Merge tag 'arm-dt-6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-2.6-microblaze.git] / net / tls / tls_sw.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8  *
9  * This software is available to you under a choice of one of two
10  * licenses.  You may choose to be licensed under the terms of the GNU
11  * General Public License (GPL) Version 2, available from the file
12  * COPYING in the main directory of this source tree, or the
13  * OpenIB.org BSD license below:
14  *
15  *     Redistribution and use in source and binary forms, with or
16  *     without modification, are permitted provided that the following
17  *     conditions are met:
18  *
19  *      - Redistributions of source code must retain the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer.
22  *
23  *      - Redistributions in binary form must reproduce the above
24  *        copyright notice, this list of conditions and the following
25  *        disclaimer in the documentation and/or other materials
26  *        provided with the distribution.
27  *
28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35  * SOFTWARE.
36  */
37
38 #include <linux/bug.h>
39 #include <linux/sched/signal.h>
40 #include <linux/module.h>
41 #include <linux/splice.h>
42 #include <crypto/aead.h>
43
44 #include <net/strparser.h>
45 #include <net/tls.h>
46
47 struct tls_decrypt_arg {
48         bool zc;
49         bool async;
50 };
51
52 noinline void tls_err_abort(struct sock *sk, int err)
53 {
54         WARN_ON_ONCE(err >= 0);
55         /* sk->sk_err should contain a positive error code. */
56         sk->sk_err = -err;
57         sk_error_report(sk);
58 }
59
60 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
61                      unsigned int recursion_level)
62 {
63         int start = skb_headlen(skb);
64         int i, chunk = start - offset;
65         struct sk_buff *frag_iter;
66         int elt = 0;
67
68         if (unlikely(recursion_level >= 24))
69                 return -EMSGSIZE;
70
71         if (chunk > 0) {
72                 if (chunk > len)
73                         chunk = len;
74                 elt++;
75                 len -= chunk;
76                 if (len == 0)
77                         return elt;
78                 offset += chunk;
79         }
80
81         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
82                 int end;
83
84                 WARN_ON(start > offset + len);
85
86                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
87                 chunk = end - offset;
88                 if (chunk > 0) {
89                         if (chunk > len)
90                                 chunk = len;
91                         elt++;
92                         len -= chunk;
93                         if (len == 0)
94                                 return elt;
95                         offset += chunk;
96                 }
97                 start = end;
98         }
99
100         if (unlikely(skb_has_frag_list(skb))) {
101                 skb_walk_frags(skb, frag_iter) {
102                         int end, ret;
103
104                         WARN_ON(start > offset + len);
105
106                         end = start + frag_iter->len;
107                         chunk = end - offset;
108                         if (chunk > 0) {
109                                 if (chunk > len)
110                                         chunk = len;
111                                 ret = __skb_nsg(frag_iter, offset - start, chunk,
112                                                 recursion_level + 1);
113                                 if (unlikely(ret < 0))
114                                         return ret;
115                                 elt += ret;
116                                 len -= chunk;
117                                 if (len == 0)
118                                         return elt;
119                                 offset += chunk;
120                         }
121                         start = end;
122                 }
123         }
124         BUG_ON(len);
125         return elt;
126 }
127
128 /* Return the number of scatterlist elements required to completely map the
129  * skb, or -EMSGSIZE if the recursion depth is exceeded.
130  */
131 static int skb_nsg(struct sk_buff *skb, int offset, int len)
132 {
133         return __skb_nsg(skb, offset, len, 0);
134 }
135
136 static int padding_length(struct tls_prot_info *prot, struct sk_buff *skb)
137 {
138         struct strp_msg *rxm = strp_msg(skb);
139         struct tls_msg *tlm = tls_msg(skb);
140         int sub = 0;
141
142         /* Determine zero-padding length */
143         if (prot->version == TLS_1_3_VERSION) {
144                 int offset = rxm->full_len - TLS_TAG_SIZE - 1;
145                 char content_type = 0;
146                 int err;
147
148                 while (content_type == 0) {
149                         if (offset < prot->prepend_size)
150                                 return -EBADMSG;
151                         err = skb_copy_bits(skb, rxm->offset + offset,
152                                             &content_type, 1);
153                         if (err)
154                                 return err;
155                         if (content_type)
156                                 break;
157                         sub++;
158                         offset--;
159                 }
160                 tlm->control = content_type;
161         }
162         return sub;
163 }
164
165 static void tls_decrypt_done(struct crypto_async_request *req, int err)
166 {
167         struct aead_request *aead_req = (struct aead_request *)req;
168         struct scatterlist *sgout = aead_req->dst;
169         struct scatterlist *sgin = aead_req->src;
170         struct tls_sw_context_rx *ctx;
171         struct tls_context *tls_ctx;
172         struct tls_prot_info *prot;
173         struct scatterlist *sg;
174         struct sk_buff *skb;
175         unsigned int pages;
176
177         skb = (struct sk_buff *)req->data;
178         tls_ctx = tls_get_ctx(skb->sk);
179         ctx = tls_sw_ctx_rx(tls_ctx);
180         prot = &tls_ctx->prot_info;
181
182         /* Propagate if there was an err */
183         if (err) {
184                 if (err == -EBADMSG)
185                         TLS_INC_STATS(sock_net(skb->sk),
186                                       LINUX_MIB_TLSDECRYPTERROR);
187                 ctx->async_wait.err = err;
188                 tls_err_abort(skb->sk, err);
189         } else {
190                 struct strp_msg *rxm = strp_msg(skb);
191
192                 /* No TLS 1.3 support with async crypto */
193                 WARN_ON(prot->tail_size);
194
195                 rxm->offset += prot->prepend_size;
196                 rxm->full_len -= prot->overhead_size;
197         }
198
199         /* After using skb->sk to propagate sk through crypto async callback
200          * we need to NULL it again.
201          */
202         skb->sk = NULL;
203
204
205         /* Free the destination pages if skb was not decrypted inplace */
206         if (sgout != sgin) {
207                 /* Skip the first S/G entry as it points to AAD */
208                 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
209                         if (!sg)
210                                 break;
211                         put_page(sg_page(sg));
212                 }
213         }
214
215         kfree(aead_req);
216
217         spin_lock_bh(&ctx->decrypt_compl_lock);
218         if (!atomic_dec_return(&ctx->decrypt_pending))
219                 complete(&ctx->async_wait.completion);
220         spin_unlock_bh(&ctx->decrypt_compl_lock);
221 }
222
223 static int tls_do_decryption(struct sock *sk,
224                              struct sk_buff *skb,
225                              struct scatterlist *sgin,
226                              struct scatterlist *sgout,
227                              char *iv_recv,
228                              size_t data_len,
229                              struct aead_request *aead_req,
230                              struct tls_decrypt_arg *darg)
231 {
232         struct tls_context *tls_ctx = tls_get_ctx(sk);
233         struct tls_prot_info *prot = &tls_ctx->prot_info;
234         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
235         int ret;
236
237         aead_request_set_tfm(aead_req, ctx->aead_recv);
238         aead_request_set_ad(aead_req, prot->aad_size);
239         aead_request_set_crypt(aead_req, sgin, sgout,
240                                data_len + prot->tag_size,
241                                (u8 *)iv_recv);
242
243         if (darg->async) {
244                 /* Using skb->sk to push sk through to crypto async callback
245                  * handler. This allows propagating errors up to the socket
246                  * if needed. It _must_ be cleared in the async handler
247                  * before consume_skb is called. We _know_ skb->sk is NULL
248                  * because it is a clone from strparser.
249                  */
250                 skb->sk = sk;
251                 aead_request_set_callback(aead_req,
252                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
253                                           tls_decrypt_done, skb);
254                 atomic_inc(&ctx->decrypt_pending);
255         } else {
256                 aead_request_set_callback(aead_req,
257                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
258                                           crypto_req_done, &ctx->async_wait);
259         }
260
261         ret = crypto_aead_decrypt(aead_req);
262         if (ret == -EINPROGRESS) {
263                 if (darg->async)
264                         return 0;
265
266                 ret = crypto_wait_req(ret, &ctx->async_wait);
267         }
268         darg->async = false;
269
270         return ret;
271 }
272
273 static void tls_trim_both_msgs(struct sock *sk, int target_size)
274 {
275         struct tls_context *tls_ctx = tls_get_ctx(sk);
276         struct tls_prot_info *prot = &tls_ctx->prot_info;
277         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
278         struct tls_rec *rec = ctx->open_rec;
279
280         sk_msg_trim(sk, &rec->msg_plaintext, target_size);
281         if (target_size > 0)
282                 target_size += prot->overhead_size;
283         sk_msg_trim(sk, &rec->msg_encrypted, target_size);
284 }
285
286 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
287 {
288         struct tls_context *tls_ctx = tls_get_ctx(sk);
289         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
290         struct tls_rec *rec = ctx->open_rec;
291         struct sk_msg *msg_en = &rec->msg_encrypted;
292
293         return sk_msg_alloc(sk, msg_en, len, 0);
294 }
295
296 static int tls_clone_plaintext_msg(struct sock *sk, int required)
297 {
298         struct tls_context *tls_ctx = tls_get_ctx(sk);
299         struct tls_prot_info *prot = &tls_ctx->prot_info;
300         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
301         struct tls_rec *rec = ctx->open_rec;
302         struct sk_msg *msg_pl = &rec->msg_plaintext;
303         struct sk_msg *msg_en = &rec->msg_encrypted;
304         int skip, len;
305
306         /* We add page references worth len bytes from encrypted sg
307          * at the end of plaintext sg. It is guaranteed that msg_en
308          * has enough required room (ensured by caller).
309          */
310         len = required - msg_pl->sg.size;
311
312         /* Skip initial bytes in msg_en's data to be able to use
313          * same offset of both plain and encrypted data.
314          */
315         skip = prot->prepend_size + msg_pl->sg.size;
316
317         return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
318 }
319
320 static struct tls_rec *tls_get_rec(struct sock *sk)
321 {
322         struct tls_context *tls_ctx = tls_get_ctx(sk);
323         struct tls_prot_info *prot = &tls_ctx->prot_info;
324         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
325         struct sk_msg *msg_pl, *msg_en;
326         struct tls_rec *rec;
327         int mem_size;
328
329         mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
330
331         rec = kzalloc(mem_size, sk->sk_allocation);
332         if (!rec)
333                 return NULL;
334
335         msg_pl = &rec->msg_plaintext;
336         msg_en = &rec->msg_encrypted;
337
338         sk_msg_init(msg_pl);
339         sk_msg_init(msg_en);
340
341         sg_init_table(rec->sg_aead_in, 2);
342         sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
343         sg_unmark_end(&rec->sg_aead_in[1]);
344
345         sg_init_table(rec->sg_aead_out, 2);
346         sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
347         sg_unmark_end(&rec->sg_aead_out[1]);
348
349         return rec;
350 }
351
352 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
353 {
354         sk_msg_free(sk, &rec->msg_encrypted);
355         sk_msg_free(sk, &rec->msg_plaintext);
356         kfree(rec);
357 }
358
359 static void tls_free_open_rec(struct sock *sk)
360 {
361         struct tls_context *tls_ctx = tls_get_ctx(sk);
362         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
363         struct tls_rec *rec = ctx->open_rec;
364
365         if (rec) {
366                 tls_free_rec(sk, rec);
367                 ctx->open_rec = NULL;
368         }
369 }
370
371 int tls_tx_records(struct sock *sk, int flags)
372 {
373         struct tls_context *tls_ctx = tls_get_ctx(sk);
374         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
375         struct tls_rec *rec, *tmp;
376         struct sk_msg *msg_en;
377         int tx_flags, rc = 0;
378
379         if (tls_is_partially_sent_record(tls_ctx)) {
380                 rec = list_first_entry(&ctx->tx_list,
381                                        struct tls_rec, list);
382
383                 if (flags == -1)
384                         tx_flags = rec->tx_flags;
385                 else
386                         tx_flags = flags;
387
388                 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
389                 if (rc)
390                         goto tx_err;
391
392                 /* Full record has been transmitted.
393                  * Remove the head of tx_list
394                  */
395                 list_del(&rec->list);
396                 sk_msg_free(sk, &rec->msg_plaintext);
397                 kfree(rec);
398         }
399
400         /* Tx all ready records */
401         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
402                 if (READ_ONCE(rec->tx_ready)) {
403                         if (flags == -1)
404                                 tx_flags = rec->tx_flags;
405                         else
406                                 tx_flags = flags;
407
408                         msg_en = &rec->msg_encrypted;
409                         rc = tls_push_sg(sk, tls_ctx,
410                                          &msg_en->sg.data[msg_en->sg.curr],
411                                          0, tx_flags);
412                         if (rc)
413                                 goto tx_err;
414
415                         list_del(&rec->list);
416                         sk_msg_free(sk, &rec->msg_plaintext);
417                         kfree(rec);
418                 } else {
419                         break;
420                 }
421         }
422
423 tx_err:
424         if (rc < 0 && rc != -EAGAIN)
425                 tls_err_abort(sk, -EBADMSG);
426
427         return rc;
428 }
429
430 static void tls_encrypt_done(struct crypto_async_request *req, int err)
431 {
432         struct aead_request *aead_req = (struct aead_request *)req;
433         struct sock *sk = req->data;
434         struct tls_context *tls_ctx = tls_get_ctx(sk);
435         struct tls_prot_info *prot = &tls_ctx->prot_info;
436         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
437         struct scatterlist *sge;
438         struct sk_msg *msg_en;
439         struct tls_rec *rec;
440         bool ready = false;
441         int pending;
442
443         rec = container_of(aead_req, struct tls_rec, aead_req);
444         msg_en = &rec->msg_encrypted;
445
446         sge = sk_msg_elem(msg_en, msg_en->sg.curr);
447         sge->offset -= prot->prepend_size;
448         sge->length += prot->prepend_size;
449
450         /* Check if error is previously set on socket */
451         if (err || sk->sk_err) {
452                 rec = NULL;
453
454                 /* If err is already set on socket, return the same code */
455                 if (sk->sk_err) {
456                         ctx->async_wait.err = -sk->sk_err;
457                 } else {
458                         ctx->async_wait.err = err;
459                         tls_err_abort(sk, err);
460                 }
461         }
462
463         if (rec) {
464                 struct tls_rec *first_rec;
465
466                 /* Mark the record as ready for transmission */
467                 smp_store_mb(rec->tx_ready, true);
468
469                 /* If received record is at head of tx_list, schedule tx */
470                 first_rec = list_first_entry(&ctx->tx_list,
471                                              struct tls_rec, list);
472                 if (rec == first_rec)
473                         ready = true;
474         }
475
476         spin_lock_bh(&ctx->encrypt_compl_lock);
477         pending = atomic_dec_return(&ctx->encrypt_pending);
478
479         if (!pending && ctx->async_notify)
480                 complete(&ctx->async_wait.completion);
481         spin_unlock_bh(&ctx->encrypt_compl_lock);
482
483         if (!ready)
484                 return;
485
486         /* Schedule the transmission */
487         if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
488                 schedule_delayed_work(&ctx->tx_work.work, 1);
489 }
490
491 static int tls_do_encryption(struct sock *sk,
492                              struct tls_context *tls_ctx,
493                              struct tls_sw_context_tx *ctx,
494                              struct aead_request *aead_req,
495                              size_t data_len, u32 start)
496 {
497         struct tls_prot_info *prot = &tls_ctx->prot_info;
498         struct tls_rec *rec = ctx->open_rec;
499         struct sk_msg *msg_en = &rec->msg_encrypted;
500         struct scatterlist *sge = sk_msg_elem(msg_en, start);
501         int rc, iv_offset = 0;
502
503         /* For CCM based ciphers, first byte of IV is a constant */
504         switch (prot->cipher_type) {
505         case TLS_CIPHER_AES_CCM_128:
506                 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
507                 iv_offset = 1;
508                 break;
509         case TLS_CIPHER_SM4_CCM:
510                 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE;
511                 iv_offset = 1;
512                 break;
513         }
514
515         memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
516                prot->iv_size + prot->salt_size);
517
518         xor_iv_with_seq(prot, rec->iv_data + iv_offset, tls_ctx->tx.rec_seq);
519
520         sge->offset += prot->prepend_size;
521         sge->length -= prot->prepend_size;
522
523         msg_en->sg.curr = start;
524
525         aead_request_set_tfm(aead_req, ctx->aead_send);
526         aead_request_set_ad(aead_req, prot->aad_size);
527         aead_request_set_crypt(aead_req, rec->sg_aead_in,
528                                rec->sg_aead_out,
529                                data_len, rec->iv_data);
530
531         aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
532                                   tls_encrypt_done, sk);
533
534         /* Add the record in tx_list */
535         list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
536         atomic_inc(&ctx->encrypt_pending);
537
538         rc = crypto_aead_encrypt(aead_req);
539         if (!rc || rc != -EINPROGRESS) {
540                 atomic_dec(&ctx->encrypt_pending);
541                 sge->offset -= prot->prepend_size;
542                 sge->length += prot->prepend_size;
543         }
544
545         if (!rc) {
546                 WRITE_ONCE(rec->tx_ready, true);
547         } else if (rc != -EINPROGRESS) {
548                 list_del(&rec->list);
549                 return rc;
550         }
551
552         /* Unhook the record from context if encryption is not failure */
553         ctx->open_rec = NULL;
554         tls_advance_record_sn(sk, prot, &tls_ctx->tx);
555         return rc;
556 }
557
558 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
559                                  struct tls_rec **to, struct sk_msg *msg_opl,
560                                  struct sk_msg *msg_oen, u32 split_point,
561                                  u32 tx_overhead_size, u32 *orig_end)
562 {
563         u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
564         struct scatterlist *sge, *osge, *nsge;
565         u32 orig_size = msg_opl->sg.size;
566         struct scatterlist tmp = { };
567         struct sk_msg *msg_npl;
568         struct tls_rec *new;
569         int ret;
570
571         new = tls_get_rec(sk);
572         if (!new)
573                 return -ENOMEM;
574         ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
575                            tx_overhead_size, 0);
576         if (ret < 0) {
577                 tls_free_rec(sk, new);
578                 return ret;
579         }
580
581         *orig_end = msg_opl->sg.end;
582         i = msg_opl->sg.start;
583         sge = sk_msg_elem(msg_opl, i);
584         while (apply && sge->length) {
585                 if (sge->length > apply) {
586                         u32 len = sge->length - apply;
587
588                         get_page(sg_page(sge));
589                         sg_set_page(&tmp, sg_page(sge), len,
590                                     sge->offset + apply);
591                         sge->length = apply;
592                         bytes += apply;
593                         apply = 0;
594                 } else {
595                         apply -= sge->length;
596                         bytes += sge->length;
597                 }
598
599                 sk_msg_iter_var_next(i);
600                 if (i == msg_opl->sg.end)
601                         break;
602                 sge = sk_msg_elem(msg_opl, i);
603         }
604
605         msg_opl->sg.end = i;
606         msg_opl->sg.curr = i;
607         msg_opl->sg.copybreak = 0;
608         msg_opl->apply_bytes = 0;
609         msg_opl->sg.size = bytes;
610
611         msg_npl = &new->msg_plaintext;
612         msg_npl->apply_bytes = apply;
613         msg_npl->sg.size = orig_size - bytes;
614
615         j = msg_npl->sg.start;
616         nsge = sk_msg_elem(msg_npl, j);
617         if (tmp.length) {
618                 memcpy(nsge, &tmp, sizeof(*nsge));
619                 sk_msg_iter_var_next(j);
620                 nsge = sk_msg_elem(msg_npl, j);
621         }
622
623         osge = sk_msg_elem(msg_opl, i);
624         while (osge->length) {
625                 memcpy(nsge, osge, sizeof(*nsge));
626                 sg_unmark_end(nsge);
627                 sk_msg_iter_var_next(i);
628                 sk_msg_iter_var_next(j);
629                 if (i == *orig_end)
630                         break;
631                 osge = sk_msg_elem(msg_opl, i);
632                 nsge = sk_msg_elem(msg_npl, j);
633         }
634
635         msg_npl->sg.end = j;
636         msg_npl->sg.curr = j;
637         msg_npl->sg.copybreak = 0;
638
639         *to = new;
640         return 0;
641 }
642
643 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
644                                   struct tls_rec *from, u32 orig_end)
645 {
646         struct sk_msg *msg_npl = &from->msg_plaintext;
647         struct sk_msg *msg_opl = &to->msg_plaintext;
648         struct scatterlist *osge, *nsge;
649         u32 i, j;
650
651         i = msg_opl->sg.end;
652         sk_msg_iter_var_prev(i);
653         j = msg_npl->sg.start;
654
655         osge = sk_msg_elem(msg_opl, i);
656         nsge = sk_msg_elem(msg_npl, j);
657
658         if (sg_page(osge) == sg_page(nsge) &&
659             osge->offset + osge->length == nsge->offset) {
660                 osge->length += nsge->length;
661                 put_page(sg_page(nsge));
662         }
663
664         msg_opl->sg.end = orig_end;
665         msg_opl->sg.curr = orig_end;
666         msg_opl->sg.copybreak = 0;
667         msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
668         msg_opl->sg.size += msg_npl->sg.size;
669
670         sk_msg_free(sk, &to->msg_encrypted);
671         sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
672
673         kfree(from);
674 }
675
676 static int tls_push_record(struct sock *sk, int flags,
677                            unsigned char record_type)
678 {
679         struct tls_context *tls_ctx = tls_get_ctx(sk);
680         struct tls_prot_info *prot = &tls_ctx->prot_info;
681         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
682         struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
683         u32 i, split_point, orig_end;
684         struct sk_msg *msg_pl, *msg_en;
685         struct aead_request *req;
686         bool split;
687         int rc;
688
689         if (!rec)
690                 return 0;
691
692         msg_pl = &rec->msg_plaintext;
693         msg_en = &rec->msg_encrypted;
694
695         split_point = msg_pl->apply_bytes;
696         split = split_point && split_point < msg_pl->sg.size;
697         if (unlikely((!split &&
698                       msg_pl->sg.size +
699                       prot->overhead_size > msg_en->sg.size) ||
700                      (split &&
701                       split_point +
702                       prot->overhead_size > msg_en->sg.size))) {
703                 split = true;
704                 split_point = msg_en->sg.size;
705         }
706         if (split) {
707                 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
708                                            split_point, prot->overhead_size,
709                                            &orig_end);
710                 if (rc < 0)
711                         return rc;
712                 /* This can happen if above tls_split_open_record allocates
713                  * a single large encryption buffer instead of two smaller
714                  * ones. In this case adjust pointers and continue without
715                  * split.
716                  */
717                 if (!msg_pl->sg.size) {
718                         tls_merge_open_record(sk, rec, tmp, orig_end);
719                         msg_pl = &rec->msg_plaintext;
720                         msg_en = &rec->msg_encrypted;
721                         split = false;
722                 }
723                 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
724                             prot->overhead_size);
725         }
726
727         rec->tx_flags = flags;
728         req = &rec->aead_req;
729
730         i = msg_pl->sg.end;
731         sk_msg_iter_var_prev(i);
732
733         rec->content_type = record_type;
734         if (prot->version == TLS_1_3_VERSION) {
735                 /* Add content type to end of message.  No padding added */
736                 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
737                 sg_mark_end(&rec->sg_content_type);
738                 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
739                          &rec->sg_content_type);
740         } else {
741                 sg_mark_end(sk_msg_elem(msg_pl, i));
742         }
743
744         if (msg_pl->sg.end < msg_pl->sg.start) {
745                 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
746                          MAX_SKB_FRAGS - msg_pl->sg.start + 1,
747                          msg_pl->sg.data);
748         }
749
750         i = msg_pl->sg.start;
751         sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
752
753         i = msg_en->sg.end;
754         sk_msg_iter_var_prev(i);
755         sg_mark_end(sk_msg_elem(msg_en, i));
756
757         i = msg_en->sg.start;
758         sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
759
760         tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
761                      tls_ctx->tx.rec_seq, record_type, prot);
762
763         tls_fill_prepend(tls_ctx,
764                          page_address(sg_page(&msg_en->sg.data[i])) +
765                          msg_en->sg.data[i].offset,
766                          msg_pl->sg.size + prot->tail_size,
767                          record_type);
768
769         tls_ctx->pending_open_record_frags = false;
770
771         rc = tls_do_encryption(sk, tls_ctx, ctx, req,
772                                msg_pl->sg.size + prot->tail_size, i);
773         if (rc < 0) {
774                 if (rc != -EINPROGRESS) {
775                         tls_err_abort(sk, -EBADMSG);
776                         if (split) {
777                                 tls_ctx->pending_open_record_frags = true;
778                                 tls_merge_open_record(sk, rec, tmp, orig_end);
779                         }
780                 }
781                 ctx->async_capable = 1;
782                 return rc;
783         } else if (split) {
784                 msg_pl = &tmp->msg_plaintext;
785                 msg_en = &tmp->msg_encrypted;
786                 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
787                 tls_ctx->pending_open_record_frags = true;
788                 ctx->open_rec = tmp;
789         }
790
791         return tls_tx_records(sk, flags);
792 }
793
794 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
795                                bool full_record, u8 record_type,
796                                ssize_t *copied, int flags)
797 {
798         struct tls_context *tls_ctx = tls_get_ctx(sk);
799         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
800         struct sk_msg msg_redir = { };
801         struct sk_psock *psock;
802         struct sock *sk_redir;
803         struct tls_rec *rec;
804         bool enospc, policy;
805         int err = 0, send;
806         u32 delta = 0;
807
808         policy = !(flags & MSG_SENDPAGE_NOPOLICY);
809         psock = sk_psock_get(sk);
810         if (!psock || !policy) {
811                 err = tls_push_record(sk, flags, record_type);
812                 if (err && sk->sk_err == EBADMSG) {
813                         *copied -= sk_msg_free(sk, msg);
814                         tls_free_open_rec(sk);
815                         err = -sk->sk_err;
816                 }
817                 if (psock)
818                         sk_psock_put(sk, psock);
819                 return err;
820         }
821 more_data:
822         enospc = sk_msg_full(msg);
823         if (psock->eval == __SK_NONE) {
824                 delta = msg->sg.size;
825                 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
826                 delta -= msg->sg.size;
827         }
828         if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
829             !enospc && !full_record) {
830                 err = -ENOSPC;
831                 goto out_err;
832         }
833         msg->cork_bytes = 0;
834         send = msg->sg.size;
835         if (msg->apply_bytes && msg->apply_bytes < send)
836                 send = msg->apply_bytes;
837
838         switch (psock->eval) {
839         case __SK_PASS:
840                 err = tls_push_record(sk, flags, record_type);
841                 if (err && sk->sk_err == EBADMSG) {
842                         *copied -= sk_msg_free(sk, msg);
843                         tls_free_open_rec(sk);
844                         err = -sk->sk_err;
845                         goto out_err;
846                 }
847                 break;
848         case __SK_REDIRECT:
849                 sk_redir = psock->sk_redir;
850                 memcpy(&msg_redir, msg, sizeof(*msg));
851                 if (msg->apply_bytes < send)
852                         msg->apply_bytes = 0;
853                 else
854                         msg->apply_bytes -= send;
855                 sk_msg_return_zero(sk, msg, send);
856                 msg->sg.size -= send;
857                 release_sock(sk);
858                 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
859                 lock_sock(sk);
860                 if (err < 0) {
861                         *copied -= sk_msg_free_nocharge(sk, &msg_redir);
862                         msg->sg.size = 0;
863                 }
864                 if (msg->sg.size == 0)
865                         tls_free_open_rec(sk);
866                 break;
867         case __SK_DROP:
868         default:
869                 sk_msg_free_partial(sk, msg, send);
870                 if (msg->apply_bytes < send)
871                         msg->apply_bytes = 0;
872                 else
873                         msg->apply_bytes -= send;
874                 if (msg->sg.size == 0)
875                         tls_free_open_rec(sk);
876                 *copied -= (send + delta);
877                 err = -EACCES;
878         }
879
880         if (likely(!err)) {
881                 bool reset_eval = !ctx->open_rec;
882
883                 rec = ctx->open_rec;
884                 if (rec) {
885                         msg = &rec->msg_plaintext;
886                         if (!msg->apply_bytes)
887                                 reset_eval = true;
888                 }
889                 if (reset_eval) {
890                         psock->eval = __SK_NONE;
891                         if (psock->sk_redir) {
892                                 sock_put(psock->sk_redir);
893                                 psock->sk_redir = NULL;
894                         }
895                 }
896                 if (rec)
897                         goto more_data;
898         }
899  out_err:
900         sk_psock_put(sk, psock);
901         return err;
902 }
903
904 static int tls_sw_push_pending_record(struct sock *sk, int flags)
905 {
906         struct tls_context *tls_ctx = tls_get_ctx(sk);
907         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
908         struct tls_rec *rec = ctx->open_rec;
909         struct sk_msg *msg_pl;
910         size_t copied;
911
912         if (!rec)
913                 return 0;
914
915         msg_pl = &rec->msg_plaintext;
916         copied = msg_pl->sg.size;
917         if (!copied)
918                 return 0;
919
920         return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
921                                    &copied, flags);
922 }
923
924 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
925 {
926         long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
927         struct tls_context *tls_ctx = tls_get_ctx(sk);
928         struct tls_prot_info *prot = &tls_ctx->prot_info;
929         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
930         bool async_capable = ctx->async_capable;
931         unsigned char record_type = TLS_RECORD_TYPE_DATA;
932         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
933         bool eor = !(msg->msg_flags & MSG_MORE);
934         size_t try_to_copy;
935         ssize_t copied = 0;
936         struct sk_msg *msg_pl, *msg_en;
937         struct tls_rec *rec;
938         int required_size;
939         int num_async = 0;
940         bool full_record;
941         int record_room;
942         int num_zc = 0;
943         int orig_size;
944         int ret = 0;
945         int pending;
946
947         if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
948                                MSG_CMSG_COMPAT))
949                 return -EOPNOTSUPP;
950
951         mutex_lock(&tls_ctx->tx_lock);
952         lock_sock(sk);
953
954         if (unlikely(msg->msg_controllen)) {
955                 ret = tls_proccess_cmsg(sk, msg, &record_type);
956                 if (ret) {
957                         if (ret == -EINPROGRESS)
958                                 num_async++;
959                         else if (ret != -EAGAIN)
960                                 goto send_end;
961                 }
962         }
963
964         while (msg_data_left(msg)) {
965                 if (sk->sk_err) {
966                         ret = -sk->sk_err;
967                         goto send_end;
968                 }
969
970                 if (ctx->open_rec)
971                         rec = ctx->open_rec;
972                 else
973                         rec = ctx->open_rec = tls_get_rec(sk);
974                 if (!rec) {
975                         ret = -ENOMEM;
976                         goto send_end;
977                 }
978
979                 msg_pl = &rec->msg_plaintext;
980                 msg_en = &rec->msg_encrypted;
981
982                 orig_size = msg_pl->sg.size;
983                 full_record = false;
984                 try_to_copy = msg_data_left(msg);
985                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
986                 if (try_to_copy >= record_room) {
987                         try_to_copy = record_room;
988                         full_record = true;
989                 }
990
991                 required_size = msg_pl->sg.size + try_to_copy +
992                                 prot->overhead_size;
993
994                 if (!sk_stream_memory_free(sk))
995                         goto wait_for_sndbuf;
996
997 alloc_encrypted:
998                 ret = tls_alloc_encrypted_msg(sk, required_size);
999                 if (ret) {
1000                         if (ret != -ENOSPC)
1001                                 goto wait_for_memory;
1002
1003                         /* Adjust try_to_copy according to the amount that was
1004                          * actually allocated. The difference is due
1005                          * to max sg elements limit
1006                          */
1007                         try_to_copy -= required_size - msg_en->sg.size;
1008                         full_record = true;
1009                 }
1010
1011                 if (!is_kvec && (full_record || eor) && !async_capable) {
1012                         u32 first = msg_pl->sg.end;
1013
1014                         ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1015                                                         msg_pl, try_to_copy);
1016                         if (ret)
1017                                 goto fallback_to_reg_send;
1018
1019                         num_zc++;
1020                         copied += try_to_copy;
1021
1022                         sk_msg_sg_copy_set(msg_pl, first);
1023                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1024                                                   record_type, &copied,
1025                                                   msg->msg_flags);
1026                         if (ret) {
1027                                 if (ret == -EINPROGRESS)
1028                                         num_async++;
1029                                 else if (ret == -ENOMEM)
1030                                         goto wait_for_memory;
1031                                 else if (ctx->open_rec && ret == -ENOSPC)
1032                                         goto rollback_iter;
1033                                 else if (ret != -EAGAIN)
1034                                         goto send_end;
1035                         }
1036                         continue;
1037 rollback_iter:
1038                         copied -= try_to_copy;
1039                         sk_msg_sg_copy_clear(msg_pl, first);
1040                         iov_iter_revert(&msg->msg_iter,
1041                                         msg_pl->sg.size - orig_size);
1042 fallback_to_reg_send:
1043                         sk_msg_trim(sk, msg_pl, orig_size);
1044                 }
1045
1046                 required_size = msg_pl->sg.size + try_to_copy;
1047
1048                 ret = tls_clone_plaintext_msg(sk, required_size);
1049                 if (ret) {
1050                         if (ret != -ENOSPC)
1051                                 goto send_end;
1052
1053                         /* Adjust try_to_copy according to the amount that was
1054                          * actually allocated. The difference is due
1055                          * to max sg elements limit
1056                          */
1057                         try_to_copy -= required_size - msg_pl->sg.size;
1058                         full_record = true;
1059                         sk_msg_trim(sk, msg_en,
1060                                     msg_pl->sg.size + prot->overhead_size);
1061                 }
1062
1063                 if (try_to_copy) {
1064                         ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1065                                                        msg_pl, try_to_copy);
1066                         if (ret < 0)
1067                                 goto trim_sgl;
1068                 }
1069
1070                 /* Open records defined only if successfully copied, otherwise
1071                  * we would trim the sg but not reset the open record frags.
1072                  */
1073                 tls_ctx->pending_open_record_frags = true;
1074                 copied += try_to_copy;
1075                 if (full_record || eor) {
1076                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1077                                                   record_type, &copied,
1078                                                   msg->msg_flags);
1079                         if (ret) {
1080                                 if (ret == -EINPROGRESS)
1081                                         num_async++;
1082                                 else if (ret == -ENOMEM)
1083                                         goto wait_for_memory;
1084                                 else if (ret != -EAGAIN) {
1085                                         if (ret == -ENOSPC)
1086                                                 ret = 0;
1087                                         goto send_end;
1088                                 }
1089                         }
1090                 }
1091
1092                 continue;
1093
1094 wait_for_sndbuf:
1095                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1096 wait_for_memory:
1097                 ret = sk_stream_wait_memory(sk, &timeo);
1098                 if (ret) {
1099 trim_sgl:
1100                         if (ctx->open_rec)
1101                                 tls_trim_both_msgs(sk, orig_size);
1102                         goto send_end;
1103                 }
1104
1105                 if (ctx->open_rec && msg_en->sg.size < required_size)
1106                         goto alloc_encrypted;
1107         }
1108
1109         if (!num_async) {
1110                 goto send_end;
1111         } else if (num_zc) {
1112                 /* Wait for pending encryptions to get completed */
1113                 spin_lock_bh(&ctx->encrypt_compl_lock);
1114                 ctx->async_notify = true;
1115
1116                 pending = atomic_read(&ctx->encrypt_pending);
1117                 spin_unlock_bh(&ctx->encrypt_compl_lock);
1118                 if (pending)
1119                         crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1120                 else
1121                         reinit_completion(&ctx->async_wait.completion);
1122
1123                 /* There can be no concurrent accesses, since we have no
1124                  * pending encrypt operations
1125                  */
1126                 WRITE_ONCE(ctx->async_notify, false);
1127
1128                 if (ctx->async_wait.err) {
1129                         ret = ctx->async_wait.err;
1130                         copied = 0;
1131                 }
1132         }
1133
1134         /* Transmit if any encryptions have completed */
1135         if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1136                 cancel_delayed_work(&ctx->tx_work.work);
1137                 tls_tx_records(sk, msg->msg_flags);
1138         }
1139
1140 send_end:
1141         ret = sk_stream_error(sk, msg->msg_flags, ret);
1142
1143         release_sock(sk);
1144         mutex_unlock(&tls_ctx->tx_lock);
1145         return copied > 0 ? copied : ret;
1146 }
1147
1148 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1149                               int offset, size_t size, int flags)
1150 {
1151         long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1152         struct tls_context *tls_ctx = tls_get_ctx(sk);
1153         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1154         struct tls_prot_info *prot = &tls_ctx->prot_info;
1155         unsigned char record_type = TLS_RECORD_TYPE_DATA;
1156         struct sk_msg *msg_pl;
1157         struct tls_rec *rec;
1158         int num_async = 0;
1159         ssize_t copied = 0;
1160         bool full_record;
1161         int record_room;
1162         int ret = 0;
1163         bool eor;
1164
1165         eor = !(flags & MSG_SENDPAGE_NOTLAST);
1166         sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1167
1168         /* Call the sk_stream functions to manage the sndbuf mem. */
1169         while (size > 0) {
1170                 size_t copy, required_size;
1171
1172                 if (sk->sk_err) {
1173                         ret = -sk->sk_err;
1174                         goto sendpage_end;
1175                 }
1176
1177                 if (ctx->open_rec)
1178                         rec = ctx->open_rec;
1179                 else
1180                         rec = ctx->open_rec = tls_get_rec(sk);
1181                 if (!rec) {
1182                         ret = -ENOMEM;
1183                         goto sendpage_end;
1184                 }
1185
1186                 msg_pl = &rec->msg_plaintext;
1187
1188                 full_record = false;
1189                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1190                 copy = size;
1191                 if (copy >= record_room) {
1192                         copy = record_room;
1193                         full_record = true;
1194                 }
1195
1196                 required_size = msg_pl->sg.size + copy + prot->overhead_size;
1197
1198                 if (!sk_stream_memory_free(sk))
1199                         goto wait_for_sndbuf;
1200 alloc_payload:
1201                 ret = tls_alloc_encrypted_msg(sk, required_size);
1202                 if (ret) {
1203                         if (ret != -ENOSPC)
1204                                 goto wait_for_memory;
1205
1206                         /* Adjust copy according to the amount that was
1207                          * actually allocated. The difference is due
1208                          * to max sg elements limit
1209                          */
1210                         copy -= required_size - msg_pl->sg.size;
1211                         full_record = true;
1212                 }
1213
1214                 sk_msg_page_add(msg_pl, page, copy, offset);
1215                 sk_mem_charge(sk, copy);
1216
1217                 offset += copy;
1218                 size -= copy;
1219                 copied += copy;
1220
1221                 tls_ctx->pending_open_record_frags = true;
1222                 if (full_record || eor || sk_msg_full(msg_pl)) {
1223                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1224                                                   record_type, &copied, flags);
1225                         if (ret) {
1226                                 if (ret == -EINPROGRESS)
1227                                         num_async++;
1228                                 else if (ret == -ENOMEM)
1229                                         goto wait_for_memory;
1230                                 else if (ret != -EAGAIN) {
1231                                         if (ret == -ENOSPC)
1232                                                 ret = 0;
1233                                         goto sendpage_end;
1234                                 }
1235                         }
1236                 }
1237                 continue;
1238 wait_for_sndbuf:
1239                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1240 wait_for_memory:
1241                 ret = sk_stream_wait_memory(sk, &timeo);
1242                 if (ret) {
1243                         if (ctx->open_rec)
1244                                 tls_trim_both_msgs(sk, msg_pl->sg.size);
1245                         goto sendpage_end;
1246                 }
1247
1248                 if (ctx->open_rec)
1249                         goto alloc_payload;
1250         }
1251
1252         if (num_async) {
1253                 /* Transmit if any encryptions have completed */
1254                 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1255                         cancel_delayed_work(&ctx->tx_work.work);
1256                         tls_tx_records(sk, flags);
1257                 }
1258         }
1259 sendpage_end:
1260         ret = sk_stream_error(sk, flags, ret);
1261         return copied > 0 ? copied : ret;
1262 }
1263
1264 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1265                            int offset, size_t size, int flags)
1266 {
1267         if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1268                       MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1269                       MSG_NO_SHARED_FRAGS))
1270                 return -EOPNOTSUPP;
1271
1272         return tls_sw_do_sendpage(sk, page, offset, size, flags);
1273 }
1274
1275 int tls_sw_sendpage(struct sock *sk, struct page *page,
1276                     int offset, size_t size, int flags)
1277 {
1278         struct tls_context *tls_ctx = tls_get_ctx(sk);
1279         int ret;
1280
1281         if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1282                       MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1283                 return -EOPNOTSUPP;
1284
1285         mutex_lock(&tls_ctx->tx_lock);
1286         lock_sock(sk);
1287         ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1288         release_sock(sk);
1289         mutex_unlock(&tls_ctx->tx_lock);
1290         return ret;
1291 }
1292
1293 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1294                                      bool nonblock, long timeo, int *err)
1295 {
1296         struct tls_context *tls_ctx = tls_get_ctx(sk);
1297         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1298         struct sk_buff *skb;
1299         DEFINE_WAIT_FUNC(wait, woken_wake_function);
1300
1301         while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1302                 if (sk->sk_err) {
1303                         *err = sock_error(sk);
1304                         return NULL;
1305                 }
1306
1307                 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1308                         __strp_unpause(&ctx->strp);
1309                         if (ctx->recv_pkt)
1310                                 return ctx->recv_pkt;
1311                 }
1312
1313                 if (sk->sk_shutdown & RCV_SHUTDOWN)
1314                         return NULL;
1315
1316                 if (sock_flag(sk, SOCK_DONE))
1317                         return NULL;
1318
1319                 if (nonblock || !timeo) {
1320                         *err = -EAGAIN;
1321                         return NULL;
1322                 }
1323
1324                 add_wait_queue(sk_sleep(sk), &wait);
1325                 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1326                 sk_wait_event(sk, &timeo,
1327                               ctx->recv_pkt != skb ||
1328                               !sk_psock_queue_empty(psock),
1329                               &wait);
1330                 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1331                 remove_wait_queue(sk_sleep(sk), &wait);
1332
1333                 /* Handle signals */
1334                 if (signal_pending(current)) {
1335                         *err = sock_intr_errno(timeo);
1336                         return NULL;
1337                 }
1338         }
1339
1340         return skb;
1341 }
1342
1343 static int tls_setup_from_iter(struct iov_iter *from,
1344                                int length, int *pages_used,
1345                                struct scatterlist *to,
1346                                int to_max_pages)
1347 {
1348         int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1349         struct page *pages[MAX_SKB_FRAGS];
1350         unsigned int size = 0;
1351         ssize_t copied, use;
1352         size_t offset;
1353
1354         while (length > 0) {
1355                 i = 0;
1356                 maxpages = to_max_pages - num_elem;
1357                 if (maxpages == 0) {
1358                         rc = -EFAULT;
1359                         goto out;
1360                 }
1361                 copied = iov_iter_get_pages(from, pages,
1362                                             length,
1363                                             maxpages, &offset);
1364                 if (copied <= 0) {
1365                         rc = -EFAULT;
1366                         goto out;
1367                 }
1368
1369                 iov_iter_advance(from, copied);
1370
1371                 length -= copied;
1372                 size += copied;
1373                 while (copied) {
1374                         use = min_t(int, copied, PAGE_SIZE - offset);
1375
1376                         sg_set_page(&to[num_elem],
1377                                     pages[i], use, offset);
1378                         sg_unmark_end(&to[num_elem]);
1379                         /* We do not uncharge memory from this API */
1380
1381                         offset = 0;
1382                         copied -= use;
1383
1384                         i++;
1385                         num_elem++;
1386                 }
1387         }
1388         /* Mark the end in the last sg entry if newly added */
1389         if (num_elem > *pages_used)
1390                 sg_mark_end(&to[num_elem - 1]);
1391 out:
1392         if (rc)
1393                 iov_iter_revert(from, size);
1394         *pages_used = num_elem;
1395
1396         return rc;
1397 }
1398
1399 /* This function decrypts the input skb into either out_iov or in out_sg
1400  * or in skb buffers itself. The input parameter 'zc' indicates if
1401  * zero-copy mode needs to be tried or not. With zero-copy mode, either
1402  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1403  * NULL, then the decryption happens inside skb buffers itself, i.e.
1404  * zero-copy gets disabled and 'zc' is updated.
1405  */
1406
1407 static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1408                             struct iov_iter *out_iov,
1409                             struct scatterlist *out_sg,
1410                             struct tls_decrypt_arg *darg)
1411 {
1412         struct tls_context *tls_ctx = tls_get_ctx(sk);
1413         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1414         struct tls_prot_info *prot = &tls_ctx->prot_info;
1415         struct strp_msg *rxm = strp_msg(skb);
1416         struct tls_msg *tlm = tls_msg(skb);
1417         int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1418         struct aead_request *aead_req;
1419         struct sk_buff *unused;
1420         u8 *aad, *iv, *mem = NULL;
1421         struct scatterlist *sgin = NULL;
1422         struct scatterlist *sgout = NULL;
1423         const int data_len = rxm->full_len - prot->overhead_size +
1424                              prot->tail_size;
1425         int iv_offset = 0;
1426
1427         if (darg->zc && (out_iov || out_sg)) {
1428                 if (out_iov)
1429                         n_sgout = 1 +
1430                                 iov_iter_npages_cap(out_iov, INT_MAX, data_len);
1431                 else
1432                         n_sgout = sg_nents(out_sg);
1433                 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1434                                  rxm->full_len - prot->prepend_size);
1435         } else {
1436                 n_sgout = 0;
1437                 darg->zc = false;
1438                 n_sgin = skb_cow_data(skb, 0, &unused);
1439         }
1440
1441         if (n_sgin < 1)
1442                 return -EBADMSG;
1443
1444         /* Increment to accommodate AAD */
1445         n_sgin = n_sgin + 1;
1446
1447         nsg = n_sgin + n_sgout;
1448
1449         aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1450         mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1451         mem_size = mem_size + prot->aad_size;
1452         mem_size = mem_size + MAX_IV_SIZE;
1453
1454         /* Allocate a single block of memory which contains
1455          * aead_req || sgin[] || sgout[] || aad || iv.
1456          * This order achieves correct alignment for aead_req, sgin, sgout.
1457          */
1458         mem = kmalloc(mem_size, sk->sk_allocation);
1459         if (!mem)
1460                 return -ENOMEM;
1461
1462         /* Segment the allocated memory */
1463         aead_req = (struct aead_request *)mem;
1464         sgin = (struct scatterlist *)(mem + aead_size);
1465         sgout = sgin + n_sgin;
1466         aad = (u8 *)(sgout + n_sgout);
1467         iv = aad + prot->aad_size;
1468
1469         /* For CCM based ciphers, first byte of nonce+iv is a constant */
1470         switch (prot->cipher_type) {
1471         case TLS_CIPHER_AES_CCM_128:
1472                 iv[0] = TLS_AES_CCM_IV_B0_BYTE;
1473                 iv_offset = 1;
1474                 break;
1475         case TLS_CIPHER_SM4_CCM:
1476                 iv[0] = TLS_SM4_CCM_IV_B0_BYTE;
1477                 iv_offset = 1;
1478                 break;
1479         }
1480
1481         /* Prepare IV */
1482         if (prot->version == TLS_1_3_VERSION ||
1483             prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
1484                 memcpy(iv + iv_offset, tls_ctx->rx.iv,
1485                        prot->iv_size + prot->salt_size);
1486         } else {
1487                 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1488                                     iv + iv_offset + prot->salt_size,
1489                                     prot->iv_size);
1490                 if (err < 0) {
1491                         kfree(mem);
1492                         return err;
1493                 }
1494                 memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
1495         }
1496         xor_iv_with_seq(prot, iv + iv_offset, tls_ctx->rx.rec_seq);
1497
1498         /* Prepare AAD */
1499         tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1500                      prot->tail_size,
1501                      tls_ctx->rx.rec_seq, tlm->control, prot);
1502
1503         /* Prepare sgin */
1504         sg_init_table(sgin, n_sgin);
1505         sg_set_buf(&sgin[0], aad, prot->aad_size);
1506         err = skb_to_sgvec(skb, &sgin[1],
1507                            rxm->offset + prot->prepend_size,
1508                            rxm->full_len - prot->prepend_size);
1509         if (err < 0) {
1510                 kfree(mem);
1511                 return err;
1512         }
1513
1514         if (n_sgout) {
1515                 if (out_iov) {
1516                         sg_init_table(sgout, n_sgout);
1517                         sg_set_buf(&sgout[0], aad, prot->aad_size);
1518
1519                         err = tls_setup_from_iter(out_iov, data_len,
1520                                                   &pages, &sgout[1],
1521                                                   (n_sgout - 1));
1522                         if (err < 0)
1523                                 goto fallback_to_reg_recv;
1524                 } else if (out_sg) {
1525                         memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1526                 } else {
1527                         goto fallback_to_reg_recv;
1528                 }
1529         } else {
1530 fallback_to_reg_recv:
1531                 sgout = sgin;
1532                 pages = 0;
1533                 darg->zc = false;
1534         }
1535
1536         /* Prepare and submit AEAD request */
1537         err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1538                                 data_len, aead_req, darg);
1539         if (darg->async)
1540                 return 0;
1541
1542         /* Release the pages in case iov was mapped to pages */
1543         for (; pages > 0; pages--)
1544                 put_page(sg_page(&sgout[pages]));
1545
1546         kfree(mem);
1547         return err;
1548 }
1549
1550 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1551                               struct iov_iter *dest,
1552                               struct tls_decrypt_arg *darg)
1553 {
1554         struct tls_context *tls_ctx = tls_get_ctx(sk);
1555         struct tls_prot_info *prot = &tls_ctx->prot_info;
1556         struct strp_msg *rxm = strp_msg(skb);
1557         struct tls_msg *tlm = tls_msg(skb);
1558         int pad, err;
1559
1560         if (tlm->decrypted) {
1561                 darg->zc = false;
1562                 darg->async = false;
1563                 return 0;
1564         }
1565
1566         if (tls_ctx->rx_conf == TLS_HW) {
1567                 err = tls_device_decrypted(sk, tls_ctx, skb, rxm);
1568                 if (err < 0)
1569                         return err;
1570                 if (err > 0) {
1571                         tlm->decrypted = 1;
1572                         darg->zc = false;
1573                         darg->async = false;
1574                         goto decrypt_done;
1575                 }
1576         }
1577
1578         err = decrypt_internal(sk, skb, dest, NULL, darg);
1579         if (err < 0) {
1580                 if (err == -EBADMSG)
1581                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
1582                 return err;
1583         }
1584         if (darg->async)
1585                 goto decrypt_next;
1586
1587 decrypt_done:
1588         pad = padding_length(prot, skb);
1589         if (pad < 0)
1590                 return pad;
1591
1592         rxm->full_len -= pad;
1593         rxm->offset += prot->prepend_size;
1594         rxm->full_len -= prot->overhead_size;
1595         tlm->decrypted = 1;
1596 decrypt_next:
1597         tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1598
1599         return 0;
1600 }
1601
1602 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1603                 struct scatterlist *sgout)
1604 {
1605         struct tls_decrypt_arg darg = { .zc = true, };
1606
1607         return decrypt_internal(sk, skb, NULL, sgout, &darg);
1608 }
1609
1610 static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm,
1611                                    u8 *control)
1612 {
1613         int err;
1614
1615         if (!*control) {
1616                 *control = tlm->control;
1617                 if (!*control)
1618                         return -EBADMSG;
1619
1620                 err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1621                                sizeof(*control), control);
1622                 if (*control != TLS_RECORD_TYPE_DATA) {
1623                         if (err || msg->msg_flags & MSG_CTRUNC)
1624                                 return -EIO;
1625                 }
1626         } else if (*control != tlm->control) {
1627                 return 0;
1628         }
1629
1630         return 1;
1631 }
1632
1633 /* This function traverses the rx_list in tls receive context to copies the
1634  * decrypted records into the buffer provided by caller zero copy is not
1635  * true. Further, the records are removed from the rx_list if it is not a peek
1636  * case and the record has been consumed completely.
1637  */
1638 static int process_rx_list(struct tls_sw_context_rx *ctx,
1639                            struct msghdr *msg,
1640                            u8 *control,
1641                            size_t skip,
1642                            size_t len,
1643                            bool zc,
1644                            bool is_peek)
1645 {
1646         struct sk_buff *skb = skb_peek(&ctx->rx_list);
1647         struct tls_msg *tlm;
1648         ssize_t copied = 0;
1649         int err;
1650
1651         while (skip && skb) {
1652                 struct strp_msg *rxm = strp_msg(skb);
1653                 tlm = tls_msg(skb);
1654
1655                 err = tls_record_content_type(msg, tlm, control);
1656                 if (err <= 0)
1657                         goto out;
1658
1659                 if (skip < rxm->full_len)
1660                         break;
1661
1662                 skip = skip - rxm->full_len;
1663                 skb = skb_peek_next(skb, &ctx->rx_list);
1664         }
1665
1666         while (len && skb) {
1667                 struct sk_buff *next_skb;
1668                 struct strp_msg *rxm = strp_msg(skb);
1669                 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1670
1671                 tlm = tls_msg(skb);
1672
1673                 err = tls_record_content_type(msg, tlm, control);
1674                 if (err <= 0)
1675                         goto out;
1676
1677                 if (!zc || (rxm->full_len - skip) > len) {
1678                         err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1679                                                     msg, chunk);
1680                         if (err < 0)
1681                                 goto out;
1682                 }
1683
1684                 len = len - chunk;
1685                 copied = copied + chunk;
1686
1687                 /* Consume the data from record if it is non-peek case*/
1688                 if (!is_peek) {
1689                         rxm->offset = rxm->offset + chunk;
1690                         rxm->full_len = rxm->full_len - chunk;
1691
1692                         /* Return if there is unconsumed data in the record */
1693                         if (rxm->full_len - skip)
1694                                 break;
1695                 }
1696
1697                 /* The remaining skip-bytes must lie in 1st record in rx_list.
1698                  * So from the 2nd record, 'skip' should be 0.
1699                  */
1700                 skip = 0;
1701
1702                 if (msg)
1703                         msg->msg_flags |= MSG_EOR;
1704
1705                 next_skb = skb_peek_next(skb, &ctx->rx_list);
1706
1707                 if (!is_peek) {
1708                         __skb_unlink(skb, &ctx->rx_list);
1709                         consume_skb(skb);
1710                 }
1711
1712                 skb = next_skb;
1713         }
1714         err = 0;
1715
1716 out:
1717         return copied ? : err;
1718 }
1719
1720 int tls_sw_recvmsg(struct sock *sk,
1721                    struct msghdr *msg,
1722                    size_t len,
1723                    int flags,
1724                    int *addr_len)
1725 {
1726         struct tls_context *tls_ctx = tls_get_ctx(sk);
1727         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1728         struct tls_prot_info *prot = &tls_ctx->prot_info;
1729         struct sk_psock *psock;
1730         unsigned char control = 0;
1731         ssize_t decrypted = 0;
1732         struct strp_msg *rxm;
1733         struct tls_msg *tlm;
1734         struct sk_buff *skb;
1735         ssize_t copied = 0;
1736         bool async = false;
1737         int target, err = 0;
1738         long timeo;
1739         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1740         bool is_peek = flags & MSG_PEEK;
1741         bool bpf_strp_enabled;
1742         bool zc_capable;
1743
1744         if (unlikely(flags & MSG_ERRQUEUE))
1745                 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1746
1747         psock = sk_psock_get(sk);
1748         lock_sock(sk);
1749         bpf_strp_enabled = sk_psock_strp_enabled(psock);
1750
1751         /* If crypto failed the connection is broken */
1752         err = ctx->async_wait.err;
1753         if (err)
1754                 goto end;
1755
1756         /* Process pending decrypted records. It must be non-zero-copy */
1757         err = process_rx_list(ctx, msg, &control, 0, len, false, is_peek);
1758         if (err < 0)
1759                 goto end;
1760
1761         copied = err;
1762         if (len <= copied)
1763                 goto end;
1764
1765         target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1766         len = len - copied;
1767         timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1768
1769         zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek &&
1770                      prot->version != TLS_1_3_VERSION;
1771         decrypted = 0;
1772         while (len && (decrypted + copied < target || ctx->recv_pkt)) {
1773                 struct tls_decrypt_arg darg = {};
1774                 int to_decrypt, chunk;
1775
1776                 skb = tls_wait_data(sk, psock, flags & MSG_DONTWAIT, timeo, &err);
1777                 if (!skb) {
1778                         if (psock) {
1779                                 chunk = sk_msg_recvmsg(sk, psock, msg, len,
1780                                                        flags);
1781                                 if (chunk > 0)
1782                                         goto leave_on_list;
1783                         }
1784                         goto recv_end;
1785                 }
1786
1787                 rxm = strp_msg(skb);
1788                 tlm = tls_msg(skb);
1789
1790                 to_decrypt = rxm->full_len - prot->overhead_size;
1791
1792                 if (zc_capable && to_decrypt <= len &&
1793                     tlm->control == TLS_RECORD_TYPE_DATA)
1794                         darg.zc = true;
1795
1796                 /* Do not use async mode if record is non-data */
1797                 if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
1798                         darg.async = ctx->async_capable;
1799                 else
1800                         darg.async = false;
1801
1802                 err = decrypt_skb_update(sk, skb, &msg->msg_iter, &darg);
1803                 if (err < 0) {
1804                         tls_err_abort(sk, -EBADMSG);
1805                         goto recv_end;
1806                 }
1807
1808                 async |= darg.async;
1809
1810                 /* If the type of records being processed is not known yet,
1811                  * set it to record type just dequeued. If it is already known,
1812                  * but does not match the record type just dequeued, go to end.
1813                  * We always get record type here since for tls1.2, record type
1814                  * is known just after record is dequeued from stream parser.
1815                  * For tls1.3, we disable async.
1816                  */
1817                 err = tls_record_content_type(msg, tlm, &control);
1818                 if (err <= 0)
1819                         goto recv_end;
1820
1821                 ctx->recv_pkt = NULL;
1822                 __strp_unpause(&ctx->strp);
1823                 __skb_queue_tail(&ctx->rx_list, skb);
1824
1825                 if (async) {
1826                         /* TLS 1.2-only, to_decrypt must be text length */
1827                         chunk = min_t(int, to_decrypt, len);
1828 leave_on_list:
1829                         decrypted += chunk;
1830                         len -= chunk;
1831                         continue;
1832                 }
1833                 /* TLS 1.3 may have updated the length by more than overhead */
1834                 chunk = rxm->full_len;
1835
1836                 if (!darg.zc) {
1837                         bool partially_consumed = chunk > len;
1838
1839                         if (bpf_strp_enabled) {
1840                                 /* BPF may try to queue the skb */
1841                                 __skb_unlink(skb, &ctx->rx_list);
1842                                 err = sk_psock_tls_strp_read(psock, skb);
1843                                 if (err != __SK_PASS) {
1844                                         rxm->offset = rxm->offset + rxm->full_len;
1845                                         rxm->full_len = 0;
1846                                         if (err == __SK_DROP)
1847                                                 consume_skb(skb);
1848                                         continue;
1849                                 }
1850                                 __skb_queue_tail(&ctx->rx_list, skb);
1851                         }
1852
1853                         if (partially_consumed)
1854                                 chunk = len;
1855
1856                         err = skb_copy_datagram_msg(skb, rxm->offset,
1857                                                     msg, chunk);
1858                         if (err < 0)
1859                                 goto recv_end;
1860
1861                         if (is_peek)
1862                                 goto leave_on_list;
1863
1864                         if (partially_consumed) {
1865                                 rxm->offset += chunk;
1866                                 rxm->full_len -= chunk;
1867                                 goto leave_on_list;
1868                         }
1869                 }
1870
1871                 decrypted += chunk;
1872                 len -= chunk;
1873
1874                 __skb_unlink(skb, &ctx->rx_list);
1875                 consume_skb(skb);
1876
1877                 /* Return full control message to userspace before trying
1878                  * to parse another message type
1879                  */
1880                 msg->msg_flags |= MSG_EOR;
1881                 if (control != TLS_RECORD_TYPE_DATA)
1882                         break;
1883         }
1884
1885 recv_end:
1886         if (async) {
1887                 int ret, pending;
1888
1889                 /* Wait for all previously submitted records to be decrypted */
1890                 spin_lock_bh(&ctx->decrypt_compl_lock);
1891                 reinit_completion(&ctx->async_wait.completion);
1892                 pending = atomic_read(&ctx->decrypt_pending);
1893                 spin_unlock_bh(&ctx->decrypt_compl_lock);
1894                 if (pending) {
1895                         ret = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1896                         if (ret) {
1897                                 if (err >= 0 || err == -EINPROGRESS)
1898                                         err = ret;
1899                                 decrypted = 0;
1900                                 goto end;
1901                         }
1902                 }
1903
1904                 /* Drain records from the rx_list & copy if required */
1905                 if (is_peek || is_kvec)
1906                         err = process_rx_list(ctx, msg, &control, copied,
1907                                               decrypted, false, is_peek);
1908                 else
1909                         err = process_rx_list(ctx, msg, &control, 0,
1910                                               decrypted, true, is_peek);
1911                 decrypted = max(err, 0);
1912         }
1913
1914         copied += decrypted;
1915
1916 end:
1917         release_sock(sk);
1918         if (psock)
1919                 sk_psock_put(sk, psock);
1920         return copied ? : err;
1921 }
1922
1923 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
1924                            struct pipe_inode_info *pipe,
1925                            size_t len, unsigned int flags)
1926 {
1927         struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1928         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1929         struct strp_msg *rxm = NULL;
1930         struct sock *sk = sock->sk;
1931         struct tls_msg *tlm;
1932         struct sk_buff *skb;
1933         ssize_t copied = 0;
1934         bool from_queue;
1935         int err = 0;
1936         long timeo;
1937         int chunk;
1938
1939         lock_sock(sk);
1940
1941         timeo = sock_rcvtimeo(sk, flags & SPLICE_F_NONBLOCK);
1942
1943         from_queue = !skb_queue_empty(&ctx->rx_list);
1944         if (from_queue) {
1945                 skb = __skb_dequeue(&ctx->rx_list);
1946         } else {
1947                 struct tls_decrypt_arg darg = {};
1948
1949                 skb = tls_wait_data(sk, NULL, flags & SPLICE_F_NONBLOCK, timeo,
1950                                     &err);
1951                 if (!skb)
1952                         goto splice_read_end;
1953
1954                 err = decrypt_skb_update(sk, skb, NULL, &darg);
1955                 if (err < 0) {
1956                         tls_err_abort(sk, -EBADMSG);
1957                         goto splice_read_end;
1958                 }
1959         }
1960
1961         rxm = strp_msg(skb);
1962         tlm = tls_msg(skb);
1963
1964         /* splice does not support reading control messages */
1965         if (tlm->control != TLS_RECORD_TYPE_DATA) {
1966                 err = -EINVAL;
1967                 goto splice_read_end;
1968         }
1969
1970         chunk = min_t(unsigned int, rxm->full_len, len);
1971         copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
1972         if (copied < 0)
1973                 goto splice_read_end;
1974
1975         if (!from_queue) {
1976                 ctx->recv_pkt = NULL;
1977                 __strp_unpause(&ctx->strp);
1978         }
1979         if (chunk < rxm->full_len) {
1980                 __skb_queue_head(&ctx->rx_list, skb);
1981                 rxm->offset += len;
1982                 rxm->full_len -= len;
1983         } else {
1984                 consume_skb(skb);
1985         }
1986
1987 splice_read_end:
1988         release_sock(sk);
1989         return copied ? : err;
1990 }
1991
1992 bool tls_sw_sock_is_readable(struct sock *sk)
1993 {
1994         struct tls_context *tls_ctx = tls_get_ctx(sk);
1995         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1996         bool ingress_empty = true;
1997         struct sk_psock *psock;
1998
1999         rcu_read_lock();
2000         psock = sk_psock(sk);
2001         if (psock)
2002                 ingress_empty = list_empty(&psock->ingress_msg);
2003         rcu_read_unlock();
2004
2005         return !ingress_empty || ctx->recv_pkt ||
2006                 !skb_queue_empty(&ctx->rx_list);
2007 }
2008
2009 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
2010 {
2011         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2012         struct tls_prot_info *prot = &tls_ctx->prot_info;
2013         char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2014         struct strp_msg *rxm = strp_msg(skb);
2015         struct tls_msg *tlm = tls_msg(skb);
2016         size_t cipher_overhead;
2017         size_t data_len = 0;
2018         int ret;
2019
2020         /* Verify that we have a full TLS header, or wait for more data */
2021         if (rxm->offset + prot->prepend_size > skb->len)
2022                 return 0;
2023
2024         /* Sanity-check size of on-stack buffer. */
2025         if (WARN_ON(prot->prepend_size > sizeof(header))) {
2026                 ret = -EINVAL;
2027                 goto read_failure;
2028         }
2029
2030         /* Linearize header to local buffer */
2031         ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
2032         if (ret < 0)
2033                 goto read_failure;
2034
2035         tlm->decrypted = 0;
2036         tlm->control = header[0];
2037
2038         data_len = ((header[4] & 0xFF) | (header[3] << 8));
2039
2040         cipher_overhead = prot->tag_size;
2041         if (prot->version != TLS_1_3_VERSION &&
2042             prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2043                 cipher_overhead += prot->iv_size;
2044
2045         if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2046             prot->tail_size) {
2047                 ret = -EMSGSIZE;
2048                 goto read_failure;
2049         }
2050         if (data_len < cipher_overhead) {
2051                 ret = -EBADMSG;
2052                 goto read_failure;
2053         }
2054
2055         /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2056         if (header[1] != TLS_1_2_VERSION_MINOR ||
2057             header[2] != TLS_1_2_VERSION_MAJOR) {
2058                 ret = -EINVAL;
2059                 goto read_failure;
2060         }
2061
2062         tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2063                                      TCP_SKB_CB(skb)->seq + rxm->offset);
2064         return data_len + TLS_HEADER_SIZE;
2065
2066 read_failure:
2067         tls_err_abort(strp->sk, ret);
2068
2069         return ret;
2070 }
2071
2072 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2073 {
2074         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2075         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2076
2077         ctx->recv_pkt = skb;
2078         strp_pause(strp);
2079
2080         ctx->saved_data_ready(strp->sk);
2081 }
2082
2083 static void tls_data_ready(struct sock *sk)
2084 {
2085         struct tls_context *tls_ctx = tls_get_ctx(sk);
2086         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2087         struct sk_psock *psock;
2088
2089         strp_data_ready(&ctx->strp);
2090
2091         psock = sk_psock_get(sk);
2092         if (psock) {
2093                 if (!list_empty(&psock->ingress_msg))
2094                         ctx->saved_data_ready(sk);
2095                 sk_psock_put(sk, psock);
2096         }
2097 }
2098
2099 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2100 {
2101         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2102
2103         set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2104         set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2105         cancel_delayed_work_sync(&ctx->tx_work.work);
2106 }
2107
2108 void tls_sw_release_resources_tx(struct sock *sk)
2109 {
2110         struct tls_context *tls_ctx = tls_get_ctx(sk);
2111         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2112         struct tls_rec *rec, *tmp;
2113         int pending;
2114
2115         /* Wait for any pending async encryptions to complete */
2116         spin_lock_bh(&ctx->encrypt_compl_lock);
2117         ctx->async_notify = true;
2118         pending = atomic_read(&ctx->encrypt_pending);
2119         spin_unlock_bh(&ctx->encrypt_compl_lock);
2120
2121         if (pending)
2122                 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2123
2124         tls_tx_records(sk, -1);
2125
2126         /* Free up un-sent records in tx_list. First, free
2127          * the partially sent record if any at head of tx_list.
2128          */
2129         if (tls_ctx->partially_sent_record) {
2130                 tls_free_partial_record(sk, tls_ctx);
2131                 rec = list_first_entry(&ctx->tx_list,
2132                                        struct tls_rec, list);
2133                 list_del(&rec->list);
2134                 sk_msg_free(sk, &rec->msg_plaintext);
2135                 kfree(rec);
2136         }
2137
2138         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2139                 list_del(&rec->list);
2140                 sk_msg_free(sk, &rec->msg_encrypted);
2141                 sk_msg_free(sk, &rec->msg_plaintext);
2142                 kfree(rec);
2143         }
2144
2145         crypto_free_aead(ctx->aead_send);
2146         tls_free_open_rec(sk);
2147 }
2148
2149 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2150 {
2151         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2152
2153         kfree(ctx);
2154 }
2155
2156 void tls_sw_release_resources_rx(struct sock *sk)
2157 {
2158         struct tls_context *tls_ctx = tls_get_ctx(sk);
2159         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2160
2161         kfree(tls_ctx->rx.rec_seq);
2162         kfree(tls_ctx->rx.iv);
2163
2164         if (ctx->aead_recv) {
2165                 kfree_skb(ctx->recv_pkt);
2166                 ctx->recv_pkt = NULL;
2167                 __skb_queue_purge(&ctx->rx_list);
2168                 crypto_free_aead(ctx->aead_recv);
2169                 strp_stop(&ctx->strp);
2170                 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2171                  * we still want to strp_stop(), but sk->sk_data_ready was
2172                  * never swapped.
2173                  */
2174                 if (ctx->saved_data_ready) {
2175                         write_lock_bh(&sk->sk_callback_lock);
2176                         sk->sk_data_ready = ctx->saved_data_ready;
2177                         write_unlock_bh(&sk->sk_callback_lock);
2178                 }
2179         }
2180 }
2181
2182 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2183 {
2184         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2185
2186         strp_done(&ctx->strp);
2187 }
2188
2189 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2190 {
2191         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2192
2193         kfree(ctx);
2194 }
2195
2196 void tls_sw_free_resources_rx(struct sock *sk)
2197 {
2198         struct tls_context *tls_ctx = tls_get_ctx(sk);
2199
2200         tls_sw_release_resources_rx(sk);
2201         tls_sw_free_ctx_rx(tls_ctx);
2202 }
2203
2204 /* The work handler to transmitt the encrypted records in tx_list */
2205 static void tx_work_handler(struct work_struct *work)
2206 {
2207         struct delayed_work *delayed_work = to_delayed_work(work);
2208         struct tx_work *tx_work = container_of(delayed_work,
2209                                                struct tx_work, work);
2210         struct sock *sk = tx_work->sk;
2211         struct tls_context *tls_ctx = tls_get_ctx(sk);
2212         struct tls_sw_context_tx *ctx;
2213
2214         if (unlikely(!tls_ctx))
2215                 return;
2216
2217         ctx = tls_sw_ctx_tx(tls_ctx);
2218         if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2219                 return;
2220
2221         if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2222                 return;
2223         mutex_lock(&tls_ctx->tx_lock);
2224         lock_sock(sk);
2225         tls_tx_records(sk, -1);
2226         release_sock(sk);
2227         mutex_unlock(&tls_ctx->tx_lock);
2228 }
2229
2230 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2231 {
2232         struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2233
2234         /* Schedule the transmission if tx list is ready */
2235         if (is_tx_ready(tx_ctx) &&
2236             !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2237                 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2238 }
2239
2240 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2241 {
2242         struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2243
2244         write_lock_bh(&sk->sk_callback_lock);
2245         rx_ctx->saved_data_ready = sk->sk_data_ready;
2246         sk->sk_data_ready = tls_data_ready;
2247         write_unlock_bh(&sk->sk_callback_lock);
2248
2249         strp_check_rcv(&rx_ctx->strp);
2250 }
2251
2252 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2253 {
2254         struct tls_context *tls_ctx = tls_get_ctx(sk);
2255         struct tls_prot_info *prot = &tls_ctx->prot_info;
2256         struct tls_crypto_info *crypto_info;
2257         struct tls_sw_context_tx *sw_ctx_tx = NULL;
2258         struct tls_sw_context_rx *sw_ctx_rx = NULL;
2259         struct cipher_context *cctx;
2260         struct crypto_aead **aead;
2261         struct strp_callbacks cb;
2262         u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2263         struct crypto_tfm *tfm;
2264         char *iv, *rec_seq, *key, *salt, *cipher_name;
2265         size_t keysize;
2266         int rc = 0;
2267
2268         if (!ctx) {
2269                 rc = -EINVAL;
2270                 goto out;
2271         }
2272
2273         if (tx) {
2274                 if (!ctx->priv_ctx_tx) {
2275                         sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2276                         if (!sw_ctx_tx) {
2277                                 rc = -ENOMEM;
2278                                 goto out;
2279                         }
2280                         ctx->priv_ctx_tx = sw_ctx_tx;
2281                 } else {
2282                         sw_ctx_tx =
2283                                 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2284                 }
2285         } else {
2286                 if (!ctx->priv_ctx_rx) {
2287                         sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2288                         if (!sw_ctx_rx) {
2289                                 rc = -ENOMEM;
2290                                 goto out;
2291                         }
2292                         ctx->priv_ctx_rx = sw_ctx_rx;
2293                 } else {
2294                         sw_ctx_rx =
2295                                 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2296                 }
2297         }
2298
2299         if (tx) {
2300                 crypto_init_wait(&sw_ctx_tx->async_wait);
2301                 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2302                 crypto_info = &ctx->crypto_send.info;
2303                 cctx = &ctx->tx;
2304                 aead = &sw_ctx_tx->aead_send;
2305                 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2306                 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2307                 sw_ctx_tx->tx_work.sk = sk;
2308         } else {
2309                 crypto_init_wait(&sw_ctx_rx->async_wait);
2310                 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2311                 crypto_info = &ctx->crypto_recv.info;
2312                 cctx = &ctx->rx;
2313                 skb_queue_head_init(&sw_ctx_rx->rx_list);
2314                 aead = &sw_ctx_rx->aead_recv;
2315         }
2316
2317         switch (crypto_info->cipher_type) {
2318         case TLS_CIPHER_AES_GCM_128: {
2319                 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2320
2321                 gcm_128_info = (void *)crypto_info;
2322                 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2323                 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2324                 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2325                 iv = gcm_128_info->iv;
2326                 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2327                 rec_seq = gcm_128_info->rec_seq;
2328                 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2329                 key = gcm_128_info->key;
2330                 salt = gcm_128_info->salt;
2331                 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2332                 cipher_name = "gcm(aes)";
2333                 break;
2334         }
2335         case TLS_CIPHER_AES_GCM_256: {
2336                 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2337
2338                 gcm_256_info = (void *)crypto_info;
2339                 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2340                 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2341                 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2342                 iv = gcm_256_info->iv;
2343                 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2344                 rec_seq = gcm_256_info->rec_seq;
2345                 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2346                 key = gcm_256_info->key;
2347                 salt = gcm_256_info->salt;
2348                 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2349                 cipher_name = "gcm(aes)";
2350                 break;
2351         }
2352         case TLS_CIPHER_AES_CCM_128: {
2353                 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2354
2355                 ccm_128_info = (void *)crypto_info;
2356                 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2357                 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2358                 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2359                 iv = ccm_128_info->iv;
2360                 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2361                 rec_seq = ccm_128_info->rec_seq;
2362                 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2363                 key = ccm_128_info->key;
2364                 salt = ccm_128_info->salt;
2365                 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2366                 cipher_name = "ccm(aes)";
2367                 break;
2368         }
2369         case TLS_CIPHER_CHACHA20_POLY1305: {
2370                 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info;
2371
2372                 chacha20_poly1305_info = (void *)crypto_info;
2373                 nonce_size = 0;
2374                 tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE;
2375                 iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE;
2376                 iv = chacha20_poly1305_info->iv;
2377                 rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE;
2378                 rec_seq = chacha20_poly1305_info->rec_seq;
2379                 keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE;
2380                 key = chacha20_poly1305_info->key;
2381                 salt = chacha20_poly1305_info->salt;
2382                 salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE;
2383                 cipher_name = "rfc7539(chacha20,poly1305)";
2384                 break;
2385         }
2386         case TLS_CIPHER_SM4_GCM: {
2387                 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info;
2388
2389                 sm4_gcm_info = (void *)crypto_info;
2390                 nonce_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2391                 tag_size = TLS_CIPHER_SM4_GCM_TAG_SIZE;
2392                 iv_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2393                 iv = sm4_gcm_info->iv;
2394                 rec_seq_size = TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE;
2395                 rec_seq = sm4_gcm_info->rec_seq;
2396                 keysize = TLS_CIPHER_SM4_GCM_KEY_SIZE;
2397                 key = sm4_gcm_info->key;
2398                 salt = sm4_gcm_info->salt;
2399                 salt_size = TLS_CIPHER_SM4_GCM_SALT_SIZE;
2400                 cipher_name = "gcm(sm4)";
2401                 break;
2402         }
2403         case TLS_CIPHER_SM4_CCM: {
2404                 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info;
2405
2406                 sm4_ccm_info = (void *)crypto_info;
2407                 nonce_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2408                 tag_size = TLS_CIPHER_SM4_CCM_TAG_SIZE;
2409                 iv_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2410                 iv = sm4_ccm_info->iv;
2411                 rec_seq_size = TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE;
2412                 rec_seq = sm4_ccm_info->rec_seq;
2413                 keysize = TLS_CIPHER_SM4_CCM_KEY_SIZE;
2414                 key = sm4_ccm_info->key;
2415                 salt = sm4_ccm_info->salt;
2416                 salt_size = TLS_CIPHER_SM4_CCM_SALT_SIZE;
2417                 cipher_name = "ccm(sm4)";
2418                 break;
2419         }
2420         default:
2421                 rc = -EINVAL;
2422                 goto free_priv;
2423         }
2424
2425         /* Sanity-check the sizes for stack allocations. */
2426         if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2427             rec_seq_size > TLS_MAX_REC_SEQ_SIZE || tag_size != TLS_TAG_SIZE) {
2428                 rc = -EINVAL;
2429                 goto free_priv;
2430         }
2431
2432         if (crypto_info->version == TLS_1_3_VERSION) {
2433                 nonce_size = 0;
2434                 prot->aad_size = TLS_HEADER_SIZE;
2435                 prot->tail_size = 1;
2436         } else {
2437                 prot->aad_size = TLS_AAD_SPACE_SIZE;
2438                 prot->tail_size = 0;
2439         }
2440
2441         prot->version = crypto_info->version;
2442         prot->cipher_type = crypto_info->cipher_type;
2443         prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2444         prot->tag_size = tag_size;
2445         prot->overhead_size = prot->prepend_size +
2446                               prot->tag_size + prot->tail_size;
2447         prot->iv_size = iv_size;
2448         prot->salt_size = salt_size;
2449         cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2450         if (!cctx->iv) {
2451                 rc = -ENOMEM;
2452                 goto free_priv;
2453         }
2454         /* Note: 128 & 256 bit salt are the same size */
2455         prot->rec_seq_size = rec_seq_size;
2456         memcpy(cctx->iv, salt, salt_size);
2457         memcpy(cctx->iv + salt_size, iv, iv_size);
2458         cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2459         if (!cctx->rec_seq) {
2460                 rc = -ENOMEM;
2461                 goto free_iv;
2462         }
2463
2464         if (!*aead) {
2465                 *aead = crypto_alloc_aead(cipher_name, 0, 0);
2466                 if (IS_ERR(*aead)) {
2467                         rc = PTR_ERR(*aead);
2468                         *aead = NULL;
2469                         goto free_rec_seq;
2470                 }
2471         }
2472
2473         ctx->push_pending_record = tls_sw_push_pending_record;
2474
2475         rc = crypto_aead_setkey(*aead, key, keysize);
2476
2477         if (rc)
2478                 goto free_aead;
2479
2480         rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2481         if (rc)
2482                 goto free_aead;
2483
2484         if (sw_ctx_rx) {
2485                 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2486
2487                 if (crypto_info->version == TLS_1_3_VERSION)
2488                         sw_ctx_rx->async_capable = 0;
2489                 else
2490                         sw_ctx_rx->async_capable =
2491                                 !!(tfm->__crt_alg->cra_flags &
2492                                    CRYPTO_ALG_ASYNC);
2493
2494                 /* Set up strparser */
2495                 memset(&cb, 0, sizeof(cb));
2496                 cb.rcv_msg = tls_queue;
2497                 cb.parse_msg = tls_read_size;
2498
2499                 strp_init(&sw_ctx_rx->strp, sk, &cb);
2500         }
2501
2502         goto out;
2503
2504 free_aead:
2505         crypto_free_aead(*aead);
2506         *aead = NULL;
2507 free_rec_seq:
2508         kfree(cctx->rec_seq);
2509         cctx->rec_seq = NULL;
2510 free_iv:
2511         kfree(cctx->iv);
2512         cctx->iv = NULL;
2513 free_priv:
2514         if (tx) {
2515                 kfree(ctx->priv_ctx_tx);
2516                 ctx->priv_ctx_tx = NULL;
2517         } else {
2518                 kfree(ctx->priv_ctx_rx);
2519                 ctx->priv_ctx_rx = NULL;
2520         }
2521 out:
2522         return rc;
2523 }