tls: rx: async: don't put async zc on the list
[linux-2.6-microblaze.git] / net / tls / tls_sw.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8  *
9  * This software is available to you under a choice of one of two
10  * licenses.  You may choose to be licensed under the terms of the GNU
11  * General Public License (GPL) Version 2, available from the file
12  * COPYING in the main directory of this source tree, or the
13  * OpenIB.org BSD license below:
14  *
15  *     Redistribution and use in source and binary forms, with or
16  *     without modification, are permitted provided that the following
17  *     conditions are met:
18  *
19  *      - Redistributions of source code must retain the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer.
22  *
23  *      - Redistributions in binary form must reproduce the above
24  *        copyright notice, this list of conditions and the following
25  *        disclaimer in the documentation and/or other materials
26  *        provided with the distribution.
27  *
28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35  * SOFTWARE.
36  */
37
38 #include <linux/bug.h>
39 #include <linux/sched/signal.h>
40 #include <linux/module.h>
41 #include <linux/splice.h>
42 #include <crypto/aead.h>
43
44 #include <net/strparser.h>
45 #include <net/tls.h>
46
47 #include "tls.h"
48
49 struct tls_decrypt_arg {
50         struct_group(inargs,
51         bool zc;
52         bool async;
53         u8 tail;
54         );
55
56         struct sk_buff *skb;
57 };
58
59 struct tls_decrypt_ctx {
60         u8 iv[MAX_IV_SIZE];
61         u8 aad[TLS_MAX_AAD_SIZE];
62         u8 tail;
63         struct scatterlist sg[];
64 };
65
66 noinline void tls_err_abort(struct sock *sk, int err)
67 {
68         WARN_ON_ONCE(err >= 0);
69         /* sk->sk_err should contain a positive error code. */
70         sk->sk_err = -err;
71         sk_error_report(sk);
72 }
73
74 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
75                      unsigned int recursion_level)
76 {
77         int start = skb_headlen(skb);
78         int i, chunk = start - offset;
79         struct sk_buff *frag_iter;
80         int elt = 0;
81
82         if (unlikely(recursion_level >= 24))
83                 return -EMSGSIZE;
84
85         if (chunk > 0) {
86                 if (chunk > len)
87                         chunk = len;
88                 elt++;
89                 len -= chunk;
90                 if (len == 0)
91                         return elt;
92                 offset += chunk;
93         }
94
95         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
96                 int end;
97
98                 WARN_ON(start > offset + len);
99
100                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
101                 chunk = end - offset;
102                 if (chunk > 0) {
103                         if (chunk > len)
104                                 chunk = len;
105                         elt++;
106                         len -= chunk;
107                         if (len == 0)
108                                 return elt;
109                         offset += chunk;
110                 }
111                 start = end;
112         }
113
114         if (unlikely(skb_has_frag_list(skb))) {
115                 skb_walk_frags(skb, frag_iter) {
116                         int end, ret;
117
118                         WARN_ON(start > offset + len);
119
120                         end = start + frag_iter->len;
121                         chunk = end - offset;
122                         if (chunk > 0) {
123                                 if (chunk > len)
124                                         chunk = len;
125                                 ret = __skb_nsg(frag_iter, offset - start, chunk,
126                                                 recursion_level + 1);
127                                 if (unlikely(ret < 0))
128                                         return ret;
129                                 elt += ret;
130                                 len -= chunk;
131                                 if (len == 0)
132                                         return elt;
133                                 offset += chunk;
134                         }
135                         start = end;
136                 }
137         }
138         BUG_ON(len);
139         return elt;
140 }
141
142 /* Return the number of scatterlist elements required to completely map the
143  * skb, or -EMSGSIZE if the recursion depth is exceeded.
144  */
145 static int skb_nsg(struct sk_buff *skb, int offset, int len)
146 {
147         return __skb_nsg(skb, offset, len, 0);
148 }
149
150 static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb,
151                               struct tls_decrypt_arg *darg)
152 {
153         struct strp_msg *rxm = strp_msg(skb);
154         struct tls_msg *tlm = tls_msg(skb);
155         int sub = 0;
156
157         /* Determine zero-padding length */
158         if (prot->version == TLS_1_3_VERSION) {
159                 int offset = rxm->full_len - TLS_TAG_SIZE - 1;
160                 char content_type = darg->zc ? darg->tail : 0;
161                 int err;
162
163                 while (content_type == 0) {
164                         if (offset < prot->prepend_size)
165                                 return -EBADMSG;
166                         err = skb_copy_bits(skb, rxm->offset + offset,
167                                             &content_type, 1);
168                         if (err)
169                                 return err;
170                         if (content_type)
171                                 break;
172                         sub++;
173                         offset--;
174                 }
175                 tlm->control = content_type;
176         }
177         return sub;
178 }
179
180 static void tls_decrypt_done(struct crypto_async_request *req, int err)
181 {
182         struct aead_request *aead_req = (struct aead_request *)req;
183         struct scatterlist *sgout = aead_req->dst;
184         struct scatterlist *sgin = aead_req->src;
185         struct tls_sw_context_rx *ctx;
186         struct tls_context *tls_ctx;
187         struct scatterlist *sg;
188         unsigned int pages;
189         struct sock *sk;
190
191         sk = (struct sock *)req->data;
192         tls_ctx = tls_get_ctx(sk);
193         ctx = tls_sw_ctx_rx(tls_ctx);
194
195         /* Propagate if there was an err */
196         if (err) {
197                 if (err == -EBADMSG)
198                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
199                 ctx->async_wait.err = err;
200                 tls_err_abort(sk, err);
201         }
202
203         /* Free the destination pages if skb was not decrypted inplace */
204         if (sgout != sgin) {
205                 /* Skip the first S/G entry as it points to AAD */
206                 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
207                         if (!sg)
208                                 break;
209                         put_page(sg_page(sg));
210                 }
211         }
212
213         kfree(aead_req);
214
215         spin_lock_bh(&ctx->decrypt_compl_lock);
216         if (!atomic_dec_return(&ctx->decrypt_pending))
217                 complete(&ctx->async_wait.completion);
218         spin_unlock_bh(&ctx->decrypt_compl_lock);
219 }
220
221 static int tls_do_decryption(struct sock *sk,
222                              struct scatterlist *sgin,
223                              struct scatterlist *sgout,
224                              char *iv_recv,
225                              size_t data_len,
226                              struct aead_request *aead_req,
227                              struct tls_decrypt_arg *darg)
228 {
229         struct tls_context *tls_ctx = tls_get_ctx(sk);
230         struct tls_prot_info *prot = &tls_ctx->prot_info;
231         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
232         int ret;
233
234         aead_request_set_tfm(aead_req, ctx->aead_recv);
235         aead_request_set_ad(aead_req, prot->aad_size);
236         aead_request_set_crypt(aead_req, sgin, sgout,
237                                data_len + prot->tag_size,
238                                (u8 *)iv_recv);
239
240         if (darg->async) {
241                 aead_request_set_callback(aead_req,
242                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
243                                           tls_decrypt_done, sk);
244                 atomic_inc(&ctx->decrypt_pending);
245         } else {
246                 aead_request_set_callback(aead_req,
247                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
248                                           crypto_req_done, &ctx->async_wait);
249         }
250
251         ret = crypto_aead_decrypt(aead_req);
252         if (ret == -EINPROGRESS) {
253                 if (darg->async)
254                         return 0;
255
256                 ret = crypto_wait_req(ret, &ctx->async_wait);
257         }
258         darg->async = false;
259
260         return ret;
261 }
262
263 static void tls_trim_both_msgs(struct sock *sk, int target_size)
264 {
265         struct tls_context *tls_ctx = tls_get_ctx(sk);
266         struct tls_prot_info *prot = &tls_ctx->prot_info;
267         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
268         struct tls_rec *rec = ctx->open_rec;
269
270         sk_msg_trim(sk, &rec->msg_plaintext, target_size);
271         if (target_size > 0)
272                 target_size += prot->overhead_size;
273         sk_msg_trim(sk, &rec->msg_encrypted, target_size);
274 }
275
276 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
277 {
278         struct tls_context *tls_ctx = tls_get_ctx(sk);
279         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
280         struct tls_rec *rec = ctx->open_rec;
281         struct sk_msg *msg_en = &rec->msg_encrypted;
282
283         return sk_msg_alloc(sk, msg_en, len, 0);
284 }
285
286 static int tls_clone_plaintext_msg(struct sock *sk, int required)
287 {
288         struct tls_context *tls_ctx = tls_get_ctx(sk);
289         struct tls_prot_info *prot = &tls_ctx->prot_info;
290         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
291         struct tls_rec *rec = ctx->open_rec;
292         struct sk_msg *msg_pl = &rec->msg_plaintext;
293         struct sk_msg *msg_en = &rec->msg_encrypted;
294         int skip, len;
295
296         /* We add page references worth len bytes from encrypted sg
297          * at the end of plaintext sg. It is guaranteed that msg_en
298          * has enough required room (ensured by caller).
299          */
300         len = required - msg_pl->sg.size;
301
302         /* Skip initial bytes in msg_en's data to be able to use
303          * same offset of both plain and encrypted data.
304          */
305         skip = prot->prepend_size + msg_pl->sg.size;
306
307         return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
308 }
309
310 static struct tls_rec *tls_get_rec(struct sock *sk)
311 {
312         struct tls_context *tls_ctx = tls_get_ctx(sk);
313         struct tls_prot_info *prot = &tls_ctx->prot_info;
314         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
315         struct sk_msg *msg_pl, *msg_en;
316         struct tls_rec *rec;
317         int mem_size;
318
319         mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
320
321         rec = kzalloc(mem_size, sk->sk_allocation);
322         if (!rec)
323                 return NULL;
324
325         msg_pl = &rec->msg_plaintext;
326         msg_en = &rec->msg_encrypted;
327
328         sk_msg_init(msg_pl);
329         sk_msg_init(msg_en);
330
331         sg_init_table(rec->sg_aead_in, 2);
332         sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
333         sg_unmark_end(&rec->sg_aead_in[1]);
334
335         sg_init_table(rec->sg_aead_out, 2);
336         sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
337         sg_unmark_end(&rec->sg_aead_out[1]);
338
339         return rec;
340 }
341
342 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
343 {
344         sk_msg_free(sk, &rec->msg_encrypted);
345         sk_msg_free(sk, &rec->msg_plaintext);
346         kfree(rec);
347 }
348
349 static void tls_free_open_rec(struct sock *sk)
350 {
351         struct tls_context *tls_ctx = tls_get_ctx(sk);
352         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
353         struct tls_rec *rec = ctx->open_rec;
354
355         if (rec) {
356                 tls_free_rec(sk, rec);
357                 ctx->open_rec = NULL;
358         }
359 }
360
361 int tls_tx_records(struct sock *sk, int flags)
362 {
363         struct tls_context *tls_ctx = tls_get_ctx(sk);
364         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
365         struct tls_rec *rec, *tmp;
366         struct sk_msg *msg_en;
367         int tx_flags, rc = 0;
368
369         if (tls_is_partially_sent_record(tls_ctx)) {
370                 rec = list_first_entry(&ctx->tx_list,
371                                        struct tls_rec, list);
372
373                 if (flags == -1)
374                         tx_flags = rec->tx_flags;
375                 else
376                         tx_flags = flags;
377
378                 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
379                 if (rc)
380                         goto tx_err;
381
382                 /* Full record has been transmitted.
383                  * Remove the head of tx_list
384                  */
385                 list_del(&rec->list);
386                 sk_msg_free(sk, &rec->msg_plaintext);
387                 kfree(rec);
388         }
389
390         /* Tx all ready records */
391         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
392                 if (READ_ONCE(rec->tx_ready)) {
393                         if (flags == -1)
394                                 tx_flags = rec->tx_flags;
395                         else
396                                 tx_flags = flags;
397
398                         msg_en = &rec->msg_encrypted;
399                         rc = tls_push_sg(sk, tls_ctx,
400                                          &msg_en->sg.data[msg_en->sg.curr],
401                                          0, tx_flags);
402                         if (rc)
403                                 goto tx_err;
404
405                         list_del(&rec->list);
406                         sk_msg_free(sk, &rec->msg_plaintext);
407                         kfree(rec);
408                 } else {
409                         break;
410                 }
411         }
412
413 tx_err:
414         if (rc < 0 && rc != -EAGAIN)
415                 tls_err_abort(sk, -EBADMSG);
416
417         return rc;
418 }
419
420 static void tls_encrypt_done(struct crypto_async_request *req, int err)
421 {
422         struct aead_request *aead_req = (struct aead_request *)req;
423         struct sock *sk = req->data;
424         struct tls_context *tls_ctx = tls_get_ctx(sk);
425         struct tls_prot_info *prot = &tls_ctx->prot_info;
426         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
427         struct scatterlist *sge;
428         struct sk_msg *msg_en;
429         struct tls_rec *rec;
430         bool ready = false;
431         int pending;
432
433         rec = container_of(aead_req, struct tls_rec, aead_req);
434         msg_en = &rec->msg_encrypted;
435
436         sge = sk_msg_elem(msg_en, msg_en->sg.curr);
437         sge->offset -= prot->prepend_size;
438         sge->length += prot->prepend_size;
439
440         /* Check if error is previously set on socket */
441         if (err || sk->sk_err) {
442                 rec = NULL;
443
444                 /* If err is already set on socket, return the same code */
445                 if (sk->sk_err) {
446                         ctx->async_wait.err = -sk->sk_err;
447                 } else {
448                         ctx->async_wait.err = err;
449                         tls_err_abort(sk, err);
450                 }
451         }
452
453         if (rec) {
454                 struct tls_rec *first_rec;
455
456                 /* Mark the record as ready for transmission */
457                 smp_store_mb(rec->tx_ready, true);
458
459                 /* If received record is at head of tx_list, schedule tx */
460                 first_rec = list_first_entry(&ctx->tx_list,
461                                              struct tls_rec, list);
462                 if (rec == first_rec)
463                         ready = true;
464         }
465
466         spin_lock_bh(&ctx->encrypt_compl_lock);
467         pending = atomic_dec_return(&ctx->encrypt_pending);
468
469         if (!pending && ctx->async_notify)
470                 complete(&ctx->async_wait.completion);
471         spin_unlock_bh(&ctx->encrypt_compl_lock);
472
473         if (!ready)
474                 return;
475
476         /* Schedule the transmission */
477         if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
478                 schedule_delayed_work(&ctx->tx_work.work, 1);
479 }
480
481 static int tls_do_encryption(struct sock *sk,
482                              struct tls_context *tls_ctx,
483                              struct tls_sw_context_tx *ctx,
484                              struct aead_request *aead_req,
485                              size_t data_len, u32 start)
486 {
487         struct tls_prot_info *prot = &tls_ctx->prot_info;
488         struct tls_rec *rec = ctx->open_rec;
489         struct sk_msg *msg_en = &rec->msg_encrypted;
490         struct scatterlist *sge = sk_msg_elem(msg_en, start);
491         int rc, iv_offset = 0;
492
493         /* For CCM based ciphers, first byte of IV is a constant */
494         switch (prot->cipher_type) {
495         case TLS_CIPHER_AES_CCM_128:
496                 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
497                 iv_offset = 1;
498                 break;
499         case TLS_CIPHER_SM4_CCM:
500                 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE;
501                 iv_offset = 1;
502                 break;
503         }
504
505         memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
506                prot->iv_size + prot->salt_size);
507
508         tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset,
509                             tls_ctx->tx.rec_seq);
510
511         sge->offset += prot->prepend_size;
512         sge->length -= prot->prepend_size;
513
514         msg_en->sg.curr = start;
515
516         aead_request_set_tfm(aead_req, ctx->aead_send);
517         aead_request_set_ad(aead_req, prot->aad_size);
518         aead_request_set_crypt(aead_req, rec->sg_aead_in,
519                                rec->sg_aead_out,
520                                data_len, rec->iv_data);
521
522         aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
523                                   tls_encrypt_done, sk);
524
525         /* Add the record in tx_list */
526         list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
527         atomic_inc(&ctx->encrypt_pending);
528
529         rc = crypto_aead_encrypt(aead_req);
530         if (!rc || rc != -EINPROGRESS) {
531                 atomic_dec(&ctx->encrypt_pending);
532                 sge->offset -= prot->prepend_size;
533                 sge->length += prot->prepend_size;
534         }
535
536         if (!rc) {
537                 WRITE_ONCE(rec->tx_ready, true);
538         } else if (rc != -EINPROGRESS) {
539                 list_del(&rec->list);
540                 return rc;
541         }
542
543         /* Unhook the record from context if encryption is not failure */
544         ctx->open_rec = NULL;
545         tls_advance_record_sn(sk, prot, &tls_ctx->tx);
546         return rc;
547 }
548
549 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
550                                  struct tls_rec **to, struct sk_msg *msg_opl,
551                                  struct sk_msg *msg_oen, u32 split_point,
552                                  u32 tx_overhead_size, u32 *orig_end)
553 {
554         u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
555         struct scatterlist *sge, *osge, *nsge;
556         u32 orig_size = msg_opl->sg.size;
557         struct scatterlist tmp = { };
558         struct sk_msg *msg_npl;
559         struct tls_rec *new;
560         int ret;
561
562         new = tls_get_rec(sk);
563         if (!new)
564                 return -ENOMEM;
565         ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
566                            tx_overhead_size, 0);
567         if (ret < 0) {
568                 tls_free_rec(sk, new);
569                 return ret;
570         }
571
572         *orig_end = msg_opl->sg.end;
573         i = msg_opl->sg.start;
574         sge = sk_msg_elem(msg_opl, i);
575         while (apply && sge->length) {
576                 if (sge->length > apply) {
577                         u32 len = sge->length - apply;
578
579                         get_page(sg_page(sge));
580                         sg_set_page(&tmp, sg_page(sge), len,
581                                     sge->offset + apply);
582                         sge->length = apply;
583                         bytes += apply;
584                         apply = 0;
585                 } else {
586                         apply -= sge->length;
587                         bytes += sge->length;
588                 }
589
590                 sk_msg_iter_var_next(i);
591                 if (i == msg_opl->sg.end)
592                         break;
593                 sge = sk_msg_elem(msg_opl, i);
594         }
595
596         msg_opl->sg.end = i;
597         msg_opl->sg.curr = i;
598         msg_opl->sg.copybreak = 0;
599         msg_opl->apply_bytes = 0;
600         msg_opl->sg.size = bytes;
601
602         msg_npl = &new->msg_plaintext;
603         msg_npl->apply_bytes = apply;
604         msg_npl->sg.size = orig_size - bytes;
605
606         j = msg_npl->sg.start;
607         nsge = sk_msg_elem(msg_npl, j);
608         if (tmp.length) {
609                 memcpy(nsge, &tmp, sizeof(*nsge));
610                 sk_msg_iter_var_next(j);
611                 nsge = sk_msg_elem(msg_npl, j);
612         }
613
614         osge = sk_msg_elem(msg_opl, i);
615         while (osge->length) {
616                 memcpy(nsge, osge, sizeof(*nsge));
617                 sg_unmark_end(nsge);
618                 sk_msg_iter_var_next(i);
619                 sk_msg_iter_var_next(j);
620                 if (i == *orig_end)
621                         break;
622                 osge = sk_msg_elem(msg_opl, i);
623                 nsge = sk_msg_elem(msg_npl, j);
624         }
625
626         msg_npl->sg.end = j;
627         msg_npl->sg.curr = j;
628         msg_npl->sg.copybreak = 0;
629
630         *to = new;
631         return 0;
632 }
633
634 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
635                                   struct tls_rec *from, u32 orig_end)
636 {
637         struct sk_msg *msg_npl = &from->msg_plaintext;
638         struct sk_msg *msg_opl = &to->msg_plaintext;
639         struct scatterlist *osge, *nsge;
640         u32 i, j;
641
642         i = msg_opl->sg.end;
643         sk_msg_iter_var_prev(i);
644         j = msg_npl->sg.start;
645
646         osge = sk_msg_elem(msg_opl, i);
647         nsge = sk_msg_elem(msg_npl, j);
648
649         if (sg_page(osge) == sg_page(nsge) &&
650             osge->offset + osge->length == nsge->offset) {
651                 osge->length += nsge->length;
652                 put_page(sg_page(nsge));
653         }
654
655         msg_opl->sg.end = orig_end;
656         msg_opl->sg.curr = orig_end;
657         msg_opl->sg.copybreak = 0;
658         msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
659         msg_opl->sg.size += msg_npl->sg.size;
660
661         sk_msg_free(sk, &to->msg_encrypted);
662         sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
663
664         kfree(from);
665 }
666
667 static int tls_push_record(struct sock *sk, int flags,
668                            unsigned char record_type)
669 {
670         struct tls_context *tls_ctx = tls_get_ctx(sk);
671         struct tls_prot_info *prot = &tls_ctx->prot_info;
672         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
673         struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
674         u32 i, split_point, orig_end;
675         struct sk_msg *msg_pl, *msg_en;
676         struct aead_request *req;
677         bool split;
678         int rc;
679
680         if (!rec)
681                 return 0;
682
683         msg_pl = &rec->msg_plaintext;
684         msg_en = &rec->msg_encrypted;
685
686         split_point = msg_pl->apply_bytes;
687         split = split_point && split_point < msg_pl->sg.size;
688         if (unlikely((!split &&
689                       msg_pl->sg.size +
690                       prot->overhead_size > msg_en->sg.size) ||
691                      (split &&
692                       split_point +
693                       prot->overhead_size > msg_en->sg.size))) {
694                 split = true;
695                 split_point = msg_en->sg.size;
696         }
697         if (split) {
698                 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
699                                            split_point, prot->overhead_size,
700                                            &orig_end);
701                 if (rc < 0)
702                         return rc;
703                 /* This can happen if above tls_split_open_record allocates
704                  * a single large encryption buffer instead of two smaller
705                  * ones. In this case adjust pointers and continue without
706                  * split.
707                  */
708                 if (!msg_pl->sg.size) {
709                         tls_merge_open_record(sk, rec, tmp, orig_end);
710                         msg_pl = &rec->msg_plaintext;
711                         msg_en = &rec->msg_encrypted;
712                         split = false;
713                 }
714                 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
715                             prot->overhead_size);
716         }
717
718         rec->tx_flags = flags;
719         req = &rec->aead_req;
720
721         i = msg_pl->sg.end;
722         sk_msg_iter_var_prev(i);
723
724         rec->content_type = record_type;
725         if (prot->version == TLS_1_3_VERSION) {
726                 /* Add content type to end of message.  No padding added */
727                 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
728                 sg_mark_end(&rec->sg_content_type);
729                 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
730                          &rec->sg_content_type);
731         } else {
732                 sg_mark_end(sk_msg_elem(msg_pl, i));
733         }
734
735         if (msg_pl->sg.end < msg_pl->sg.start) {
736                 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
737                          MAX_SKB_FRAGS - msg_pl->sg.start + 1,
738                          msg_pl->sg.data);
739         }
740
741         i = msg_pl->sg.start;
742         sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
743
744         i = msg_en->sg.end;
745         sk_msg_iter_var_prev(i);
746         sg_mark_end(sk_msg_elem(msg_en, i));
747
748         i = msg_en->sg.start;
749         sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
750
751         tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
752                      tls_ctx->tx.rec_seq, record_type, prot);
753
754         tls_fill_prepend(tls_ctx,
755                          page_address(sg_page(&msg_en->sg.data[i])) +
756                          msg_en->sg.data[i].offset,
757                          msg_pl->sg.size + prot->tail_size,
758                          record_type);
759
760         tls_ctx->pending_open_record_frags = false;
761
762         rc = tls_do_encryption(sk, tls_ctx, ctx, req,
763                                msg_pl->sg.size + prot->tail_size, i);
764         if (rc < 0) {
765                 if (rc != -EINPROGRESS) {
766                         tls_err_abort(sk, -EBADMSG);
767                         if (split) {
768                                 tls_ctx->pending_open_record_frags = true;
769                                 tls_merge_open_record(sk, rec, tmp, orig_end);
770                         }
771                 }
772                 ctx->async_capable = 1;
773                 return rc;
774         } else if (split) {
775                 msg_pl = &tmp->msg_plaintext;
776                 msg_en = &tmp->msg_encrypted;
777                 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
778                 tls_ctx->pending_open_record_frags = true;
779                 ctx->open_rec = tmp;
780         }
781
782         return tls_tx_records(sk, flags);
783 }
784
785 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
786                                bool full_record, u8 record_type,
787                                ssize_t *copied, int flags)
788 {
789         struct tls_context *tls_ctx = tls_get_ctx(sk);
790         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
791         struct sk_msg msg_redir = { };
792         struct sk_psock *psock;
793         struct sock *sk_redir;
794         struct tls_rec *rec;
795         bool enospc, policy;
796         int err = 0, send;
797         u32 delta = 0;
798
799         policy = !(flags & MSG_SENDPAGE_NOPOLICY);
800         psock = sk_psock_get(sk);
801         if (!psock || !policy) {
802                 err = tls_push_record(sk, flags, record_type);
803                 if (err && sk->sk_err == EBADMSG) {
804                         *copied -= sk_msg_free(sk, msg);
805                         tls_free_open_rec(sk);
806                         err = -sk->sk_err;
807                 }
808                 if (psock)
809                         sk_psock_put(sk, psock);
810                 return err;
811         }
812 more_data:
813         enospc = sk_msg_full(msg);
814         if (psock->eval == __SK_NONE) {
815                 delta = msg->sg.size;
816                 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
817                 delta -= msg->sg.size;
818         }
819         if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
820             !enospc && !full_record) {
821                 err = -ENOSPC;
822                 goto out_err;
823         }
824         msg->cork_bytes = 0;
825         send = msg->sg.size;
826         if (msg->apply_bytes && msg->apply_bytes < send)
827                 send = msg->apply_bytes;
828
829         switch (psock->eval) {
830         case __SK_PASS:
831                 err = tls_push_record(sk, flags, record_type);
832                 if (err && sk->sk_err == EBADMSG) {
833                         *copied -= sk_msg_free(sk, msg);
834                         tls_free_open_rec(sk);
835                         err = -sk->sk_err;
836                         goto out_err;
837                 }
838                 break;
839         case __SK_REDIRECT:
840                 sk_redir = psock->sk_redir;
841                 memcpy(&msg_redir, msg, sizeof(*msg));
842                 if (msg->apply_bytes < send)
843                         msg->apply_bytes = 0;
844                 else
845                         msg->apply_bytes -= send;
846                 sk_msg_return_zero(sk, msg, send);
847                 msg->sg.size -= send;
848                 release_sock(sk);
849                 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
850                 lock_sock(sk);
851                 if (err < 0) {
852                         *copied -= sk_msg_free_nocharge(sk, &msg_redir);
853                         msg->sg.size = 0;
854                 }
855                 if (msg->sg.size == 0)
856                         tls_free_open_rec(sk);
857                 break;
858         case __SK_DROP:
859         default:
860                 sk_msg_free_partial(sk, msg, send);
861                 if (msg->apply_bytes < send)
862                         msg->apply_bytes = 0;
863                 else
864                         msg->apply_bytes -= send;
865                 if (msg->sg.size == 0)
866                         tls_free_open_rec(sk);
867                 *copied -= (send + delta);
868                 err = -EACCES;
869         }
870
871         if (likely(!err)) {
872                 bool reset_eval = !ctx->open_rec;
873
874                 rec = ctx->open_rec;
875                 if (rec) {
876                         msg = &rec->msg_plaintext;
877                         if (!msg->apply_bytes)
878                                 reset_eval = true;
879                 }
880                 if (reset_eval) {
881                         psock->eval = __SK_NONE;
882                         if (psock->sk_redir) {
883                                 sock_put(psock->sk_redir);
884                                 psock->sk_redir = NULL;
885                         }
886                 }
887                 if (rec)
888                         goto more_data;
889         }
890  out_err:
891         sk_psock_put(sk, psock);
892         return err;
893 }
894
895 static int tls_sw_push_pending_record(struct sock *sk, int flags)
896 {
897         struct tls_context *tls_ctx = tls_get_ctx(sk);
898         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
899         struct tls_rec *rec = ctx->open_rec;
900         struct sk_msg *msg_pl;
901         size_t copied;
902
903         if (!rec)
904                 return 0;
905
906         msg_pl = &rec->msg_plaintext;
907         copied = msg_pl->sg.size;
908         if (!copied)
909                 return 0;
910
911         return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
912                                    &copied, flags);
913 }
914
915 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
916 {
917         long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
918         struct tls_context *tls_ctx = tls_get_ctx(sk);
919         struct tls_prot_info *prot = &tls_ctx->prot_info;
920         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
921         bool async_capable = ctx->async_capable;
922         unsigned char record_type = TLS_RECORD_TYPE_DATA;
923         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
924         bool eor = !(msg->msg_flags & MSG_MORE);
925         size_t try_to_copy;
926         ssize_t copied = 0;
927         struct sk_msg *msg_pl, *msg_en;
928         struct tls_rec *rec;
929         int required_size;
930         int num_async = 0;
931         bool full_record;
932         int record_room;
933         int num_zc = 0;
934         int orig_size;
935         int ret = 0;
936         int pending;
937
938         if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
939                                MSG_CMSG_COMPAT))
940                 return -EOPNOTSUPP;
941
942         mutex_lock(&tls_ctx->tx_lock);
943         lock_sock(sk);
944
945         if (unlikely(msg->msg_controllen)) {
946                 ret = tls_process_cmsg(sk, msg, &record_type);
947                 if (ret) {
948                         if (ret == -EINPROGRESS)
949                                 num_async++;
950                         else if (ret != -EAGAIN)
951                                 goto send_end;
952                 }
953         }
954
955         while (msg_data_left(msg)) {
956                 if (sk->sk_err) {
957                         ret = -sk->sk_err;
958                         goto send_end;
959                 }
960
961                 if (ctx->open_rec)
962                         rec = ctx->open_rec;
963                 else
964                         rec = ctx->open_rec = tls_get_rec(sk);
965                 if (!rec) {
966                         ret = -ENOMEM;
967                         goto send_end;
968                 }
969
970                 msg_pl = &rec->msg_plaintext;
971                 msg_en = &rec->msg_encrypted;
972
973                 orig_size = msg_pl->sg.size;
974                 full_record = false;
975                 try_to_copy = msg_data_left(msg);
976                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
977                 if (try_to_copy >= record_room) {
978                         try_to_copy = record_room;
979                         full_record = true;
980                 }
981
982                 required_size = msg_pl->sg.size + try_to_copy +
983                                 prot->overhead_size;
984
985                 if (!sk_stream_memory_free(sk))
986                         goto wait_for_sndbuf;
987
988 alloc_encrypted:
989                 ret = tls_alloc_encrypted_msg(sk, required_size);
990                 if (ret) {
991                         if (ret != -ENOSPC)
992                                 goto wait_for_memory;
993
994                         /* Adjust try_to_copy according to the amount that was
995                          * actually allocated. The difference is due
996                          * to max sg elements limit
997                          */
998                         try_to_copy -= required_size - msg_en->sg.size;
999                         full_record = true;
1000                 }
1001
1002                 if (!is_kvec && (full_record || eor) && !async_capable) {
1003                         u32 first = msg_pl->sg.end;
1004
1005                         ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1006                                                         msg_pl, try_to_copy);
1007                         if (ret)
1008                                 goto fallback_to_reg_send;
1009
1010                         num_zc++;
1011                         copied += try_to_copy;
1012
1013                         sk_msg_sg_copy_set(msg_pl, first);
1014                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1015                                                   record_type, &copied,
1016                                                   msg->msg_flags);
1017                         if (ret) {
1018                                 if (ret == -EINPROGRESS)
1019                                         num_async++;
1020                                 else if (ret == -ENOMEM)
1021                                         goto wait_for_memory;
1022                                 else if (ctx->open_rec && ret == -ENOSPC)
1023                                         goto rollback_iter;
1024                                 else if (ret != -EAGAIN)
1025                                         goto send_end;
1026                         }
1027                         continue;
1028 rollback_iter:
1029                         copied -= try_to_copy;
1030                         sk_msg_sg_copy_clear(msg_pl, first);
1031                         iov_iter_revert(&msg->msg_iter,
1032                                         msg_pl->sg.size - orig_size);
1033 fallback_to_reg_send:
1034                         sk_msg_trim(sk, msg_pl, orig_size);
1035                 }
1036
1037                 required_size = msg_pl->sg.size + try_to_copy;
1038
1039                 ret = tls_clone_plaintext_msg(sk, required_size);
1040                 if (ret) {
1041                         if (ret != -ENOSPC)
1042                                 goto send_end;
1043
1044                         /* Adjust try_to_copy according to the amount that was
1045                          * actually allocated. The difference is due
1046                          * to max sg elements limit
1047                          */
1048                         try_to_copy -= required_size - msg_pl->sg.size;
1049                         full_record = true;
1050                         sk_msg_trim(sk, msg_en,
1051                                     msg_pl->sg.size + prot->overhead_size);
1052                 }
1053
1054                 if (try_to_copy) {
1055                         ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1056                                                        msg_pl, try_to_copy);
1057                         if (ret < 0)
1058                                 goto trim_sgl;
1059                 }
1060
1061                 /* Open records defined only if successfully copied, otherwise
1062                  * we would trim the sg but not reset the open record frags.
1063                  */
1064                 tls_ctx->pending_open_record_frags = true;
1065                 copied += try_to_copy;
1066                 if (full_record || eor) {
1067                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1068                                                   record_type, &copied,
1069                                                   msg->msg_flags);
1070                         if (ret) {
1071                                 if (ret == -EINPROGRESS)
1072                                         num_async++;
1073                                 else if (ret == -ENOMEM)
1074                                         goto wait_for_memory;
1075                                 else if (ret != -EAGAIN) {
1076                                         if (ret == -ENOSPC)
1077                                                 ret = 0;
1078                                         goto send_end;
1079                                 }
1080                         }
1081                 }
1082
1083                 continue;
1084
1085 wait_for_sndbuf:
1086                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1087 wait_for_memory:
1088                 ret = sk_stream_wait_memory(sk, &timeo);
1089                 if (ret) {
1090 trim_sgl:
1091                         if (ctx->open_rec)
1092                                 tls_trim_both_msgs(sk, orig_size);
1093                         goto send_end;
1094                 }
1095
1096                 if (ctx->open_rec && msg_en->sg.size < required_size)
1097                         goto alloc_encrypted;
1098         }
1099
1100         if (!num_async) {
1101                 goto send_end;
1102         } else if (num_zc) {
1103                 /* Wait for pending encryptions to get completed */
1104                 spin_lock_bh(&ctx->encrypt_compl_lock);
1105                 ctx->async_notify = true;
1106
1107                 pending = atomic_read(&ctx->encrypt_pending);
1108                 spin_unlock_bh(&ctx->encrypt_compl_lock);
1109                 if (pending)
1110                         crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1111                 else
1112                         reinit_completion(&ctx->async_wait.completion);
1113
1114                 /* There can be no concurrent accesses, since we have no
1115                  * pending encrypt operations
1116                  */
1117                 WRITE_ONCE(ctx->async_notify, false);
1118
1119                 if (ctx->async_wait.err) {
1120                         ret = ctx->async_wait.err;
1121                         copied = 0;
1122                 }
1123         }
1124
1125         /* Transmit if any encryptions have completed */
1126         if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1127                 cancel_delayed_work(&ctx->tx_work.work);
1128                 tls_tx_records(sk, msg->msg_flags);
1129         }
1130
1131 send_end:
1132         ret = sk_stream_error(sk, msg->msg_flags, ret);
1133
1134         release_sock(sk);
1135         mutex_unlock(&tls_ctx->tx_lock);
1136         return copied > 0 ? copied : ret;
1137 }
1138
1139 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1140                               int offset, size_t size, int flags)
1141 {
1142         long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1143         struct tls_context *tls_ctx = tls_get_ctx(sk);
1144         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1145         struct tls_prot_info *prot = &tls_ctx->prot_info;
1146         unsigned char record_type = TLS_RECORD_TYPE_DATA;
1147         struct sk_msg *msg_pl;
1148         struct tls_rec *rec;
1149         int num_async = 0;
1150         ssize_t copied = 0;
1151         bool full_record;
1152         int record_room;
1153         int ret = 0;
1154         bool eor;
1155
1156         eor = !(flags & MSG_SENDPAGE_NOTLAST);
1157         sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1158
1159         /* Call the sk_stream functions to manage the sndbuf mem. */
1160         while (size > 0) {
1161                 size_t copy, required_size;
1162
1163                 if (sk->sk_err) {
1164                         ret = -sk->sk_err;
1165                         goto sendpage_end;
1166                 }
1167
1168                 if (ctx->open_rec)
1169                         rec = ctx->open_rec;
1170                 else
1171                         rec = ctx->open_rec = tls_get_rec(sk);
1172                 if (!rec) {
1173                         ret = -ENOMEM;
1174                         goto sendpage_end;
1175                 }
1176
1177                 msg_pl = &rec->msg_plaintext;
1178
1179                 full_record = false;
1180                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1181                 copy = size;
1182                 if (copy >= record_room) {
1183                         copy = record_room;
1184                         full_record = true;
1185                 }
1186
1187                 required_size = msg_pl->sg.size + copy + prot->overhead_size;
1188
1189                 if (!sk_stream_memory_free(sk))
1190                         goto wait_for_sndbuf;
1191 alloc_payload:
1192                 ret = tls_alloc_encrypted_msg(sk, required_size);
1193                 if (ret) {
1194                         if (ret != -ENOSPC)
1195                                 goto wait_for_memory;
1196
1197                         /* Adjust copy according to the amount that was
1198                          * actually allocated. The difference is due
1199                          * to max sg elements limit
1200                          */
1201                         copy -= required_size - msg_pl->sg.size;
1202                         full_record = true;
1203                 }
1204
1205                 sk_msg_page_add(msg_pl, page, copy, offset);
1206                 sk_mem_charge(sk, copy);
1207
1208                 offset += copy;
1209                 size -= copy;
1210                 copied += copy;
1211
1212                 tls_ctx->pending_open_record_frags = true;
1213                 if (full_record || eor || sk_msg_full(msg_pl)) {
1214                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1215                                                   record_type, &copied, flags);
1216                         if (ret) {
1217                                 if (ret == -EINPROGRESS)
1218                                         num_async++;
1219                                 else if (ret == -ENOMEM)
1220                                         goto wait_for_memory;
1221                                 else if (ret != -EAGAIN) {
1222                                         if (ret == -ENOSPC)
1223                                                 ret = 0;
1224                                         goto sendpage_end;
1225                                 }
1226                         }
1227                 }
1228                 continue;
1229 wait_for_sndbuf:
1230                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1231 wait_for_memory:
1232                 ret = sk_stream_wait_memory(sk, &timeo);
1233                 if (ret) {
1234                         if (ctx->open_rec)
1235                                 tls_trim_both_msgs(sk, msg_pl->sg.size);
1236                         goto sendpage_end;
1237                 }
1238
1239                 if (ctx->open_rec)
1240                         goto alloc_payload;
1241         }
1242
1243         if (num_async) {
1244                 /* Transmit if any encryptions have completed */
1245                 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1246                         cancel_delayed_work(&ctx->tx_work.work);
1247                         tls_tx_records(sk, flags);
1248                 }
1249         }
1250 sendpage_end:
1251         ret = sk_stream_error(sk, flags, ret);
1252         return copied > 0 ? copied : ret;
1253 }
1254
1255 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1256                            int offset, size_t size, int flags)
1257 {
1258         if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1259                       MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1260                       MSG_NO_SHARED_FRAGS))
1261                 return -EOPNOTSUPP;
1262
1263         return tls_sw_do_sendpage(sk, page, offset, size, flags);
1264 }
1265
1266 int tls_sw_sendpage(struct sock *sk, struct page *page,
1267                     int offset, size_t size, int flags)
1268 {
1269         struct tls_context *tls_ctx = tls_get_ctx(sk);
1270         int ret;
1271
1272         if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1273                       MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1274                 return -EOPNOTSUPP;
1275
1276         mutex_lock(&tls_ctx->tx_lock);
1277         lock_sock(sk);
1278         ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1279         release_sock(sk);
1280         mutex_unlock(&tls_ctx->tx_lock);
1281         return ret;
1282 }
1283
1284 static int
1285 tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock,
1286                 long timeo)
1287 {
1288         struct tls_context *tls_ctx = tls_get_ctx(sk);
1289         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1290         DEFINE_WAIT_FUNC(wait, woken_wake_function);
1291
1292         while (!ctx->recv_pkt) {
1293                 if (!sk_psock_queue_empty(psock))
1294                         return 0;
1295
1296                 if (sk->sk_err)
1297                         return sock_error(sk);
1298
1299                 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1300                         __strp_unpause(&ctx->strp);
1301                         if (ctx->recv_pkt)
1302                                 break;
1303                 }
1304
1305                 if (sk->sk_shutdown & RCV_SHUTDOWN)
1306                         return 0;
1307
1308                 if (sock_flag(sk, SOCK_DONE))
1309                         return 0;
1310
1311                 if (nonblock || !timeo)
1312                         return -EAGAIN;
1313
1314                 add_wait_queue(sk_sleep(sk), &wait);
1315                 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1316                 sk_wait_event(sk, &timeo,
1317                               ctx->recv_pkt || !sk_psock_queue_empty(psock),
1318                               &wait);
1319                 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1320                 remove_wait_queue(sk_sleep(sk), &wait);
1321
1322                 /* Handle signals */
1323                 if (signal_pending(current))
1324                         return sock_intr_errno(timeo);
1325         }
1326
1327         return 1;
1328 }
1329
1330 static int tls_setup_from_iter(struct iov_iter *from,
1331                                int length, int *pages_used,
1332                                struct scatterlist *to,
1333                                int to_max_pages)
1334 {
1335         int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1336         struct page *pages[MAX_SKB_FRAGS];
1337         unsigned int size = 0;
1338         ssize_t copied, use;
1339         size_t offset;
1340
1341         while (length > 0) {
1342                 i = 0;
1343                 maxpages = to_max_pages - num_elem;
1344                 if (maxpages == 0) {
1345                         rc = -EFAULT;
1346                         goto out;
1347                 }
1348                 copied = iov_iter_get_pages(from, pages,
1349                                             length,
1350                                             maxpages, &offset);
1351                 if (copied <= 0) {
1352                         rc = -EFAULT;
1353                         goto out;
1354                 }
1355
1356                 iov_iter_advance(from, copied);
1357
1358                 length -= copied;
1359                 size += copied;
1360                 while (copied) {
1361                         use = min_t(int, copied, PAGE_SIZE - offset);
1362
1363                         sg_set_page(&to[num_elem],
1364                                     pages[i], use, offset);
1365                         sg_unmark_end(&to[num_elem]);
1366                         /* We do not uncharge memory from this API */
1367
1368                         offset = 0;
1369                         copied -= use;
1370
1371                         i++;
1372                         num_elem++;
1373                 }
1374         }
1375         /* Mark the end in the last sg entry if newly added */
1376         if (num_elem > *pages_used)
1377                 sg_mark_end(&to[num_elem - 1]);
1378 out:
1379         if (rc)
1380                 iov_iter_revert(from, size);
1381         *pages_used = num_elem;
1382
1383         return rc;
1384 }
1385
1386 /* Decrypt handlers
1387  *
1388  * tls_decrypt_sg() and tls_decrypt_device() are decrypt handlers.
1389  * They must transform the darg in/out argument are as follows:
1390  *       |          Input            |         Output
1391  * -------------------------------------------------------------------
1392  *    zc | Zero-copy decrypt allowed | Zero-copy performed
1393  * async | Async decrypt allowed     | Async crypto used / in progress
1394  *   skb |            *              | Output skb
1395  */
1396
1397 /* This function decrypts the input skb into either out_iov or in out_sg
1398  * or in skb buffers itself. The input parameter 'darg->zc' indicates if
1399  * zero-copy mode needs to be tried or not. With zero-copy mode, either
1400  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1401  * NULL, then the decryption happens inside skb buffers itself, i.e.
1402  * zero-copy gets disabled and 'darg->zc' is updated.
1403  */
1404 static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov,
1405                           struct scatterlist *out_sg,
1406                           struct tls_decrypt_arg *darg)
1407 {
1408         struct tls_context *tls_ctx = tls_get_ctx(sk);
1409         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1410         struct tls_prot_info *prot = &tls_ctx->prot_info;
1411         int n_sgin, n_sgout, aead_size, err, pages = 0;
1412         struct sk_buff *skb = tls_strp_msg(ctx);
1413         struct strp_msg *rxm = strp_msg(skb);
1414         struct tls_msg *tlm = tls_msg(skb);
1415         struct aead_request *aead_req;
1416         struct sk_buff *unused;
1417         struct scatterlist *sgin = NULL;
1418         struct scatterlist *sgout = NULL;
1419         const int data_len = rxm->full_len - prot->overhead_size;
1420         int tail_pages = !!prot->tail_size;
1421         struct tls_decrypt_ctx *dctx;
1422         int iv_offset = 0;
1423         u8 *mem;
1424
1425         if (darg->zc && (out_iov || out_sg)) {
1426                 if (out_iov)
1427                         n_sgout = 1 + tail_pages +
1428                                 iov_iter_npages_cap(out_iov, INT_MAX, data_len);
1429                 else
1430                         n_sgout = sg_nents(out_sg);
1431                 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1432                                  rxm->full_len - prot->prepend_size);
1433         } else {
1434                 n_sgout = 0;
1435                 darg->zc = false;
1436                 n_sgin = skb_cow_data(skb, 0, &unused);
1437         }
1438
1439         if (n_sgin < 1)
1440                 return -EBADMSG;
1441
1442         /* Increment to accommodate AAD */
1443         n_sgin = n_sgin + 1;
1444
1445         /* Allocate a single block of memory which contains
1446          *   aead_req || tls_decrypt_ctx.
1447          * Both structs are variable length.
1448          */
1449         aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1450         mem = kmalloc(aead_size + struct_size(dctx, sg, n_sgin + n_sgout),
1451                       sk->sk_allocation);
1452         if (!mem)
1453                 return -ENOMEM;
1454
1455         /* Segment the allocated memory */
1456         aead_req = (struct aead_request *)mem;
1457         dctx = (struct tls_decrypt_ctx *)(mem + aead_size);
1458         sgin = &dctx->sg[0];
1459         sgout = &dctx->sg[n_sgin];
1460
1461         /* For CCM based ciphers, first byte of nonce+iv is a constant */
1462         switch (prot->cipher_type) {
1463         case TLS_CIPHER_AES_CCM_128:
1464                 dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE;
1465                 iv_offset = 1;
1466                 break;
1467         case TLS_CIPHER_SM4_CCM:
1468                 dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE;
1469                 iv_offset = 1;
1470                 break;
1471         }
1472
1473         /* Prepare IV */
1474         if (prot->version == TLS_1_3_VERSION ||
1475             prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
1476                 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv,
1477                        prot->iv_size + prot->salt_size);
1478         } else {
1479                 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1480                                     &dctx->iv[iv_offset] + prot->salt_size,
1481                                     prot->iv_size);
1482                 if (err < 0)
1483                         goto exit_free;
1484                 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size);
1485         }
1486         tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq);
1487
1488         /* Prepare AAD */
1489         tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size +
1490                      prot->tail_size,
1491                      tls_ctx->rx.rec_seq, tlm->control, prot);
1492
1493         /* Prepare sgin */
1494         sg_init_table(sgin, n_sgin);
1495         sg_set_buf(&sgin[0], dctx->aad, prot->aad_size);
1496         err = skb_to_sgvec(skb, &sgin[1],
1497                            rxm->offset + prot->prepend_size,
1498                            rxm->full_len - prot->prepend_size);
1499         if (err < 0)
1500                 goto exit_free;
1501
1502         if (n_sgout) {
1503                 if (out_iov) {
1504                         sg_init_table(sgout, n_sgout);
1505                         sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1506
1507                         err = tls_setup_from_iter(out_iov, data_len,
1508                                                   &pages, &sgout[1],
1509                                                   (n_sgout - 1 - tail_pages));
1510                         if (err < 0)
1511                                 goto fallback_to_reg_recv;
1512
1513                         if (prot->tail_size) {
1514                                 sg_unmark_end(&sgout[pages]);
1515                                 sg_set_buf(&sgout[pages + 1], &dctx->tail,
1516                                            prot->tail_size);
1517                                 sg_mark_end(&sgout[pages + 1]);
1518                         }
1519                 } else if (out_sg) {
1520                         memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1521                 } else {
1522                         goto fallback_to_reg_recv;
1523                 }
1524         } else {
1525 fallback_to_reg_recv:
1526                 sgout = sgin;
1527                 pages = 0;
1528                 darg->zc = false;
1529         }
1530
1531         /* Prepare and submit AEAD request */
1532         err = tls_do_decryption(sk, sgin, sgout, dctx->iv,
1533                                 data_len + prot->tail_size, aead_req, darg);
1534         if (err)
1535                 goto exit_free_pages;
1536
1537         darg->skb = tls_strp_msg(ctx);
1538
1539         if (unlikely(darg->async)) {
1540                 err = tls_strp_msg_hold(sk, skb, &ctx->async_hold);
1541                 if (err)
1542                         __skb_queue_tail(&ctx->async_hold, darg->skb);
1543                 return err;
1544         }
1545
1546         if (prot->tail_size)
1547                 darg->tail = dctx->tail;
1548
1549 exit_free_pages:
1550         /* Release the pages in case iov was mapped to pages */
1551         for (; pages > 0; pages--)
1552                 put_page(sg_page(&sgout[pages]));
1553 exit_free:
1554         kfree(mem);
1555         return err;
1556 }
1557
1558 static int
1559 tls_decrypt_device(struct sock *sk, struct tls_context *tls_ctx,
1560                    struct tls_decrypt_arg *darg)
1561 {
1562         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1563         int err;
1564
1565         if (tls_ctx->rx_conf != TLS_HW)
1566                 return 0;
1567
1568         err = tls_device_decrypted(sk, tls_ctx);
1569         if (err <= 0)
1570                 return err;
1571
1572         darg->zc = false;
1573         darg->async = false;
1574         darg->skb = tls_strp_msg(ctx);
1575         ctx->recv_pkt = NULL;
1576         return 1;
1577 }
1578
1579 static int tls_rx_one_record(struct sock *sk, struct iov_iter *dest,
1580                              struct tls_decrypt_arg *darg)
1581 {
1582         struct tls_context *tls_ctx = tls_get_ctx(sk);
1583         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1584         struct tls_prot_info *prot = &tls_ctx->prot_info;
1585         struct strp_msg *rxm;
1586         int pad, err;
1587
1588         err = tls_decrypt_device(sk, tls_ctx, darg);
1589         if (err < 0)
1590                 return err;
1591         if (err)
1592                 goto decrypt_done;
1593
1594         err = tls_decrypt_sg(sk, dest, NULL, darg);
1595         if (err < 0) {
1596                 if (err == -EBADMSG)
1597                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
1598                 return err;
1599         }
1600         if (darg->async)
1601                 goto decrypt_done;
1602         /* If opportunistic TLS 1.3 ZC failed retry without ZC */
1603         if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION &&
1604                      darg->tail != TLS_RECORD_TYPE_DATA)) {
1605                 darg->zc = false;
1606                 if (!darg->tail)
1607                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL);
1608                 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY);
1609                 return tls_rx_one_record(sk, dest, darg);
1610         }
1611
1612 decrypt_done:
1613         if (darg->skb == ctx->recv_pkt)
1614                 ctx->recv_pkt = NULL;
1615
1616         pad = tls_padding_length(prot, darg->skb, darg);
1617         if (pad < 0) {
1618                 consume_skb(darg->skb);
1619                 return pad;
1620         }
1621
1622         rxm = strp_msg(darg->skb);
1623         rxm->full_len -= pad;
1624         rxm->offset += prot->prepend_size;
1625         rxm->full_len -= prot->overhead_size;
1626         tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1627
1628         return 0;
1629 }
1630
1631 int decrypt_skb(struct sock *sk, struct scatterlist *sgout)
1632 {
1633         struct tls_decrypt_arg darg = { .zc = true, };
1634
1635         return tls_decrypt_sg(sk, NULL, sgout, &darg);
1636 }
1637
1638 static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm,
1639                                    u8 *control)
1640 {
1641         int err;
1642
1643         if (!*control) {
1644                 *control = tlm->control;
1645                 if (!*control)
1646                         return -EBADMSG;
1647
1648                 err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1649                                sizeof(*control), control);
1650                 if (*control != TLS_RECORD_TYPE_DATA) {
1651                         if (err || msg->msg_flags & MSG_CTRUNC)
1652                                 return -EIO;
1653                 }
1654         } else if (*control != tlm->control) {
1655                 return 0;
1656         }
1657
1658         return 1;
1659 }
1660
1661 static void tls_rx_rec_done(struct tls_sw_context_rx *ctx)
1662 {
1663         consume_skb(ctx->recv_pkt);
1664         ctx->recv_pkt = NULL;
1665         __strp_unpause(&ctx->strp);
1666 }
1667
1668 /* This function traverses the rx_list in tls receive context to copies the
1669  * decrypted records into the buffer provided by caller zero copy is not
1670  * true. Further, the records are removed from the rx_list if it is not a peek
1671  * case and the record has been consumed completely.
1672  */
1673 static int process_rx_list(struct tls_sw_context_rx *ctx,
1674                            struct msghdr *msg,
1675                            u8 *control,
1676                            size_t skip,
1677                            size_t len,
1678                            bool is_peek)
1679 {
1680         struct sk_buff *skb = skb_peek(&ctx->rx_list);
1681         struct tls_msg *tlm;
1682         ssize_t copied = 0;
1683         int err;
1684
1685         while (skip && skb) {
1686                 struct strp_msg *rxm = strp_msg(skb);
1687                 tlm = tls_msg(skb);
1688
1689                 err = tls_record_content_type(msg, tlm, control);
1690                 if (err <= 0)
1691                         goto out;
1692
1693                 if (skip < rxm->full_len)
1694                         break;
1695
1696                 skip = skip - rxm->full_len;
1697                 skb = skb_peek_next(skb, &ctx->rx_list);
1698         }
1699
1700         while (len && skb) {
1701                 struct sk_buff *next_skb;
1702                 struct strp_msg *rxm = strp_msg(skb);
1703                 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1704
1705                 tlm = tls_msg(skb);
1706
1707                 err = tls_record_content_type(msg, tlm, control);
1708                 if (err <= 0)
1709                         goto out;
1710
1711                 err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1712                                             msg, chunk);
1713                 if (err < 0)
1714                         goto out;
1715
1716                 len = len - chunk;
1717                 copied = copied + chunk;
1718
1719                 /* Consume the data from record if it is non-peek case*/
1720                 if (!is_peek) {
1721                         rxm->offset = rxm->offset + chunk;
1722                         rxm->full_len = rxm->full_len - chunk;
1723
1724                         /* Return if there is unconsumed data in the record */
1725                         if (rxm->full_len - skip)
1726                                 break;
1727                 }
1728
1729                 /* The remaining skip-bytes must lie in 1st record in rx_list.
1730                  * So from the 2nd record, 'skip' should be 0.
1731                  */
1732                 skip = 0;
1733
1734                 if (msg)
1735                         msg->msg_flags |= MSG_EOR;
1736
1737                 next_skb = skb_peek_next(skb, &ctx->rx_list);
1738
1739                 if (!is_peek) {
1740                         __skb_unlink(skb, &ctx->rx_list);
1741                         consume_skb(skb);
1742                 }
1743
1744                 skb = next_skb;
1745         }
1746         err = 0;
1747
1748 out:
1749         return copied ? : err;
1750 }
1751
1752 static void
1753 tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot,
1754                        size_t len_left, size_t decrypted, ssize_t done,
1755                        size_t *flushed_at)
1756 {
1757         size_t max_rec;
1758
1759         if (len_left <= decrypted)
1760                 return;
1761
1762         max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE;
1763         if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec)
1764                 return;
1765
1766         *flushed_at = done;
1767         sk_flush_backlog(sk);
1768 }
1769
1770 static long tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx,
1771                                bool nonblock)
1772 {
1773         long timeo;
1774
1775         lock_sock(sk);
1776
1777         timeo = sock_rcvtimeo(sk, nonblock);
1778
1779         while (unlikely(ctx->reader_present)) {
1780                 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1781
1782                 ctx->reader_contended = 1;
1783
1784                 add_wait_queue(&ctx->wq, &wait);
1785                 sk_wait_event(sk, &timeo,
1786                               !READ_ONCE(ctx->reader_present), &wait);
1787                 remove_wait_queue(&ctx->wq, &wait);
1788
1789                 if (!timeo)
1790                         return -EAGAIN;
1791                 if (signal_pending(current))
1792                         return sock_intr_errno(timeo);
1793         }
1794
1795         WRITE_ONCE(ctx->reader_present, 1);
1796
1797         return timeo;
1798 }
1799
1800 static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx)
1801 {
1802         if (unlikely(ctx->reader_contended)) {
1803                 if (wq_has_sleeper(&ctx->wq))
1804                         wake_up(&ctx->wq);
1805                 else
1806                         ctx->reader_contended = 0;
1807
1808                 WARN_ON_ONCE(!ctx->reader_present);
1809         }
1810
1811         WRITE_ONCE(ctx->reader_present, 0);
1812         release_sock(sk);
1813 }
1814
1815 int tls_sw_recvmsg(struct sock *sk,
1816                    struct msghdr *msg,
1817                    size_t len,
1818                    int flags,
1819                    int *addr_len)
1820 {
1821         struct tls_context *tls_ctx = tls_get_ctx(sk);
1822         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1823         struct tls_prot_info *prot = &tls_ctx->prot_info;
1824         ssize_t decrypted = 0, async_copy_bytes = 0;
1825         struct sk_psock *psock;
1826         unsigned char control = 0;
1827         size_t flushed_at = 0;
1828         struct strp_msg *rxm;
1829         struct tls_msg *tlm;
1830         struct sk_buff *skb;
1831         ssize_t copied = 0;
1832         bool async = false;
1833         int target, err = 0;
1834         long timeo;
1835         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1836         bool is_peek = flags & MSG_PEEK;
1837         bool bpf_strp_enabled;
1838         bool zc_capable;
1839
1840         if (unlikely(flags & MSG_ERRQUEUE))
1841                 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1842
1843         psock = sk_psock_get(sk);
1844         timeo = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT);
1845         if (timeo < 0)
1846                 return timeo;
1847         bpf_strp_enabled = sk_psock_strp_enabled(psock);
1848
1849         /* If crypto failed the connection is broken */
1850         err = ctx->async_wait.err;
1851         if (err)
1852                 goto end;
1853
1854         /* Process pending decrypted records. It must be non-zero-copy */
1855         err = process_rx_list(ctx, msg, &control, 0, len, is_peek);
1856         if (err < 0)
1857                 goto end;
1858
1859         copied = err;
1860         if (len <= copied)
1861                 goto end;
1862
1863         target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1864         len = len - copied;
1865
1866         zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek &&
1867                 ctx->zc_capable;
1868         decrypted = 0;
1869         while (len && (decrypted + copied < target || ctx->recv_pkt)) {
1870                 struct tls_decrypt_arg darg;
1871                 int to_decrypt, chunk;
1872
1873                 err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT, timeo);
1874                 if (err <= 0) {
1875                         if (psock) {
1876                                 chunk = sk_msg_recvmsg(sk, psock, msg, len,
1877                                                        flags);
1878                                 if (chunk > 0) {
1879                                         decrypted += chunk;
1880                                         len -= chunk;
1881                                         continue;
1882                                 }
1883                         }
1884                         goto recv_end;
1885                 }
1886
1887                 memset(&darg.inargs, 0, sizeof(darg.inargs));
1888
1889                 rxm = strp_msg(ctx->recv_pkt);
1890                 tlm = tls_msg(ctx->recv_pkt);
1891
1892                 to_decrypt = rxm->full_len - prot->overhead_size;
1893
1894                 if (zc_capable && to_decrypt <= len &&
1895                     tlm->control == TLS_RECORD_TYPE_DATA)
1896                         darg.zc = true;
1897
1898                 /* Do not use async mode if record is non-data */
1899                 if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
1900                         darg.async = ctx->async_capable;
1901                 else
1902                         darg.async = false;
1903
1904                 err = tls_rx_one_record(sk, &msg->msg_iter, &darg);
1905                 if (err < 0) {
1906                         tls_err_abort(sk, -EBADMSG);
1907                         goto recv_end;
1908                 }
1909
1910                 skb = darg.skb;
1911                 rxm = strp_msg(skb);
1912                 tlm = tls_msg(skb);
1913
1914                 async |= darg.async;
1915
1916                 /* If the type of records being processed is not known yet,
1917                  * set it to record type just dequeued. If it is already known,
1918                  * but does not match the record type just dequeued, go to end.
1919                  * We always get record type here since for tls1.2, record type
1920                  * is known just after record is dequeued from stream parser.
1921                  * For tls1.3, we disable async.
1922                  */
1923                 err = tls_record_content_type(msg, tlm, &control);
1924                 if (err <= 0) {
1925                         tls_rx_rec_done(ctx);
1926 put_on_rx_list_err:
1927                         __skb_queue_tail(&ctx->rx_list, skb);
1928                         goto recv_end;
1929                 }
1930
1931                 /* periodically flush backlog, and feed strparser */
1932                 tls_read_flush_backlog(sk, prot, len, to_decrypt,
1933                                        decrypted + copied, &flushed_at);
1934
1935                 /* TLS 1.3 may have updated the length by more than overhead */
1936                 chunk = rxm->full_len;
1937                 tls_rx_rec_done(ctx);
1938
1939                 if (!darg.zc) {
1940                         bool partially_consumed = chunk > len;
1941
1942                         if (async) {
1943                                 /* TLS 1.2-only, to_decrypt must be text len */
1944                                 chunk = min_t(int, to_decrypt, len);
1945                                 async_copy_bytes += chunk;
1946 put_on_rx_list:
1947                                 decrypted += chunk;
1948                                 len -= chunk;
1949                                 __skb_queue_tail(&ctx->rx_list, skb);
1950                                 continue;
1951                         }
1952
1953                         if (bpf_strp_enabled) {
1954                                 err = sk_psock_tls_strp_read(psock, skb);
1955                                 if (err != __SK_PASS) {
1956                                         rxm->offset = rxm->offset + rxm->full_len;
1957                                         rxm->full_len = 0;
1958                                         if (err == __SK_DROP)
1959                                                 consume_skb(skb);
1960                                         continue;
1961                                 }
1962                         }
1963
1964                         if (partially_consumed)
1965                                 chunk = len;
1966
1967                         err = skb_copy_datagram_msg(skb, rxm->offset,
1968                                                     msg, chunk);
1969                         if (err < 0)
1970                                 goto put_on_rx_list_err;
1971
1972                         if (is_peek)
1973                                 goto put_on_rx_list;
1974
1975                         if (partially_consumed) {
1976                                 rxm->offset += chunk;
1977                                 rxm->full_len -= chunk;
1978                                 goto put_on_rx_list;
1979                         }
1980                 }
1981
1982                 decrypted += chunk;
1983                 len -= chunk;
1984
1985                 consume_skb(skb);
1986
1987                 /* Return full control message to userspace before trying
1988                  * to parse another message type
1989                  */
1990                 msg->msg_flags |= MSG_EOR;
1991                 if (control != TLS_RECORD_TYPE_DATA)
1992                         break;
1993         }
1994
1995 recv_end:
1996         if (async) {
1997                 int ret, pending;
1998
1999                 /* Wait for all previously submitted records to be decrypted */
2000                 spin_lock_bh(&ctx->decrypt_compl_lock);
2001                 reinit_completion(&ctx->async_wait.completion);
2002                 pending = atomic_read(&ctx->decrypt_pending);
2003                 spin_unlock_bh(&ctx->decrypt_compl_lock);
2004                 ret = 0;
2005                 if (pending)
2006                         ret = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2007                 __skb_queue_purge(&ctx->async_hold);
2008
2009                 if (ret) {
2010                         if (err >= 0 || err == -EINPROGRESS)
2011                                 err = ret;
2012                         decrypted = 0;
2013                         goto end;
2014                 }
2015
2016                 /* Drain records from the rx_list & copy if required */
2017                 if (is_peek || is_kvec)
2018                         err = process_rx_list(ctx, msg, &control, copied,
2019                                               decrypted, is_peek);
2020                 else
2021                         err = process_rx_list(ctx, msg, &control, 0,
2022                                               async_copy_bytes, is_peek);
2023                 decrypted = max(err, 0);
2024         }
2025
2026         copied += decrypted;
2027
2028 end:
2029         tls_rx_reader_unlock(sk, ctx);
2030         if (psock)
2031                 sk_psock_put(sk, psock);
2032         return copied ? : err;
2033 }
2034
2035 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
2036                            struct pipe_inode_info *pipe,
2037                            size_t len, unsigned int flags)
2038 {
2039         struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
2040         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2041         struct strp_msg *rxm = NULL;
2042         struct sock *sk = sock->sk;
2043         struct tls_msg *tlm;
2044         struct sk_buff *skb;
2045         ssize_t copied = 0;
2046         int err = 0;
2047         long timeo;
2048         int chunk;
2049
2050         timeo = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK);
2051         if (timeo < 0)
2052                 return timeo;
2053
2054         if (!skb_queue_empty(&ctx->rx_list)) {
2055                 skb = __skb_dequeue(&ctx->rx_list);
2056         } else {
2057                 struct tls_decrypt_arg darg;
2058
2059                 err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK,
2060                                       timeo);
2061                 if (err <= 0)
2062                         goto splice_read_end;
2063
2064                 memset(&darg.inargs, 0, sizeof(darg.inargs));
2065
2066                 err = tls_rx_one_record(sk, NULL, &darg);
2067                 if (err < 0) {
2068                         tls_err_abort(sk, -EBADMSG);
2069                         goto splice_read_end;
2070                 }
2071
2072                 tls_rx_rec_done(ctx);
2073                 skb = darg.skb;
2074         }
2075
2076         rxm = strp_msg(skb);
2077         tlm = tls_msg(skb);
2078
2079         /* splice does not support reading control messages */
2080         if (tlm->control != TLS_RECORD_TYPE_DATA) {
2081                 err = -EINVAL;
2082                 goto splice_requeue;
2083         }
2084
2085         chunk = min_t(unsigned int, rxm->full_len, len);
2086         copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2087         if (copied < 0)
2088                 goto splice_requeue;
2089
2090         if (chunk < rxm->full_len) {
2091                 rxm->offset += len;
2092                 rxm->full_len -= len;
2093                 goto splice_requeue;
2094         }
2095
2096         consume_skb(skb);
2097
2098 splice_read_end:
2099         tls_rx_reader_unlock(sk, ctx);
2100         return copied ? : err;
2101
2102 splice_requeue:
2103         __skb_queue_head(&ctx->rx_list, skb);
2104         goto splice_read_end;
2105 }
2106
2107 bool tls_sw_sock_is_readable(struct sock *sk)
2108 {
2109         struct tls_context *tls_ctx = tls_get_ctx(sk);
2110         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2111         bool ingress_empty = true;
2112         struct sk_psock *psock;
2113
2114         rcu_read_lock();
2115         psock = sk_psock(sk);
2116         if (psock)
2117                 ingress_empty = list_empty(&psock->ingress_msg);
2118         rcu_read_unlock();
2119
2120         return !ingress_empty || ctx->recv_pkt ||
2121                 !skb_queue_empty(&ctx->rx_list);
2122 }
2123
2124 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
2125 {
2126         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2127         struct tls_prot_info *prot = &tls_ctx->prot_info;
2128         char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2129         struct strp_msg *rxm = strp_msg(skb);
2130         struct tls_msg *tlm = tls_msg(skb);
2131         size_t cipher_overhead;
2132         size_t data_len = 0;
2133         int ret;
2134
2135         /* Verify that we have a full TLS header, or wait for more data */
2136         if (rxm->offset + prot->prepend_size > skb->len)
2137                 return 0;
2138
2139         /* Sanity-check size of on-stack buffer. */
2140         if (WARN_ON(prot->prepend_size > sizeof(header))) {
2141                 ret = -EINVAL;
2142                 goto read_failure;
2143         }
2144
2145         /* Linearize header to local buffer */
2146         ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
2147         if (ret < 0)
2148                 goto read_failure;
2149
2150         tlm->control = header[0];
2151
2152         data_len = ((header[4] & 0xFF) | (header[3] << 8));
2153
2154         cipher_overhead = prot->tag_size;
2155         if (prot->version != TLS_1_3_VERSION &&
2156             prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2157                 cipher_overhead += prot->iv_size;
2158
2159         if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2160             prot->tail_size) {
2161                 ret = -EMSGSIZE;
2162                 goto read_failure;
2163         }
2164         if (data_len < cipher_overhead) {
2165                 ret = -EBADMSG;
2166                 goto read_failure;
2167         }
2168
2169         /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2170         if (header[1] != TLS_1_2_VERSION_MINOR ||
2171             header[2] != TLS_1_2_VERSION_MAJOR) {
2172                 ret = -EINVAL;
2173                 goto read_failure;
2174         }
2175
2176         tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2177                                      TCP_SKB_CB(skb)->seq + rxm->offset);
2178         return data_len + TLS_HEADER_SIZE;
2179
2180 read_failure:
2181         tls_err_abort(strp->sk, ret);
2182
2183         return ret;
2184 }
2185
2186 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2187 {
2188         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2189         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2190
2191         ctx->recv_pkt = skb;
2192         strp_pause(strp);
2193
2194         ctx->saved_data_ready(strp->sk);
2195 }
2196
2197 static void tls_data_ready(struct sock *sk)
2198 {
2199         struct tls_context *tls_ctx = tls_get_ctx(sk);
2200         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2201         struct sk_psock *psock;
2202
2203         strp_data_ready(&ctx->strp);
2204
2205         psock = sk_psock_get(sk);
2206         if (psock) {
2207                 if (!list_empty(&psock->ingress_msg))
2208                         ctx->saved_data_ready(sk);
2209                 sk_psock_put(sk, psock);
2210         }
2211 }
2212
2213 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2214 {
2215         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2216
2217         set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2218         set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2219         cancel_delayed_work_sync(&ctx->tx_work.work);
2220 }
2221
2222 void tls_sw_release_resources_tx(struct sock *sk)
2223 {
2224         struct tls_context *tls_ctx = tls_get_ctx(sk);
2225         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2226         struct tls_rec *rec, *tmp;
2227         int pending;
2228
2229         /* Wait for any pending async encryptions to complete */
2230         spin_lock_bh(&ctx->encrypt_compl_lock);
2231         ctx->async_notify = true;
2232         pending = atomic_read(&ctx->encrypt_pending);
2233         spin_unlock_bh(&ctx->encrypt_compl_lock);
2234
2235         if (pending)
2236                 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2237
2238         tls_tx_records(sk, -1);
2239
2240         /* Free up un-sent records in tx_list. First, free
2241          * the partially sent record if any at head of tx_list.
2242          */
2243         if (tls_ctx->partially_sent_record) {
2244                 tls_free_partial_record(sk, tls_ctx);
2245                 rec = list_first_entry(&ctx->tx_list,
2246                                        struct tls_rec, list);
2247                 list_del(&rec->list);
2248                 sk_msg_free(sk, &rec->msg_plaintext);
2249                 kfree(rec);
2250         }
2251
2252         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2253                 list_del(&rec->list);
2254                 sk_msg_free(sk, &rec->msg_encrypted);
2255                 sk_msg_free(sk, &rec->msg_plaintext);
2256                 kfree(rec);
2257         }
2258
2259         crypto_free_aead(ctx->aead_send);
2260         tls_free_open_rec(sk);
2261 }
2262
2263 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2264 {
2265         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2266
2267         kfree(ctx);
2268 }
2269
2270 void tls_sw_release_resources_rx(struct sock *sk)
2271 {
2272         struct tls_context *tls_ctx = tls_get_ctx(sk);
2273         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2274
2275         kfree(tls_ctx->rx.rec_seq);
2276         kfree(tls_ctx->rx.iv);
2277
2278         if (ctx->aead_recv) {
2279                 kfree_skb(ctx->recv_pkt);
2280                 ctx->recv_pkt = NULL;
2281                 __skb_queue_purge(&ctx->rx_list);
2282                 crypto_free_aead(ctx->aead_recv);
2283                 strp_stop(&ctx->strp);
2284                 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2285                  * we still want to strp_stop(), but sk->sk_data_ready was
2286                  * never swapped.
2287                  */
2288                 if (ctx->saved_data_ready) {
2289                         write_lock_bh(&sk->sk_callback_lock);
2290                         sk->sk_data_ready = ctx->saved_data_ready;
2291                         write_unlock_bh(&sk->sk_callback_lock);
2292                 }
2293         }
2294 }
2295
2296 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2297 {
2298         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2299
2300         strp_done(&ctx->strp);
2301 }
2302
2303 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2304 {
2305         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2306
2307         kfree(ctx);
2308 }
2309
2310 void tls_sw_free_resources_rx(struct sock *sk)
2311 {
2312         struct tls_context *tls_ctx = tls_get_ctx(sk);
2313
2314         tls_sw_release_resources_rx(sk);
2315         tls_sw_free_ctx_rx(tls_ctx);
2316 }
2317
2318 /* The work handler to transmitt the encrypted records in tx_list */
2319 static void tx_work_handler(struct work_struct *work)
2320 {
2321         struct delayed_work *delayed_work = to_delayed_work(work);
2322         struct tx_work *tx_work = container_of(delayed_work,
2323                                                struct tx_work, work);
2324         struct sock *sk = tx_work->sk;
2325         struct tls_context *tls_ctx = tls_get_ctx(sk);
2326         struct tls_sw_context_tx *ctx;
2327
2328         if (unlikely(!tls_ctx))
2329                 return;
2330
2331         ctx = tls_sw_ctx_tx(tls_ctx);
2332         if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2333                 return;
2334
2335         if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2336                 return;
2337         mutex_lock(&tls_ctx->tx_lock);
2338         lock_sock(sk);
2339         tls_tx_records(sk, -1);
2340         release_sock(sk);
2341         mutex_unlock(&tls_ctx->tx_lock);
2342 }
2343
2344 static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx)
2345 {
2346         struct tls_rec *rec;
2347
2348         rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
2349         if (!rec)
2350                 return false;
2351
2352         return READ_ONCE(rec->tx_ready);
2353 }
2354
2355 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2356 {
2357         struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2358
2359         /* Schedule the transmission if tx list is ready */
2360         if (tls_is_tx_ready(tx_ctx) &&
2361             !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2362                 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2363 }
2364
2365 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2366 {
2367         struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2368
2369         write_lock_bh(&sk->sk_callback_lock);
2370         rx_ctx->saved_data_ready = sk->sk_data_ready;
2371         sk->sk_data_ready = tls_data_ready;
2372         write_unlock_bh(&sk->sk_callback_lock);
2373
2374         strp_check_rcv(&rx_ctx->strp);
2375 }
2376
2377 void tls_update_rx_zc_capable(struct tls_context *tls_ctx)
2378 {
2379         struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2380
2381         rx_ctx->zc_capable = tls_ctx->rx_no_pad ||
2382                 tls_ctx->prot_info.version != TLS_1_3_VERSION;
2383 }
2384
2385 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2386 {
2387         struct tls_context *tls_ctx = tls_get_ctx(sk);
2388         struct tls_prot_info *prot = &tls_ctx->prot_info;
2389         struct tls_crypto_info *crypto_info;
2390         struct tls_sw_context_tx *sw_ctx_tx = NULL;
2391         struct tls_sw_context_rx *sw_ctx_rx = NULL;
2392         struct cipher_context *cctx;
2393         struct crypto_aead **aead;
2394         struct strp_callbacks cb;
2395         u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2396         struct crypto_tfm *tfm;
2397         char *iv, *rec_seq, *key, *salt, *cipher_name;
2398         size_t keysize;
2399         int rc = 0;
2400
2401         if (!ctx) {
2402                 rc = -EINVAL;
2403                 goto out;
2404         }
2405
2406         if (tx) {
2407                 if (!ctx->priv_ctx_tx) {
2408                         sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2409                         if (!sw_ctx_tx) {
2410                                 rc = -ENOMEM;
2411                                 goto out;
2412                         }
2413                         ctx->priv_ctx_tx = sw_ctx_tx;
2414                 } else {
2415                         sw_ctx_tx =
2416                                 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2417                 }
2418         } else {
2419                 if (!ctx->priv_ctx_rx) {
2420                         sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2421                         if (!sw_ctx_rx) {
2422                                 rc = -ENOMEM;
2423                                 goto out;
2424                         }
2425                         ctx->priv_ctx_rx = sw_ctx_rx;
2426                 } else {
2427                         sw_ctx_rx =
2428                                 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2429                 }
2430         }
2431
2432         if (tx) {
2433                 crypto_init_wait(&sw_ctx_tx->async_wait);
2434                 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2435                 crypto_info = &ctx->crypto_send.info;
2436                 cctx = &ctx->tx;
2437                 aead = &sw_ctx_tx->aead_send;
2438                 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2439                 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2440                 sw_ctx_tx->tx_work.sk = sk;
2441         } else {
2442                 crypto_init_wait(&sw_ctx_rx->async_wait);
2443                 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2444                 init_waitqueue_head(&sw_ctx_rx->wq);
2445                 crypto_info = &ctx->crypto_recv.info;
2446                 cctx = &ctx->rx;
2447                 skb_queue_head_init(&sw_ctx_rx->rx_list);
2448                 skb_queue_head_init(&sw_ctx_rx->async_hold);
2449                 aead = &sw_ctx_rx->aead_recv;
2450         }
2451
2452         switch (crypto_info->cipher_type) {
2453         case TLS_CIPHER_AES_GCM_128: {
2454                 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2455
2456                 gcm_128_info = (void *)crypto_info;
2457                 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2458                 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2459                 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2460                 iv = gcm_128_info->iv;
2461                 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2462                 rec_seq = gcm_128_info->rec_seq;
2463                 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2464                 key = gcm_128_info->key;
2465                 salt = gcm_128_info->salt;
2466                 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2467                 cipher_name = "gcm(aes)";
2468                 break;
2469         }
2470         case TLS_CIPHER_AES_GCM_256: {
2471                 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2472
2473                 gcm_256_info = (void *)crypto_info;
2474                 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2475                 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2476                 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2477                 iv = gcm_256_info->iv;
2478                 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2479                 rec_seq = gcm_256_info->rec_seq;
2480                 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2481                 key = gcm_256_info->key;
2482                 salt = gcm_256_info->salt;
2483                 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2484                 cipher_name = "gcm(aes)";
2485                 break;
2486         }
2487         case TLS_CIPHER_AES_CCM_128: {
2488                 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2489
2490                 ccm_128_info = (void *)crypto_info;
2491                 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2492                 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2493                 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2494                 iv = ccm_128_info->iv;
2495                 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2496                 rec_seq = ccm_128_info->rec_seq;
2497                 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2498                 key = ccm_128_info->key;
2499                 salt = ccm_128_info->salt;
2500                 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2501                 cipher_name = "ccm(aes)";
2502                 break;
2503         }
2504         case TLS_CIPHER_CHACHA20_POLY1305: {
2505                 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info;
2506
2507                 chacha20_poly1305_info = (void *)crypto_info;
2508                 nonce_size = 0;
2509                 tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE;
2510                 iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE;
2511                 iv = chacha20_poly1305_info->iv;
2512                 rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE;
2513                 rec_seq = chacha20_poly1305_info->rec_seq;
2514                 keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE;
2515                 key = chacha20_poly1305_info->key;
2516                 salt = chacha20_poly1305_info->salt;
2517                 salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE;
2518                 cipher_name = "rfc7539(chacha20,poly1305)";
2519                 break;
2520         }
2521         case TLS_CIPHER_SM4_GCM: {
2522                 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info;
2523
2524                 sm4_gcm_info = (void *)crypto_info;
2525                 nonce_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2526                 tag_size = TLS_CIPHER_SM4_GCM_TAG_SIZE;
2527                 iv_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2528                 iv = sm4_gcm_info->iv;
2529                 rec_seq_size = TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE;
2530                 rec_seq = sm4_gcm_info->rec_seq;
2531                 keysize = TLS_CIPHER_SM4_GCM_KEY_SIZE;
2532                 key = sm4_gcm_info->key;
2533                 salt = sm4_gcm_info->salt;
2534                 salt_size = TLS_CIPHER_SM4_GCM_SALT_SIZE;
2535                 cipher_name = "gcm(sm4)";
2536                 break;
2537         }
2538         case TLS_CIPHER_SM4_CCM: {
2539                 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info;
2540
2541                 sm4_ccm_info = (void *)crypto_info;
2542                 nonce_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2543                 tag_size = TLS_CIPHER_SM4_CCM_TAG_SIZE;
2544                 iv_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2545                 iv = sm4_ccm_info->iv;
2546                 rec_seq_size = TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE;
2547                 rec_seq = sm4_ccm_info->rec_seq;
2548                 keysize = TLS_CIPHER_SM4_CCM_KEY_SIZE;
2549                 key = sm4_ccm_info->key;
2550                 salt = sm4_ccm_info->salt;
2551                 salt_size = TLS_CIPHER_SM4_CCM_SALT_SIZE;
2552                 cipher_name = "ccm(sm4)";
2553                 break;
2554         }
2555         default:
2556                 rc = -EINVAL;
2557                 goto free_priv;
2558         }
2559
2560         if (crypto_info->version == TLS_1_3_VERSION) {
2561                 nonce_size = 0;
2562                 prot->aad_size = TLS_HEADER_SIZE;
2563                 prot->tail_size = 1;
2564         } else {
2565                 prot->aad_size = TLS_AAD_SPACE_SIZE;
2566                 prot->tail_size = 0;
2567         }
2568
2569         /* Sanity-check the sizes for stack allocations. */
2570         if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2571             rec_seq_size > TLS_MAX_REC_SEQ_SIZE || tag_size != TLS_TAG_SIZE ||
2572             prot->aad_size > TLS_MAX_AAD_SIZE) {
2573                 rc = -EINVAL;
2574                 goto free_priv;
2575         }
2576
2577         prot->version = crypto_info->version;
2578         prot->cipher_type = crypto_info->cipher_type;
2579         prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2580         prot->tag_size = tag_size;
2581         prot->overhead_size = prot->prepend_size +
2582                               prot->tag_size + prot->tail_size;
2583         prot->iv_size = iv_size;
2584         prot->salt_size = salt_size;
2585         cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2586         if (!cctx->iv) {
2587                 rc = -ENOMEM;
2588                 goto free_priv;
2589         }
2590         /* Note: 128 & 256 bit salt are the same size */
2591         prot->rec_seq_size = rec_seq_size;
2592         memcpy(cctx->iv, salt, salt_size);
2593         memcpy(cctx->iv + salt_size, iv, iv_size);
2594         cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2595         if (!cctx->rec_seq) {
2596                 rc = -ENOMEM;
2597                 goto free_iv;
2598         }
2599
2600         if (!*aead) {
2601                 *aead = crypto_alloc_aead(cipher_name, 0, 0);
2602                 if (IS_ERR(*aead)) {
2603                         rc = PTR_ERR(*aead);
2604                         *aead = NULL;
2605                         goto free_rec_seq;
2606                 }
2607         }
2608
2609         ctx->push_pending_record = tls_sw_push_pending_record;
2610
2611         rc = crypto_aead_setkey(*aead, key, keysize);
2612
2613         if (rc)
2614                 goto free_aead;
2615
2616         rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2617         if (rc)
2618                 goto free_aead;
2619
2620         if (sw_ctx_rx) {
2621                 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2622
2623                 tls_update_rx_zc_capable(ctx);
2624                 sw_ctx_rx->async_capable =
2625                         crypto_info->version != TLS_1_3_VERSION &&
2626                         !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC);
2627
2628                 /* Set up strparser */
2629                 memset(&cb, 0, sizeof(cb));
2630                 cb.rcv_msg = tls_queue;
2631                 cb.parse_msg = tls_read_size;
2632
2633                 strp_init(&sw_ctx_rx->strp, sk, &cb);
2634         }
2635
2636         goto out;
2637
2638 free_aead:
2639         crypto_free_aead(*aead);
2640         *aead = NULL;
2641 free_rec_seq:
2642         kfree(cctx->rec_seq);
2643         cctx->rec_seq = NULL;
2644 free_iv:
2645         kfree(cctx->iv);
2646         cctx->iv = NULL;
2647 free_priv:
2648         if (tx) {
2649                 kfree(ctx->priv_ctx_tx);
2650                 ctx->priv_ctx_tx = NULL;
2651         } else {
2652                 kfree(ctx->priv_ctx_rx);
2653                 ctx->priv_ctx_rx = NULL;
2654         }
2655 out:
2656         return rc;
2657 }