2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
9 * This software is available to you under a choice of one of two
10 * licenses. You may choose to be licensed under the terms of the GNU
11 * General Public License (GPL) Version 2, available from the file
12 * COPYING in the main directory of this source tree, or the
13 * OpenIB.org BSD license below:
15 * Redistribution and use in source and binary forms, with or
16 * without modification, are permitted provided that the following
19 * - Redistributions of source code must retain the above
20 * copyright notice, this list of conditions and the following
23 * - Redistributions in binary form must reproduce the above
24 * copyright notice, this list of conditions and the following
25 * disclaimer in the documentation and/or other materials
26 * provided with the distribution.
28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
38 #include <linux/bug.h>
39 #include <linux/sched/signal.h>
40 #include <linux/module.h>
41 #include <linux/kernel.h>
42 #include <linux/splice.h>
43 #include <crypto/aead.h>
45 #include <net/strparser.h>
47 #include <trace/events/sock.h>
51 struct tls_decrypt_arg {
61 struct tls_decrypt_ctx {
63 u8 iv[TLS_MAX_IV_SIZE];
64 u8 aad[TLS_MAX_AAD_SIZE];
66 struct scatterlist sg[];
69 noinline void tls_err_abort(struct sock *sk, int err)
71 WARN_ON_ONCE(err >= 0);
72 /* sk->sk_err should contain a positive error code. */
73 WRITE_ONCE(sk->sk_err, -err);
74 /* Paired with smp_rmb() in tcp_poll() */
79 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
80 unsigned int recursion_level)
82 int start = skb_headlen(skb);
83 int i, chunk = start - offset;
84 struct sk_buff *frag_iter;
87 if (unlikely(recursion_level >= 24))
100 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
103 WARN_ON(start > offset + len);
105 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
106 chunk = end - offset;
119 if (unlikely(skb_has_frag_list(skb))) {
120 skb_walk_frags(skb, frag_iter) {
123 WARN_ON(start > offset + len);
125 end = start + frag_iter->len;
126 chunk = end - offset;
130 ret = __skb_nsg(frag_iter, offset - start, chunk,
131 recursion_level + 1);
132 if (unlikely(ret < 0))
147 /* Return the number of scatterlist elements required to completely map the
148 * skb, or -EMSGSIZE if the recursion depth is exceeded.
150 static int skb_nsg(struct sk_buff *skb, int offset, int len)
152 return __skb_nsg(skb, offset, len, 0);
155 static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb,
156 struct tls_decrypt_arg *darg)
158 struct strp_msg *rxm = strp_msg(skb);
159 struct tls_msg *tlm = tls_msg(skb);
162 /* Determine zero-padding length */
163 if (prot->version == TLS_1_3_VERSION) {
164 int offset = rxm->full_len - TLS_TAG_SIZE - 1;
165 char content_type = darg->zc ? darg->tail : 0;
168 while (content_type == 0) {
169 if (offset < prot->prepend_size)
171 err = skb_copy_bits(skb, rxm->offset + offset,
180 tlm->control = content_type;
185 static void tls_decrypt_done(void *data, int err)
187 struct aead_request *aead_req = data;
188 struct crypto_aead *aead = crypto_aead_reqtfm(aead_req);
189 struct scatterlist *sgout = aead_req->dst;
190 struct scatterlist *sgin = aead_req->src;
191 struct tls_sw_context_rx *ctx;
192 struct tls_decrypt_ctx *dctx;
193 struct tls_context *tls_ctx;
194 struct scatterlist *sg;
199 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(aead);
200 aead_size = ALIGN(aead_size, __alignof__(*dctx));
201 dctx = (void *)((u8 *)aead_req + aead_size);
204 tls_ctx = tls_get_ctx(sk);
205 ctx = tls_sw_ctx_rx(tls_ctx);
207 /* Propagate if there was an err */
210 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
211 ctx->async_wait.err = err;
212 tls_err_abort(sk, err);
215 /* Free the destination pages if skb was not decrypted inplace */
217 /* Skip the first S/G entry as it points to AAD */
218 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
221 put_page(sg_page(sg));
227 spin_lock_bh(&ctx->decrypt_compl_lock);
228 if (!atomic_dec_return(&ctx->decrypt_pending))
229 complete(&ctx->async_wait.completion);
230 spin_unlock_bh(&ctx->decrypt_compl_lock);
233 static int tls_do_decryption(struct sock *sk,
234 struct scatterlist *sgin,
235 struct scatterlist *sgout,
238 struct aead_request *aead_req,
239 struct tls_decrypt_arg *darg)
241 struct tls_context *tls_ctx = tls_get_ctx(sk);
242 struct tls_prot_info *prot = &tls_ctx->prot_info;
243 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
246 aead_request_set_tfm(aead_req, ctx->aead_recv);
247 aead_request_set_ad(aead_req, prot->aad_size);
248 aead_request_set_crypt(aead_req, sgin, sgout,
249 data_len + prot->tag_size,
253 aead_request_set_callback(aead_req,
254 CRYPTO_TFM_REQ_MAY_BACKLOG,
255 tls_decrypt_done, aead_req);
256 atomic_inc(&ctx->decrypt_pending);
258 aead_request_set_callback(aead_req,
259 CRYPTO_TFM_REQ_MAY_BACKLOG,
260 crypto_req_done, &ctx->async_wait);
263 ret = crypto_aead_decrypt(aead_req);
264 if (ret == -EINPROGRESS) {
268 ret = crypto_wait_req(ret, &ctx->async_wait);
275 static void tls_trim_both_msgs(struct sock *sk, int target_size)
277 struct tls_context *tls_ctx = tls_get_ctx(sk);
278 struct tls_prot_info *prot = &tls_ctx->prot_info;
279 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
280 struct tls_rec *rec = ctx->open_rec;
282 sk_msg_trim(sk, &rec->msg_plaintext, target_size);
284 target_size += prot->overhead_size;
285 sk_msg_trim(sk, &rec->msg_encrypted, target_size);
288 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
290 struct tls_context *tls_ctx = tls_get_ctx(sk);
291 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
292 struct tls_rec *rec = ctx->open_rec;
293 struct sk_msg *msg_en = &rec->msg_encrypted;
295 return sk_msg_alloc(sk, msg_en, len, 0);
298 static int tls_clone_plaintext_msg(struct sock *sk, int required)
300 struct tls_context *tls_ctx = tls_get_ctx(sk);
301 struct tls_prot_info *prot = &tls_ctx->prot_info;
302 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
303 struct tls_rec *rec = ctx->open_rec;
304 struct sk_msg *msg_pl = &rec->msg_plaintext;
305 struct sk_msg *msg_en = &rec->msg_encrypted;
308 /* We add page references worth len bytes from encrypted sg
309 * at the end of plaintext sg. It is guaranteed that msg_en
310 * has enough required room (ensured by caller).
312 len = required - msg_pl->sg.size;
314 /* Skip initial bytes in msg_en's data to be able to use
315 * same offset of both plain and encrypted data.
317 skip = prot->prepend_size + msg_pl->sg.size;
319 return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
322 static struct tls_rec *tls_get_rec(struct sock *sk)
324 struct tls_context *tls_ctx = tls_get_ctx(sk);
325 struct tls_prot_info *prot = &tls_ctx->prot_info;
326 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
327 struct sk_msg *msg_pl, *msg_en;
331 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
333 rec = kzalloc(mem_size, sk->sk_allocation);
337 msg_pl = &rec->msg_plaintext;
338 msg_en = &rec->msg_encrypted;
343 sg_init_table(rec->sg_aead_in, 2);
344 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
345 sg_unmark_end(&rec->sg_aead_in[1]);
347 sg_init_table(rec->sg_aead_out, 2);
348 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
349 sg_unmark_end(&rec->sg_aead_out[1]);
356 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
358 sk_msg_free(sk, &rec->msg_encrypted);
359 sk_msg_free(sk, &rec->msg_plaintext);
363 static void tls_free_open_rec(struct sock *sk)
365 struct tls_context *tls_ctx = tls_get_ctx(sk);
366 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
367 struct tls_rec *rec = ctx->open_rec;
370 tls_free_rec(sk, rec);
371 ctx->open_rec = NULL;
375 int tls_tx_records(struct sock *sk, int flags)
377 struct tls_context *tls_ctx = tls_get_ctx(sk);
378 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
379 struct tls_rec *rec, *tmp;
380 struct sk_msg *msg_en;
381 int tx_flags, rc = 0;
383 if (tls_is_partially_sent_record(tls_ctx)) {
384 rec = list_first_entry(&ctx->tx_list,
385 struct tls_rec, list);
388 tx_flags = rec->tx_flags;
392 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
396 /* Full record has been transmitted.
397 * Remove the head of tx_list
399 list_del(&rec->list);
400 sk_msg_free(sk, &rec->msg_plaintext);
404 /* Tx all ready records */
405 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
406 if (READ_ONCE(rec->tx_ready)) {
408 tx_flags = rec->tx_flags;
412 msg_en = &rec->msg_encrypted;
413 rc = tls_push_sg(sk, tls_ctx,
414 &msg_en->sg.data[msg_en->sg.curr],
419 list_del(&rec->list);
420 sk_msg_free(sk, &rec->msg_plaintext);
428 if (rc < 0 && rc != -EAGAIN)
429 tls_err_abort(sk, -EBADMSG);
434 static void tls_encrypt_done(void *data, int err)
436 struct tls_sw_context_tx *ctx;
437 struct tls_context *tls_ctx;
438 struct tls_prot_info *prot;
439 struct tls_rec *rec = data;
440 struct scatterlist *sge;
441 struct sk_msg *msg_en;
446 msg_en = &rec->msg_encrypted;
449 tls_ctx = tls_get_ctx(sk);
450 prot = &tls_ctx->prot_info;
451 ctx = tls_sw_ctx_tx(tls_ctx);
453 sge = sk_msg_elem(msg_en, msg_en->sg.curr);
454 sge->offset -= prot->prepend_size;
455 sge->length += prot->prepend_size;
457 /* Check if error is previously set on socket */
458 if (err || sk->sk_err) {
461 /* If err is already set on socket, return the same code */
463 ctx->async_wait.err = -sk->sk_err;
465 ctx->async_wait.err = err;
466 tls_err_abort(sk, err);
471 struct tls_rec *first_rec;
473 /* Mark the record as ready for transmission */
474 smp_store_mb(rec->tx_ready, true);
476 /* If received record is at head of tx_list, schedule tx */
477 first_rec = list_first_entry(&ctx->tx_list,
478 struct tls_rec, list);
479 if (rec == first_rec)
483 spin_lock_bh(&ctx->encrypt_compl_lock);
484 pending = atomic_dec_return(&ctx->encrypt_pending);
486 if (!pending && ctx->async_notify)
487 complete(&ctx->async_wait.completion);
488 spin_unlock_bh(&ctx->encrypt_compl_lock);
493 /* Schedule the transmission */
494 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
495 schedule_delayed_work(&ctx->tx_work.work, 1);
498 static int tls_do_encryption(struct sock *sk,
499 struct tls_context *tls_ctx,
500 struct tls_sw_context_tx *ctx,
501 struct aead_request *aead_req,
502 size_t data_len, u32 start)
504 struct tls_prot_info *prot = &tls_ctx->prot_info;
505 struct tls_rec *rec = ctx->open_rec;
506 struct sk_msg *msg_en = &rec->msg_encrypted;
507 struct scatterlist *sge = sk_msg_elem(msg_en, start);
508 int rc, iv_offset = 0;
510 /* For CCM based ciphers, first byte of IV is a constant */
511 switch (prot->cipher_type) {
512 case TLS_CIPHER_AES_CCM_128:
513 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
516 case TLS_CIPHER_SM4_CCM:
517 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE;
522 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
523 prot->iv_size + prot->salt_size);
525 tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset,
526 tls_ctx->tx.rec_seq);
528 sge->offset += prot->prepend_size;
529 sge->length -= prot->prepend_size;
531 msg_en->sg.curr = start;
533 aead_request_set_tfm(aead_req, ctx->aead_send);
534 aead_request_set_ad(aead_req, prot->aad_size);
535 aead_request_set_crypt(aead_req, rec->sg_aead_in,
537 data_len, rec->iv_data);
539 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
540 tls_encrypt_done, rec);
542 /* Add the record in tx_list */
543 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
544 atomic_inc(&ctx->encrypt_pending);
546 rc = crypto_aead_encrypt(aead_req);
547 if (!rc || rc != -EINPROGRESS) {
548 atomic_dec(&ctx->encrypt_pending);
549 sge->offset -= prot->prepend_size;
550 sge->length += prot->prepend_size;
554 WRITE_ONCE(rec->tx_ready, true);
555 } else if (rc != -EINPROGRESS) {
556 list_del(&rec->list);
560 /* Unhook the record from context if encryption is not failure */
561 ctx->open_rec = NULL;
562 tls_advance_record_sn(sk, prot, &tls_ctx->tx);
566 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
567 struct tls_rec **to, struct sk_msg *msg_opl,
568 struct sk_msg *msg_oen, u32 split_point,
569 u32 tx_overhead_size, u32 *orig_end)
571 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
572 struct scatterlist *sge, *osge, *nsge;
573 u32 orig_size = msg_opl->sg.size;
574 struct scatterlist tmp = { };
575 struct sk_msg *msg_npl;
579 new = tls_get_rec(sk);
582 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
583 tx_overhead_size, 0);
585 tls_free_rec(sk, new);
589 *orig_end = msg_opl->sg.end;
590 i = msg_opl->sg.start;
591 sge = sk_msg_elem(msg_opl, i);
592 while (apply && sge->length) {
593 if (sge->length > apply) {
594 u32 len = sge->length - apply;
596 get_page(sg_page(sge));
597 sg_set_page(&tmp, sg_page(sge), len,
598 sge->offset + apply);
603 apply -= sge->length;
604 bytes += sge->length;
607 sk_msg_iter_var_next(i);
608 if (i == msg_opl->sg.end)
610 sge = sk_msg_elem(msg_opl, i);
614 msg_opl->sg.curr = i;
615 msg_opl->sg.copybreak = 0;
616 msg_opl->apply_bytes = 0;
617 msg_opl->sg.size = bytes;
619 msg_npl = &new->msg_plaintext;
620 msg_npl->apply_bytes = apply;
621 msg_npl->sg.size = orig_size - bytes;
623 j = msg_npl->sg.start;
624 nsge = sk_msg_elem(msg_npl, j);
626 memcpy(nsge, &tmp, sizeof(*nsge));
627 sk_msg_iter_var_next(j);
628 nsge = sk_msg_elem(msg_npl, j);
631 osge = sk_msg_elem(msg_opl, i);
632 while (osge->length) {
633 memcpy(nsge, osge, sizeof(*nsge));
635 sk_msg_iter_var_next(i);
636 sk_msg_iter_var_next(j);
639 osge = sk_msg_elem(msg_opl, i);
640 nsge = sk_msg_elem(msg_npl, j);
644 msg_npl->sg.curr = j;
645 msg_npl->sg.copybreak = 0;
651 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
652 struct tls_rec *from, u32 orig_end)
654 struct sk_msg *msg_npl = &from->msg_plaintext;
655 struct sk_msg *msg_opl = &to->msg_plaintext;
656 struct scatterlist *osge, *nsge;
660 sk_msg_iter_var_prev(i);
661 j = msg_npl->sg.start;
663 osge = sk_msg_elem(msg_opl, i);
664 nsge = sk_msg_elem(msg_npl, j);
666 if (sg_page(osge) == sg_page(nsge) &&
667 osge->offset + osge->length == nsge->offset) {
668 osge->length += nsge->length;
669 put_page(sg_page(nsge));
672 msg_opl->sg.end = orig_end;
673 msg_opl->sg.curr = orig_end;
674 msg_opl->sg.copybreak = 0;
675 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
676 msg_opl->sg.size += msg_npl->sg.size;
678 sk_msg_free(sk, &to->msg_encrypted);
679 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
684 static int tls_push_record(struct sock *sk, int flags,
685 unsigned char record_type)
687 struct tls_context *tls_ctx = tls_get_ctx(sk);
688 struct tls_prot_info *prot = &tls_ctx->prot_info;
689 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
690 struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
691 u32 i, split_point, orig_end;
692 struct sk_msg *msg_pl, *msg_en;
693 struct aead_request *req;
700 msg_pl = &rec->msg_plaintext;
701 msg_en = &rec->msg_encrypted;
703 split_point = msg_pl->apply_bytes;
704 split = split_point && split_point < msg_pl->sg.size;
705 if (unlikely((!split &&
707 prot->overhead_size > msg_en->sg.size) ||
710 prot->overhead_size > msg_en->sg.size))) {
712 split_point = msg_en->sg.size;
715 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
716 split_point, prot->overhead_size,
720 /* This can happen if above tls_split_open_record allocates
721 * a single large encryption buffer instead of two smaller
722 * ones. In this case adjust pointers and continue without
725 if (!msg_pl->sg.size) {
726 tls_merge_open_record(sk, rec, tmp, orig_end);
727 msg_pl = &rec->msg_plaintext;
728 msg_en = &rec->msg_encrypted;
731 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
732 prot->overhead_size);
735 rec->tx_flags = flags;
736 req = &rec->aead_req;
739 sk_msg_iter_var_prev(i);
741 rec->content_type = record_type;
742 if (prot->version == TLS_1_3_VERSION) {
743 /* Add content type to end of message. No padding added */
744 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
745 sg_mark_end(&rec->sg_content_type);
746 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
747 &rec->sg_content_type);
749 sg_mark_end(sk_msg_elem(msg_pl, i));
752 if (msg_pl->sg.end < msg_pl->sg.start) {
753 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
754 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
758 i = msg_pl->sg.start;
759 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
762 sk_msg_iter_var_prev(i);
763 sg_mark_end(sk_msg_elem(msg_en, i));
765 i = msg_en->sg.start;
766 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
768 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
769 tls_ctx->tx.rec_seq, record_type, prot);
771 tls_fill_prepend(tls_ctx,
772 page_address(sg_page(&msg_en->sg.data[i])) +
773 msg_en->sg.data[i].offset,
774 msg_pl->sg.size + prot->tail_size,
777 tls_ctx->pending_open_record_frags = false;
779 rc = tls_do_encryption(sk, tls_ctx, ctx, req,
780 msg_pl->sg.size + prot->tail_size, i);
782 if (rc != -EINPROGRESS) {
783 tls_err_abort(sk, -EBADMSG);
785 tls_ctx->pending_open_record_frags = true;
786 tls_merge_open_record(sk, rec, tmp, orig_end);
789 ctx->async_capable = 1;
792 msg_pl = &tmp->msg_plaintext;
793 msg_en = &tmp->msg_encrypted;
794 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
795 tls_ctx->pending_open_record_frags = true;
799 return tls_tx_records(sk, flags);
802 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
803 bool full_record, u8 record_type,
804 ssize_t *copied, int flags)
806 struct tls_context *tls_ctx = tls_get_ctx(sk);
807 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
808 struct sk_msg msg_redir = { };
809 struct sk_psock *psock;
810 struct sock *sk_redir;
812 bool enospc, policy, redir_ingress;
816 policy = !(flags & MSG_SENDPAGE_NOPOLICY);
817 psock = sk_psock_get(sk);
818 if (!psock || !policy) {
819 err = tls_push_record(sk, flags, record_type);
820 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) {
821 *copied -= sk_msg_free(sk, msg);
822 tls_free_open_rec(sk);
826 sk_psock_put(sk, psock);
830 enospc = sk_msg_full(msg);
831 if (psock->eval == __SK_NONE) {
832 delta = msg->sg.size;
833 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
834 delta -= msg->sg.size;
836 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
837 !enospc && !full_record) {
843 if (msg->apply_bytes && msg->apply_bytes < send)
844 send = msg->apply_bytes;
846 switch (psock->eval) {
848 err = tls_push_record(sk, flags, record_type);
849 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) {
850 *copied -= sk_msg_free(sk, msg);
851 tls_free_open_rec(sk);
857 redir_ingress = psock->redir_ingress;
858 sk_redir = psock->sk_redir;
859 memcpy(&msg_redir, msg, sizeof(*msg));
860 if (msg->apply_bytes < send)
861 msg->apply_bytes = 0;
863 msg->apply_bytes -= send;
864 sk_msg_return_zero(sk, msg, send);
865 msg->sg.size -= send;
867 err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress,
868 &msg_redir, send, flags);
871 *copied -= sk_msg_free_nocharge(sk, &msg_redir);
874 if (msg->sg.size == 0)
875 tls_free_open_rec(sk);
879 sk_msg_free_partial(sk, msg, send);
880 if (msg->apply_bytes < send)
881 msg->apply_bytes = 0;
883 msg->apply_bytes -= send;
884 if (msg->sg.size == 0)
885 tls_free_open_rec(sk);
886 *copied -= (send + delta);
891 bool reset_eval = !ctx->open_rec;
895 msg = &rec->msg_plaintext;
896 if (!msg->apply_bytes)
900 psock->eval = __SK_NONE;
901 if (psock->sk_redir) {
902 sock_put(psock->sk_redir);
903 psock->sk_redir = NULL;
910 sk_psock_put(sk, psock);
914 static int tls_sw_push_pending_record(struct sock *sk, int flags)
916 struct tls_context *tls_ctx = tls_get_ctx(sk);
917 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
918 struct tls_rec *rec = ctx->open_rec;
919 struct sk_msg *msg_pl;
925 msg_pl = &rec->msg_plaintext;
926 copied = msg_pl->sg.size;
930 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
934 static int tls_sw_sendmsg_splice(struct sock *sk, struct msghdr *msg,
935 struct sk_msg *msg_pl, size_t try_to_copy,
938 struct page *page = NULL, **pages = &page;
944 part = iov_iter_extract_pages(&msg->msg_iter, &pages,
945 try_to_copy, 1, 0, &off);
949 if (WARN_ON_ONCE(!sendpage_ok(page))) {
950 iov_iter_revert(&msg->msg_iter, part);
954 sk_msg_page_add(msg_pl, page, part, off);
955 sk_mem_charge(sk, part);
958 } while (try_to_copy && !sk_msg_full(msg_pl));
963 static int tls_sw_sendmsg_locked(struct sock *sk, struct msghdr *msg,
966 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
967 struct tls_context *tls_ctx = tls_get_ctx(sk);
968 struct tls_prot_info *prot = &tls_ctx->prot_info;
969 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
970 bool async_capable = ctx->async_capable;
971 unsigned char record_type = TLS_RECORD_TYPE_DATA;
972 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
973 bool eor = !(msg->msg_flags & MSG_MORE);
976 struct sk_msg *msg_pl, *msg_en;
987 if (!eor && (msg->msg_flags & MSG_EOR))
990 if (unlikely(msg->msg_controllen)) {
991 ret = tls_process_cmsg(sk, msg, &record_type);
993 if (ret == -EINPROGRESS)
995 else if (ret != -EAGAIN)
1000 while (msg_data_left(msg)) {
1007 rec = ctx->open_rec;
1009 rec = ctx->open_rec = tls_get_rec(sk);
1015 msg_pl = &rec->msg_plaintext;
1016 msg_en = &rec->msg_encrypted;
1018 orig_size = msg_pl->sg.size;
1019 full_record = false;
1020 try_to_copy = msg_data_left(msg);
1021 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1022 if (try_to_copy >= record_room) {
1023 try_to_copy = record_room;
1027 required_size = msg_pl->sg.size + try_to_copy +
1028 prot->overhead_size;
1030 if (!sk_stream_memory_free(sk))
1031 goto wait_for_sndbuf;
1034 ret = tls_alloc_encrypted_msg(sk, required_size);
1037 goto wait_for_memory;
1039 /* Adjust try_to_copy according to the amount that was
1040 * actually allocated. The difference is due
1041 * to max sg elements limit
1043 try_to_copy -= required_size - msg_en->sg.size;
1047 if (try_to_copy && (msg->msg_flags & MSG_SPLICE_PAGES)) {
1048 ret = tls_sw_sendmsg_splice(sk, msg, msg_pl,
1049 try_to_copy, &copied);
1052 tls_ctx->pending_open_record_frags = true;
1053 if (full_record || eor || sk_msg_full(msg_pl))
1058 if (!is_kvec && (full_record || eor) && !async_capable) {
1059 u32 first = msg_pl->sg.end;
1061 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1062 msg_pl, try_to_copy);
1064 goto fallback_to_reg_send;
1067 copied += try_to_copy;
1069 sk_msg_sg_copy_set(msg_pl, first);
1070 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1071 record_type, &copied,
1074 if (ret == -EINPROGRESS)
1076 else if (ret == -ENOMEM)
1077 goto wait_for_memory;
1078 else if (ctx->open_rec && ret == -ENOSPC)
1080 else if (ret != -EAGAIN)
1085 copied -= try_to_copy;
1086 sk_msg_sg_copy_clear(msg_pl, first);
1087 iov_iter_revert(&msg->msg_iter,
1088 msg_pl->sg.size - orig_size);
1089 fallback_to_reg_send:
1090 sk_msg_trim(sk, msg_pl, orig_size);
1093 required_size = msg_pl->sg.size + try_to_copy;
1095 ret = tls_clone_plaintext_msg(sk, required_size);
1100 /* Adjust try_to_copy according to the amount that was
1101 * actually allocated. The difference is due
1102 * to max sg elements limit
1104 try_to_copy -= required_size - msg_pl->sg.size;
1106 sk_msg_trim(sk, msg_en,
1107 msg_pl->sg.size + prot->overhead_size);
1111 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1112 msg_pl, try_to_copy);
1117 /* Open records defined only if successfully copied, otherwise
1118 * we would trim the sg but not reset the open record frags.
1120 tls_ctx->pending_open_record_frags = true;
1121 copied += try_to_copy;
1123 if (full_record || eor) {
1124 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1125 record_type, &copied,
1128 if (ret == -EINPROGRESS)
1130 else if (ret == -ENOMEM)
1131 goto wait_for_memory;
1132 else if (ret != -EAGAIN) {
1143 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1145 ret = sk_stream_wait_memory(sk, &timeo);
1149 tls_trim_both_msgs(sk, orig_size);
1153 if (ctx->open_rec && msg_en->sg.size < required_size)
1154 goto alloc_encrypted;
1159 } else if (num_zc) {
1160 /* Wait for pending encryptions to get completed */
1161 spin_lock_bh(&ctx->encrypt_compl_lock);
1162 ctx->async_notify = true;
1164 pending = atomic_read(&ctx->encrypt_pending);
1165 spin_unlock_bh(&ctx->encrypt_compl_lock);
1167 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1169 reinit_completion(&ctx->async_wait.completion);
1171 /* There can be no concurrent accesses, since we have no
1172 * pending encrypt operations
1174 WRITE_ONCE(ctx->async_notify, false);
1176 if (ctx->async_wait.err) {
1177 ret = ctx->async_wait.err;
1182 /* Transmit if any encryptions have completed */
1183 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1184 cancel_delayed_work(&ctx->tx_work.work);
1185 tls_tx_records(sk, msg->msg_flags);
1189 ret = sk_stream_error(sk, msg->msg_flags, ret);
1190 return copied > 0 ? copied : ret;
1193 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1195 struct tls_context *tls_ctx = tls_get_ctx(sk);
1198 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1199 MSG_CMSG_COMPAT | MSG_SPLICE_PAGES | MSG_EOR |
1200 MSG_SENDPAGE_NOPOLICY))
1203 ret = mutex_lock_interruptible(&tls_ctx->tx_lock);
1207 ret = tls_sw_sendmsg_locked(sk, msg, size);
1209 mutex_unlock(&tls_ctx->tx_lock);
1214 * Handle unexpected EOF during splice without SPLICE_F_MORE set.
1216 void tls_sw_splice_eof(struct socket *sock)
1218 struct sock *sk = sock->sk;
1219 struct tls_context *tls_ctx = tls_get_ctx(sk);
1220 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1221 struct tls_rec *rec;
1222 struct sk_msg *msg_pl;
1224 bool retrying = false;
1231 mutex_lock(&tls_ctx->tx_lock);
1235 rec = ctx->open_rec;
1239 msg_pl = &rec->msg_plaintext;
1241 /* Check the BPF advisor and perform transmission. */
1242 ret = bpf_exec_tx_verdict(msg_pl, sk, false, TLS_RECORD_TYPE_DATA,
1257 /* Wait for pending encryptions to get completed */
1258 spin_lock_bh(&ctx->encrypt_compl_lock);
1259 ctx->async_notify = true;
1261 pending = atomic_read(&ctx->encrypt_pending);
1262 spin_unlock_bh(&ctx->encrypt_compl_lock);
1264 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1266 reinit_completion(&ctx->async_wait.completion);
1268 /* There can be no concurrent accesses, since we have no pending
1269 * encrypt operations
1271 WRITE_ONCE(ctx->async_notify, false);
1273 if (ctx->async_wait.err)
1276 /* Transmit if any encryptions have completed */
1277 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1278 cancel_delayed_work(&ctx->tx_work.work);
1279 tls_tx_records(sk, 0);
1284 mutex_unlock(&tls_ctx->tx_lock);
1288 tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock,
1291 struct tls_context *tls_ctx = tls_get_ctx(sk);
1292 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1293 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1297 timeo = sock_rcvtimeo(sk, nonblock);
1299 while (!tls_strp_msg_ready(ctx)) {
1300 if (!sk_psock_queue_empty(psock))
1304 return sock_error(sk);
1309 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1310 tls_strp_check_rcv(&ctx->strp);
1311 if (tls_strp_msg_ready(ctx))
1315 if (sk->sk_shutdown & RCV_SHUTDOWN)
1318 if (sock_flag(sk, SOCK_DONE))
1325 add_wait_queue(sk_sleep(sk), &wait);
1326 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1327 ret = sk_wait_event(sk, &timeo,
1328 tls_strp_msg_ready(ctx) ||
1329 !sk_psock_queue_empty(psock),
1331 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1332 remove_wait_queue(sk_sleep(sk), &wait);
1334 /* Handle signals */
1335 if (signal_pending(current))
1336 return sock_intr_errno(timeo);
1339 tls_strp_msg_load(&ctx->strp, released);
1344 static int tls_setup_from_iter(struct iov_iter *from,
1345 int length, int *pages_used,
1346 struct scatterlist *to,
1349 int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1350 struct page *pages[MAX_SKB_FRAGS];
1351 unsigned int size = 0;
1352 ssize_t copied, use;
1355 while (length > 0) {
1357 maxpages = to_max_pages - num_elem;
1358 if (maxpages == 0) {
1362 copied = iov_iter_get_pages2(from, pages,
1373 use = min_t(int, copied, PAGE_SIZE - offset);
1375 sg_set_page(&to[num_elem],
1376 pages[i], use, offset);
1377 sg_unmark_end(&to[num_elem]);
1378 /* We do not uncharge memory from this API */
1387 /* Mark the end in the last sg entry if newly added */
1388 if (num_elem > *pages_used)
1389 sg_mark_end(&to[num_elem - 1]);
1392 iov_iter_revert(from, size);
1393 *pages_used = num_elem;
1398 static struct sk_buff *
1399 tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb,
1400 unsigned int full_len)
1402 struct strp_msg *clr_rxm;
1403 struct sk_buff *clr_skb;
1406 clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER,
1407 &err, sk->sk_allocation);
1411 skb_copy_header(clr_skb, skb);
1412 clr_skb->len = full_len;
1413 clr_skb->data_len = full_len;
1415 clr_rxm = strp_msg(clr_skb);
1416 clr_rxm->offset = 0;
1423 * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers.
1424 * They must transform the darg in/out argument are as follows:
1426 * -------------------------------------------------------------------
1427 * zc | Zero-copy decrypt allowed | Zero-copy performed
1428 * async | Async decrypt allowed | Async crypto used / in progress
1429 * skb | * | Output skb
1431 * If ZC decryption was performed darg.skb will point to the input skb.
1434 /* This function decrypts the input skb into either out_iov or in out_sg
1435 * or in skb buffers itself. The input parameter 'darg->zc' indicates if
1436 * zero-copy mode needs to be tried or not. With zero-copy mode, either
1437 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1438 * NULL, then the decryption happens inside skb buffers itself, i.e.
1439 * zero-copy gets disabled and 'darg->zc' is updated.
1441 static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov,
1442 struct scatterlist *out_sg,
1443 struct tls_decrypt_arg *darg)
1445 struct tls_context *tls_ctx = tls_get_ctx(sk);
1446 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1447 struct tls_prot_info *prot = &tls_ctx->prot_info;
1448 int n_sgin, n_sgout, aead_size, err, pages = 0;
1449 struct sk_buff *skb = tls_strp_msg(ctx);
1450 const struct strp_msg *rxm = strp_msg(skb);
1451 const struct tls_msg *tlm = tls_msg(skb);
1452 struct aead_request *aead_req;
1453 struct scatterlist *sgin = NULL;
1454 struct scatterlist *sgout = NULL;
1455 const int data_len = rxm->full_len - prot->overhead_size;
1456 int tail_pages = !!prot->tail_size;
1457 struct tls_decrypt_ctx *dctx;
1458 struct sk_buff *clear_skb;
1462 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1463 rxm->full_len - prot->prepend_size);
1465 return n_sgin ?: -EBADMSG;
1467 if (darg->zc && (out_iov || out_sg)) {
1471 n_sgout = 1 + tail_pages +
1472 iov_iter_npages_cap(out_iov, INT_MAX, data_len);
1474 n_sgout = sg_nents(out_sg);
1478 clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len);
1482 n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags;
1485 /* Increment to accommodate AAD */
1486 n_sgin = n_sgin + 1;
1488 /* Allocate a single block of memory which contains
1489 * aead_req || tls_decrypt_ctx.
1490 * Both structs are variable length.
1492 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1493 aead_size = ALIGN(aead_size, __alignof__(*dctx));
1494 mem = kmalloc(aead_size + struct_size(dctx, sg, size_add(n_sgin, n_sgout)),
1501 /* Segment the allocated memory */
1502 aead_req = (struct aead_request *)mem;
1503 dctx = (struct tls_decrypt_ctx *)(mem + aead_size);
1505 sgin = &dctx->sg[0];
1506 sgout = &dctx->sg[n_sgin];
1508 /* For CCM based ciphers, first byte of nonce+iv is a constant */
1509 switch (prot->cipher_type) {
1510 case TLS_CIPHER_AES_CCM_128:
1511 dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE;
1514 case TLS_CIPHER_SM4_CCM:
1515 dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE;
1521 if (prot->version == TLS_1_3_VERSION ||
1522 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
1523 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv,
1524 prot->iv_size + prot->salt_size);
1526 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1527 &dctx->iv[iv_offset] + prot->salt_size,
1531 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size);
1533 tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq);
1536 tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size +
1538 tls_ctx->rx.rec_seq, tlm->control, prot);
1541 sg_init_table(sgin, n_sgin);
1542 sg_set_buf(&sgin[0], dctx->aad, prot->aad_size);
1543 err = skb_to_sgvec(skb, &sgin[1],
1544 rxm->offset + prot->prepend_size,
1545 rxm->full_len - prot->prepend_size);
1550 sg_init_table(sgout, n_sgout);
1551 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1553 err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size,
1554 data_len + prot->tail_size);
1557 } else if (out_iov) {
1558 sg_init_table(sgout, n_sgout);
1559 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1561 err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1],
1562 (n_sgout - 1 - tail_pages));
1564 goto exit_free_pages;
1566 if (prot->tail_size) {
1567 sg_unmark_end(&sgout[pages]);
1568 sg_set_buf(&sgout[pages + 1], &dctx->tail,
1570 sg_mark_end(&sgout[pages + 1]);
1572 } else if (out_sg) {
1573 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1576 /* Prepare and submit AEAD request */
1577 err = tls_do_decryption(sk, sgin, sgout, dctx->iv,
1578 data_len + prot->tail_size, aead_req, darg);
1580 goto exit_free_pages;
1582 darg->skb = clear_skb ?: tls_strp_msg(ctx);
1585 if (unlikely(darg->async)) {
1586 err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold);
1588 __skb_queue_tail(&ctx->async_hold, darg->skb);
1592 if (prot->tail_size)
1593 darg->tail = dctx->tail;
1596 /* Release the pages in case iov was mapped to pages */
1597 for (; pages > 0; pages--)
1598 put_page(sg_page(&sgout[pages]));
1602 consume_skb(clear_skb);
1607 tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx,
1608 struct msghdr *msg, struct tls_decrypt_arg *darg)
1610 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1611 struct tls_prot_info *prot = &tls_ctx->prot_info;
1612 struct strp_msg *rxm;
1615 err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg);
1617 if (err == -EBADMSG)
1618 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
1621 /* keep going even for ->async, the code below is TLS 1.3 */
1623 /* If opportunistic TLS 1.3 ZC failed retry without ZC */
1624 if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION &&
1625 darg->tail != TLS_RECORD_TYPE_DATA)) {
1628 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL);
1629 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY);
1630 return tls_decrypt_sw(sk, tls_ctx, msg, darg);
1633 pad = tls_padding_length(prot, darg->skb, darg);
1635 if (darg->skb != tls_strp_msg(ctx))
1636 consume_skb(darg->skb);
1640 rxm = strp_msg(darg->skb);
1641 rxm->full_len -= pad;
1647 tls_decrypt_device(struct sock *sk, struct msghdr *msg,
1648 struct tls_context *tls_ctx, struct tls_decrypt_arg *darg)
1650 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1651 struct tls_prot_info *prot = &tls_ctx->prot_info;
1652 struct strp_msg *rxm;
1655 if (tls_ctx->rx_conf != TLS_HW)
1658 err = tls_device_decrypted(sk, tls_ctx);
1662 pad = tls_padding_length(prot, tls_strp_msg(ctx), darg);
1666 darg->async = false;
1667 darg->skb = tls_strp_msg(ctx);
1668 /* ->zc downgrade check, in case TLS 1.3 gets here */
1669 darg->zc &= !(prot->version == TLS_1_3_VERSION &&
1670 tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA);
1672 rxm = strp_msg(darg->skb);
1673 rxm->full_len -= pad;
1676 /* Non-ZC case needs a real skb */
1677 darg->skb = tls_strp_msg_detach(ctx);
1681 unsigned int off, len;
1683 /* In ZC case nobody cares about the output skb.
1684 * Just copy the data here. Note the skb is not fully trimmed.
1686 off = rxm->offset + prot->prepend_size;
1687 len = rxm->full_len - prot->overhead_size;
1689 err = skb_copy_datagram_msg(darg->skb, off, msg, len);
1696 static int tls_rx_one_record(struct sock *sk, struct msghdr *msg,
1697 struct tls_decrypt_arg *darg)
1699 struct tls_context *tls_ctx = tls_get_ctx(sk);
1700 struct tls_prot_info *prot = &tls_ctx->prot_info;
1701 struct strp_msg *rxm;
1704 err = tls_decrypt_device(sk, msg, tls_ctx, darg);
1706 err = tls_decrypt_sw(sk, tls_ctx, msg, darg);
1710 rxm = strp_msg(darg->skb);
1711 rxm->offset += prot->prepend_size;
1712 rxm->full_len -= prot->overhead_size;
1713 tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1718 int decrypt_skb(struct sock *sk, struct scatterlist *sgout)
1720 struct tls_decrypt_arg darg = { .zc = true, };
1722 return tls_decrypt_sg(sk, NULL, sgout, &darg);
1725 static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm,
1731 *control = tlm->control;
1735 err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1736 sizeof(*control), control);
1737 if (*control != TLS_RECORD_TYPE_DATA) {
1738 if (err || msg->msg_flags & MSG_CTRUNC)
1741 } else if (*control != tlm->control) {
1748 static void tls_rx_rec_done(struct tls_sw_context_rx *ctx)
1750 tls_strp_msg_done(&ctx->strp);
1753 /* This function traverses the rx_list in tls receive context to copies the
1754 * decrypted records into the buffer provided by caller zero copy is not
1755 * true. Further, the records are removed from the rx_list if it is not a peek
1756 * case and the record has been consumed completely.
1758 static int process_rx_list(struct tls_sw_context_rx *ctx,
1765 struct sk_buff *skb = skb_peek(&ctx->rx_list);
1766 struct tls_msg *tlm;
1770 while (skip && skb) {
1771 struct strp_msg *rxm = strp_msg(skb);
1774 err = tls_record_content_type(msg, tlm, control);
1778 if (skip < rxm->full_len)
1781 skip = skip - rxm->full_len;
1782 skb = skb_peek_next(skb, &ctx->rx_list);
1785 while (len && skb) {
1786 struct sk_buff *next_skb;
1787 struct strp_msg *rxm = strp_msg(skb);
1788 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1792 err = tls_record_content_type(msg, tlm, control);
1796 err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1802 copied = copied + chunk;
1804 /* Consume the data from record if it is non-peek case*/
1806 rxm->offset = rxm->offset + chunk;
1807 rxm->full_len = rxm->full_len - chunk;
1809 /* Return if there is unconsumed data in the record */
1810 if (rxm->full_len - skip)
1814 /* The remaining skip-bytes must lie in 1st record in rx_list.
1815 * So from the 2nd record, 'skip' should be 0.
1820 msg->msg_flags |= MSG_EOR;
1822 next_skb = skb_peek_next(skb, &ctx->rx_list);
1825 __skb_unlink(skb, &ctx->rx_list);
1834 return copied ? : err;
1838 tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot,
1839 size_t len_left, size_t decrypted, ssize_t done,
1844 if (len_left <= decrypted)
1847 max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE;
1848 if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec)
1852 return sk_flush_backlog(sk);
1855 static int tls_rx_reader_acquire(struct sock *sk, struct tls_sw_context_rx *ctx,
1861 timeo = sock_rcvtimeo(sk, nonblock);
1863 while (unlikely(ctx->reader_present)) {
1864 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1866 ctx->reader_contended = 1;
1868 add_wait_queue(&ctx->wq, &wait);
1869 ret = sk_wait_event(sk, &timeo,
1870 !READ_ONCE(ctx->reader_present), &wait);
1871 remove_wait_queue(&ctx->wq, &wait);
1875 if (signal_pending(current))
1876 return sock_intr_errno(timeo);
1881 WRITE_ONCE(ctx->reader_present, 1);
1886 static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx,
1892 err = tls_rx_reader_acquire(sk, ctx, nonblock);
1898 static void tls_rx_reader_release(struct sock *sk, struct tls_sw_context_rx *ctx)
1900 if (unlikely(ctx->reader_contended)) {
1901 if (wq_has_sleeper(&ctx->wq))
1904 ctx->reader_contended = 0;
1906 WARN_ON_ONCE(!ctx->reader_present);
1909 WRITE_ONCE(ctx->reader_present, 0);
1912 static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx)
1914 tls_rx_reader_release(sk, ctx);
1918 int tls_sw_recvmsg(struct sock *sk,
1924 struct tls_context *tls_ctx = tls_get_ctx(sk);
1925 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1926 struct tls_prot_info *prot = &tls_ctx->prot_info;
1927 ssize_t decrypted = 0, async_copy_bytes = 0;
1928 struct sk_psock *psock;
1929 unsigned char control = 0;
1930 size_t flushed_at = 0;
1931 struct strp_msg *rxm;
1932 struct tls_msg *tlm;
1936 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1937 bool is_peek = flags & MSG_PEEK;
1938 bool released = true;
1939 bool bpf_strp_enabled;
1942 if (unlikely(flags & MSG_ERRQUEUE))
1943 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1945 psock = sk_psock_get(sk);
1946 err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT);
1949 bpf_strp_enabled = sk_psock_strp_enabled(psock);
1951 /* If crypto failed the connection is broken */
1952 err = ctx->async_wait.err;
1956 /* Process pending decrypted records. It must be non-zero-copy */
1957 err = process_rx_list(ctx, msg, &control, 0, len, is_peek);
1965 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1968 zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek &&
1971 while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) {
1972 struct tls_decrypt_arg darg;
1973 int to_decrypt, chunk;
1975 err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT,
1979 chunk = sk_msg_recvmsg(sk, psock, msg, len,
1990 memset(&darg.inargs, 0, sizeof(darg.inargs));
1992 rxm = strp_msg(tls_strp_msg(ctx));
1993 tlm = tls_msg(tls_strp_msg(ctx));
1995 to_decrypt = rxm->full_len - prot->overhead_size;
1997 if (zc_capable && to_decrypt <= len &&
1998 tlm->control == TLS_RECORD_TYPE_DATA)
2001 /* Do not use async mode if record is non-data */
2002 if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
2003 darg.async = ctx->async_capable;
2007 err = tls_rx_one_record(sk, msg, &darg);
2009 tls_err_abort(sk, -EBADMSG);
2013 async |= darg.async;
2015 /* If the type of records being processed is not known yet,
2016 * set it to record type just dequeued. If it is already known,
2017 * but does not match the record type just dequeued, go to end.
2018 * We always get record type here since for tls1.2, record type
2019 * is known just after record is dequeued from stream parser.
2020 * For tls1.3, we disable async.
2022 err = tls_record_content_type(msg, tls_msg(darg.skb), &control);
2024 DEBUG_NET_WARN_ON_ONCE(darg.zc);
2025 tls_rx_rec_done(ctx);
2027 __skb_queue_tail(&ctx->rx_list, darg.skb);
2031 /* periodically flush backlog, and feed strparser */
2032 released = tls_read_flush_backlog(sk, prot, len, to_decrypt,
2036 /* TLS 1.3 may have updated the length by more than overhead */
2037 rxm = strp_msg(darg.skb);
2038 chunk = rxm->full_len;
2039 tls_rx_rec_done(ctx);
2042 bool partially_consumed = chunk > len;
2043 struct sk_buff *skb = darg.skb;
2045 DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor);
2048 /* TLS 1.2-only, to_decrypt must be text len */
2049 chunk = min_t(int, to_decrypt, len);
2050 async_copy_bytes += chunk;
2054 __skb_queue_tail(&ctx->rx_list, skb);
2058 if (bpf_strp_enabled) {
2060 err = sk_psock_tls_strp_read(psock, skb);
2061 if (err != __SK_PASS) {
2062 rxm->offset = rxm->offset + rxm->full_len;
2064 if (err == __SK_DROP)
2070 if (partially_consumed)
2073 err = skb_copy_datagram_msg(skb, rxm->offset,
2076 goto put_on_rx_list_err;
2079 goto put_on_rx_list;
2081 if (partially_consumed) {
2082 rxm->offset += chunk;
2083 rxm->full_len -= chunk;
2084 goto put_on_rx_list;
2093 /* Return full control message to userspace before trying
2094 * to parse another message type
2096 msg->msg_flags |= MSG_EOR;
2097 if (control != TLS_RECORD_TYPE_DATA)
2105 /* Wait for all previously submitted records to be decrypted */
2106 spin_lock_bh(&ctx->decrypt_compl_lock);
2107 reinit_completion(&ctx->async_wait.completion);
2108 pending = atomic_read(&ctx->decrypt_pending);
2109 spin_unlock_bh(&ctx->decrypt_compl_lock);
2112 ret = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2113 __skb_queue_purge(&ctx->async_hold);
2116 if (err >= 0 || err == -EINPROGRESS)
2122 /* Drain records from the rx_list & copy if required */
2123 if (is_peek || is_kvec)
2124 err = process_rx_list(ctx, msg, &control, copied,
2125 decrypted, is_peek);
2127 err = process_rx_list(ctx, msg, &control, 0,
2128 async_copy_bytes, is_peek);
2129 decrypted += max(err, 0);
2132 copied += decrypted;
2135 tls_rx_reader_unlock(sk, ctx);
2137 sk_psock_put(sk, psock);
2138 return copied ? : err;
2141 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
2142 struct pipe_inode_info *pipe,
2143 size_t len, unsigned int flags)
2145 struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
2146 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2147 struct strp_msg *rxm = NULL;
2148 struct sock *sk = sock->sk;
2149 struct tls_msg *tlm;
2150 struct sk_buff *skb;
2155 err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK);
2159 if (!skb_queue_empty(&ctx->rx_list)) {
2160 skb = __skb_dequeue(&ctx->rx_list);
2162 struct tls_decrypt_arg darg;
2164 err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK,
2167 goto splice_read_end;
2169 memset(&darg.inargs, 0, sizeof(darg.inargs));
2171 err = tls_rx_one_record(sk, NULL, &darg);
2173 tls_err_abort(sk, -EBADMSG);
2174 goto splice_read_end;
2177 tls_rx_rec_done(ctx);
2181 rxm = strp_msg(skb);
2184 /* splice does not support reading control messages */
2185 if (tlm->control != TLS_RECORD_TYPE_DATA) {
2187 goto splice_requeue;
2190 chunk = min_t(unsigned int, rxm->full_len, len);
2191 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2193 goto splice_requeue;
2195 if (chunk < rxm->full_len) {
2197 rxm->full_len -= len;
2198 goto splice_requeue;
2204 tls_rx_reader_unlock(sk, ctx);
2205 return copied ? : err;
2208 __skb_queue_head(&ctx->rx_list, skb);
2209 goto splice_read_end;
2212 int tls_sw_read_sock(struct sock *sk, read_descriptor_t *desc,
2213 sk_read_actor_t read_actor)
2215 struct tls_context *tls_ctx = tls_get_ctx(sk);
2216 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2217 struct tls_prot_info *prot = &tls_ctx->prot_info;
2218 struct strp_msg *rxm = NULL;
2219 struct sk_buff *skb = NULL;
2220 struct sk_psock *psock;
2221 size_t flushed_at = 0;
2222 bool released = true;
2223 struct tls_msg *tlm;
2228 psock = sk_psock_get(sk);
2230 sk_psock_put(sk, psock);
2233 err = tls_rx_reader_acquire(sk, ctx, true);
2237 /* If crypto failed the connection is broken */
2238 err = ctx->async_wait.err;
2244 if (!skb_queue_empty(&ctx->rx_list)) {
2245 skb = __skb_dequeue(&ctx->rx_list);
2246 rxm = strp_msg(skb);
2249 struct tls_decrypt_arg darg;
2251 err = tls_rx_rec_wait(sk, NULL, true, released);
2255 memset(&darg.inargs, 0, sizeof(darg.inargs));
2257 err = tls_rx_one_record(sk, NULL, &darg);
2259 tls_err_abort(sk, -EBADMSG);
2263 released = tls_read_flush_backlog(sk, prot, INT_MAX,
2267 rxm = strp_msg(skb);
2269 decrypted += rxm->full_len;
2271 tls_rx_rec_done(ctx);
2274 /* read_sock does not support reading control messages */
2275 if (tlm->control != TLS_RECORD_TYPE_DATA) {
2277 goto read_sock_requeue;
2280 used = read_actor(desc, skb, rxm->offset, rxm->full_len);
2284 goto read_sock_requeue;
2287 if (used < rxm->full_len) {
2288 rxm->offset += used;
2289 rxm->full_len -= used;
2291 goto read_sock_requeue;
2300 tls_rx_reader_release(sk, ctx);
2301 return copied ? : err;
2304 __skb_queue_head(&ctx->rx_list, skb);
2308 bool tls_sw_sock_is_readable(struct sock *sk)
2310 struct tls_context *tls_ctx = tls_get_ctx(sk);
2311 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2312 bool ingress_empty = true;
2313 struct sk_psock *psock;
2316 psock = sk_psock(sk);
2318 ingress_empty = list_empty(&psock->ingress_msg);
2321 return !ingress_empty || tls_strp_msg_ready(ctx) ||
2322 !skb_queue_empty(&ctx->rx_list);
2325 int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb)
2327 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2328 struct tls_prot_info *prot = &tls_ctx->prot_info;
2329 char header[TLS_HEADER_SIZE + TLS_MAX_IV_SIZE];
2330 size_t cipher_overhead;
2331 size_t data_len = 0;
2334 /* Verify that we have a full TLS header, or wait for more data */
2335 if (strp->stm.offset + prot->prepend_size > skb->len)
2338 /* Sanity-check size of on-stack buffer. */
2339 if (WARN_ON(prot->prepend_size > sizeof(header))) {
2344 /* Linearize header to local buffer */
2345 ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size);
2349 strp->mark = header[0];
2351 data_len = ((header[4] & 0xFF) | (header[3] << 8));
2353 cipher_overhead = prot->tag_size;
2354 if (prot->version != TLS_1_3_VERSION &&
2355 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2356 cipher_overhead += prot->iv_size;
2358 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2363 if (data_len < cipher_overhead) {
2368 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2369 if (header[1] != TLS_1_2_VERSION_MINOR ||
2370 header[2] != TLS_1_2_VERSION_MAJOR) {
2375 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2376 TCP_SKB_CB(skb)->seq + strp->stm.offset);
2377 return data_len + TLS_HEADER_SIZE;
2380 tls_err_abort(strp->sk, ret);
2385 void tls_rx_msg_ready(struct tls_strparser *strp)
2387 struct tls_sw_context_rx *ctx;
2389 ctx = container_of(strp, struct tls_sw_context_rx, strp);
2390 ctx->saved_data_ready(strp->sk);
2393 static void tls_data_ready(struct sock *sk)
2395 struct tls_context *tls_ctx = tls_get_ctx(sk);
2396 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2397 struct sk_psock *psock;
2400 trace_sk_data_ready(sk);
2402 alloc_save = sk->sk_allocation;
2403 sk->sk_allocation = GFP_ATOMIC;
2404 tls_strp_data_ready(&ctx->strp);
2405 sk->sk_allocation = alloc_save;
2407 psock = sk_psock_get(sk);
2409 if (!list_empty(&psock->ingress_msg))
2410 ctx->saved_data_ready(sk);
2411 sk_psock_put(sk, psock);
2415 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2417 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2419 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2420 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2421 cancel_delayed_work_sync(&ctx->tx_work.work);
2424 void tls_sw_release_resources_tx(struct sock *sk)
2426 struct tls_context *tls_ctx = tls_get_ctx(sk);
2427 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2428 struct tls_rec *rec, *tmp;
2431 /* Wait for any pending async encryptions to complete */
2432 spin_lock_bh(&ctx->encrypt_compl_lock);
2433 ctx->async_notify = true;
2434 pending = atomic_read(&ctx->encrypt_pending);
2435 spin_unlock_bh(&ctx->encrypt_compl_lock);
2438 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2440 tls_tx_records(sk, -1);
2442 /* Free up un-sent records in tx_list. First, free
2443 * the partially sent record if any at head of tx_list.
2445 if (tls_ctx->partially_sent_record) {
2446 tls_free_partial_record(sk, tls_ctx);
2447 rec = list_first_entry(&ctx->tx_list,
2448 struct tls_rec, list);
2449 list_del(&rec->list);
2450 sk_msg_free(sk, &rec->msg_plaintext);
2454 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2455 list_del(&rec->list);
2456 sk_msg_free(sk, &rec->msg_encrypted);
2457 sk_msg_free(sk, &rec->msg_plaintext);
2461 crypto_free_aead(ctx->aead_send);
2462 tls_free_open_rec(sk);
2465 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2467 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2472 void tls_sw_release_resources_rx(struct sock *sk)
2474 struct tls_context *tls_ctx = tls_get_ctx(sk);
2475 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2477 if (ctx->aead_recv) {
2478 __skb_queue_purge(&ctx->rx_list);
2479 crypto_free_aead(ctx->aead_recv);
2480 tls_strp_stop(&ctx->strp);
2481 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2482 * we still want to tls_strp_stop(), but sk->sk_data_ready was
2485 if (ctx->saved_data_ready) {
2486 write_lock_bh(&sk->sk_callback_lock);
2487 sk->sk_data_ready = ctx->saved_data_ready;
2488 write_unlock_bh(&sk->sk_callback_lock);
2493 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2495 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2497 tls_strp_done(&ctx->strp);
2500 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2502 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2507 void tls_sw_free_resources_rx(struct sock *sk)
2509 struct tls_context *tls_ctx = tls_get_ctx(sk);
2511 tls_sw_release_resources_rx(sk);
2512 tls_sw_free_ctx_rx(tls_ctx);
2515 /* The work handler to transmitt the encrypted records in tx_list */
2516 static void tx_work_handler(struct work_struct *work)
2518 struct delayed_work *delayed_work = to_delayed_work(work);
2519 struct tx_work *tx_work = container_of(delayed_work,
2520 struct tx_work, work);
2521 struct sock *sk = tx_work->sk;
2522 struct tls_context *tls_ctx = tls_get_ctx(sk);
2523 struct tls_sw_context_tx *ctx;
2525 if (unlikely(!tls_ctx))
2528 ctx = tls_sw_ctx_tx(tls_ctx);
2529 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2532 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2535 if (mutex_trylock(&tls_ctx->tx_lock)) {
2537 tls_tx_records(sk, -1);
2539 mutex_unlock(&tls_ctx->tx_lock);
2540 } else if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
2541 /* Someone is holding the tx_lock, they will likely run Tx
2542 * and cancel the work on their way out of the lock section.
2543 * Schedule a long delay just in case.
2545 schedule_delayed_work(&ctx->tx_work.work, msecs_to_jiffies(10));
2549 static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx)
2551 struct tls_rec *rec;
2553 rec = list_first_entry_or_null(&ctx->tx_list, struct tls_rec, list);
2557 return READ_ONCE(rec->tx_ready);
2560 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2562 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2564 /* Schedule the transmission if tx list is ready */
2565 if (tls_is_tx_ready(tx_ctx) &&
2566 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2567 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2570 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2572 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2574 write_lock_bh(&sk->sk_callback_lock);
2575 rx_ctx->saved_data_ready = sk->sk_data_ready;
2576 sk->sk_data_ready = tls_data_ready;
2577 write_unlock_bh(&sk->sk_callback_lock);
2580 void tls_update_rx_zc_capable(struct tls_context *tls_ctx)
2582 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2584 rx_ctx->zc_capable = tls_ctx->rx_no_pad ||
2585 tls_ctx->prot_info.version != TLS_1_3_VERSION;
2588 static struct tls_sw_context_tx *init_ctx_tx(struct tls_context *ctx, struct sock *sk)
2590 struct tls_sw_context_tx *sw_ctx_tx;
2592 if (!ctx->priv_ctx_tx) {
2593 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2597 sw_ctx_tx = ctx->priv_ctx_tx;
2600 crypto_init_wait(&sw_ctx_tx->async_wait);
2601 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2602 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2603 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2604 sw_ctx_tx->tx_work.sk = sk;
2609 static struct tls_sw_context_rx *init_ctx_rx(struct tls_context *ctx)
2611 struct tls_sw_context_rx *sw_ctx_rx;
2613 if (!ctx->priv_ctx_rx) {
2614 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2618 sw_ctx_rx = ctx->priv_ctx_rx;
2621 crypto_init_wait(&sw_ctx_rx->async_wait);
2622 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2623 init_waitqueue_head(&sw_ctx_rx->wq);
2624 skb_queue_head_init(&sw_ctx_rx->rx_list);
2625 skb_queue_head_init(&sw_ctx_rx->async_hold);
2630 int init_prot_info(struct tls_prot_info *prot,
2631 const struct tls_crypto_info *crypto_info,
2632 const struct tls_cipher_desc *cipher_desc)
2634 u16 nonce_size = cipher_desc->nonce;
2636 if (crypto_info->version == TLS_1_3_VERSION) {
2638 prot->aad_size = TLS_HEADER_SIZE;
2639 prot->tail_size = 1;
2641 prot->aad_size = TLS_AAD_SPACE_SIZE;
2642 prot->tail_size = 0;
2645 /* Sanity-check the sizes for stack allocations. */
2646 if (nonce_size > TLS_MAX_IV_SIZE || prot->aad_size > TLS_MAX_AAD_SIZE)
2649 prot->version = crypto_info->version;
2650 prot->cipher_type = crypto_info->cipher_type;
2651 prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2652 prot->tag_size = cipher_desc->tag;
2653 prot->overhead_size = prot->prepend_size + prot->tag_size + prot->tail_size;
2654 prot->iv_size = cipher_desc->iv;
2655 prot->salt_size = cipher_desc->salt;
2656 prot->rec_seq_size = cipher_desc->rec_seq;
2661 int tls_set_sw_offload(struct sock *sk, int tx)
2663 struct tls_sw_context_tx *sw_ctx_tx = NULL;
2664 struct tls_sw_context_rx *sw_ctx_rx = NULL;
2665 const struct tls_cipher_desc *cipher_desc;
2666 struct tls_crypto_info *crypto_info;
2667 char *iv, *rec_seq, *key, *salt;
2668 struct cipher_context *cctx;
2669 struct tls_prot_info *prot;
2670 struct crypto_aead **aead;
2671 struct tls_context *ctx;
2672 struct crypto_tfm *tfm;
2675 ctx = tls_get_ctx(sk);
2676 prot = &ctx->prot_info;
2679 ctx->priv_ctx_tx = init_ctx_tx(ctx, sk);
2680 if (!ctx->priv_ctx_tx)
2683 sw_ctx_tx = ctx->priv_ctx_tx;
2684 crypto_info = &ctx->crypto_send.info;
2686 aead = &sw_ctx_tx->aead_send;
2688 ctx->priv_ctx_rx = init_ctx_rx(ctx);
2689 if (!ctx->priv_ctx_rx)
2692 sw_ctx_rx = ctx->priv_ctx_rx;
2693 crypto_info = &ctx->crypto_recv.info;
2695 aead = &sw_ctx_rx->aead_recv;
2698 cipher_desc = get_cipher_desc(crypto_info->cipher_type);
2704 rc = init_prot_info(prot, crypto_info, cipher_desc);
2708 iv = crypto_info_iv(crypto_info, cipher_desc);
2709 key = crypto_info_key(crypto_info, cipher_desc);
2710 salt = crypto_info_salt(crypto_info, cipher_desc);
2711 rec_seq = crypto_info_rec_seq(crypto_info, cipher_desc);
2713 memcpy(cctx->iv, salt, cipher_desc->salt);
2714 memcpy(cctx->iv + cipher_desc->salt, iv, cipher_desc->iv);
2715 memcpy(cctx->rec_seq, rec_seq, cipher_desc->rec_seq);
2718 *aead = crypto_alloc_aead(cipher_desc->cipher_name, 0, 0);
2719 if (IS_ERR(*aead)) {
2720 rc = PTR_ERR(*aead);
2726 ctx->push_pending_record = tls_sw_push_pending_record;
2728 rc = crypto_aead_setkey(*aead, key, cipher_desc->key);
2732 rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2737 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2739 tls_update_rx_zc_capable(ctx);
2740 sw_ctx_rx->async_capable =
2741 crypto_info->version != TLS_1_3_VERSION &&
2742 !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC);
2744 rc = tls_strp_init(&sw_ctx_rx->strp, sk);
2752 crypto_free_aead(*aead);
2756 kfree(ctx->priv_ctx_tx);
2757 ctx->priv_ctx_tx = NULL;
2759 kfree(ctx->priv_ctx_rx);
2760 ctx->priv_ctx_rx = NULL;