22  * sockets out of the bound hash buckets will reduce the chance of collisions
23  * when looking for SOCK_STREAM sockets and prevents us from having to check the
24  * socket type in the hash table lookups.
25  *
26  * - Sockets created by user action will either be "client" sockets that
27  * initiate a connection or "server" sockets that listen for connections; we do
28  * not support simultaneous connects (two "client" sockets connecting).
29  *
30  * - "Server" sockets are referred to as listener sockets throughout this
31  * implementation because they are in the TCP_LISTEN state.  When a
32  * connection request is received (the second kind of socket mentioned above),
33  * we create a new socket and refer to it as a pending socket.  These pending
34  * sockets are placed on the pending connection list of the listener socket.
35  * When future packets are received for the address the listener socket is
36  * bound to, we check if the source of the packet is from one that has an
37  * existing pending connection.  If it does, we process the packet for the
38  * pending socket.  When that socket reaches the connected state, it is removed
39  * from the listener socket's pending list and enqueued in the listener
40  * socket's accept queue.  Callers of accept(2) will accept connected sockets
41  * from the listener socket's accept queue.  If the socket cannot be accepted
42  * for some reason then it is marked rejected.  Once the connection is
43  * accepted, it is owned by the user process and the responsibility for cleanup
44  * falls with that user process.
45  *
46  * - It is possible that these pending sockets will never reach the connected
47  * state; in fact, we may never receive another packet after the connection
48  * request.  Because of this, we must schedule a cleanup function to run in the
49  * future, after some amount of time passes where a connection should have been
50  * established.  This function ensures that the socket is off all lists so it
51  * cannot be retrieved, then drops all references to the socket so it is cleaned
52  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
53  * function will also cleanup rejected sockets, those that reach the connected
54  * state but leave it before they have been accepted.
55  *
56  * - Lock ordering for pending or accept queue sockets is:
57  *
58  *     lock_sock(listener);
59  *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60  *
61  * Using explicit nested locking keeps lockdep happy since normally only one
62  * lock of a given class may be taken at a time.
63  *
64  * - Sockets created by user action will be cleaned up when the user process
65  * calls close(2), causing our release implementation to be called. Our release
66  * implementation will perform some cleanup then drop the last reference so our
67  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
68  * perform additional cleanup that's common for both types of sockets.
69  *
70  * - A socket's reference count is what ensures that the structure won't be
71  * freed.  Each entry in a list (such as the "global" bound and connected tables
72  * and the listener socket's pending list and connected queue) ensures a
73  * reference.  When we defer work until process context and pass a socket as our
74  * argument, we must ensure the reference count is increased to ensure the
75  * socket isn't freed before the function is run; the deferred function will
76  * then drop the reference.
77  *
78  * - sk->sk_state uses the TCP state constants because they are widely used by
79  * other address families and exposed to userspace tools like ss(8):
80  *
81  *   TCP_CLOSE - unconnected
82  *   TCP_SYN_SENT - connecting
83  *   TCP_ESTABLISHED - connected
84  *   TCP_CLOSING - disconnecting
85  *   TCP_LISTEN - listening
86  */
87
88 #include <linux/types.h>
89 #include <linux/bitops.h>
90 #include <linux/cred.h>
91 #include <linux/init.h>
92 #include <linux/io.h>
93 #include <linux/kernel.h>
94 #include <linux/sched/signal.h>
95 #include <linux/kmod.h>
96 #include <linux/list.h>
97 #include <linux/miscdevice.h>
98 #include <linux/module.h>
99 #include <linux/mutex.h>
100 #include <linux/net.h>
101 #include <linux/poll.h>
102 #include <linux/random.h>
103 #include <linux/skbuff.h>
104 #include <linux/smp.h>
105 #include <linux/socket.h>
106 #include <linux/stddef.h>
107 #include <linux/unistd.h>
108 #include <linux/wait.h>
109 #include <linux/workqueue.h>
110 #include <net/sock.h>
111 #include <net/af_vsock.h>
112
113 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
114 static void vsock_sk_destruct(struct sock *sk);
115 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
116
117 /* Protocol family. */
118 static struct proto vsock_proto = {
119         .name = "AF_VSOCK",
120         .owner = THIS_MODULE,
121         .obj_size = sizeof(struct vsock_sock),
122 };
123
124 /* The default peer timeout indicates how long we will wait for a peer response
125  * to a control message.
126  */
127 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
128
129 #define VSOCK_DEFAULT_BUFFER_SIZE     (1024 * 256)
130 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
131 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
132
133 /* Transport used for host->guest communication */
134 static const struct vsock_transport *transport_h2g;
135 /* Transport used for guest->host communication */
136 static const struct vsock_transport *transport_g2h;
137 /* Transport used for DGRAM communication */
138 static const struct vsock_transport *transport_dgram;
139 /* Transport used for local communication */
140 static const struct vsock_transport *transport_local;
141 static DEFINE_MUTEX(vsock_register_mutex);
142
143 /**** UTILS ****/
144
145 /* Each bound VSocket is stored in the bind hash table and each connected
146  * VSocket is stored in the connected hash table.
147  *
148  * Unbound sockets are all put on the same list attached to the end of the hash
149  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
150  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
151  * represents the list that addr hashes to).
152  *
153  * Specifically, we initialize the vsock_bind_table array to a size of
154  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
155  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
156  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
157  * mods with VSOCK_HASH_SIZE to ensure this.
158  */
159 #define MAX_PORT_RETRIES        24
160
161 #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
162 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
163 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
164
165 /* XXX This can probably be implemented in a better way. */
166 #define VSOCK_CONN_HASH(src, dst)                               \
167         (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
168 #define vsock_connected_sockets(src, dst)               \
169         (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
170 #define vsock_connected_sockets_vsk(vsk)                                \
171         vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
172
173 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
174 EXPORT_SYMBOL_GPL(vsock_bind_table);
175 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
176 EXPORT_SYMBOL_GPL(vsock_connected_table);
177 DEFINE_SPINLOCK(vsock_table_lock);
178 EXPORT_SYMBOL_GPL(vsock_table_lock);
179
180 /* Autobind this socket to the local address if necessary. */
181 static int vsock_auto_bind(struct vsock_sock *vsk)
182 {
183         struct sock *sk = sk_vsock(vsk);
184         struct sockaddr_vm local_addr;
185
186         if (vsock_addr_bound(&vsk->local_addr))
187                 return 0;
188         vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
189         return __vsock_bind(sk, &local_addr);
190 }
191
192 static void vsock_init_tables(void)
193 {
194         int i;
195
196         for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
197                 INIT_LIST_HEAD(&vsock_bind_table[i]);
198
199         for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
200                 INIT_LIST_HEAD(&vsock_connected_table[i]);
201 }
202
203 static void __vsock_insert_bound(struct list_head *list,
204                                  struct vsock_sock *vsk)
205 {
206         sock_hold(&vsk->sk);
207         list_add(&vsk->bound_table, list);
208 }
209
210 static void __vsock_insert_connected(struct list_head *list,
211                                      struct vsock_sock *vsk)
212 {
213         sock_hold(&vsk->sk);
214         list_add(&vsk->connected_table, list);
215 }
216
217 static void __vsock_remove_bound(struct vsock_sock *vsk)
218 {
219         list_del_init(&vsk->bound_table);
220         sock_put(&vsk->sk);
221 }
222
223 static void __vsock_remove_connected(struct vsock_sock *vsk)
224 {
225         list_del_init(&vsk->connected_table);
226         sock_put(&vsk->sk);
227 }
228
229 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
230 {
231         struct vsock_sock *vsk;
232
233         list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
234                 if (vsock_addr_equals_addr(addr, &vsk->local_addr))
235                         return sk_vsock(vsk);
236
237                 if (addr->svm_port == vsk->local_addr.svm_port &&
238                     (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
239                      addr->svm_cid == VMADDR_CID_ANY))
240                         return sk_vsock(vsk);
241         }
242
243         return NULL;
244 }
245
246 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
247                                                   struct sockaddr_vm *dst)
248 {
249         struct vsock_sock *vsk;
250
251         list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
252                             connected_table) {
253                 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
254                     dst->svm_port == vsk->local_addr.svm_port) {
255                         return sk_vsock(vsk);
256                 }
257         }
258
259         return NULL;
260 }
261
262 static void vsock_insert_unbound(struct vsock_sock *vsk)
263 {
264         spin_lock_bh(&vsock_table_lock);
265         __vsock_insert_bound(vsock_unbound_sockets, vsk);
266         spin_unlock_bh(&vsock_table_lock);
267 }
268
269 void vsock_insert_connected(struct vsock_sock *vsk)
270 {
271         struct list_head *list = vsock_connected_sockets(
272                 &vsk->remote_addr, &vsk->local_addr);
273
274         spin_lock_bh(&vsock_table_lock);
275         __vsock_insert_connected(list, vsk);
276         spin_unlock_bh(&vsock_table_lock);
277 }
278 EXPORT_SYMBOL_GPL(vsock_insert_connected);
279
280 void vsock_remove_bound(struct vsock_sock *vsk)
281 {
282         spin_lock_bh(&vsock_table_lock);
283         if (__vsock_in_bound_table(vsk))
284                 __vsock_remove_bound(vsk);
285         spin_unlock_bh(&vsock_table_lock);
286 }
287 EXPORT_SYMBOL_GPL(vsock_remove_bound);
288
289 void vsock_remove_connected(struct vsock_sock *vsk)
290 {
291         spin_lock_bh(&vsock_table_lock);
292         if (__vsock_in_connected_table(vsk))
293                 __vsock_remove_connected(vsk);
294         spin_unlock_bh(&vsock_table_lock);
295 }
296 EXPORT_SYMBOL_GPL(vsock_remove_connected);
297
298 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
299 {
300         struct sock *sk;
301
302         spin_lock_bh(&vsock_table_lock);
303         sk = __vsock_find_bound_socket(addr);
304         if (sk)
305                 sock_hold(sk);
306
307         spin_unlock_bh(&vsock_table_lock);
308
309         return sk;
310 }
311 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
312
313 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
314                                          struct sockaddr_vm *dst)
315 {
316         struct sock *sk;
317
318         spin_lock_bh(&vsock_table_lock);
319         sk = __vsock_find_connected_socket(src, dst);
320         if (sk)
321                 sock_hold(sk);
322
323         spin_unlock_bh(&vsock_table_lock);
324
325         return sk;
326 }
327 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
328
329 void vsock_remove_sock(struct vsock_sock *vsk)
330 {
331         vsock_remove_bound(vsk);
332         vsock_remove_connected(vsk);
333 }
334 EXPORT_SYMBOL_GPL(vsock_remove_sock);
335
336 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
337 {
338         int i;
339
340         spin_lock_bh(&vsock_table_lock);
341
342         for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
343                 struct vsock_sock *vsk;
344                 list_for_each_entry(vsk, &vsock_connected_table[i],
345                                     connected_table)
346                         fn(sk_vsock(vsk));
347         }
348
349         spin_unlock_bh(&vsock_table_lock);
350 }
351 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
352
353 void vsock_add_pending(struct sock *listener, struct sock *pending)
354 {
355         struct vsock_sock *vlistener;
356         struct vsock_sock *vpending;
357
358         vlistener = vsock_sk(listener);
359         vpending = vsock_sk(pending);
360
361         sock_hold(pending);
362         sock_hold(listener);
363         list_add_tail(&vpending->pending_links, &vlistener->pending_links);
364 }
365 EXPORT_SYMBOL_GPL(vsock_add_pending);
366
367 void vsock_remove_pending(struct sock *listener, struct sock *pending)
368 {
369         struct vsock_sock *vpending = vsock_sk(pending);
370
371         list_del_init(&vpending->pending_links);
372         sock_put(listener);
373         sock_put(pending);
374 }
375 EXPORT_SYMBOL_GPL(vsock_remove_pending);
376
377 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
378 {
379         struct vsock_sock *vlistener;
380         struct vsock_sock *vconnected;
381
382         vlistener = vsock_sk(listener);
383         vconnected = vsock_sk(connected);
384
385         sock_hold(connected);
386         sock_hold(listener);
387         list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
388 }
389 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
390
391 static bool vsock_use_local_transport(unsigned int remote_cid)
392 {
393         if (!transport_local)
394                 return false;
395
396         if (remote_cid == VMADDR_CID_LOCAL)
397                 return true;
398
399         if (transport_g2h) {
400                 return remote_cid == transport_g2h->get_local_cid();
401         } else {
402                 return remote_cid == VMADDR_CID_HOST;
403         }
404 }
405
406 static void vsock_deassign_transport(struct vsock_sock *vsk)
407 {
408         if (!vsk->transport)
409                 return;
410
411         vsk->transport->destruct(vsk);
412         module_put(vsk->transport->module);
413         vsk->transport = NULL;
414 }
415
416 /* Assign a transport to a socket and call the .init transport callback.
417  *
418  * Note: for stream socket this must be called when vsk->remote_addr is set
419  * (e.g. during the connect() or when a connection request on a listener
420  * socket is received).
421  * The vsk->remote_addr is used to decide which transport to use:
422  *  - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
423  *    g2h is not loaded, will use local transport;
424  *  - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
425  *    includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
426  *  - remote CID > VMADDR_CID_HOST will use host->guest transport;
427  */
428 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
429 {
430         const struct vsock_transport *new_transport;
431         struct sock *sk = sk_vsock(vsk);
432         unsigned int remote_cid = vsk->remote_addr.svm_cid;
433         __u8 remote_flags;
434         int ret;
435
436         /* If the packet is coming with the source and destination CIDs higher
437          * than VMADDR_CID_HOST, then a vsock channel where all the packets are
438          * forwarded to the host should be established. Then the host will
439          * need to forward the packets to the guest.
440          *
441          * The flag is set on the (listen) receive path (psk is not NULL). On
442          * the connect path the flag can be set by the user space application.
443          */
444         if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
445             vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
446                 vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
447
448         remote_flags = vsk->remote_addr.svm_flags;
449
450         switch (sk->sk_type) {
451         case SOCK_DGRAM:
452                 new_transport = transport_dgram;
453                 break;
454         case SOCK_STREAM:
455                 if (vsock_use_local_transport(remote_cid))
456                         new_transport = transport_local;
457                 else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
458                          (remote_flags & VMADDR_FLAG_TO_HOST))
459                         new_transport = transport_g2h;
460                 else
461                         new_transport = transport_h2g;
462                 break;
463         default:
464                 return -ESOCKTNOSUPPORT;
465         }
466
467         if (vsk->transport) {
468                 if (vsk->transport == new_transport)
469                         return 0;
470
471                 /* transport->release() must be called with sock lock acquired.
472                  * This path can only be taken during vsock_stream_connect(),
473                  * where we have already held the sock lock.
474                  * In the other cases, this function is called on a new socket
475                  * which is not assigned to any transport.
476                  */
477                 vsk->transport->release(vsk);
478                 vsock_deassign_transport(vsk);
479         }
480
481         /* We increase the module refcnt to prevent the transport unloading
482          * while there are open sockets assigned to it.
483          */
484         if (!new_transport || !try_module_get(new_transport->module))
485                 return -ENODEV;
486
487         ret = new_transport->init(vsk, psk);
488         if (ret) {
489                 module_put(new_transport->module);
490                 return ret;
491         }
492
493         vsk->transport = new_transport;
494
495         return 0;
496 }
497 EXPORT_SYMBOL_GPL(vsock_assign_transport);
498
499 bool vsock_find_cid(unsigned int cid)
500 {
501         if (transport_g2h && cid == transport_g2h->get_local_cid())
502                 return true;
503
504         if (transport_h2g && cid == VMADDR_CID_HOST)
505                 return true;
506
507         if (transport_local && cid == VMADDR_CID_LOCAL)
508                 return true;
509
510         return false;
511 }
512 EXPORT_SYMBOL_GPL(vsock_find_cid);
513
514 static struct sock *vsock_dequeue_accept(struct sock *listener)
515 {
516         struct vsock_sock *vlistener;
517         struct vsock_sock *vconnected;
518
519         vlistener = vsock_sk(listener);
520
521         if (list_empty(&vlistener->accept_queue))
522                 return NULL;
523
524         vconnected = list_entry(vlistener->accept_queue.next,
525                                 struct vsock_sock, accept_queue);
526
527         list_del_init(&vconnected->accept_queue);
528         sock_put(listener);
529         /* The caller will need a reference on the connected socket so we let
530          * it call sock_put().
531          */
532
533         return sk_vsock(vconnected);
534 }
535
536 static bool vsock_is_accept_queue_empty(struct sock *sk)
537 {
538         struct vsock_sock *vsk = vsock_sk(sk);
539         return list_empty(&vsk->accept_queue);
540 }
541
542 static bool vsock_is_pending(struct sock *sk)
543 {
544         struct vsock_sock *vsk = vsock_sk(sk);
545         return !list_empty(&vsk->pending_links);
546 }
547
548 static int vsock_send_shutdown(struct sock *sk, int mode)
549 {
550         struct vsock_sock *vsk = vsock_sk(sk);
551
552         if (!vsk->transport)
553                 return -ENODEV;
554
555         return vsk->transport->shutdown(vsk, mode);
556 }
557
558 static void vsock_pending_work(struct work_struct *work)
559 {
560         struct sock *sk;
561         struct sock *listener;
562         struct vsock_sock *vsk;
563         bool cleanup;
564
565         vsk = container_of(work, struct vsock_sock, pending_work.work);
566         sk = sk_vsock(vsk);
567         listener = vsk->listener;
568         cleanup = true;
569
570         lock_sock(listener);
571         lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
572
573         if (vsock_is_pending(sk)) {
574                 vsock_remove_pending(listener, sk);
575
576                 sk_acceptq_removed(listener);
577         } else if (!vsk->rejected) {
578                 /* We are not on the pending list and accept() did not reject
579                  * us, so we must have been accepted by our user process.  We
580                  * just need to drop our references to the sockets and be on
581                  * our way.
582                  */
583                 cleanup = false;
584                 goto out;
585         }
586
587         /* We need to remove ourself from the global connected sockets list so
588          * incoming packets can't find this socket, and to reduce the reference
589          * count.
590          */
591         vsock_remove_connected(vsk);
592
593         sk->sk_state = TCP_CLOSE;
594
595 out:
596         release_sock(sk);
597         release_sock(listener);
598         if (cleanup)
599                 sock_put(sk);
600
601         sock_put(sk);
602         sock_put(listener);
603 }
604
605 /**** SOCKET OPERATIONS ****/
606
607 static int __vsock_bind_stream(struct vsock_sock *vsk,
608                                struct sockaddr_vm *addr)
609 {
610         static u32 port;
611         struct sockaddr_vm new_addr;
612
613         if (!port)
614                 port = LAST_RESERVED_PORT + 1 +
615                         prandom_u32_max(U32_MAX - LAST_RESERVED_PORT);
616
617         vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
618
619         if (addr->svm_port == VMADDR_PORT_ANY) {
620                 bool found = false;
621                 unsigned int i;
622
623                 for (i = 0; i < MAX_PORT_RETRIES; i++) {
624                         if (port <= LAST_RESERVED_PORT)
625                                 port = LAST_RESERVED_PORT + 1;
626
627                         new_addr.svm_port = port++;
628
629                         if (!__vsock_find_bound_socket(&new_addr)) {
630                                 found = true;
631                                 break;
632                         }
633                 }
634
635                 if (!found)
636                         return -EADDRNOTAVAIL;
637         } else {
638                 /* If port is in reserved range, ensure caller
639                  * has necessary privileges.
640                  */
641                 if (addr->svm_port <= LAST_RESERVED_PORT &&
642                     !capable(CAP_NET_BIND_SERVICE)) {
643                         return -EACCES;
644                 }
645
646                 if (__vsock_find_bound_socket(&new_addr))
647                         return -EADDRINUSE;
648         }
649
650         vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
651
652         /* Remove stream sockets from the unbound list and add them to the hash
653          * table for easy lookup by its address.  The unbound list is simply an
654          * extra entry at the end of the hash table, a trick used by AF_UNIX.
655          */
656         __vsock_remove_bound(vsk);
657         __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
658
659         return 0;
660 }
661
662 static int __vsock_bind_dgram(struct vsock_sock *vsk,
663                               struct sockaddr_vm *addr)
664 {
665         return vsk->transport->dgram_bind(vsk, addr);
666 }
667
668 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
669 {
670         struct vsock_sock *vsk = vsock_sk(sk);
671         int retval;
672
673         /* First ensure this socket isn't already bound. */
674         if (vsock_addr_bound(&vsk->local_addr))
675                 return -EINVAL;
676
677         /* Now bind to the provided address or select appropriate values if
678          * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
679          * like AF_INET prevents binding to a non-local IP address (in most
680          * cases), we only allow binding to a local CID.
681          */
682         if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
683                 return -EADDRNOTAVAIL;
684
685         switch (sk->sk_socket->type) {
686         case SOCK_STREAM:
687                 spin_lock_bh(&vsock_table_lock);
688                 retval = __vsock_bind_stream(vsk, addr);
689                 spin_unlock_bh(&vsock_table_lock);
690                 break;
691
692         case SOCK_DGRAM:
693                 retval = __vsock_bind_dgram(vsk, addr);
694                 break;
695
696         default:
697                 retval = -EINVAL;
698                 break;
699         }
700
701         return retval;
702 }
703
704 static void vsock_connect_timeout(struct work_struct *work);
705
706 static struct sock *__vsock_create(struct net *net,
707                                    struct socket *sock,
708                                    struct sock *parent,
709                                    gfp_t priority,
710                                    unsigned short type,
711                                    int kern)
712 {
713         struct sock *sk;
714         struct vsock_sock *psk;
715         struct vsock_sock *vsk;
716
717         sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
718         if (!sk)
719                 return NULL;
720
721         sock_init_data(sock, sk);
722
723         /* sk->sk_type is normally set in sock_init_data, but only if sock is
724          * non-NULL. We make sure that our sockets always have a type by
725          * setting it here if needed.
726          */
727         if (!sock)
728                 sk->sk_type = type;
729
730         vsk = vsock_sk(sk);
731         vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
732         vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
733
734         sk->sk_destruct = vsock_sk_destruct;
735         sk->sk_backlog_rcv = vsock_queue_rcv_skb;
736         sock_reset_flag(sk, SOCK_DONE);
737
738         INIT_LIST_HEAD(&vsk->bound_table);
739         INIT_LIST_HEAD(&vsk->connected_table);
740         vsk->listener = NULL;
741         INIT_LIST_HEAD(&vsk->pending_links);
742         INIT_LIST_HEAD(&vsk->accept_queue);
743         vsk->rejected = false;
744         vsk->sent_request = false;
745         vsk->ignore_connecting_rst = false;
746         vsk->peer_shutdown = 0;
747         INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
748         INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
749
750         psk = parent ? vsock_sk(parent) : NULL;
751         if (parent) {
752                 vsk->trusted = psk->trusted;
753                 vsk->owner = get_cred(psk->owner);
754                 vsk->connect_timeout = psk->connect_timeout;
755                 vsk->buffer_size = psk->buffer_size;
756                 vsk->buffer_min_size = psk->buffer_min_size;
757                 vsk->buffer_max_size = psk->buffer_max_size;
758         } else {
759                 vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
760                 vsk->owner = get_current_cred();
761                 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
762                 vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
763                 vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
764                 vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
765         }
766
767         return sk;
768 }
769
770 static void __vsock_release(struct sock *sk, int level)
771 {
772         if (sk) {
773                 struct sock *pending;
774                 struct vsock_sock *vsk;
775
776                 vsk = vsock_sk(sk);
777                 pending = NULL; /* Compiler warning. */
778
779                 /* When "level" is SINGLE_DEPTH_NESTING, use the nested
780                  * version to avoid the warning "possible recursive locking
781                  * detected". When "level" is 0, lock_sock_nested(sk, level)
782                  * is the same as lock_sock(sk).
783                  */
784                 lock_sock_nested(sk, level);
785
786                 if (vsk->transport)
787                         vsk->transport->release(vsk);
788                 else if (sk->sk_type == SOCK_STREAM)
789                         vsock_remove_sock(vsk);
790
791                 sock_orphan(sk);
792                 sk->sk_shutdown = SHUTDOWN_MASK;
793
794                 skb_queue_purge(&sk->sk_receive_queue);
795
796                 /* Clean up any sockets that never were accepted. */
797                 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
798                         __vsock_release(pending, SINGLE_DEPTH_NESTING);
799                         sock_put(pending);
800                 }
801
802                 release_sock(sk);
803                 sock_put(sk);
804         }
805 }
806
807 static void vsock_sk_destruct(struct sock *sk)
808 {
809         struct vsock_sock *vsk = vsock_sk(sk);
810
811         vsock_deassign_transport(vsk);
812
813         /* When clearing these addresses, there's no need to set the family and
814          * possibly register the address family with the kernel.
815          */
816         vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
817         vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
818
819         put_cred(vsk->owner);
820 }
821
822 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
823 {
824         int err;
825
826         err = sock_queue_rcv_skb(sk, skb);
827         if (err)
828                 kfree_skb(skb);
829
830         return err;
831 }
832
833 struct sock *vsock_create_connected(struct sock *parent)
834 {
835         return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
836                               parent->sk_type, 0);
837 }
838 EXPORT_SYMBOL_GPL(vsock_create_connected);
839
840 s64 vsock_stream_has_data(struct vsock_sock *vsk)
841 {
842         return vsk->transport->stream_has_data(vsk);
843 }
844 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
845
846 s64 vsock_stream_has_space(struct vsock_sock *vsk)
847 {
848         return vsk->transport->stream_has_space(vsk);
849 }
850 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
851
852 static int vsock_release(struct socket *sock)
853 {
854         __vsock_release(sock->sk, 0);
855         sock->sk = NULL;
856         sock->state = SS_FREE;
857
858         return 0;
859 }
860
861 static int
862 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
863 {
864         int err;
865         struct sock *sk;
866         struct sockaddr_vm *vm_addr;
867
868         sk = sock->sk;
869
870         if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
871                 return -EINVAL;
872
873         lock_sock(sk);
874         err = __vsock_bind(sk, vm_addr);
875         release_sock(sk);
876
877         return err;
878 }
879
880 static int vsock_getname(struct socket *sock,
881                          struct sockaddr *addr, int peer)
882 {
883         int err;
884         struct sock *sk;
885         struct vsock_sock *vsk;
886         struct sockaddr_vm *vm_addr;
887
888         sk = sock->sk;
889         vsk = vsock_sk(sk);
890         err = 0;
891
892         lock_sock(sk);
893
894         if (peer) {
895                 if (sock->state != SS_CONNECTED) {
896                         err = -ENOTCONN;
897                         goto out;
898                 }
899                 vm_addr = &vsk->remote_addr;
900         } else {
901                 vm_addr = &vsk->local_addr;
902         }
903
904         if (!vm_addr) {
905                 err = -EINVAL;
906                 goto out;
907         }
908
909         /* sys_getsockname() and sys_getpeername() pass us a
910          * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
911          * that macro is defined in socket.c instead of .h, so we hardcode its
912          * value here.
913          */
914         BUILD_BUG_ON(sizeof(*vm_addr) > 128);
915         memcpy(addr, vm_addr, sizeof(*vm_addr));
916         err = sizeof(*vm_addr);
917
918 out:
919         release_sock(sk);
920         return err;
921 }
922
923 static int vsock_shutdown(struct socket *sock, int mode)
924 {
925         int err;
926         struct sock *sk;
927
928         /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
929          * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
930          * here like the other address families do.  Note also that the
931          * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
932          * which is what we want.
933          */
934         mode++;
935
936         if ((mode & ~SHUTDOWN_MASK) || !mode)
937                 return -EINVAL;
938
939         /* If this is a STREAM socket and it is not connected then bail out
940          * immediately.  If it is a DGRAM socket then we must first kick the
941          * socket so that it wakes up from any sleeping calls, for example
942          * recv(), and then afterwards return the error.
943          */
944
945         sk = sock->sk;
946         if (sock->state == SS_UNCONNECTED) {
947                 err = -ENOTCONN;
948                 if (sk->sk_type == SOCK_STREAM)
949                         return err;
950         } else {
951                 sock->state = SS_DISCONNECTING;
952                 err = 0;
953         }
954
955         /* Receive and send shutdowns are treated alike. */
956         mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
957         if (mode) {
958                 lock_sock(sk);
959                 sk->sk_shutdown |= mode;
960                 sk->sk_state_change(sk);
961                 release_sock(sk);
962
963                 if (sk->sk_type == SOCK_STREAM) {
964                         sock_reset_flag(sk, SOCK_DONE);
965                         vsock_send_shutdown(sk, mode);
966                 }
967         }
968
969         return err;
970 }
971
972 static __poll_t vsock_poll(struct file *file, struct socket *sock,
973                                poll_table *wait)
974 {
975         struct sock *sk;
976         __poll_t mask;
977         struct vsock_sock *vsk;
978
979         sk = sock->sk;
980         vsk = vsock_sk(sk);
981
982         poll_wait(file, sk_sleep(sk), wait);
983         mask = 0;
984
985         if (sk->sk_err)
986                 /* Signify that there has been an error on this socket. */
987                 mask |= EPOLLERR;
988
989         /* INET sockets treat local write shutdown and peer write shutdown as a
990          * case of EPOLLHUP set.
991          */
992         if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
993             ((sk->sk_shutdown & SEND_SHUTDOWN) &&
994              (vsk->peer_shutdown & SEND_SHUTDOWN))) {
995                 mask |= EPOLLHUP;
996         }
997
998         if (sk->sk_shutdown & RCV_SHUTDOWN ||
999             vsk->peer_shutdown & SEND_SHUTDOWN) {
1000                 mask |= EPOLLRDHUP;
1001         }
1002
1003         if (sock->type == SOCK_DGRAM) {
1004                 /* For datagram sockets we can read if there is something in
1005                  * the queue and write as long as the socket isn't shutdown for
1006                  * sending.
1007                  */
1008                 if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1009                     (sk->sk_shutdown & RCV_SHUTDOWN)) {
1010                         mask |= EPOLLIN | EPOLLRDNORM;
1011                 }
1012
1013                 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1014                         mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1015
1016         } else if (sock->type == SOCK_STREAM) {
1017                 const struct vsock_transport *transport;
1018
1019                 lock_sock(sk);
1020
1021                 transport = vsk->transport;
1022
1023                 /* Listening sockets that have connections in their accept
1024                  * queue can be read.
1025                  */
1026                 if (sk->sk_state == TCP_LISTEN
1027                     && !vsock_is_accept_queue_empty(sk))
1028                         mask |= EPOLLIN | EPOLLRDNORM;
1029
1030                 /* If there is something in the queue then we can read. */
1031                 if (transport && transport->stream_is_active(vsk) &&
1032                     !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1033                         bool data_ready_now = false;
1034                         int ret = transport->notify_poll_in(
1035                                         vsk, 1, &data_ready_now);
1036                         if (ret < 0) {
1037                                 mask |= EPOLLERR;
1038                         } else {
1039                                 if (data_ready_now)
1040                                         mask |= EPOLLIN | EPOLLRDNORM;
1041
1042                         }
1043                 }
1044
1045                 /* Sockets whose connections have been closed, reset, or
1046                  * terminated should also be considered read, and we check the
1047                  * shutdown flag for that.
1048                  */
1049                 if (sk->sk_shutdown & RCV_SHUTDOWN ||
1050                     vsk->peer_shutdown & SEND_SHUTDOWN) {
1051                         mask |= EPOLLIN | EPOLLRDNORM;
1052                 }
1053
1054                 /* Connected sockets that can produce data can be written. */
1055                 if (transport && sk->sk_state == TCP_ESTABLISHED) {
1056                         if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1057                                 bool space_avail_now = false;
1058                                 int ret = transport->notify_poll_out(
1059                                                 vsk, 1, &space_avail_now);
1060                                 if (ret < 0) {
1061                                         mask |= EPOLLERR;
1062                                 } else {
1063                                         if (space_avail_now)
1064                                                 /* Remove EPOLLWRBAND since INET
1065                                                  * sockets are not setting it.
1066                                                  */
1067                                                 mask |= EPOLLOUT | EPOLLWRNORM;
1068
1069                                 }
1070                         }
1071                 }
1072
1073                 /* Simulate INET socket poll behaviors, which sets
1074                  * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1075                  * but local send is not shutdown.
1076                  */
1077                 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1078                         if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1079                                 mask |= EPOLLOUT | EPOLLWRNORM;
1080
1081                 }
1082
1083                 release_sock(sk);
1084         }
1085
1086         return mask;
1087 }
1088
1089 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1090                                size_t len)
1091 {
1092         int err;
1093         struct sock *sk;
1094         struct vsock_sock *vsk;
1095         struct sockaddr_vm *remote_addr;
1096         const struct vsock_transport *transport;
1097
1098         if (msg->msg_flags & MSG_OOB)
1099                 return -EOPNOTSUPP;
1100
1101         /* For now, MSG_DONTWAIT is always assumed... */
1102         err = 0;
1103         sk = sock->sk;
1104         vsk = vsock_sk(sk);
1105
1106         lock_sock(sk);
1107
1108         transport = vsk->transport;
1109
1110         err = vsock_auto_bind(vsk);
1111         if (err)
1112                 goto out;
1113
1114
1115         /* If the provided message contains an address, use that.  Otherwise
1116          * fall back on the socket's remote handle (if it has been connected).
1117          */
1118         if (msg->msg_name &&
1119             vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1120                             &remote_addr) == 0) {
1121                 /* Ensure this address is of the right type and is a valid
1122                  * destination.
1123                  */
1124
1125                 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1126                         remote_addr->svm_cid = transport->get_local_cid();
1127
1128                 if (!vsock_addr_bound(remote_addr)) {
1129                         err = -EINVAL;
1130                         goto out;
1131                 }
1132         } else if (sock->state == SS_CONNECTED) {
1133                 remote_addr = &vsk->remote_addr;
1134
1135                 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1136                         remote_addr->svm_cid = transport->get_local_cid();
1137
1138                 /* XXX Should connect() or this function ensure remote_addr is
1139                  * bound?
1140                  */
1141                 if (!vsock_addr_bound(&vsk->remote_addr)) {
1142                         err = -EINVAL;
1143                         goto out;
1144                 }
1145         } else {
1146                 err = -EINVAL;
1147                 goto out;
1148         }
1149
1150         if (!transport->dgram_allow(remote_addr->svm_cid,
1151                                     remote_addr->svm_port)) {
1152                 err = -EINVAL;
1153                 goto out;
1154         }
1155
1156         err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1157
1158 out:
1159         release_sock(sk);
1160         return err;
1161 }
1162
1163 static int vsock_dgram_connect(struct socket *sock,
1164                                struct sockaddr *addr, int addr_len, int flags)
1165 {
1166         int err;
1167         struct sock *sk;
1168         struct vsock_sock *vsk;
1169         struct sockaddr_vm *remote_addr;
1170
1171         sk = sock->sk;
1172         vsk = vsock_sk(sk);
1173
1174         err = vsock_addr_cast(addr, addr_len, &remote_addr);
1175         if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1176                 lock_sock(sk);
1177                 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1178                                 VMADDR_PORT_ANY);
1179                 sock->state = SS_UNCONNECTED;
1180                 release_sock(sk);
1181                 return 0;
1182         } else if (err != 0)
1183                 return -EINVAL;
1184
1185         lock_sock(sk);
1186
1187         err = vsock_auto_bind(vsk);
1188         if (err)
1189                 goto out;
1190
1191         if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1192                                          remote_addr->svm_port)) {
1193                 err = -EINVAL;
1194                 goto out;
1195         }
1196
1197         memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1198         sock->state = SS_CONNECTED;
1199
1200 out:
1201         release_sock(sk);
1202         return err;
1203 }
1204
1205 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1206                                size_t len, int flags)
1207 {
1208         struct vsock_sock *vsk = vsock_sk(sock->sk);
1209
1210         return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1211 }
1212
1213 static const struct proto_ops vsock_dgram_ops = {
1214         .family = PF_VSOCK,
1215         .owner = THIS_MODULE,
1216         .release = vsock_release,
1217         .bind = vsock_bind,
1218         .connect = vsock_dgram_connect,
1219         .socketpair = sock_no_socketpair,
1220         .accept = sock_no_accept,
1221         .getname = vsock_getname,
1222         .poll = vsock_poll,
1223         .ioctl = sock_no_ioctl,
1224         .listen = sock_no_listen,
1225         .shutdown = vsock_shutdown,
1226         .sendmsg = vsock_dgram_sendmsg,
1227         .recvmsg = vsock_dgram_recvmsg,
1228         .mmap = sock_no_mmap,
1229         .sendpage = sock_no_sendpage,
1230 };
1231
1232 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1233 {
1234         const struct vsock_transport *transport = vsk->transport;
1235
1236         if (!transport->cancel_pkt)
1237                 return -EOPNOTSUPP;
1238
1239         return transport->cancel_pkt(vsk);
1240 }
1241
1242 static void vsock_connect_timeout(struct work_struct *work)
1243 {
1244         struct sock *sk;
1245         struct vsock_sock *vsk;
1246         int cancel = 0;
1247
1248         vsk = container_of(work, struct vsock_sock, connect_work.work);
1249         sk = sk_vsock(vsk);
1250
1251         lock_sock(sk);
1252         if (sk->sk_state == TCP_SYN_SENT &&
1253             (sk->sk_shutdown != SHUTDOWN_MASK)) {
1254                 sk->sk_state = TCP_CLOSE;
1255                 sk->sk_err = ETIMEDOUT;
1256                 sk->sk_error_report(sk);
1257                 cancel = 1;
1258         }
1259         release_sock(sk);
1260         if (cancel)
1261                 vsock_transport_cancel_pkt(vsk);
1262
1263         sock_put(sk);
1264 }
1265
1266 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1267                                 int addr_len, int flags)
1268 {
1269         int err;
1270         struct sock *sk;
1271         struct vsock_sock *vsk;
1272         const struct vsock_transport *transport;
1273         struct sockaddr_vm *remote_addr;
1274         long timeout;
1275         DEFINE_WAIT(wait);
1276
1277         err = 0;
1278         sk = sock->sk;
1279         vsk = vsock_sk(sk);
1280
1281         lock_sock(sk);
1282
1283         /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1284         switch (sock->state) {
1285         case SS_CONNECTED:
1286                 err = -EISCONN;
1287                 goto out;
1288         case SS_DISCONNECTING:
1289                 err = -EINVAL;
1290                 goto out;
1291         case SS_CONNECTING:
1292                 /* This continues on so we can move sock into the SS_CONNECTED
1293                  * state once the connection has completed (at which point err
1294                  * will be set to zero also).  Otherwise, we will either wait
1295                  * for the connection or return -EALREADY should this be a
1296                  * non-blocking call.
1297                  */
1298                 err = -EALREADY;
1299                 break;
1300         default:
1301                 if ((sk->sk_state == TCP_LISTEN) ||
1302                     vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1303                         err = -EINVAL;
1304                         goto out;
1305                 }
1306
1307                 /* Set the remote address that we are connecting to. */
1308                 memcpy(&vsk->remote_addr, remote_addr,
1309                        sizeof(vsk->remote_addr));
1310
1311                 err = vsock_assign_transport(vsk, NULL);
1312                 if (err)
1313                         goto out;
1314
1315                 transport = vsk->transport;
1316
1317                 /* The hypervisor and well-known contexts do not have socket
1318                  * endpoints.
1319                  */
1320                 if (!transport ||
1321                     !transport->stream_allow(remote_addr->svm_cid,
1322                                              remote_addr->svm_port)) {
1323                         err = -ENETUNREACH;
1324                         goto out;
1325                 }
1326
1327                 err = vsock_auto_bind(vsk);
1328                 if (err)
1329                         goto out;
1330
1331                 sk->sk_state = TCP_SYN_SENT;
1332
1333                 err = transport->connect(vsk);
1334                 if (err < 0)
1335                         goto out;
1336
1337                 /* Mark sock as connecting and set the error code to in
1338                  * progress in case this is a non-blocking connect.
1339                  */
1340                 sock->state = SS_CONNECTING;
1341                 err = -EINPROGRESS;
1342         }
1343
1344         /* The receive path will handle all communication until we are able to
1345          * enter the connected state.  Here we wait for the connection to be
1346          * completed or a notification of an error.
1347          */
1348         timeout = vsk->connect_timeout;
1349         prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1350
1351         while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1352                 if (flags & O_NONBLOCK) {
1353                         /* If we're not going to block, we schedule a timeout
1354                          * function to generate a timeout on the connection
1355                          * attempt, in case the peer doesn't respond in a
1356                          * timely manner. We hold on to the socket until the
1357                          * timeout fires.
1358                          */
1359                         sock_hold(sk);
1360                         schedule_delayed_work(&vsk->connect_work, timeout);
1361
1362                         /* Skip ahead to preserve error code set above. */
1363                         goto out_wait;
1364                 }
1365
1366                 release_sock(sk);
1367                 timeout = schedule_timeout(timeout);
1368                 lock_sock(sk);
1369
1370                 if (signal_pending(current)) {
1371                         err = sock_intr_errno(timeout);
1372                         sk->sk_state = TCP_CLOSE;
1373                         sock->state = SS_UNCONNECTED;
1374                         vsock_transport_cancel_pkt(vsk);
1375                         goto out_wait;
1376                 } else if (timeout == 0) {
1377                         err = -ETIMEDOUT;
1378                         sk->sk_state = TCP_CLOSE;
1379                         sock->state = SS_UNCONNECTED;
1380                         vsock_transport_cancel_pkt(vsk);
1381                         goto out_wait;
1382                 }
1383
1384                 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1385         }
1386
1387         if (sk->sk_err) {
1388                 err = -sk->sk_err;
1389                 sk->sk_state = TCP_CLOSE;
1390                 sock->state = SS_UNCONNECTED;
1391         } else {
1392                 err = 0;
1393         }
1394
1395 out_wait:
1396         finish_wait(sk_sleep(sk), &wait);
1397 out:
1398         release_sock(sk);
1399         return err;
1400 }
1401
1402 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1403                         bool kern)
1404 {
1405         struct sock *listener;
1406         int err;
1407         struct sock *connected;
1408         struct vsock_sock *vconnected;
1409         long timeout;
1410         DEFINE_WAIT(wait);
1411
1412         err = 0;
1413         listener = sock->sk;
1414
1415         lock_sock(listener);
1416
1417         if (sock->type != SOCK_STREAM) {
1418                 err = -EOPNOTSUPP;
1419                 goto out;
1420         }
1421
1422         if (listener->sk_state != TCP_LISTEN) {
1423                 err = -EINVAL;
1424                 goto out;
1425         }
1426
1427         /* Wait for children sockets to appear; these are the new sockets
1428          * created upon connection establishment.
1429          */
1430         timeout = sock_rcvtimeo(listener, flags & O_NONBLOCK);
1431         prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1432
1433         while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1434                listener->sk_err == 0) {
1435                 release_sock(listener);
1436                 timeout = schedule_timeout(timeout);
1437                 finish_wait(sk_sleep(listener), &wait);
1438                 lock_sock(listener);
1439
1440                 if (signal_pending(current)) {
1441                         err = sock_intr_errno(timeout);
1442                         goto out;
1443                 } else if (timeout == 0) {
1444                         err = -EAGAIN;
1445                         goto out;
1446                 }
1447
1448                 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1449         }
1450         finish_wait(sk_sleep(listener), &wait);
1451
1452         if (listener->sk_err)
1453                 err = -listener->sk_err;
1454
1455         if (connected) {
1456                 sk_acceptq_removed(listener);
1457
1458                 lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1459                 vconnected = vsock_sk(connected);
1460
1461                 /* If the listener socket has received an error, then we should
1462                  * reject this socket and return.  Note that we simply mark the
1463                  * socket rejected, drop our reference, and let the cleanup
1464                  * function handle the cleanup; the fact that we found it in
1465                  * the listener's accept queue guarantees that the cleanup
1466                  * function hasn't run yet.
1467                  */
1468                 if (err) {
1469                         vconnected->rejected = true;
1470                 } else {
1471                         newsock->state = SS_CONNECTED;
1472                         sock_graft(connected, newsock);
1473                 }
1474
1475                 release_sock(connected);
1476                 sock_put(connected);
1477         }
1478
1479 out:
1480         release_sock(listener);
1481         return err;
1482 }
1483
1484 static int vsock_listen(struct socket *sock, int backlog)
1485 {
1486         int err;
1487         struct sock *sk;
1488         struct vsock_sock *vsk;
1489
1490         sk = sock->sk;
1491
1492         lock_sock(sk);
1493
1494         if (sock->type != SOCK_STREAM) {
1495                 err = -EOPNOTSUPP;
1496                 goto out;
1497         }
1498
1499         if (sock->state != SS_UNCONNECTED) {
1500                 err = -EINVAL;
1501                 goto out;
1502         }
1503
1504         vsk = vsock_sk(sk);
1505
1506         if (!vsock_addr_bound(&vsk->local_addr)) {
1507                 err = -EINVAL;
1508                 goto out;
1509         }
1510
1511         sk->sk_max_ack_backlog = backlog;
1512         sk->sk_state = TCP_LISTEN;
1513
1514         err = 0;
1515
1516 out:
1517         release_sock(sk);
1518         return err;
1519 }
1520
1521 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1522                                      const struct vsock_transport *transport,
1523                                      u64 val)
1524 {
1525         if (val > vsk->buffer_max_size)
1526                 val = vsk->buffer_max_size;
1527
1528         if (val < vsk->buffer_min_size)
1529                 val = vsk->buffer_min_size;
1530
1531         if (val != vsk->buffer_size &&
1532             transport && transport->notify_buffer_size)
1533                 transport->notify_buffer_size(vsk, &val);
1534
1535         vsk->buffer_size = val;
1536 }
1537
1538 static int vsock_stream_setsockopt(struct socket *sock,
1539                                    int level,
1540                                    int optname,
1541                                    sockptr_t optval,
1542                                    unsigned int optlen)
1543 {
1544         int err;
1545         struct sock *sk;
1546         struct vsock_sock *vsk;
1547         const struct vsock_transport *transport;
1548         u64 val;
1549
1550         if (level != AF_VSOCK)
1551                 return -ENOPROTOOPT;
1552
1553 #define COPY_IN(_v)                                       \
1554         do {                                              \
1555                 if (optlen < sizeof(_v)) {                \
1556                         err = -EINVAL;                    \
1557                         goto exit;                        \
1558                 }                                         \
1559                 if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) {  \
1560                         err = -EFAULT;                                  \
1561                         goto exit;                                      \
1562                 }                                                       \
1563         } while (0)
1564
1565         err = 0;
1566         sk = sock->sk;
1567         vsk = vsock_sk(sk);
1568
1569         lock_sock(sk);
1570
1571         transport = vsk->transport;
1572
1573         switch (optname) {
1574         case SO_VM_SOCKETS_BUFFER_SIZE:
1575                 COPY_IN(val);
1576                 vsock_update_buffer_size(vsk, transport, val);
1577                 break;
1578
1579         case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1580                 COPY_IN(val);
1581                 vsk->buffer_max_size = val;
1582                 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1583                 break;
1584
1585         case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1586                 COPY_IN(val);
1587                 vsk->buffer_min_size = val;
1588                 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1589                 break;
1590
1591         case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1592                 struct __kernel_old_timeval tv;
1593                 COPY_IN(tv);
1594                 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1595                     tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1596                         vsk->connect_timeout = tv.tv_sec * HZ +
1597                             DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1598                         if (vsk->connect_timeout == 0)
1599                                 vsk->connect_timeout =
1600                                     VSOCK_DEFAULT_CONNECT_TIMEOUT;
1601
1602                 } else {
1603                         err = -ERANGE;
1604                 }
1605                 break;
1606         }
1607
1608         default:
1609                 err = -ENOPROTOOPT;
1610                 break;
1611         }
1612
1613 #undef COPY_IN
1614
1615 exit:
1616         release_sock(sk);
1617         return err;
1618 }
1619
1620 static int vsock_stream_getsockopt(struct socket *sock,
1621                                    int level, int optname,
1622                                    char __user *optval,
1623                                    int __user *optlen)
1624 {
1625         int err;
1626         int len;
1627         struct sock *sk;
1628         struct vsock_sock *vsk;
1629         u64 val;
1630
1631         if (level != AF_VSOCK)
1632                 return -ENOPROTOOPT;
1633
1634         err = get_user(len, optlen);
1635         if (err != 0)
1636                 return err;
1637
1638 #define COPY_OUT(_v)                            \
1639         do {                                    \
1640                 if (len < sizeof(_v))           \
1641                         return -EINVAL;         \
1642                                                 \
1643                 len = sizeof(_v);               \
1644                 if (copy_to_user(optval, &_v, len) != 0)        \
1645                         return -EFAULT;                         \
1646                                                                 \
1647         } while (0)
1648
1649         err = 0;
1650         sk = sock->sk;
1651         vsk = vsock_sk(sk);
1652
1653         switch (optname) {
1654         case SO_VM_SOCKETS_BUFFER_SIZE:
1655                 val = vsk->buffer_size;
1656                 COPY_OUT(val);
1657                 break;
1658
1659         case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1660                 val = vsk->buffer_max_size;
1661                 COPY_OUT(val);
1662                 break;
1663
1664         case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1665                 val = vsk->buffer_min_size;
1666                 COPY_OUT(val);
1667                 break;
1668
1669         case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1670                 struct __kernel_old_timeval tv;
1671                 tv.tv_sec = vsk->connect_timeout / HZ;
1672                 tv.tv_usec =
1673                     (vsk->connect_timeout -
1674                      tv.tv_sec * HZ) * (1000000 / HZ);
1675                 COPY_OUT(tv);
1676                 break;
1677         }
1678         default:
1679                 return -ENOPROTOOPT;
1680         }
1681
1682         err = put_user(len, optlen);
1683         if (err != 0)
1684                 return -EFAULT;
1685
1686 #undef COPY_OUT
1687
1688         return 0;
1689 }
1690
1691 static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1692                                 size_t len)
1693 {
1694         struct sock *sk;
1695         struct vsock_sock *vsk;
1696         const struct vsock_transport *transport;
1697         ssize_t total_written;
1698         long timeout;
1699         int err;
1700         struct vsock_transport_send_notify_data send_data;
1701         DEFINE_WAIT_FUNC(wait, woken_wake_function);
1702
1703         sk = sock->sk;
1704         vsk = vsock_sk(sk);
1705         total_written = 0;
1706         err = 0;
1707
1708         if (msg->msg_flags & MSG_OOB)
1709                 return -EOPNOTSUPP;
1710
1711         lock_sock(sk);
1712
1713         transport = vsk->transport;
1714
1715         /* Callers should not provide a destination with stream sockets. */
1716         if (msg->msg_namelen) {
1717                 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1718                 goto out;
1719         }
1720
1721         /* Send data only if both sides are not shutdown in the direction. */
1722         if (sk->sk_shutdown & SEND_SHUTDOWN ||
1723             vsk->peer_shutdown & RCV_SHUTDOWN) {
1724                 err = -EPIPE;
1725                 goto out;
1726         }
1727
1728         if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1729             !vsock_addr_bound(&vsk->local_addr)) {
1730                 err = -ENOTCONN;
1731                 goto out;
1732         }
1733
1734         if (!vsock_addr_bound(&vsk->remote_addr)) {
1735                 err = -EDESTADDRREQ;
1736                 goto out;
1737         }
1738
1739         /* Wait for room in the produce queue to enqueue our user's data. */
1740         timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1741
1742         err = transport->notify_send_init(vsk, &send_data);
1743         if (err < 0)
1744                 goto out;
1745
1746         while (total_written < len) {
1747                 ssize_t written;
1748
1749                 add_wait_queue(sk_sleep(sk), &wait);
1750                 while (vsock_stream_has_space(vsk) == 0 &&
1751                        sk->sk_err == 0 &&
1752                        !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1753                        !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1754
1755                         /* Don't wait for non-blocking sockets. */
1756                         if (timeout == 0) {
1757                                 err = -EAGAIN;
1758                                 remove_wait_queue(sk_sleep(sk), &wait);
1759                                 goto out_err;
1760                         }
1761
1762                         err = transport->notify_send_pre_block(vsk, &send_data);
1763                         if (err < 0) {
1764                                 remove_wait_queue(sk_sleep(sk), &wait);
1765                                 goto out_err;
1766                         }
1767
1768                         release_sock(sk);
1769                         timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1770                         lock_sock(sk);
1771                         if (signal_pending(current)) {
1772                                 err = sock_intr_errno(timeout);
1773                                 remove_wait_queue(sk_sleep(sk), &wait);
1774                                 goto out_err;
1775                         } else if (timeout == 0) {
1776                                 err = -EAGAIN;
1777                                 remove_wait_queue(sk_sleep(sk), &wait);
1778                                 goto out_err;
1779                         }
1780                 }
1781                 remove_wait_queue(sk_sleep(sk), &wait);
1782
1783                 /* These checks occur both as part of and after the loop
1784                  * conditional since we need to check before and after
1785                  * sleeping.
1786                  */
1787                 if (sk->sk_err) {
1788                         err = -sk->sk_err;
1789                         goto out_err;
1790                 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1791                            (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1792                         err = -EPIPE;
1793                         goto out_err;
1794                 }
1795
1796                 err = transport->notify_send_pre_enqueue(vsk, &send_data);
1797                 if (err < 0)
1798                         goto out_err;
1799
1800                 /* Note that enqueue will only write as many bytes as are free
1801                  * in the produce queue, so we don't need to ensure len is
1802                  * smaller than the queue size.  It is the caller's
1803                  * responsibility to check how many bytes we were able to send.
1804                  */
1805
1806                 written = transport->stream_enqueue(
1807                                 vsk, msg,
1808                                 len - total_written);
1809                 if (written < 0) {
1810                         err = -ENOMEM;
1811                         goto out_err;
1812                 }
1813
1814                 total_written += written;
1815
1816                 err = transport->notify_send_post_enqueue(
1817                                 vsk, written, &send_data);
1818                 if (err < 0)
1819                         goto out_err;
1820
1821         }
1822
1823 out_err:
1824         if (total_written > 0)
1825                 err = total_written;
1826 out:
1827         release_sock(sk);
1828         return err;
1829 }
1830
1831
1832 static int
1833 vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1834                      int flags)
1835 {
1836         struct sock *sk;
1837         struct vsock_sock *vsk;
1838         const struct vsock_transport *transport;
1839         int err;
1840         size_t target;
1841         ssize_t copied;
1842         long timeout;
1843         struct vsock_transport_recv_notify_data recv_data;
1844
1845         DEFINE_WAIT(wait);
1846
1847         sk = sock->sk;
1848         vsk = vsock_sk(sk);
1849         err = 0;
1850
1851         lock_sock(sk);
1852
1853         transport = vsk->transport;
1854
1855         if (!transport || sk->sk_state != TCP_ESTABLISHED) {
1856                 /* Recvmsg is supposed to return 0 if a peer performs an
1857                  * orderly shutdown. Differentiate between that case and when a
1858                  * peer has not connected or a local shutdown occured with the
1859                  * SOCK_DONE flag.
1860                  */
1861                 if (sock_flag(sk, SOCK_DONE))
1862                         err = 0;
1863                 else
1864                         err = -ENOTCONN;
1865
1866                 goto out;
1867         }
1868
1869         if (flags & MSG_OOB) {
1870                 err = -EOPNOTSUPP;
1871                 goto out;
1872         }
1873
1874         /* We don't check peer_shutdown flag here since peer may actually shut
1875          * down, but there can be data in the queue that a local socket can
1876          * receive.
1877          */
1878         if (sk->sk_shutdown & RCV_SHUTDOWN) {
1879                 err = 0;
1880                 goto out;
1881         }
1882
1883         /* It is valid on Linux to pass in a zero-length receive buffer.  This
1884          * is not an error.  We may as well bail out now.
1885          */
1886         if (!len) {
1887                 err = 0;
1888                 goto out;
1889         }
1890
1891         /* We must not copy less than target bytes into the user's buffer
1892          * before returning successfully, so we wait for the consume queue to
1893          * have that much data to consume before dequeueing.  Note that this
1894          * makes it impossible to handle cases where target is greater than the
1895          * queue size.
1896          */
1897         target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1898         if (target >= transport->stream_rcvhiwat(vsk)) {
1899                 err = -ENOMEM;
1900                 goto out;
1901         }
1902         timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1903         copied = 0;
1904
1905         err = transport->notify_recv_init(vsk, target, &recv_data);
1906         if (err < 0)
1907                 goto out;
1908
1909
1910         while (1) {
1911                 s64 ready;
1912
1913                 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1914                 ready = vsock_stream_has_data(vsk);
1915
1916                 if (ready == 0) {
1917                         if (sk->sk_err != 0 ||
1918                             (sk->sk_shutdown & RCV_SHUTDOWN) ||
1919                             (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1920                                 finish_wait(sk_sleep(sk), &wait);
1921                                 break;
1922                         }
1923                         /* Don't wait for non-blocking sockets. */
1924                         if (timeout == 0) {
1925                                 err = -EAGAIN;
1926                                 finish_wait(sk_sleep(sk), &wait);
1927                                 break;
1928                         }
1929
1930                         err = transport->notify_recv_pre_block(
1931                                         vsk, target, &recv_data);
1932                         if (err < 0) {
1933                                 finish_wait(sk_sleep(sk), &wait);
1934                                 break;
1935                         }
1936                         release_sock(sk);
1937                         timeout = schedule_timeout(timeout);
1938                         lock_sock(sk);
1939
1940                         if (signal_pending(current)) {
1941                                 err = sock_intr_errno(timeout);
1942                                 finish_wait(sk_sleep(sk), &wait);
1943                                 break;
1944                         } else if (timeout == 0) {
1945                                 err = -EAGAIN;
1946                                 finish_wait(sk_sleep(sk), &wait);
1947                                 break;
1948                         }
1949                 } else {
1950                         ssize_t read;
1951
1952                         finish_wait(sk_sleep(sk), &wait);
1953
1954                         if (ready < 0) {
1955                                 /* Invalid queue pair content. XXX This should
1956                                 * be changed to a connection reset in a later
1957                                 * change.
1958                                 */
1959
1960                                 err = -ENOMEM;
1961                                 goto out;
1962                         }
1963
1964                         err = transport->notify_recv_pre_dequeue(
1965                                         vsk, target, &recv_data);
1966                         if (err < 0)
1967                                 break;
1968
1969                         read = transport->stream_dequeue(
1970                                         vsk, msg,
1971                                         len - copied, flags);
1972                         if (read < 0) {
1973                                 err = -ENOMEM;
1974                                 break;
1975                         }
1976
1977                         copied += read;
1978
1979                         err = transport->notify_recv_post_dequeue(
1980                                         vsk, target, read,
1981                                         !(flags & MSG_PEEK), &recv_data);
1982                         if (err < 0)
1983                                 goto out;
1984
1985                         if (read >= target || flags & MSG_PEEK)
1986                                 break;
1987
1988                         target -= read;
1989                 }
1990         }
1991
1992         if (sk->sk_err)
1993                 err = -sk->sk_err;
1994         else if (sk->sk_shutdown & RCV_SHUTDOWN)
1995                 err = 0;
1996
1997         if (copied > 0)
1998                 err = copied;
1999
2000 out:
2001         release_sock(sk);
2002         return err;
2003 }
2004
2005 static const struct proto_ops vsock_stream_ops = {
2006         .family = PF_VSOCK,
2007         .owner = THIS_MODULE,
2008         .release = vsock_release,
2009         .bind = vsock_bind,
2010         .connect = vsock_stream_connect,
2011         .socketpair = sock_no_socketpair,
2012         .accept = vsock_accept,
2013         .getname = vsock_getname,
2014         .poll = vsock_poll,
2015         .ioctl = sock_no_ioctl,
2016         .listen = vsock_listen,
2017         .shutdown = vsock_shutdown,
2018         .setsockopt = vsock_stream_setsockopt,
2019         .getsockopt = vsock_stream_getsockopt,
2020         .sendmsg = vsock_stream_sendmsg,
2021         .recvmsg = vsock_stream_recvmsg,
2022         .mmap = sock_no_mmap,
2023         .sendpage = sock_no_sendpage,
2024 };
2025
2026 static int vsock_create(struct net *net, struct socket *sock,
2027                         int protocol, int kern)
2028 {
2029         struct vsock_sock *vsk;
2030         struct sock *sk;
2031         int ret;
2032
2033         if (!sock)
2034                 return -EINVAL;
2035
2036         if (protocol && protocol != PF_VSOCK)
2037                 return -EPROTONOSUPPORT;
2038
2039         switch (sock->type) {
2040         case SOCK_DGRAM:
2041                 sock->ops = &vsock_dgram_ops;
2042                 break;
2043         case SOCK_STREAM:
2044                 sock->ops = &vsock_stream_ops;
2045                 break;
2046         default:
2047                 return -ESOCKTNOSUPPORT;
2048         }
2049
2050         sock->state = SS_UNCONNECTED;
2051
2052         sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2053         if (!sk)
2054                 return -ENOMEM;
2055
2056         vsk = vsock_sk(sk);
2057
2058         if (sock->type == SOCK_DGRAM) {
2059                 ret = vsock_assign_transport(vsk, NULL);
2060                 if (ret < 0) {
2061                         sock_put(sk);
2062                         return ret;
2063                 }
2064         }
2065
2066         vsock_insert_unbound(vsk);
2067
2068         return 0;
2069 }
2070
2071 static const struct net_proto_family vsock_family_ops = {
2072         .family = AF_VSOCK,
2073         .create = vsock_create,
2074         .owner = THIS_MODULE,
2075 };
2076
2077 static long vsock_dev_do_ioctl(struct file *filp,
2078                                unsigned int cmd, void __user *ptr)
2079 {
2080         u32 __user *p = ptr;
2081         u32 cid = VMADDR_CID_ANY;
2082         int retval = 0;
2083
2084         switch (cmd) {
2085         case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2086                 /* To be compatible with the VMCI behavior, we prioritize the
2087                  * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2088                  */
2089                 if (transport_g2h)
2090                         cid = transport_g2h->get_local_cid();
2091                 else if (transport_h2g)
2092                         cid = transport_h2g->get_local_cid();
2093
2094                 if (put_user(cid, p) != 0)
2095                         retval = -EFAULT;
2096                 break;
2097
2098         default:
2099                 retval = -ENOIOCTLCMD;
2100         }
2101
2102         return retval;
2103 }
2104
2105 static long vsock_dev_ioctl(struct file *filp,
2106                             unsigned int cmd, unsigned long arg)
2107 {
2108         return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2109 }
2110
2111 #ifdef CONFIG_COMPAT
2112 static long vsock_dev_compat_ioctl(struct file *filp,
2113                                    unsigned int cmd, unsigned long arg)
2114 {
2115         return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2116 }
2117 #endif
2118
2119 static const struct file_operations vsock_device_ops = {
2120         .owner          = THIS_MODULE,
2121         .unlocked_ioctl = vsock_dev_ioctl,
2122 #ifdef CONFIG_COMPAT
2123         .compat_ioctl   = vsock_dev_compat_ioctl,
2124 #endif
2125         .open           = nonseekable_open,
2126 };
2127
2128 static struct miscdevice vsock_device = {
2129         .name           = "vsock",
2130         .fops           = &vsock_device_ops,
2131 };
2132
2133 static int __init vsock_init(void)
2134 {
2135         int err = 0;
2136
2137         vsock_init_tables();
2138
2139         vsock_proto.owner = THIS_MODULE;
2140         vsock_device.minor = MISC_DYNAMIC_MINOR;
2141         err = misc_register(&vsock_device);
2142         if (err) {
2143                 pr_err("Failed to register misc device\n");
2144                 goto err_reset_transport;
2145         }
2146
2147         err = proto_register(&vsock_proto, 1);  /* we want our slab */
2148         if (err) {
2149                 pr_err("Cannot register vsock protocol\n");
2150                 goto err_deregister_misc;
2151         }
2152
2153         err = sock_register(&vsock_family_ops);
2154         if (err) {
2155                 pr_err("could not register af_vsock (%d) address family: %d\n",
2156                        AF_VSOCK, err);
2157                 goto err_unregister_proto;
2158         }
2159
2160         return 0;
2161
2162 err_unregister_proto:
2163         proto_unregister(&vsock_proto);
2164 err_deregister_misc:
2165         misc_deregister(&vsock_device);
2166 err_reset_transport:
2167         return err;
2168 }
2169
2170 static void __exit vsock_exit(void)
2171 {
2172         misc_deregister(&vsock_device);
2173         sock_unregister(AF_VSOCK);
2174         proto_unregister(&vsock_proto);
2175 }
2176
2177 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2178 {
2179         return vsk->transport;
2180 }
2181 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2182
2183 int vsock_core_register(const struct vsock_transport *t, int features)
2184 {
2185         const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2186         int err = mutex_lock_interruptible(&vsock_register_mutex);
2187
2188         if (err)
2189                 return err;
2190
2191         t_h2g = transport_h2g;
2192         t_g2h = transport_g2h;
2193         t_dgram = transport_dgram;
2194         t_local = transport_local;
2195
2196         if (features & VSOCK_TRANSPORT_F_H2G) {
2197                 if (t_h2g) {
2198                         err = -EBUSY;
2199                         goto err_busy;
2200                 }
2201                 t_h2g = t;
2202         }
2203
2204         if (features & VSOCK_TRANSPORT_F_G2H) {
2205                 if (t_g2h) {
2206                         err = -EBUSY;
2207                         goto err_busy;
2208                 }
2209                 t_g2h = t;
2210         }
2211
2212         if (features & VSOCK_TRANSPORT_F_DGRAM) {
2213                 if (t_dgram) {
2214                         err = -EBUSY;
2215                         goto err_busy;
2216                 }
2217                 t_dgram = t;
2218         }
2219
2220         if (features & VSOCK_TRANSPORT_F_LOCAL) {
2221                 if (t_local) {
2222                         err = -EBUSY;
2223                         goto err_busy;
2224                 }
2225                 t_local = t;
2226         }
2227
2228         transport_h2g = t_h2g;
2229         transport_g2h = t_g2h;
2230         transport_dgram = t_dgram;
2231         transport_local = t_local;
2232
2233 err_busy:
2234         mutex_unlock(&vsock_register_mutex);
2235         return err;
2236 }
2237 EXPORT_SYMBOL_GPL(vsock_core_register);
2238
2239 void vsock_core_unregister(const struct vsock_transport *t)
2240 {
2241         mutex_lock(&vsock_register_mutex);
2242
2243         if (transport_h2g == t)
2244                 transport_h2g = NULL;
2245
2246         if (transport_g2h == t)
2247                 transport_g2h = NULL;
2248
2249         if (transport_dgram == t)
2250                 transport_dgram = NULL;
2251
2252         if (transport_local == t)
2253                 transport_local = NULL;
2254
2255         mutex_unlock(&vsock_register_mutex);
2256 }
2257 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2258
2259 module_init(vsock_init);
2260 module_exit(vsock_exit);
2261
2262 MODULE_AUTHOR("VMware, Inc.");
2263 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2264 MODULE_VERSION("1.0.2.0-k");
2265 MODULE_LICENSE("GPL v2");