Merge tag 'keys-fixes-20200329' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / net / tls / tls_sw.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8  *
9  * This software is available to you under a choice of one of two
10  * licenses.  You may choose to be licensed under the terms of the GNU
11  * General Public License (GPL) Version 2, available from the file
12  * COPYING in the main directory of this source tree, or the
13  * OpenIB.org BSD license below:
14  *
15  *     Redistribution and use in source and binary forms, with or
16  *     without modification, are permitted provided that the following
17  *     conditions are met:
18  *
19  *      - Redistributions of source code must retain the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer.
22  *
23  *      - Redistributions in binary form must reproduce the above
24  *        copyright notice, this list of conditions and the following
25  *        disclaimer in the documentation and/or other materials
26  *        provided with the distribution.
27  *
28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35  * SOFTWARE.
36  */
37
38 #include <linux/sched/signal.h>
39 #include <linux/module.h>
40 #include <crypto/aead.h>
41
42 #include <net/strparser.h>
43 #include <net/tls.h>
44
45 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
46                      unsigned int recursion_level)
47 {
48         int start = skb_headlen(skb);
49         int i, chunk = start - offset;
50         struct sk_buff *frag_iter;
51         int elt = 0;
52
53         if (unlikely(recursion_level >= 24))
54                 return -EMSGSIZE;
55
56         if (chunk > 0) {
57                 if (chunk > len)
58                         chunk = len;
59                 elt++;
60                 len -= chunk;
61                 if (len == 0)
62                         return elt;
63                 offset += chunk;
64         }
65
66         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
67                 int end;
68
69                 WARN_ON(start > offset + len);
70
71                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
72                 chunk = end - offset;
73                 if (chunk > 0) {
74                         if (chunk > len)
75                                 chunk = len;
76                         elt++;
77                         len -= chunk;
78                         if (len == 0)
79                                 return elt;
80                         offset += chunk;
81                 }
82                 start = end;
83         }
84
85         if (unlikely(skb_has_frag_list(skb))) {
86                 skb_walk_frags(skb, frag_iter) {
87                         int end, ret;
88
89                         WARN_ON(start > offset + len);
90
91                         end = start + frag_iter->len;
92                         chunk = end - offset;
93                         if (chunk > 0) {
94                                 if (chunk > len)
95                                         chunk = len;
96                                 ret = __skb_nsg(frag_iter, offset - start, chunk,
97                                                 recursion_level + 1);
98                                 if (unlikely(ret < 0))
99                                         return ret;
100                                 elt += ret;
101                                 len -= chunk;
102                                 if (len == 0)
103                                         return elt;
104                                 offset += chunk;
105                         }
106                         start = end;
107                 }
108         }
109         BUG_ON(len);
110         return elt;
111 }
112
113 /* Return the number of scatterlist elements required to completely map the
114  * skb, or -EMSGSIZE if the recursion depth is exceeded.
115  */
116 static int skb_nsg(struct sk_buff *skb, int offset, int len)
117 {
118         return __skb_nsg(skb, offset, len, 0);
119 }
120
121 static int padding_length(struct tls_sw_context_rx *ctx,
122                           struct tls_prot_info *prot, struct sk_buff *skb)
123 {
124         struct strp_msg *rxm = strp_msg(skb);
125         int sub = 0;
126
127         /* Determine zero-padding length */
128         if (prot->version == TLS_1_3_VERSION) {
129                 char content_type = 0;
130                 int err;
131                 int back = 17;
132
133                 while (content_type == 0) {
134                         if (back > rxm->full_len - prot->prepend_size)
135                                 return -EBADMSG;
136                         err = skb_copy_bits(skb,
137                                             rxm->offset + rxm->full_len - back,
138                                             &content_type, 1);
139                         if (err)
140                                 return err;
141                         if (content_type)
142                                 break;
143                         sub++;
144                         back++;
145                 }
146                 ctx->control = content_type;
147         }
148         return sub;
149 }
150
151 static void tls_decrypt_done(struct crypto_async_request *req, int err)
152 {
153         struct aead_request *aead_req = (struct aead_request *)req;
154         struct scatterlist *sgout = aead_req->dst;
155         struct scatterlist *sgin = aead_req->src;
156         struct tls_sw_context_rx *ctx;
157         struct tls_context *tls_ctx;
158         struct tls_prot_info *prot;
159         struct scatterlist *sg;
160         struct sk_buff *skb;
161         unsigned int pages;
162         int pending;
163
164         skb = (struct sk_buff *)req->data;
165         tls_ctx = tls_get_ctx(skb->sk);
166         ctx = tls_sw_ctx_rx(tls_ctx);
167         prot = &tls_ctx->prot_info;
168
169         /* Propagate if there was an err */
170         if (err) {
171                 if (err == -EBADMSG)
172                         TLS_INC_STATS(sock_net(skb->sk),
173                                       LINUX_MIB_TLSDECRYPTERROR);
174                 ctx->async_wait.err = err;
175                 tls_err_abort(skb->sk, err);
176         } else {
177                 struct strp_msg *rxm = strp_msg(skb);
178                 int pad;
179
180                 pad = padding_length(ctx, prot, skb);
181                 if (pad < 0) {
182                         ctx->async_wait.err = pad;
183                         tls_err_abort(skb->sk, pad);
184                 } else {
185                         rxm->full_len -= pad;
186                         rxm->offset += prot->prepend_size;
187                         rxm->full_len -= prot->overhead_size;
188                 }
189         }
190
191         /* After using skb->sk to propagate sk through crypto async callback
192          * we need to NULL it again.
193          */
194         skb->sk = NULL;
195
196
197         /* Free the destination pages if skb was not decrypted inplace */
198         if (sgout != sgin) {
199                 /* Skip the first S/G entry as it points to AAD */
200                 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
201                         if (!sg)
202                                 break;
203                         put_page(sg_page(sg));
204                 }
205         }
206
207         kfree(aead_req);
208
209         pending = atomic_dec_return(&ctx->decrypt_pending);
210
211         if (!pending && READ_ONCE(ctx->async_notify))
212                 complete(&ctx->async_wait.completion);
213 }
214
215 static int tls_do_decryption(struct sock *sk,
216                              struct sk_buff *skb,
217                              struct scatterlist *sgin,
218                              struct scatterlist *sgout,
219                              char *iv_recv,
220                              size_t data_len,
221                              struct aead_request *aead_req,
222                              bool async)
223 {
224         struct tls_context *tls_ctx = tls_get_ctx(sk);
225         struct tls_prot_info *prot = &tls_ctx->prot_info;
226         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
227         int ret;
228
229         aead_request_set_tfm(aead_req, ctx->aead_recv);
230         aead_request_set_ad(aead_req, prot->aad_size);
231         aead_request_set_crypt(aead_req, sgin, sgout,
232                                data_len + prot->tag_size,
233                                (u8 *)iv_recv);
234
235         if (async) {
236                 /* Using skb->sk to push sk through to crypto async callback
237                  * handler. This allows propagating errors up to the socket
238                  * if needed. It _must_ be cleared in the async handler
239                  * before consume_skb is called. We _know_ skb->sk is NULL
240                  * because it is a clone from strparser.
241                  */
242                 skb->sk = sk;
243                 aead_request_set_callback(aead_req,
244                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
245                                           tls_decrypt_done, skb);
246                 atomic_inc(&ctx->decrypt_pending);
247         } else {
248                 aead_request_set_callback(aead_req,
249                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
250                                           crypto_req_done, &ctx->async_wait);
251         }
252
253         ret = crypto_aead_decrypt(aead_req);
254         if (ret == -EINPROGRESS) {
255                 if (async)
256                         return ret;
257
258                 ret = crypto_wait_req(ret, &ctx->async_wait);
259         }
260
261         if (async)
262                 atomic_dec(&ctx->decrypt_pending);
263
264         return ret;
265 }
266
267 static void tls_trim_both_msgs(struct sock *sk, int target_size)
268 {
269         struct tls_context *tls_ctx = tls_get_ctx(sk);
270         struct tls_prot_info *prot = &tls_ctx->prot_info;
271         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
272         struct tls_rec *rec = ctx->open_rec;
273
274         sk_msg_trim(sk, &rec->msg_plaintext, target_size);
275         if (target_size > 0)
276                 target_size += prot->overhead_size;
277         sk_msg_trim(sk, &rec->msg_encrypted, target_size);
278 }
279
280 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
281 {
282         struct tls_context *tls_ctx = tls_get_ctx(sk);
283         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
284         struct tls_rec *rec = ctx->open_rec;
285         struct sk_msg *msg_en = &rec->msg_encrypted;
286
287         return sk_msg_alloc(sk, msg_en, len, 0);
288 }
289
290 static int tls_clone_plaintext_msg(struct sock *sk, int required)
291 {
292         struct tls_context *tls_ctx = tls_get_ctx(sk);
293         struct tls_prot_info *prot = &tls_ctx->prot_info;
294         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
295         struct tls_rec *rec = ctx->open_rec;
296         struct sk_msg *msg_pl = &rec->msg_plaintext;
297         struct sk_msg *msg_en = &rec->msg_encrypted;
298         int skip, len;
299
300         /* We add page references worth len bytes from encrypted sg
301          * at the end of plaintext sg. It is guaranteed that msg_en
302          * has enough required room (ensured by caller).
303          */
304         len = required - msg_pl->sg.size;
305
306         /* Skip initial bytes in msg_en's data to be able to use
307          * same offset of both plain and encrypted data.
308          */
309         skip = prot->prepend_size + msg_pl->sg.size;
310
311         return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
312 }
313
314 static struct tls_rec *tls_get_rec(struct sock *sk)
315 {
316         struct tls_context *tls_ctx = tls_get_ctx(sk);
317         struct tls_prot_info *prot = &tls_ctx->prot_info;
318         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
319         struct sk_msg *msg_pl, *msg_en;
320         struct tls_rec *rec;
321         int mem_size;
322
323         mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
324
325         rec = kzalloc(mem_size, sk->sk_allocation);
326         if (!rec)
327                 return NULL;
328
329         msg_pl = &rec->msg_plaintext;
330         msg_en = &rec->msg_encrypted;
331
332         sk_msg_init(msg_pl);
333         sk_msg_init(msg_en);
334
335         sg_init_table(rec->sg_aead_in, 2);
336         sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
337         sg_unmark_end(&rec->sg_aead_in[1]);
338
339         sg_init_table(rec->sg_aead_out, 2);
340         sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
341         sg_unmark_end(&rec->sg_aead_out[1]);
342
343         return rec;
344 }
345
346 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
347 {
348         sk_msg_free(sk, &rec->msg_encrypted);
349         sk_msg_free(sk, &rec->msg_plaintext);
350         kfree(rec);
351 }
352
353 static void tls_free_open_rec(struct sock *sk)
354 {
355         struct tls_context *tls_ctx = tls_get_ctx(sk);
356         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
357         struct tls_rec *rec = ctx->open_rec;
358
359         if (rec) {
360                 tls_free_rec(sk, rec);
361                 ctx->open_rec = NULL;
362         }
363 }
364
365 int tls_tx_records(struct sock *sk, int flags)
366 {
367         struct tls_context *tls_ctx = tls_get_ctx(sk);
368         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
369         struct tls_rec *rec, *tmp;
370         struct sk_msg *msg_en;
371         int tx_flags, rc = 0;
372
373         if (tls_is_partially_sent_record(tls_ctx)) {
374                 rec = list_first_entry(&ctx->tx_list,
375                                        struct tls_rec, list);
376
377                 if (flags == -1)
378                         tx_flags = rec->tx_flags;
379                 else
380                         tx_flags = flags;
381
382                 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
383                 if (rc)
384                         goto tx_err;
385
386                 /* Full record has been transmitted.
387                  * Remove the head of tx_list
388                  */
389                 list_del(&rec->list);
390                 sk_msg_free(sk, &rec->msg_plaintext);
391                 kfree(rec);
392         }
393
394         /* Tx all ready records */
395         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
396                 if (READ_ONCE(rec->tx_ready)) {
397                         if (flags == -1)
398                                 tx_flags = rec->tx_flags;
399                         else
400                                 tx_flags = flags;
401
402                         msg_en = &rec->msg_encrypted;
403                         rc = tls_push_sg(sk, tls_ctx,
404                                          &msg_en->sg.data[msg_en->sg.curr],
405                                          0, tx_flags);
406                         if (rc)
407                                 goto tx_err;
408
409                         list_del(&rec->list);
410                         sk_msg_free(sk, &rec->msg_plaintext);
411                         kfree(rec);
412                 } else {
413                         break;
414                 }
415         }
416
417 tx_err:
418         if (rc < 0 && rc != -EAGAIN)
419                 tls_err_abort(sk, EBADMSG);
420
421         return rc;
422 }
423
424 static void tls_encrypt_done(struct crypto_async_request *req, int err)
425 {
426         struct aead_request *aead_req = (struct aead_request *)req;
427         struct sock *sk = req->data;
428         struct tls_context *tls_ctx = tls_get_ctx(sk);
429         struct tls_prot_info *prot = &tls_ctx->prot_info;
430         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
431         struct scatterlist *sge;
432         struct sk_msg *msg_en;
433         struct tls_rec *rec;
434         bool ready = false;
435         int pending;
436
437         rec = container_of(aead_req, struct tls_rec, aead_req);
438         msg_en = &rec->msg_encrypted;
439
440         sge = sk_msg_elem(msg_en, msg_en->sg.curr);
441         sge->offset -= prot->prepend_size;
442         sge->length += prot->prepend_size;
443
444         /* Check if error is previously set on socket */
445         if (err || sk->sk_err) {
446                 rec = NULL;
447
448                 /* If err is already set on socket, return the same code */
449                 if (sk->sk_err) {
450                         ctx->async_wait.err = sk->sk_err;
451                 } else {
452                         ctx->async_wait.err = err;
453                         tls_err_abort(sk, err);
454                 }
455         }
456
457         if (rec) {
458                 struct tls_rec *first_rec;
459
460                 /* Mark the record as ready for transmission */
461                 smp_store_mb(rec->tx_ready, true);
462
463                 /* If received record is at head of tx_list, schedule tx */
464                 first_rec = list_first_entry(&ctx->tx_list,
465                                              struct tls_rec, list);
466                 if (rec == first_rec)
467                         ready = true;
468         }
469
470         pending = atomic_dec_return(&ctx->encrypt_pending);
471
472         if (!pending && READ_ONCE(ctx->async_notify))
473                 complete(&ctx->async_wait.completion);
474
475         if (!ready)
476                 return;
477
478         /* Schedule the transmission */
479         if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
480                 schedule_delayed_work(&ctx->tx_work.work, 1);
481 }
482
483 static int tls_do_encryption(struct sock *sk,
484                              struct tls_context *tls_ctx,
485                              struct tls_sw_context_tx *ctx,
486                              struct aead_request *aead_req,
487                              size_t data_len, u32 start)
488 {
489         struct tls_prot_info *prot = &tls_ctx->prot_info;
490         struct tls_rec *rec = ctx->open_rec;
491         struct sk_msg *msg_en = &rec->msg_encrypted;
492         struct scatterlist *sge = sk_msg_elem(msg_en, start);
493         int rc, iv_offset = 0;
494
495         /* For CCM based ciphers, first byte of IV is a constant */
496         if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
497                 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
498                 iv_offset = 1;
499         }
500
501         memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
502                prot->iv_size + prot->salt_size);
503
504         xor_iv_with_seq(prot->version, rec->iv_data, tls_ctx->tx.rec_seq);
505
506         sge->offset += prot->prepend_size;
507         sge->length -= prot->prepend_size;
508
509         msg_en->sg.curr = start;
510
511         aead_request_set_tfm(aead_req, ctx->aead_send);
512         aead_request_set_ad(aead_req, prot->aad_size);
513         aead_request_set_crypt(aead_req, rec->sg_aead_in,
514                                rec->sg_aead_out,
515                                data_len, rec->iv_data);
516
517         aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
518                                   tls_encrypt_done, sk);
519
520         /* Add the record in tx_list */
521         list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
522         atomic_inc(&ctx->encrypt_pending);
523
524         rc = crypto_aead_encrypt(aead_req);
525         if (!rc || rc != -EINPROGRESS) {
526                 atomic_dec(&ctx->encrypt_pending);
527                 sge->offset -= prot->prepend_size;
528                 sge->length += prot->prepend_size;
529         }
530
531         if (!rc) {
532                 WRITE_ONCE(rec->tx_ready, true);
533         } else if (rc != -EINPROGRESS) {
534                 list_del(&rec->list);
535                 return rc;
536         }
537
538         /* Unhook the record from context if encryption is not failure */
539         ctx->open_rec = NULL;
540         tls_advance_record_sn(sk, prot, &tls_ctx->tx);
541         return rc;
542 }
543
544 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
545                                  struct tls_rec **to, struct sk_msg *msg_opl,
546                                  struct sk_msg *msg_oen, u32 split_point,
547                                  u32 tx_overhead_size, u32 *orig_end)
548 {
549         u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
550         struct scatterlist *sge, *osge, *nsge;
551         u32 orig_size = msg_opl->sg.size;
552         struct scatterlist tmp = { };
553         struct sk_msg *msg_npl;
554         struct tls_rec *new;
555         int ret;
556
557         new = tls_get_rec(sk);
558         if (!new)
559                 return -ENOMEM;
560         ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
561                            tx_overhead_size, 0);
562         if (ret < 0) {
563                 tls_free_rec(sk, new);
564                 return ret;
565         }
566
567         *orig_end = msg_opl->sg.end;
568         i = msg_opl->sg.start;
569         sge = sk_msg_elem(msg_opl, i);
570         while (apply && sge->length) {
571                 if (sge->length > apply) {
572                         u32 len = sge->length - apply;
573
574                         get_page(sg_page(sge));
575                         sg_set_page(&tmp, sg_page(sge), len,
576                                     sge->offset + apply);
577                         sge->length = apply;
578                         bytes += apply;
579                         apply = 0;
580                 } else {
581                         apply -= sge->length;
582                         bytes += sge->length;
583                 }
584
585                 sk_msg_iter_var_next(i);
586                 if (i == msg_opl->sg.end)
587                         break;
588                 sge = sk_msg_elem(msg_opl, i);
589         }
590
591         msg_opl->sg.end = i;
592         msg_opl->sg.curr = i;
593         msg_opl->sg.copybreak = 0;
594         msg_opl->apply_bytes = 0;
595         msg_opl->sg.size = bytes;
596
597         msg_npl = &new->msg_plaintext;
598         msg_npl->apply_bytes = apply;
599         msg_npl->sg.size = orig_size - bytes;
600
601         j = msg_npl->sg.start;
602         nsge = sk_msg_elem(msg_npl, j);
603         if (tmp.length) {
604                 memcpy(nsge, &tmp, sizeof(*nsge));
605                 sk_msg_iter_var_next(j);
606                 nsge = sk_msg_elem(msg_npl, j);
607         }
608
609         osge = sk_msg_elem(msg_opl, i);
610         while (osge->length) {
611                 memcpy(nsge, osge, sizeof(*nsge));
612                 sg_unmark_end(nsge);
613                 sk_msg_iter_var_next(i);
614                 sk_msg_iter_var_next(j);
615                 if (i == *orig_end)
616                         break;
617                 osge = sk_msg_elem(msg_opl, i);
618                 nsge = sk_msg_elem(msg_npl, j);
619         }
620
621         msg_npl->sg.end = j;
622         msg_npl->sg.curr = j;
623         msg_npl->sg.copybreak = 0;
624
625         *to = new;
626         return 0;
627 }
628
629 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
630                                   struct tls_rec *from, u32 orig_end)
631 {
632         struct sk_msg *msg_npl = &from->msg_plaintext;
633         struct sk_msg *msg_opl = &to->msg_plaintext;
634         struct scatterlist *osge, *nsge;
635         u32 i, j;
636
637         i = msg_opl->sg.end;
638         sk_msg_iter_var_prev(i);
639         j = msg_npl->sg.start;
640
641         osge = sk_msg_elem(msg_opl, i);
642         nsge = sk_msg_elem(msg_npl, j);
643
644         if (sg_page(osge) == sg_page(nsge) &&
645             osge->offset + osge->length == nsge->offset) {
646                 osge->length += nsge->length;
647                 put_page(sg_page(nsge));
648         }
649
650         msg_opl->sg.end = orig_end;
651         msg_opl->sg.curr = orig_end;
652         msg_opl->sg.copybreak = 0;
653         msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
654         msg_opl->sg.size += msg_npl->sg.size;
655
656         sk_msg_free(sk, &to->msg_encrypted);
657         sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
658
659         kfree(from);
660 }
661
662 static int tls_push_record(struct sock *sk, int flags,
663                            unsigned char record_type)
664 {
665         struct tls_context *tls_ctx = tls_get_ctx(sk);
666         struct tls_prot_info *prot = &tls_ctx->prot_info;
667         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
668         struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
669         u32 i, split_point, uninitialized_var(orig_end);
670         struct sk_msg *msg_pl, *msg_en;
671         struct aead_request *req;
672         bool split;
673         int rc;
674
675         if (!rec)
676                 return 0;
677
678         msg_pl = &rec->msg_plaintext;
679         msg_en = &rec->msg_encrypted;
680
681         split_point = msg_pl->apply_bytes;
682         split = split_point && split_point < msg_pl->sg.size;
683         if (unlikely((!split &&
684                       msg_pl->sg.size +
685                       prot->overhead_size > msg_en->sg.size) ||
686                      (split &&
687                       split_point +
688                       prot->overhead_size > msg_en->sg.size))) {
689                 split = true;
690                 split_point = msg_en->sg.size;
691         }
692         if (split) {
693                 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
694                                            split_point, prot->overhead_size,
695                                            &orig_end);
696                 if (rc < 0)
697                         return rc;
698                 /* This can happen if above tls_split_open_record allocates
699                  * a single large encryption buffer instead of two smaller
700                  * ones. In this case adjust pointers and continue without
701                  * split.
702                  */
703                 if (!msg_pl->sg.size) {
704                         tls_merge_open_record(sk, rec, tmp, orig_end);
705                         msg_pl = &rec->msg_plaintext;
706                         msg_en = &rec->msg_encrypted;
707                         split = false;
708                 }
709                 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
710                             prot->overhead_size);
711         }
712
713         rec->tx_flags = flags;
714         req = &rec->aead_req;
715
716         i = msg_pl->sg.end;
717         sk_msg_iter_var_prev(i);
718
719         rec->content_type = record_type;
720         if (prot->version == TLS_1_3_VERSION) {
721                 /* Add content type to end of message.  No padding added */
722                 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
723                 sg_mark_end(&rec->sg_content_type);
724                 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
725                          &rec->sg_content_type);
726         } else {
727                 sg_mark_end(sk_msg_elem(msg_pl, i));
728         }
729
730         if (msg_pl->sg.end < msg_pl->sg.start) {
731                 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
732                          MAX_SKB_FRAGS - msg_pl->sg.start + 1,
733                          msg_pl->sg.data);
734         }
735
736         i = msg_pl->sg.start;
737         sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
738
739         i = msg_en->sg.end;
740         sk_msg_iter_var_prev(i);
741         sg_mark_end(sk_msg_elem(msg_en, i));
742
743         i = msg_en->sg.start;
744         sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
745
746         tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
747                      tls_ctx->tx.rec_seq, prot->rec_seq_size,
748                      record_type, prot->version);
749
750         tls_fill_prepend(tls_ctx,
751                          page_address(sg_page(&msg_en->sg.data[i])) +
752                          msg_en->sg.data[i].offset,
753                          msg_pl->sg.size + prot->tail_size,
754                          record_type, prot->version);
755
756         tls_ctx->pending_open_record_frags = false;
757
758         rc = tls_do_encryption(sk, tls_ctx, ctx, req,
759                                msg_pl->sg.size + prot->tail_size, i);
760         if (rc < 0) {
761                 if (rc != -EINPROGRESS) {
762                         tls_err_abort(sk, EBADMSG);
763                         if (split) {
764                                 tls_ctx->pending_open_record_frags = true;
765                                 tls_merge_open_record(sk, rec, tmp, orig_end);
766                         }
767                 }
768                 ctx->async_capable = 1;
769                 return rc;
770         } else if (split) {
771                 msg_pl = &tmp->msg_plaintext;
772                 msg_en = &tmp->msg_encrypted;
773                 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
774                 tls_ctx->pending_open_record_frags = true;
775                 ctx->open_rec = tmp;
776         }
777
778         return tls_tx_records(sk, flags);
779 }
780
781 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
782                                bool full_record, u8 record_type,
783                                size_t *copied, int flags)
784 {
785         struct tls_context *tls_ctx = tls_get_ctx(sk);
786         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
787         struct sk_msg msg_redir = { };
788         struct sk_psock *psock;
789         struct sock *sk_redir;
790         struct tls_rec *rec;
791         bool enospc, policy;
792         int err = 0, send;
793         u32 delta = 0;
794
795         policy = !(flags & MSG_SENDPAGE_NOPOLICY);
796         psock = sk_psock_get(sk);
797         if (!psock || !policy) {
798                 err = tls_push_record(sk, flags, record_type);
799                 if (err && err != -EINPROGRESS) {
800                         *copied -= sk_msg_free(sk, msg);
801                         tls_free_open_rec(sk);
802                 }
803                 return err;
804         }
805 more_data:
806         enospc = sk_msg_full(msg);
807         if (psock->eval == __SK_NONE) {
808                 delta = msg->sg.size;
809                 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
810                 delta -= msg->sg.size;
811         }
812         if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
813             !enospc && !full_record) {
814                 err = -ENOSPC;
815                 goto out_err;
816         }
817         msg->cork_bytes = 0;
818         send = msg->sg.size;
819         if (msg->apply_bytes && msg->apply_bytes < send)
820                 send = msg->apply_bytes;
821
822         switch (psock->eval) {
823         case __SK_PASS:
824                 err = tls_push_record(sk, flags, record_type);
825                 if (err && err != -EINPROGRESS) {
826                         *copied -= sk_msg_free(sk, msg);
827                         tls_free_open_rec(sk);
828                         goto out_err;
829                 }
830                 break;
831         case __SK_REDIRECT:
832                 sk_redir = psock->sk_redir;
833                 memcpy(&msg_redir, msg, sizeof(*msg));
834                 if (msg->apply_bytes < send)
835                         msg->apply_bytes = 0;
836                 else
837                         msg->apply_bytes -= send;
838                 sk_msg_return_zero(sk, msg, send);
839                 msg->sg.size -= send;
840                 release_sock(sk);
841                 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
842                 lock_sock(sk);
843                 if (err < 0) {
844                         *copied -= sk_msg_free_nocharge(sk, &msg_redir);
845                         msg->sg.size = 0;
846                 }
847                 if (msg->sg.size == 0)
848                         tls_free_open_rec(sk);
849                 break;
850         case __SK_DROP:
851         default:
852                 sk_msg_free_partial(sk, msg, send);
853                 if (msg->apply_bytes < send)
854                         msg->apply_bytes = 0;
855                 else
856                         msg->apply_bytes -= send;
857                 if (msg->sg.size == 0)
858                         tls_free_open_rec(sk);
859                 *copied -= (send + delta);
860                 err = -EACCES;
861         }
862
863         if (likely(!err)) {
864                 bool reset_eval = !ctx->open_rec;
865
866                 rec = ctx->open_rec;
867                 if (rec) {
868                         msg = &rec->msg_plaintext;
869                         if (!msg->apply_bytes)
870                                 reset_eval = true;
871                 }
872                 if (reset_eval) {
873                         psock->eval = __SK_NONE;
874                         if (psock->sk_redir) {
875                                 sock_put(psock->sk_redir);
876                                 psock->sk_redir = NULL;
877                         }
878                 }
879                 if (rec)
880                         goto more_data;
881         }
882  out_err:
883         sk_psock_put(sk, psock);
884         return err;
885 }
886
887 static int tls_sw_push_pending_record(struct sock *sk, int flags)
888 {
889         struct tls_context *tls_ctx = tls_get_ctx(sk);
890         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
891         struct tls_rec *rec = ctx->open_rec;
892         struct sk_msg *msg_pl;
893         size_t copied;
894
895         if (!rec)
896                 return 0;
897
898         msg_pl = &rec->msg_plaintext;
899         copied = msg_pl->sg.size;
900         if (!copied)
901                 return 0;
902
903         return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
904                                    &copied, flags);
905 }
906
907 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
908 {
909         long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
910         struct tls_context *tls_ctx = tls_get_ctx(sk);
911         struct tls_prot_info *prot = &tls_ctx->prot_info;
912         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
913         bool async_capable = ctx->async_capable;
914         unsigned char record_type = TLS_RECORD_TYPE_DATA;
915         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
916         bool eor = !(msg->msg_flags & MSG_MORE);
917         size_t try_to_copy, copied = 0;
918         struct sk_msg *msg_pl, *msg_en;
919         struct tls_rec *rec;
920         int required_size;
921         int num_async = 0;
922         bool full_record;
923         int record_room;
924         int num_zc = 0;
925         int orig_size;
926         int ret = 0;
927
928         if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
929                 return -EOPNOTSUPP;
930
931         mutex_lock(&tls_ctx->tx_lock);
932         lock_sock(sk);
933
934         if (unlikely(msg->msg_controllen)) {
935                 ret = tls_proccess_cmsg(sk, msg, &record_type);
936                 if (ret) {
937                         if (ret == -EINPROGRESS)
938                                 num_async++;
939                         else if (ret != -EAGAIN)
940                                 goto send_end;
941                 }
942         }
943
944         while (msg_data_left(msg)) {
945                 if (sk->sk_err) {
946                         ret = -sk->sk_err;
947                         goto send_end;
948                 }
949
950                 if (ctx->open_rec)
951                         rec = ctx->open_rec;
952                 else
953                         rec = ctx->open_rec = tls_get_rec(sk);
954                 if (!rec) {
955                         ret = -ENOMEM;
956                         goto send_end;
957                 }
958
959                 msg_pl = &rec->msg_plaintext;
960                 msg_en = &rec->msg_encrypted;
961
962                 orig_size = msg_pl->sg.size;
963                 full_record = false;
964                 try_to_copy = msg_data_left(msg);
965                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
966                 if (try_to_copy >= record_room) {
967                         try_to_copy = record_room;
968                         full_record = true;
969                 }
970
971                 required_size = msg_pl->sg.size + try_to_copy +
972                                 prot->overhead_size;
973
974                 if (!sk_stream_memory_free(sk))
975                         goto wait_for_sndbuf;
976
977 alloc_encrypted:
978                 ret = tls_alloc_encrypted_msg(sk, required_size);
979                 if (ret) {
980                         if (ret != -ENOSPC)
981                                 goto wait_for_memory;
982
983                         /* Adjust try_to_copy according to the amount that was
984                          * actually allocated. The difference is due
985                          * to max sg elements limit
986                          */
987                         try_to_copy -= required_size - msg_en->sg.size;
988                         full_record = true;
989                 }
990
991                 if (!is_kvec && (full_record || eor) && !async_capable) {
992                         u32 first = msg_pl->sg.end;
993
994                         ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
995                                                         msg_pl, try_to_copy);
996                         if (ret)
997                                 goto fallback_to_reg_send;
998
999                         num_zc++;
1000                         copied += try_to_copy;
1001
1002                         sk_msg_sg_copy_set(msg_pl, first);
1003                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1004                                                   record_type, &copied,
1005                                                   msg->msg_flags);
1006                         if (ret) {
1007                                 if (ret == -EINPROGRESS)
1008                                         num_async++;
1009                                 else if (ret == -ENOMEM)
1010                                         goto wait_for_memory;
1011                                 else if (ctx->open_rec && ret == -ENOSPC)
1012                                         goto rollback_iter;
1013                                 else if (ret != -EAGAIN)
1014                                         goto send_end;
1015                         }
1016                         continue;
1017 rollback_iter:
1018                         copied -= try_to_copy;
1019                         sk_msg_sg_copy_clear(msg_pl, first);
1020                         iov_iter_revert(&msg->msg_iter,
1021                                         msg_pl->sg.size - orig_size);
1022 fallback_to_reg_send:
1023                         sk_msg_trim(sk, msg_pl, orig_size);
1024                 }
1025
1026                 required_size = msg_pl->sg.size + try_to_copy;
1027
1028                 ret = tls_clone_plaintext_msg(sk, required_size);
1029                 if (ret) {
1030                         if (ret != -ENOSPC)
1031                                 goto send_end;
1032
1033                         /* Adjust try_to_copy according to the amount that was
1034                          * actually allocated. The difference is due
1035                          * to max sg elements limit
1036                          */
1037                         try_to_copy -= required_size - msg_pl->sg.size;
1038                         full_record = true;
1039                         sk_msg_trim(sk, msg_en,
1040                                     msg_pl->sg.size + prot->overhead_size);
1041                 }
1042
1043                 if (try_to_copy) {
1044                         ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1045                                                        msg_pl, try_to_copy);
1046                         if (ret < 0)
1047                                 goto trim_sgl;
1048                 }
1049
1050                 /* Open records defined only if successfully copied, otherwise
1051                  * we would trim the sg but not reset the open record frags.
1052                  */
1053                 tls_ctx->pending_open_record_frags = true;
1054                 copied += try_to_copy;
1055                 if (full_record || eor) {
1056                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1057                                                   record_type, &copied,
1058                                                   msg->msg_flags);
1059                         if (ret) {
1060                                 if (ret == -EINPROGRESS)
1061                                         num_async++;
1062                                 else if (ret == -ENOMEM)
1063                                         goto wait_for_memory;
1064                                 else if (ret != -EAGAIN) {
1065                                         if (ret == -ENOSPC)
1066                                                 ret = 0;
1067                                         goto send_end;
1068                                 }
1069                         }
1070                 }
1071
1072                 continue;
1073
1074 wait_for_sndbuf:
1075                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1076 wait_for_memory:
1077                 ret = sk_stream_wait_memory(sk, &timeo);
1078                 if (ret) {
1079 trim_sgl:
1080                         if (ctx->open_rec)
1081                                 tls_trim_both_msgs(sk, orig_size);
1082                         goto send_end;
1083                 }
1084
1085                 if (ctx->open_rec && msg_en->sg.size < required_size)
1086                         goto alloc_encrypted;
1087         }
1088
1089         if (!num_async) {
1090                 goto send_end;
1091         } else if (num_zc) {
1092                 /* Wait for pending encryptions to get completed */
1093                 smp_store_mb(ctx->async_notify, true);
1094
1095                 if (atomic_read(&ctx->encrypt_pending))
1096                         crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1097                 else
1098                         reinit_completion(&ctx->async_wait.completion);
1099
1100                 WRITE_ONCE(ctx->async_notify, false);
1101
1102                 if (ctx->async_wait.err) {
1103                         ret = ctx->async_wait.err;
1104                         copied = 0;
1105                 }
1106         }
1107
1108         /* Transmit if any encryptions have completed */
1109         if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1110                 cancel_delayed_work(&ctx->tx_work.work);
1111                 tls_tx_records(sk, msg->msg_flags);
1112         }
1113
1114 send_end:
1115         ret = sk_stream_error(sk, msg->msg_flags, ret);
1116
1117         release_sock(sk);
1118         mutex_unlock(&tls_ctx->tx_lock);
1119         return copied ? copied : ret;
1120 }
1121
1122 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1123                               int offset, size_t size, int flags)
1124 {
1125         long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1126         struct tls_context *tls_ctx = tls_get_ctx(sk);
1127         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1128         struct tls_prot_info *prot = &tls_ctx->prot_info;
1129         unsigned char record_type = TLS_RECORD_TYPE_DATA;
1130         struct sk_msg *msg_pl;
1131         struct tls_rec *rec;
1132         int num_async = 0;
1133         size_t copied = 0;
1134         bool full_record;
1135         int record_room;
1136         int ret = 0;
1137         bool eor;
1138
1139         eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
1140         sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1141
1142         /* Call the sk_stream functions to manage the sndbuf mem. */
1143         while (size > 0) {
1144                 size_t copy, required_size;
1145
1146                 if (sk->sk_err) {
1147                         ret = -sk->sk_err;
1148                         goto sendpage_end;
1149                 }
1150
1151                 if (ctx->open_rec)
1152                         rec = ctx->open_rec;
1153                 else
1154                         rec = ctx->open_rec = tls_get_rec(sk);
1155                 if (!rec) {
1156                         ret = -ENOMEM;
1157                         goto sendpage_end;
1158                 }
1159
1160                 msg_pl = &rec->msg_plaintext;
1161
1162                 full_record = false;
1163                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1164                 copy = size;
1165                 if (copy >= record_room) {
1166                         copy = record_room;
1167                         full_record = true;
1168                 }
1169
1170                 required_size = msg_pl->sg.size + copy + prot->overhead_size;
1171
1172                 if (!sk_stream_memory_free(sk))
1173                         goto wait_for_sndbuf;
1174 alloc_payload:
1175                 ret = tls_alloc_encrypted_msg(sk, required_size);
1176                 if (ret) {
1177                         if (ret != -ENOSPC)
1178                                 goto wait_for_memory;
1179
1180                         /* Adjust copy according to the amount that was
1181                          * actually allocated. The difference is due
1182                          * to max sg elements limit
1183                          */
1184                         copy -= required_size - msg_pl->sg.size;
1185                         full_record = true;
1186                 }
1187
1188                 sk_msg_page_add(msg_pl, page, copy, offset);
1189                 sk_mem_charge(sk, copy);
1190
1191                 offset += copy;
1192                 size -= copy;
1193                 copied += copy;
1194
1195                 tls_ctx->pending_open_record_frags = true;
1196                 if (full_record || eor || sk_msg_full(msg_pl)) {
1197                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1198                                                   record_type, &copied, flags);
1199                         if (ret) {
1200                                 if (ret == -EINPROGRESS)
1201                                         num_async++;
1202                                 else if (ret == -ENOMEM)
1203                                         goto wait_for_memory;
1204                                 else if (ret != -EAGAIN) {
1205                                         if (ret == -ENOSPC)
1206                                                 ret = 0;
1207                                         goto sendpage_end;
1208                                 }
1209                         }
1210                 }
1211                 continue;
1212 wait_for_sndbuf:
1213                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1214 wait_for_memory:
1215                 ret = sk_stream_wait_memory(sk, &timeo);
1216                 if (ret) {
1217                         if (ctx->open_rec)
1218                                 tls_trim_both_msgs(sk, msg_pl->sg.size);
1219                         goto sendpage_end;
1220                 }
1221
1222                 if (ctx->open_rec)
1223                         goto alloc_payload;
1224         }
1225
1226         if (num_async) {
1227                 /* Transmit if any encryptions have completed */
1228                 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1229                         cancel_delayed_work(&ctx->tx_work.work);
1230                         tls_tx_records(sk, flags);
1231                 }
1232         }
1233 sendpage_end:
1234         ret = sk_stream_error(sk, flags, ret);
1235         return copied ? copied : ret;
1236 }
1237
1238 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1239                            int offset, size_t size, int flags)
1240 {
1241         if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1242                       MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1243                       MSG_NO_SHARED_FRAGS))
1244                 return -EOPNOTSUPP;
1245
1246         return tls_sw_do_sendpage(sk, page, offset, size, flags);
1247 }
1248
1249 int tls_sw_sendpage(struct sock *sk, struct page *page,
1250                     int offset, size_t size, int flags)
1251 {
1252         struct tls_context *tls_ctx = tls_get_ctx(sk);
1253         int ret;
1254
1255         if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1256                       MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1257                 return -EOPNOTSUPP;
1258
1259         mutex_lock(&tls_ctx->tx_lock);
1260         lock_sock(sk);
1261         ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1262         release_sock(sk);
1263         mutex_unlock(&tls_ctx->tx_lock);
1264         return ret;
1265 }
1266
1267 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1268                                      int flags, long timeo, int *err)
1269 {
1270         struct tls_context *tls_ctx = tls_get_ctx(sk);
1271         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1272         struct sk_buff *skb;
1273         DEFINE_WAIT_FUNC(wait, woken_wake_function);
1274
1275         while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1276                 if (sk->sk_err) {
1277                         *err = sock_error(sk);
1278                         return NULL;
1279                 }
1280
1281                 if (sk->sk_shutdown & RCV_SHUTDOWN)
1282                         return NULL;
1283
1284                 if (sock_flag(sk, SOCK_DONE))
1285                         return NULL;
1286
1287                 if ((flags & MSG_DONTWAIT) || !timeo) {
1288                         *err = -EAGAIN;
1289                         return NULL;
1290                 }
1291
1292                 add_wait_queue(sk_sleep(sk), &wait);
1293                 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1294                 sk_wait_event(sk, &timeo,
1295                               ctx->recv_pkt != skb ||
1296                               !sk_psock_queue_empty(psock),
1297                               &wait);
1298                 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1299                 remove_wait_queue(sk_sleep(sk), &wait);
1300
1301                 /* Handle signals */
1302                 if (signal_pending(current)) {
1303                         *err = sock_intr_errno(timeo);
1304                         return NULL;
1305                 }
1306         }
1307
1308         return skb;
1309 }
1310
1311 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1312                                int length, int *pages_used,
1313                                unsigned int *size_used,
1314                                struct scatterlist *to,
1315                                int to_max_pages)
1316 {
1317         int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1318         struct page *pages[MAX_SKB_FRAGS];
1319         unsigned int size = *size_used;
1320         ssize_t copied, use;
1321         size_t offset;
1322
1323         while (length > 0) {
1324                 i = 0;
1325                 maxpages = to_max_pages - num_elem;
1326                 if (maxpages == 0) {
1327                         rc = -EFAULT;
1328                         goto out;
1329                 }
1330                 copied = iov_iter_get_pages(from, pages,
1331                                             length,
1332                                             maxpages, &offset);
1333                 if (copied <= 0) {
1334                         rc = -EFAULT;
1335                         goto out;
1336                 }
1337
1338                 iov_iter_advance(from, copied);
1339
1340                 length -= copied;
1341                 size += copied;
1342                 while (copied) {
1343                         use = min_t(int, copied, PAGE_SIZE - offset);
1344
1345                         sg_set_page(&to[num_elem],
1346                                     pages[i], use, offset);
1347                         sg_unmark_end(&to[num_elem]);
1348                         /* We do not uncharge memory from this API */
1349
1350                         offset = 0;
1351                         copied -= use;
1352
1353                         i++;
1354                         num_elem++;
1355                 }
1356         }
1357         /* Mark the end in the last sg entry if newly added */
1358         if (num_elem > *pages_used)
1359                 sg_mark_end(&to[num_elem - 1]);
1360 out:
1361         if (rc)
1362                 iov_iter_revert(from, size - *size_used);
1363         *size_used = size;
1364         *pages_used = num_elem;
1365
1366         return rc;
1367 }
1368
1369 /* This function decrypts the input skb into either out_iov or in out_sg
1370  * or in skb buffers itself. The input parameter 'zc' indicates if
1371  * zero-copy mode needs to be tried or not. With zero-copy mode, either
1372  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1373  * NULL, then the decryption happens inside skb buffers itself, i.e.
1374  * zero-copy gets disabled and 'zc' is updated.
1375  */
1376
1377 static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1378                             struct iov_iter *out_iov,
1379                             struct scatterlist *out_sg,
1380                             int *chunk, bool *zc, bool async)
1381 {
1382         struct tls_context *tls_ctx = tls_get_ctx(sk);
1383         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1384         struct tls_prot_info *prot = &tls_ctx->prot_info;
1385         struct strp_msg *rxm = strp_msg(skb);
1386         int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1387         struct aead_request *aead_req;
1388         struct sk_buff *unused;
1389         u8 *aad, *iv, *mem = NULL;
1390         struct scatterlist *sgin = NULL;
1391         struct scatterlist *sgout = NULL;
1392         const int data_len = rxm->full_len - prot->overhead_size +
1393                              prot->tail_size;
1394         int iv_offset = 0;
1395
1396         if (*zc && (out_iov || out_sg)) {
1397                 if (out_iov)
1398                         n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1399                 else
1400                         n_sgout = sg_nents(out_sg);
1401                 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1402                                  rxm->full_len - prot->prepend_size);
1403         } else {
1404                 n_sgout = 0;
1405                 *zc = false;
1406                 n_sgin = skb_cow_data(skb, 0, &unused);
1407         }
1408
1409         if (n_sgin < 1)
1410                 return -EBADMSG;
1411
1412         /* Increment to accommodate AAD */
1413         n_sgin = n_sgin + 1;
1414
1415         nsg = n_sgin + n_sgout;
1416
1417         aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1418         mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1419         mem_size = mem_size + prot->aad_size;
1420         mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1421
1422         /* Allocate a single block of memory which contains
1423          * aead_req || sgin[] || sgout[] || aad || iv.
1424          * This order achieves correct alignment for aead_req, sgin, sgout.
1425          */
1426         mem = kmalloc(mem_size, sk->sk_allocation);
1427         if (!mem)
1428                 return -ENOMEM;
1429
1430         /* Segment the allocated memory */
1431         aead_req = (struct aead_request *)mem;
1432         sgin = (struct scatterlist *)(mem + aead_size);
1433         sgout = sgin + n_sgin;
1434         aad = (u8 *)(sgout + n_sgout);
1435         iv = aad + prot->aad_size;
1436
1437         /* For CCM based ciphers, first byte of nonce+iv is always '2' */
1438         if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
1439                 iv[0] = 2;
1440                 iv_offset = 1;
1441         }
1442
1443         /* Prepare IV */
1444         err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1445                             iv + iv_offset + prot->salt_size,
1446                             prot->iv_size);
1447         if (err < 0) {
1448                 kfree(mem);
1449                 return err;
1450         }
1451         if (prot->version == TLS_1_3_VERSION)
1452                 memcpy(iv + iv_offset, tls_ctx->rx.iv,
1453                        crypto_aead_ivsize(ctx->aead_recv));
1454         else
1455                 memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
1456
1457         xor_iv_with_seq(prot->version, iv, tls_ctx->rx.rec_seq);
1458
1459         /* Prepare AAD */
1460         tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1461                      prot->tail_size,
1462                      tls_ctx->rx.rec_seq, prot->rec_seq_size,
1463                      ctx->control, prot->version);
1464
1465         /* Prepare sgin */
1466         sg_init_table(sgin, n_sgin);
1467         sg_set_buf(&sgin[0], aad, prot->aad_size);
1468         err = skb_to_sgvec(skb, &sgin[1],
1469                            rxm->offset + prot->prepend_size,
1470                            rxm->full_len - prot->prepend_size);
1471         if (err < 0) {
1472                 kfree(mem);
1473                 return err;
1474         }
1475
1476         if (n_sgout) {
1477                 if (out_iov) {
1478                         sg_init_table(sgout, n_sgout);
1479                         sg_set_buf(&sgout[0], aad, prot->aad_size);
1480
1481                         *chunk = 0;
1482                         err = tls_setup_from_iter(sk, out_iov, data_len,
1483                                                   &pages, chunk, &sgout[1],
1484                                                   (n_sgout - 1));
1485                         if (err < 0)
1486                                 goto fallback_to_reg_recv;
1487                 } else if (out_sg) {
1488                         memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1489                 } else {
1490                         goto fallback_to_reg_recv;
1491                 }
1492         } else {
1493 fallback_to_reg_recv:
1494                 sgout = sgin;
1495                 pages = 0;
1496                 *chunk = data_len;
1497                 *zc = false;
1498         }
1499
1500         /* Prepare and submit AEAD request */
1501         err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1502                                 data_len, aead_req, async);
1503         if (err == -EINPROGRESS)
1504                 return err;
1505
1506         /* Release the pages in case iov was mapped to pages */
1507         for (; pages > 0; pages--)
1508                 put_page(sg_page(&sgout[pages]));
1509
1510         kfree(mem);
1511         return err;
1512 }
1513
1514 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1515                               struct iov_iter *dest, int *chunk, bool *zc,
1516                               bool async)
1517 {
1518         struct tls_context *tls_ctx = tls_get_ctx(sk);
1519         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1520         struct tls_prot_info *prot = &tls_ctx->prot_info;
1521         struct strp_msg *rxm = strp_msg(skb);
1522         int pad, err = 0;
1523
1524         if (!ctx->decrypted) {
1525                 if (tls_ctx->rx_conf == TLS_HW) {
1526                         err = tls_device_decrypted(sk, tls_ctx, skb, rxm);
1527                         if (err < 0)
1528                                 return err;
1529                 }
1530
1531                 /* Still not decrypted after tls_device */
1532                 if (!ctx->decrypted) {
1533                         err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
1534                                                async);
1535                         if (err < 0) {
1536                                 if (err == -EINPROGRESS)
1537                                         tls_advance_record_sn(sk, prot,
1538                                                               &tls_ctx->rx);
1539                                 else if (err == -EBADMSG)
1540                                         TLS_INC_STATS(sock_net(sk),
1541                                                       LINUX_MIB_TLSDECRYPTERROR);
1542                                 return err;
1543                         }
1544                 } else {
1545                         *zc = false;
1546                 }
1547
1548                 pad = padding_length(ctx, prot, skb);
1549                 if (pad < 0)
1550                         return pad;
1551
1552                 rxm->full_len -= pad;
1553                 rxm->offset += prot->prepend_size;
1554                 rxm->full_len -= prot->overhead_size;
1555                 tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1556                 ctx->decrypted = 1;
1557                 ctx->saved_data_ready(sk);
1558         } else {
1559                 *zc = false;
1560         }
1561
1562         return err;
1563 }
1564
1565 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1566                 struct scatterlist *sgout)
1567 {
1568         bool zc = true;
1569         int chunk;
1570
1571         return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
1572 }
1573
1574 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1575                                unsigned int len)
1576 {
1577         struct tls_context *tls_ctx = tls_get_ctx(sk);
1578         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1579
1580         if (skb) {
1581                 struct strp_msg *rxm = strp_msg(skb);
1582
1583                 if (len < rxm->full_len) {
1584                         rxm->offset += len;
1585                         rxm->full_len -= len;
1586                         return false;
1587                 }
1588                 consume_skb(skb);
1589         }
1590
1591         /* Finished with message */
1592         ctx->recv_pkt = NULL;
1593         __strp_unpause(&ctx->strp);
1594
1595         return true;
1596 }
1597
1598 /* This function traverses the rx_list in tls receive context to copies the
1599  * decrypted records into the buffer provided by caller zero copy is not
1600  * true. Further, the records are removed from the rx_list if it is not a peek
1601  * case and the record has been consumed completely.
1602  */
1603 static int process_rx_list(struct tls_sw_context_rx *ctx,
1604                            struct msghdr *msg,
1605                            u8 *control,
1606                            bool *cmsg,
1607                            size_t skip,
1608                            size_t len,
1609                            bool zc,
1610                            bool is_peek)
1611 {
1612         struct sk_buff *skb = skb_peek(&ctx->rx_list);
1613         u8 ctrl = *control;
1614         u8 msgc = *cmsg;
1615         struct tls_msg *tlm;
1616         ssize_t copied = 0;
1617
1618         /* Set the record type in 'control' if caller didn't pass it */
1619         if (!ctrl && skb) {
1620                 tlm = tls_msg(skb);
1621                 ctrl = tlm->control;
1622         }
1623
1624         while (skip && skb) {
1625                 struct strp_msg *rxm = strp_msg(skb);
1626                 tlm = tls_msg(skb);
1627
1628                 /* Cannot process a record of different type */
1629                 if (ctrl != tlm->control)
1630                         return 0;
1631
1632                 if (skip < rxm->full_len)
1633                         break;
1634
1635                 skip = skip - rxm->full_len;
1636                 skb = skb_peek_next(skb, &ctx->rx_list);
1637         }
1638
1639         while (len && skb) {
1640                 struct sk_buff *next_skb;
1641                 struct strp_msg *rxm = strp_msg(skb);
1642                 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1643
1644                 tlm = tls_msg(skb);
1645
1646                 /* Cannot process a record of different type */
1647                 if (ctrl != tlm->control)
1648                         return 0;
1649
1650                 /* Set record type if not already done. For a non-data record,
1651                  * do not proceed if record type could not be copied.
1652                  */
1653                 if (!msgc) {
1654                         int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1655                                             sizeof(ctrl), &ctrl);
1656                         msgc = true;
1657                         if (ctrl != TLS_RECORD_TYPE_DATA) {
1658                                 if (cerr || msg->msg_flags & MSG_CTRUNC)
1659                                         return -EIO;
1660
1661                                 *cmsg = msgc;
1662                         }
1663                 }
1664
1665                 if (!zc || (rxm->full_len - skip) > len) {
1666                         int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1667                                                     msg, chunk);
1668                         if (err < 0)
1669                                 return err;
1670                 }
1671
1672                 len = len - chunk;
1673                 copied = copied + chunk;
1674
1675                 /* Consume the data from record if it is non-peek case*/
1676                 if (!is_peek) {
1677                         rxm->offset = rxm->offset + chunk;
1678                         rxm->full_len = rxm->full_len - chunk;
1679
1680                         /* Return if there is unconsumed data in the record */
1681                         if (rxm->full_len - skip)
1682                                 break;
1683                 }
1684
1685                 /* The remaining skip-bytes must lie in 1st record in rx_list.
1686                  * So from the 2nd record, 'skip' should be 0.
1687                  */
1688                 skip = 0;
1689
1690                 if (msg)
1691                         msg->msg_flags |= MSG_EOR;
1692
1693                 next_skb = skb_peek_next(skb, &ctx->rx_list);
1694
1695                 if (!is_peek) {
1696                         skb_unlink(skb, &ctx->rx_list);
1697                         consume_skb(skb);
1698                 }
1699
1700                 skb = next_skb;
1701         }
1702
1703         *control = ctrl;
1704         return copied;
1705 }
1706
1707 int tls_sw_recvmsg(struct sock *sk,
1708                    struct msghdr *msg,
1709                    size_t len,
1710                    int nonblock,
1711                    int flags,
1712                    int *addr_len)
1713 {
1714         struct tls_context *tls_ctx = tls_get_ctx(sk);
1715         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1716         struct tls_prot_info *prot = &tls_ctx->prot_info;
1717         struct sk_psock *psock;
1718         unsigned char control = 0;
1719         ssize_t decrypted = 0;
1720         struct strp_msg *rxm;
1721         struct tls_msg *tlm;
1722         struct sk_buff *skb;
1723         ssize_t copied = 0;
1724         bool cmsg = false;
1725         int target, err = 0;
1726         long timeo;
1727         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1728         bool is_peek = flags & MSG_PEEK;
1729         int num_async = 0;
1730
1731         flags |= nonblock;
1732
1733         if (unlikely(flags & MSG_ERRQUEUE))
1734                 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1735
1736         psock = sk_psock_get(sk);
1737         lock_sock(sk);
1738
1739         /* Process pending decrypted records. It must be non-zero-copy */
1740         err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
1741                               is_peek);
1742         if (err < 0) {
1743                 tls_err_abort(sk, err);
1744                 goto end;
1745         } else {
1746                 copied = err;
1747         }
1748
1749         if (len <= copied)
1750                 goto recv_end;
1751
1752         target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1753         len = len - copied;
1754         timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1755
1756         while (len && (decrypted + copied < target || ctx->recv_pkt)) {
1757                 bool retain_skb = false;
1758                 bool zc = false;
1759                 int to_decrypt;
1760                 int chunk = 0;
1761                 bool async_capable;
1762                 bool async = false;
1763
1764                 skb = tls_wait_data(sk, psock, flags, timeo, &err);
1765                 if (!skb) {
1766                         if (psock) {
1767                                 int ret = __tcp_bpf_recvmsg(sk, psock,
1768                                                             msg, len, flags);
1769
1770                                 if (ret > 0) {
1771                                         decrypted += ret;
1772                                         len -= ret;
1773                                         continue;
1774                                 }
1775                         }
1776                         goto recv_end;
1777                 } else {
1778                         tlm = tls_msg(skb);
1779                         if (prot->version == TLS_1_3_VERSION)
1780                                 tlm->control = 0;
1781                         else
1782                                 tlm->control = ctx->control;
1783                 }
1784
1785                 rxm = strp_msg(skb);
1786
1787                 to_decrypt = rxm->full_len - prot->overhead_size;
1788
1789                 if (to_decrypt <= len && !is_kvec && !is_peek &&
1790                     ctx->control == TLS_RECORD_TYPE_DATA &&
1791                     prot->version != TLS_1_3_VERSION)
1792                         zc = true;
1793
1794                 /* Do not use async mode if record is non-data */
1795                 if (ctx->control == TLS_RECORD_TYPE_DATA)
1796                         async_capable = ctx->async_capable;
1797                 else
1798                         async_capable = false;
1799
1800                 err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1801                                          &chunk, &zc, async_capable);
1802                 if (err < 0 && err != -EINPROGRESS) {
1803                         tls_err_abort(sk, EBADMSG);
1804                         goto recv_end;
1805                 }
1806
1807                 if (err == -EINPROGRESS) {
1808                         async = true;
1809                         num_async++;
1810                 } else if (prot->version == TLS_1_3_VERSION) {
1811                         tlm->control = ctx->control;
1812                 }
1813
1814                 /* If the type of records being processed is not known yet,
1815                  * set it to record type just dequeued. If it is already known,
1816                  * but does not match the record type just dequeued, go to end.
1817                  * We always get record type here since for tls1.2, record type
1818                  * is known just after record is dequeued from stream parser.
1819                  * For tls1.3, we disable async.
1820                  */
1821
1822                 if (!control)
1823                         control = tlm->control;
1824                 else if (control != tlm->control)
1825                         goto recv_end;
1826
1827                 if (!cmsg) {
1828                         int cerr;
1829
1830                         cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1831                                         sizeof(control), &control);
1832                         cmsg = true;
1833                         if (control != TLS_RECORD_TYPE_DATA) {
1834                                 if (cerr || msg->msg_flags & MSG_CTRUNC) {
1835                                         err = -EIO;
1836                                         goto recv_end;
1837                                 }
1838                         }
1839                 }
1840
1841                 if (async)
1842                         goto pick_next_record;
1843
1844                 if (!zc) {
1845                         if (rxm->full_len > len) {
1846                                 retain_skb = true;
1847                                 chunk = len;
1848                         } else {
1849                                 chunk = rxm->full_len;
1850                         }
1851
1852                         err = skb_copy_datagram_msg(skb, rxm->offset,
1853                                                     msg, chunk);
1854                         if (err < 0)
1855                                 goto recv_end;
1856
1857                         if (!is_peek) {
1858                                 rxm->offset = rxm->offset + chunk;
1859                                 rxm->full_len = rxm->full_len - chunk;
1860                         }
1861                 }
1862
1863 pick_next_record:
1864                 if (chunk > len)
1865                         chunk = len;
1866
1867                 decrypted += chunk;
1868                 len -= chunk;
1869
1870                 /* For async or peek case, queue the current skb */
1871                 if (async || is_peek || retain_skb) {
1872                         skb_queue_tail(&ctx->rx_list, skb);
1873                         skb = NULL;
1874                 }
1875
1876                 if (tls_sw_advance_skb(sk, skb, chunk)) {
1877                         /* Return full control message to
1878                          * userspace before trying to parse
1879                          * another message type
1880                          */
1881                         msg->msg_flags |= MSG_EOR;
1882                         if (ctx->control != TLS_RECORD_TYPE_DATA)
1883                                 goto recv_end;
1884                 } else {
1885                         break;
1886                 }
1887         }
1888
1889 recv_end:
1890         if (num_async) {
1891                 /* Wait for all previously submitted records to be decrypted */
1892                 smp_store_mb(ctx->async_notify, true);
1893                 if (atomic_read(&ctx->decrypt_pending)) {
1894                         err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1895                         if (err) {
1896                                 /* one of async decrypt failed */
1897                                 tls_err_abort(sk, err);
1898                                 copied = 0;
1899                                 decrypted = 0;
1900                                 goto end;
1901                         }
1902                 } else {
1903                         reinit_completion(&ctx->async_wait.completion);
1904                 }
1905                 WRITE_ONCE(ctx->async_notify, false);
1906
1907                 /* Drain records from the rx_list & copy if required */
1908                 if (is_peek || is_kvec)
1909                         err = process_rx_list(ctx, msg, &control, &cmsg, copied,
1910                                               decrypted, false, is_peek);
1911                 else
1912                         err = process_rx_list(ctx, msg, &control, &cmsg, 0,
1913                                               decrypted, true, is_peek);
1914                 if (err < 0) {
1915                         tls_err_abort(sk, err);
1916                         copied = 0;
1917                         goto end;
1918                 }
1919         }
1920
1921         copied += decrypted;
1922
1923 end:
1924         release_sock(sk);
1925         if (psock)
1926                 sk_psock_put(sk, psock);
1927         return copied ? : err;
1928 }
1929
1930 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
1931                            struct pipe_inode_info *pipe,
1932                            size_t len, unsigned int flags)
1933 {
1934         struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1935         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1936         struct strp_msg *rxm = NULL;
1937         struct sock *sk = sock->sk;
1938         struct sk_buff *skb;
1939         ssize_t copied = 0;
1940         int err = 0;
1941         long timeo;
1942         int chunk;
1943         bool zc = false;
1944
1945         lock_sock(sk);
1946
1947         timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1948
1949         skb = tls_wait_data(sk, NULL, flags, timeo, &err);
1950         if (!skb)
1951                 goto splice_read_end;
1952
1953         if (!ctx->decrypted) {
1954                 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
1955
1956                 /* splice does not support reading control messages */
1957                 if (ctx->control != TLS_RECORD_TYPE_DATA) {
1958                         err = -EINVAL;
1959                         goto splice_read_end;
1960                 }
1961
1962                 if (err < 0) {
1963                         tls_err_abort(sk, EBADMSG);
1964                         goto splice_read_end;
1965                 }
1966                 ctx->decrypted = 1;
1967         }
1968         rxm = strp_msg(skb);
1969
1970         chunk = min_t(unsigned int, rxm->full_len, len);
1971         copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
1972         if (copied < 0)
1973                 goto splice_read_end;
1974
1975         if (likely(!(flags & MSG_PEEK)))
1976                 tls_sw_advance_skb(sk, skb, copied);
1977
1978 splice_read_end:
1979         release_sock(sk);
1980         return copied ? : err;
1981 }
1982
1983 bool tls_sw_stream_read(const struct sock *sk)
1984 {
1985         struct tls_context *tls_ctx = tls_get_ctx(sk);
1986         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1987         bool ingress_empty = true;
1988         struct sk_psock *psock;
1989
1990         rcu_read_lock();
1991         psock = sk_psock(sk);
1992         if (psock)
1993                 ingress_empty = list_empty(&psock->ingress_msg);
1994         rcu_read_unlock();
1995
1996         return !ingress_empty || ctx->recv_pkt ||
1997                 !skb_queue_empty(&ctx->rx_list);
1998 }
1999
2000 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
2001 {
2002         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2003         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2004         struct tls_prot_info *prot = &tls_ctx->prot_info;
2005         char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2006         struct strp_msg *rxm = strp_msg(skb);
2007         size_t cipher_overhead;
2008         size_t data_len = 0;
2009         int ret;
2010
2011         /* Verify that we have a full TLS header, or wait for more data */
2012         if (rxm->offset + prot->prepend_size > skb->len)
2013                 return 0;
2014
2015         /* Sanity-check size of on-stack buffer. */
2016         if (WARN_ON(prot->prepend_size > sizeof(header))) {
2017                 ret = -EINVAL;
2018                 goto read_failure;
2019         }
2020
2021         /* Linearize header to local buffer */
2022         ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
2023
2024         if (ret < 0)
2025                 goto read_failure;
2026
2027         ctx->control = header[0];
2028
2029         data_len = ((header[4] & 0xFF) | (header[3] << 8));
2030
2031         cipher_overhead = prot->tag_size;
2032         if (prot->version != TLS_1_3_VERSION)
2033                 cipher_overhead += prot->iv_size;
2034
2035         if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2036             prot->tail_size) {
2037                 ret = -EMSGSIZE;
2038                 goto read_failure;
2039         }
2040         if (data_len < cipher_overhead) {
2041                 ret = -EBADMSG;
2042                 goto read_failure;
2043         }
2044
2045         /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2046         if (header[1] != TLS_1_2_VERSION_MINOR ||
2047             header[2] != TLS_1_2_VERSION_MAJOR) {
2048                 ret = -EINVAL;
2049                 goto read_failure;
2050         }
2051
2052         tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2053                                      TCP_SKB_CB(skb)->seq + rxm->offset);
2054         return data_len + TLS_HEADER_SIZE;
2055
2056 read_failure:
2057         tls_err_abort(strp->sk, ret);
2058
2059         return ret;
2060 }
2061
2062 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2063 {
2064         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2065         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2066
2067         ctx->decrypted = 0;
2068
2069         ctx->recv_pkt = skb;
2070         strp_pause(strp);
2071
2072         ctx->saved_data_ready(strp->sk);
2073 }
2074
2075 static void tls_data_ready(struct sock *sk)
2076 {
2077         struct tls_context *tls_ctx = tls_get_ctx(sk);
2078         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2079         struct sk_psock *psock;
2080
2081         strp_data_ready(&ctx->strp);
2082
2083         psock = sk_psock_get(sk);
2084         if (psock && !list_empty(&psock->ingress_msg)) {
2085                 ctx->saved_data_ready(sk);
2086                 sk_psock_put(sk, psock);
2087         }
2088 }
2089
2090 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2091 {
2092         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2093
2094         set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2095         set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2096         cancel_delayed_work_sync(&ctx->tx_work.work);
2097 }
2098
2099 void tls_sw_release_resources_tx(struct sock *sk)
2100 {
2101         struct tls_context *tls_ctx = tls_get_ctx(sk);
2102         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2103         struct tls_rec *rec, *tmp;
2104
2105         /* Wait for any pending async encryptions to complete */
2106         smp_store_mb(ctx->async_notify, true);
2107         if (atomic_read(&ctx->encrypt_pending))
2108                 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2109
2110         tls_tx_records(sk, -1);
2111
2112         /* Free up un-sent records in tx_list. First, free
2113          * the partially sent record if any at head of tx_list.
2114          */
2115         if (tls_ctx->partially_sent_record) {
2116                 tls_free_partial_record(sk, tls_ctx);
2117                 rec = list_first_entry(&ctx->tx_list,
2118                                        struct tls_rec, list);
2119                 list_del(&rec->list);
2120                 sk_msg_free(sk, &rec->msg_plaintext);
2121                 kfree(rec);
2122         }
2123
2124         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2125                 list_del(&rec->list);
2126                 sk_msg_free(sk, &rec->msg_encrypted);
2127                 sk_msg_free(sk, &rec->msg_plaintext);
2128                 kfree(rec);
2129         }
2130
2131         crypto_free_aead(ctx->aead_send);
2132         tls_free_open_rec(sk);
2133 }
2134
2135 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2136 {
2137         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2138
2139         kfree(ctx);
2140 }
2141
2142 void tls_sw_release_resources_rx(struct sock *sk)
2143 {
2144         struct tls_context *tls_ctx = tls_get_ctx(sk);
2145         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2146
2147         kfree(tls_ctx->rx.rec_seq);
2148         kfree(tls_ctx->rx.iv);
2149
2150         if (ctx->aead_recv) {
2151                 kfree_skb(ctx->recv_pkt);
2152                 ctx->recv_pkt = NULL;
2153                 skb_queue_purge(&ctx->rx_list);
2154                 crypto_free_aead(ctx->aead_recv);
2155                 strp_stop(&ctx->strp);
2156                 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2157                  * we still want to strp_stop(), but sk->sk_data_ready was
2158                  * never swapped.
2159                  */
2160                 if (ctx->saved_data_ready) {
2161                         write_lock_bh(&sk->sk_callback_lock);
2162                         sk->sk_data_ready = ctx->saved_data_ready;
2163                         write_unlock_bh(&sk->sk_callback_lock);
2164                 }
2165         }
2166 }
2167
2168 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2169 {
2170         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2171
2172         strp_done(&ctx->strp);
2173 }
2174
2175 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2176 {
2177         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2178
2179         kfree(ctx);
2180 }
2181
2182 void tls_sw_free_resources_rx(struct sock *sk)
2183 {
2184         struct tls_context *tls_ctx = tls_get_ctx(sk);
2185
2186         tls_sw_release_resources_rx(sk);
2187         tls_sw_free_ctx_rx(tls_ctx);
2188 }
2189
2190 /* The work handler to transmitt the encrypted records in tx_list */
2191 static void tx_work_handler(struct work_struct *work)
2192 {
2193         struct delayed_work *delayed_work = to_delayed_work(work);
2194         struct tx_work *tx_work = container_of(delayed_work,
2195                                                struct tx_work, work);
2196         struct sock *sk = tx_work->sk;
2197         struct tls_context *tls_ctx = tls_get_ctx(sk);
2198         struct tls_sw_context_tx *ctx;
2199
2200         if (unlikely(!tls_ctx))
2201                 return;
2202
2203         ctx = tls_sw_ctx_tx(tls_ctx);
2204         if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2205                 return;
2206
2207         if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2208                 return;
2209         mutex_lock(&tls_ctx->tx_lock);
2210         lock_sock(sk);
2211         tls_tx_records(sk, -1);
2212         release_sock(sk);
2213         mutex_unlock(&tls_ctx->tx_lock);
2214 }
2215
2216 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2217 {
2218         struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2219
2220         /* Schedule the transmission if tx list is ready */
2221         if (is_tx_ready(tx_ctx) &&
2222             !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2223                 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2224 }
2225
2226 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2227 {
2228         struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2229
2230         write_lock_bh(&sk->sk_callback_lock);
2231         rx_ctx->saved_data_ready = sk->sk_data_ready;
2232         sk->sk_data_ready = tls_data_ready;
2233         write_unlock_bh(&sk->sk_callback_lock);
2234
2235         strp_check_rcv(&rx_ctx->strp);
2236 }
2237
2238 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2239 {
2240         struct tls_context *tls_ctx = tls_get_ctx(sk);
2241         struct tls_prot_info *prot = &tls_ctx->prot_info;
2242         struct tls_crypto_info *crypto_info;
2243         struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2244         struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2245         struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2246         struct tls_sw_context_tx *sw_ctx_tx = NULL;
2247         struct tls_sw_context_rx *sw_ctx_rx = NULL;
2248         struct cipher_context *cctx;
2249         struct crypto_aead **aead;
2250         struct strp_callbacks cb;
2251         u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2252         struct crypto_tfm *tfm;
2253         char *iv, *rec_seq, *key, *salt, *cipher_name;
2254         size_t keysize;
2255         int rc = 0;
2256
2257         if (!ctx) {
2258                 rc = -EINVAL;
2259                 goto out;
2260         }
2261
2262         if (tx) {
2263                 if (!ctx->priv_ctx_tx) {
2264                         sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2265                         if (!sw_ctx_tx) {
2266                                 rc = -ENOMEM;
2267                                 goto out;
2268                         }
2269                         ctx->priv_ctx_tx = sw_ctx_tx;
2270                 } else {
2271                         sw_ctx_tx =
2272                                 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2273                 }
2274         } else {
2275                 if (!ctx->priv_ctx_rx) {
2276                         sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2277                         if (!sw_ctx_rx) {
2278                                 rc = -ENOMEM;
2279                                 goto out;
2280                         }
2281                         ctx->priv_ctx_rx = sw_ctx_rx;
2282                 } else {
2283                         sw_ctx_rx =
2284                                 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2285                 }
2286         }
2287
2288         if (tx) {
2289                 crypto_init_wait(&sw_ctx_tx->async_wait);
2290                 crypto_info = &ctx->crypto_send.info;
2291                 cctx = &ctx->tx;
2292                 aead = &sw_ctx_tx->aead_send;
2293                 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2294                 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2295                 sw_ctx_tx->tx_work.sk = sk;
2296         } else {
2297                 crypto_init_wait(&sw_ctx_rx->async_wait);
2298                 crypto_info = &ctx->crypto_recv.info;
2299                 cctx = &ctx->rx;
2300                 skb_queue_head_init(&sw_ctx_rx->rx_list);
2301                 aead = &sw_ctx_rx->aead_recv;
2302         }
2303
2304         switch (crypto_info->cipher_type) {
2305         case TLS_CIPHER_AES_GCM_128: {
2306                 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2307                 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2308                 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2309                 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
2310                 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2311                 rec_seq =
2312                  ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
2313                 gcm_128_info =
2314                         (struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
2315                 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2316                 key = gcm_128_info->key;
2317                 salt = gcm_128_info->salt;
2318                 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2319                 cipher_name = "gcm(aes)";
2320                 break;
2321         }
2322         case TLS_CIPHER_AES_GCM_256: {
2323                 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2324                 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2325                 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2326                 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
2327                 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2328                 rec_seq =
2329                  ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
2330                 gcm_256_info =
2331                         (struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
2332                 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2333                 key = gcm_256_info->key;
2334                 salt = gcm_256_info->salt;
2335                 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2336                 cipher_name = "gcm(aes)";
2337                 break;
2338         }
2339         case TLS_CIPHER_AES_CCM_128: {
2340                 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2341                 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2342                 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2343                 iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv;
2344                 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2345                 rec_seq =
2346                 ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq;
2347                 ccm_128_info =
2348                 (struct tls12_crypto_info_aes_ccm_128 *)crypto_info;
2349                 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2350                 key = ccm_128_info->key;
2351                 salt = ccm_128_info->salt;
2352                 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2353                 cipher_name = "ccm(aes)";
2354                 break;
2355         }
2356         default:
2357                 rc = -EINVAL;
2358                 goto free_priv;
2359         }
2360
2361         /* Sanity-check the sizes for stack allocations. */
2362         if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2363             rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
2364                 rc = -EINVAL;
2365                 goto free_priv;
2366         }
2367
2368         if (crypto_info->version == TLS_1_3_VERSION) {
2369                 nonce_size = 0;
2370                 prot->aad_size = TLS_HEADER_SIZE;
2371                 prot->tail_size = 1;
2372         } else {
2373                 prot->aad_size = TLS_AAD_SPACE_SIZE;
2374                 prot->tail_size = 0;
2375         }
2376
2377         prot->version = crypto_info->version;
2378         prot->cipher_type = crypto_info->cipher_type;
2379         prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2380         prot->tag_size = tag_size;
2381         prot->overhead_size = prot->prepend_size +
2382                               prot->tag_size + prot->tail_size;
2383         prot->iv_size = iv_size;
2384         prot->salt_size = salt_size;
2385         cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2386         if (!cctx->iv) {
2387                 rc = -ENOMEM;
2388                 goto free_priv;
2389         }
2390         /* Note: 128 & 256 bit salt are the same size */
2391         prot->rec_seq_size = rec_seq_size;
2392         memcpy(cctx->iv, salt, salt_size);
2393         memcpy(cctx->iv + salt_size, iv, iv_size);
2394         cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2395         if (!cctx->rec_seq) {
2396                 rc = -ENOMEM;
2397                 goto free_iv;
2398         }
2399
2400         if (!*aead) {
2401                 *aead = crypto_alloc_aead(cipher_name, 0, 0);
2402                 if (IS_ERR(*aead)) {
2403                         rc = PTR_ERR(*aead);
2404                         *aead = NULL;
2405                         goto free_rec_seq;
2406                 }
2407         }
2408
2409         ctx->push_pending_record = tls_sw_push_pending_record;
2410
2411         rc = crypto_aead_setkey(*aead, key, keysize);
2412
2413         if (rc)
2414                 goto free_aead;
2415
2416         rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2417         if (rc)
2418                 goto free_aead;
2419
2420         if (sw_ctx_rx) {
2421                 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2422
2423                 if (crypto_info->version == TLS_1_3_VERSION)
2424                         sw_ctx_rx->async_capable = 0;
2425                 else
2426                         sw_ctx_rx->async_capable =
2427                                 !!(tfm->__crt_alg->cra_flags &
2428                                    CRYPTO_ALG_ASYNC);
2429
2430                 /* Set up strparser */
2431                 memset(&cb, 0, sizeof(cb));
2432                 cb.rcv_msg = tls_queue;
2433                 cb.parse_msg = tls_read_size;
2434
2435                 strp_init(&sw_ctx_rx->strp, sk, &cb);
2436         }
2437
2438         goto out;
2439
2440 free_aead:
2441         crypto_free_aead(*aead);
2442         *aead = NULL;
2443 free_rec_seq:
2444         kfree(cctx->rec_seq);
2445         cctx->rec_seq = NULL;
2446 free_iv:
2447         kfree(cctx->iv);
2448         cctx->iv = NULL;
2449 free_priv:
2450         if (tx) {
2451                 kfree(ctx->priv_ctx_tx);
2452                 ctx->priv_ctx_tx = NULL;
2453         } else {
2454                 kfree(ctx->priv_ctx_rx);
2455                 ctx->priv_ctx_rx = NULL;
2456         }
2457 out:
2458         return rc;
2459 }